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Pile-up transmission and reflection of topological
defects at grain boundaries in colloidal crystals
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Crystalline solids typically contain large amounts of defects such as dislocations and inter-

stitials. How they travel across grain boundaries (GBs) under external stress is crucial to

understand the mechanical properties of polycrystalline materials. Here, we experimentally

and theoretically investigate with single-particle resolution how the atomic structure of GBs

affects the dynamics of interstitial defects driven across monolayer colloidal polycrystals.

Owing to the complex inherent GB structure, we observe a rich dynamical behavior of defects

near GBs. Below a critical driving force defects cannot cross GBs, resulting in their accu-

mulation near these locations. Under certain conditions, defects are reflected at GBs, leading

to their enrichment at specific regions within polycrystals. The channeling of defects within

samples of specifically-designed GB structures opens up the possibility to design novel

materials that are able to confine the spread of damage to certain regions.

https://doi.org/10.1038/s41467-020-16870-w OPEN

1 Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany. 2 International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
3 CNR-IOMDemocritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy. 4Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16,
20133 Milan, Italy. 5 The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. ✉email: clemens.bechinger@uni-konstanz.de

NATURE COMMUNICATIONS |         (2020) 11:3079 | https://doi.org/10.1038/s41467-020-16870-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16870-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16870-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16870-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16870-w&domain=pdf
http://orcid.org/0000-0002-6382-423X
http://orcid.org/0000-0002-6382-423X
http://orcid.org/0000-0002-6382-423X
http://orcid.org/0000-0002-6382-423X
http://orcid.org/0000-0002-6382-423X
http://orcid.org/0000-0002-6058-8403
http://orcid.org/0000-0002-6058-8403
http://orcid.org/0000-0002-6058-8403
http://orcid.org/0000-0002-6058-8403
http://orcid.org/0000-0002-6058-8403
http://orcid.org/0000-0003-4374-6374
http://orcid.org/0000-0003-4374-6374
http://orcid.org/0000-0003-4374-6374
http://orcid.org/0000-0003-4374-6374
http://orcid.org/0000-0003-4374-6374
http://orcid.org/0000-0002-5496-5268
http://orcid.org/0000-0002-5496-5268
http://orcid.org/0000-0002-5496-5268
http://orcid.org/0000-0002-5496-5268
http://orcid.org/0000-0002-5496-5268
mailto:clemens.bechinger@uni-konstanz.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The plastic deformation of crystalline materials typically
takes place via the elementary flow of topological defects
such as dislocations and interstitials1–5. Therefore, the

dynamics of such defects under external stress is of central
importance for understanding the mechanical behavior of crys-
tals. In contrast to their rapid propagation within single crystals,
the motion of the defects is severely influenced by grain bound-
aries (GBs) in polycrystals, leading to a mechanical reinforcement
of polycrystalline materials which increases with the inverse
average grain size6–10. This empirically observed Hall–Petch
relation has been explained with the GB-assisted accumulation of
defects, which leads to an increasing yield strength9,10. Evidence
for this pile-up mechanism is provided by electron-microscopy
experiments, where defects, which have been created by inden-
tation of nanometer-sized tips, are observed to accumulate at
GBs11–14. While the interactions of defects with GBs have been
intensively studied in atomic simulations15–19, such detailed and
particle-resolved investigations of the GB-defect interactions are
limited from the experimental side. In particular, how the inho-
mogeneous atomic GB structure locally influences the incoming
defects has not been thoroughly investigated in experiments. Such
knowledge, however, is mandatory to provide quantitative rela-
tionships between the structure and the mechanical properties of
polycrystalline materials.

Here we report an experimental and theoretical study to
unravel the properties of driven interstitial defects in poly-
crystalline colloid monolayers with single-particle resolution.
Experimentally, this is achieved by injecting colloidal particles
into a colloid monolayer interacting with a patterned triangular
substrate emulating polycrystalline grains with various GB
topology. Colloids are “magnified atoms” with a length scale ~4
orders of magnitude larger than atoms and time scale ~6 orders
of magnitude slower20. Due to the easily accessible time and
length scales and the possibility of tuning the relevant micro-
scopic interactions in colloid experiments, colloidal systems have
been established as versatile analogic models to provide detailed
insight at single-particle level, e.g., in phase transitions, nano-
friction, clogging and jamming in the flow of particles hindered
by obstacles21–24. When injecting interstitial defects into the
system by an external driving force, we observe that their motion
is strongly hampered only at specific positions of the GB, leading
to their distortion and splitting upon crossing the GB. Below a
critical driving force the defects are not able to cross GBs, which
leads to their accumulation (pile-up) at these locations. A
Hall–Petch-like relation is recovered by measuring the critical
force as a function of the grain size. Even though our investiga-
tions pertain to two-dimensional colloid monolayers where the
detailed structure and dynamics of the defects are very different,
the observed Hall–Petch strengthening relation and position-
depend dynamic behaviors are qualitatively similar to those
observed in defect-GB interactions in three-dimensional real
materials15–19. Remarkably, we also find that, under certain
conditions, the GB can reflect incoming defects. Their confine-
ment to specific regions of the polycrystalline sample suggests the
fabrication of polycrystalline monolayers with direction-
dependent mechanical properties.

Results
Experiment. Our experimental setup is illustrated in Fig. 1a.
Silica particles with hard-sphere interaction and diameter σ=
4.28 μm are driven by gravity F=mg sinα across a flat surface
(reservoir) toward a patterned surface with hexagonal symmetry
and lattice spacing b > σ. Specifically, this periodic substrate is
patterned with cylindrical wells created by photolithography.
Each well (with radius r ≈ 1.6 μm and depth h ≈ 0.5 μm, see

Supplementary Fig. 1) can be occupied by one particle only.
When reaching the patterned area, the colloids become trapped in
the wells, eventually forming a hexagonal crystal with lattice
spacing b. Under the gravitational driving force, extra “inter-
stitial” colloidal particles can be injected from the reservoir into
the crystal phase, which leads to the formation of zero-
dimensional (point like) and quasi-one-dimensional (i.e., aggre-
gated) interstitials (see Supplementary Movie 1). These inter-
stitials propagate along the lattice vector being closest to the
driving force. To study the interaction of interstitials with GBs,
we construct patterns of substrate wells arranged as single-
crystalline domains separated by well-defined GBs (Supplemen-
tary Fig. 1). More experimental details are in the “Methods”
section.

Interstitial defects in uniform lattice. Before discussing the
behavior of interstitials near GBs, we summarize their properties
on a uniform, i.e., single domain, lattice. Figure 1b shows an
optical image of an interstitial defect, which is formed by three
interstitial particles. To better visualize the corresponding strain
field, we color code each particle by its distance δr to the nearest
substrate well in Fig. 1c, see “Methods” for the calculation of δr. It
reveals a crowdion (a specific type of interstitial) configuration
where the strain caused by the interstitial is confined to an
elongated area with length L ≈ 6.0b and w= 3 lines of particles
wide. Given the mismatch between the particle size σ and the
substrate lattice spacing b, the length L of the interstitials varies as
shown in Fig. 1e. In the rest of the paper, we select b= 4.6 μm,
generating interstitials of relative length L/b ≈ 6.0, which matches
the size of crowdions in metallic crystals25. As sketched in Fig. 1d,
the features and motion of our interstitials resemble the topolo-
gical solitons described by the Frenkel–Kontorova model26,27. In
addition to the Peierls–Nabarro (PN) potential arising due to the
interaction with the underlying periodic surface, our interstitials
experience a lateral friction force when moving through the lattice
due to interactions with particles in neighboring motionless lines
(Supplementary Fig. 2). Since the lateral friction force exists only
at the boundary between the interstitial and the undistorted lat-
tice, the interstitials become faster with increasing width, as
shown in Fig. 1f, which compares the force-dependent velocity of
interstitials with w= 1 and 3. Further evidence that the lateral
friction of interstitials is essentially given by their boundary with
the surrounding is also provided by the fact that the interstitial
velocity rapidly saturates with increasing w (inset Fig. 1f). An
immediate consequence of this lateral friction is their aggregation
once they approach each other from different directions. This is
exemplarily shown in Fig. 1g and Supplementary Movie 2 for the
case of two interstitials with w= 1 merging into a single one with
w= 2. Such aggregations lead to reduced collisions between
interstitials and therefore enhance the average interstitial velocity
(Supplementary Movie 3). In contrast, repulsion is observed
(Fig. 1h, Supplementary Movie 4) when a fast (w= 2) interstitial
approaches a slower one (w= 1) along the same line. This
situation is similar to the interaction of running kinks in one-
dimensional systems, which also exhibit a repulsive interaction
due to the overlap of the compressive strain fields28.

Driving interstitial defects across small-angle GBs. The
dynamics of interstitials becomes strongly affected by the pre-
sence of a GB. In general, GBs in a two-dimensional crystal are
characterized by two angles θ1 and θ2 indicating the lattice
orientations on each side of the boundary (Fig. 2a). To create
equilibrium low-energy GBs, however, one also has to consider
the structural relaxation of the two domains when bringing them
into contact. It has been shown that equilibrium GB
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configurations in two dimensions with lowest energy can be
constructed using a method based on centroidal Voronoi tessel-
lation29. Supplementary Fig. 1 shows some examples of a sub-
strate containing GBs with different values of θ1 and θ2, which
have been realized according to the centroidal Voronoi-
tessellation method. Notably, the GBs consist of an almost lin-
ear sequence of localized defects, which are characterized by pairs
of fivefold and sevenfold coordinated potential wells (5–7 pairs).
Between such pairs, the lattices remain almost undistorted.

When a colloidal monolayer is absorbed on such a structure, it
closely matches the underlying substrate geometry. This can be
seen from the small particle displacements δr which are
exemplarily shown in Fig. 2a for a symmetric GB with θ1=
θ2= 4.72°. The Voronoi tessellation of the particle positions
clearly indicates the positions of the 5–7 pairs of the underlying
substrate. When interstitials are inserted and driven perpendi-
cular to the GB, their behavior strongly depends on whether they
hit a 5–7 pair or cross the GB in between. When an interstitial
passes the only marginally distorted GB region between 5–7 pairs,
its velocity remains almost unaffected (Fig. 2b, d and Supple-
mentary Movie 5). Opposed to that, a pronounced time delay of
about 130 s in the interstitial trajectory is found when crossing the
GB at a 5–7 pair (Fig. 2c, e and Supplementary Movie 5). In
Fig. 2f, we show the measured time delay as a function of the
driving force for three different crossing points at the GB as
indicated in Fig. 2a. With increasing distance from a 5–7 pair, the
measured (symbols) delay times systematically decrease in
qualitative agreement with numerical simulations (lines, see

“Methods”). The deviations from the experiments are possibly
due to out-of-plane particle motions and the colloid’s poly-
dispersity which are not considered in the simulations. To
understand why the delay time strongly depends on the position
where the particle passes through the GB, we have numerically
calculated the potential energy Uc of an interstitial as a function of
its center-of-mass distance xc to the GB. As seen in Fig. 2g, Uc is
strongly non-monotonic at the GB. In particular when the
interstitial passes near a 5–7 pair, the spatial variation of Uc

becomes most pronounced, which explains why the delay time is
largest for these regions. The inset of Fig. 2g illustrates the
correlation between the depth/height of Uc,ex and the Voronoi-
area deviation δA= AGB− A0, where AGB is the Voronoi area of
the GB lattice point, and A0 is the Voronoi area of a regular lattice
point. When δAg < 0, i.e. the lattice is locally compressed, Uc,ex is
positive and the GB acts as a barrier. For δAg > 0, i.e. when the
lattice is locally expanded, Uc,ex is negative and the GB acts as a
trap. Far away to the left and right of the GB, Uc displays a tiny
oscillation whose wavelength is identical to the periodicity of the
substrate. The amplitude of this oscillation corresponds to the PN
potential for an interstitial moving across a perfect periodic
lattice. As a result of the strong variation of the potential barriers
along the GB, interstitials with widths comparable with or even
larger than the spacing between 5–7 pairs display a rather
complex behavior crossing a GB. This is exemplarily shown in
Fig. 2h and Supplementary Movie 6, displaying the dynamics of
an interstitial with w= 14. Upon approaching the GB, its front
becomes distorted and eventually splitted when passing the GB.
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Pile-up of interstitial defects at large-angle GBs. On average,
the total slowing down of interstitials at GBs strongly depends on
the density ρp of 5–7 pairs along the GB, which is a function of
the GB misalignment angles, as illustrated in Fig. 3a. For sym-
metric GBs θ= θ1= θ2, ρp is:

ρp θð Þ ¼ 2 sin θ=b; 0� < θ < 15�

ρp θð Þ ¼ 4 cos θþ 60�ð Þ=p3b; 15� < θ < 30�:
ð1Þ

Eq. (1) is plotted in Fig. 3b (top). The discontinuity at θ= 15°
stems from the geometrical origin of the defects, and is discussed
in the Methods section, alongside the derivation and extension of
Eq. (1) to GBs with arbitrary orientations. Near θ= 0° and 30° the

two grains are almost perfectly aligned, resulting in dilute 5–7
pairs at the GB. The density of 5–7 pairs becomes largest for θ=
15°, where the misalignment of the two grains is maximum.
Figure 3b (bottom) reports the average delay time (“Methods”) of
interstitials when they traverse a symmetric GB of angle θ. The
results show that the delay time reaches a maximum near θ= 15°.
Therefore, the denser the 5–7 pairs, the longer the delay time is.
With θ= 19.1°, the density of 5–7 pairs is so large that a pile-up
of interstitials is observed, as shown in Fig. 3c and Supplementary
Movie 7, by gradually lowering the driving force toward F= 23
fN. To quantitatively describe this pile-up, we define a pile-up
ratio p (“Methods”) that describes the strength of pile-up.
Figure 3d reports the observed p as a function of F for the θ=
19.1° GB and for the θ= 4.72° GB. For the θ= 19.1° GB,
p reaches a relatively high value when F < 30 fN. Instead, for the
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θ= 4.72° GB, p remains small across the entire range of
experimental driving forces: generally we observe little or no
pile-up against small-angle GBs.

Together with the accumulation of interstitials near GBs,
mechanical stress gradients are expected to increase in these
regions. Accordingly, the spatial distribution of internal stress
should become more homogeneous with decreasing grain size
and thus leads to an increased yield stress9,10. To verify this, in
Fig. 3e we show v as a function of F for different grain sizes d in
numerical simulations for the θ= 19.1° GB, while keeping the
total size of the system and the density of interstitials fixed. d is
the spacing between two successive GBs as shown in the inset of
Fig. 3f. The smaller the value of d, the more numerous GBs the
interstitials has to cross. Figure 3f shows the critical force Fc as a
function of grain size d. Under such force, all interstitials are
effectively stuck (pile-up) at one of the GBs. Interestingly, the
data in Fig. 3f can be well fitted (solid line) to the Hall–Petch
relation Fc= F0+ k/d1/2, which describes the strengthening of
materials at small grain sizes due to the increasing yield stress
with decreasing separations between GBs.

Reflection of interstitial defects by GBs. In addition to the
observed slowing down and pile-up of interstitials when crossing
GBs, reflection of interstitials can also occur. This is shown in
Fig. 4a where part of an interstitial with w= 4 is being reflected
after hitting a 5–7 pair at the GB. The reflection probability
R(θ1, θ2) for interstitials in the θ1 side approaching the θ2 side
(and likewise the transmission probability 1− R) depends on the

direction of driving force as well as GB angles θ1 and θ2. R(0°, θ2)
and R(θ2, 0°) are plotted in Fig. 4b as a function of θ2, for non-
symmetric GBs with θ1= 0° and F parallel to the GB. Similar to
the time delay, the reflection is also related to the potential energy
barrier at the GB. This is consistent with our observation that
reflection preeminently occurs at 5–7 pairs at the GB where the
potential barrier is largest (see Fig. 4a).

However, contrary to a transmission process, reflection
requires both the stopping and a redirection of an interstitial.
Then the reflection rate is the product of the probability phit(θ1,
θ2) for an incoming interstitial to hit a 5–7 pair at the GB and the
probability preflect(θ1, θ2, F) for a stopped interstitial to be
reflected. phit(θ1, θ2) is proportional to the density of 5–7 pairs
divided by the cosine of the interstitial incidence angle. preflect(θ1,
θ2, F) is obtained by solving an equilibrium two-state distribution
problem with preflect∝ exp(Freflect(θ1, F) b/kBT) and pcross∝ exp
(Fcross(θ2, F) b/kBT). Here Freflect(θ1, F) and Fcross(θ2, F) are the
appropriate projections of F to the lattice symmetry directions
corresponding to reflection and crossing respectively. Finally, one
arrives at the total reflection rate:

R θ1; θ2ð Þ ¼ phit θ1; θ2ð Þh Freflect θ1; Fð Þ � Fcross θ2; Fð Þ½ �b=kBTð Þ;
ð2Þ

where h is the sigmoid function h(x)= 1/(e−x+ 1). The
projections Freflect and Fcross involve also the normal force exerted
by the GB, and are described in the “Methods” section. Given b=
4.6 µm, kBT= 4.14 zJ, θ1= 0°, and a driving force parallel to the
GB with magnitude F= 66 fN, the theoretical reflection rates
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R(0°, θ2) and R(θ2, 0°) as a function of θ2 are plotted in Fig. 4b
alongside the experimental data, showing good agreement. By
taking advantage of the large difference of R(0°, θ2) and R(θ2, 0°)
at θ2 > 15°, defects can be strongly localized within a single grain
as shown in Fig. 4c and Supplementary Movie 8. The interstitials
easily cross the GB from grain 2 to grain 1 but not in the opposite
direction, effectively trapping all moving interstitials inside one
single region. This is also confirmed by numeric simulations, see
Supplementary Movie 9. Note that Fig. 4c shows even direction
changes within the grains: this is due to the nonuniform PN
barriers and the existence of thermal fluctuations in experiments,
and should be distinguished from the reflections that occur at
the GBs.

Discussion
Various techniques have been developed to process materials in
order to optimize their properties regarding specific technological
applications. Many of these methods, however, are based on
empirical findings rather than on a detailed microscopic under-
standing how defects affect the material properties. This lack of
knowledge is partially due to the difficulty to observe the ato-
mistic kinetics of defects moving across GBs with single-particle
resolution and in real time. Colloidal monolayers with interstitial
defects and externally designed atomic scale GBs, as reported
here, provide an ideal two-dimensional emulator where much
novel experimental and theoretical understanding can be
obtained regarding the GB-defect interactions. While the
explored GB topologies are specific to two-dimensional hexagonal
crystals, the GBs in three-dimensional metals involve similar
patterns of sites with varying coordination and atomic volume
which affect the mobility of vacancies and self-interstitials30–32.
Accordingly, the distortions and splitting of defects by GBs as
well as the confinement of defects within certain regions of the
polycrystal might also be observed in three-dimensional poly-
crystals. As GBs and defects are known to assist in annealing of
crystal damage33–36, the observed channeling of interstitials
within polycrystals suggests an intriguing possibility for control-
ling the damage, failure, and self-healing of materials under
mechanical stress. Our experimental approach illustrates the

premises for predicting the dynamic behavior under external
stress of physical systems characterized by similar topological
features, such as the mechanical behavior of two-dimensional
materials and nanofriction37.

Methods
Substrate preparation and characterization. The polycrystalline structure on
the sample substrate was created by photolithography. We adopt the algorithm in
ref. 29 to generate the GB packing geometry. This geometry is transferred to a photo
mask, the lattice points on which are opaque circular disks. After exposing the
negative photoresist SU8 2000.5 (~500 nm in thickness coated on a glass surface)
under the mask, the unexposed disk regions on the photoresist dissolve away in
photoresist developers, resulting in circular wells of depths ~500 nm on the pho-
toresist, arranged in a polycrystalline packing. We scanned the SU8 structure under
an atomic force microscope with a Bruker OTESPA-R3 tip (tip curvature radius
~7 nm). The scans (Supplementary Fig. 1) show that, for the b= 4.60 μm substrate,
the diameter of the wells is about 3.6 μm and the depth of the wells is about
550 nm. The values (3.6 μm and 550 nm) can vary slightly (±10%) in experiments
from sample to sample.

Sample preparation. The colloidal suspension is composed of mono-dispersed
silica spheres in deionized water. They have a diameter σ= 4.28 ± 0.12 μm, buoyant
weight mg= 348 fN and a gravitational height of hg= kBT/mg= 11.7 nm at room
temperature T= 295 K. The colloidal suspension is injected into a sample cell of
about 20 mm × 30 mm × 300 μm in size, where 300 μm is the distance from the
bottom-patterned substrate to the top cover slide. Under gravity, the particles
sediment down to the bottom of the sample cell and uniformly distribute on the
substrate which contains regions of flat surface and regions of topographically
patterned surface. The colloidal particles are slightly smaller than the lattice spacing
of the periodic surface, therefore each well on the periodic surface can host at most
one particle. The initial particle coverage (~0.3) is not enough to form a crystalline
phase on the periodic surface. To facilitate the formation of crystalline phase on the
periodic surface, the sample cell is tilted by 15–20 degrees so that particles can
move in from the flat reservoir to the patterned surface. The driving force is such
that it is too small to drive isolated particles across the periodic surface, but much
larger than needed to drive interstitials across the crystals. Under the driving force,
the newly arrived particles from the reservoir will move into the crystalline phase
and become interstitials (Supplementary Movie 1). The interstitials will further be
driven across the crystalline phase until they reach unoccupied wells. In such a way,
the crystalline phase grows larger and larger in the patterned region.

Particle tracking and interstitial characterization. We recorded experimental
images at a 3 Hz frame rate. Using a standard particle-tracking algorithm, we can
track the positions of the center of the colloidal particles with a 50 nm accuracy. To
calculate the distance δr of a particle relative to its equilibrium position (i.e., the
nearest well), we fit the positions of all particles in the image to a perfect triangular
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Fig. 4 Reflection of interstitial by nonsymmetric GBs. a Superposition of particle positions near a GB (θ1= 0°, θ2= 4.72°) over 80 s time periods,
trajectories of three interstitials (w= 2, 2, 4 respectively) are clearly revealed. The particles are color coded like in Fig. 2. The 5–7 pairs at the GB are
highlighted. F= 66 fN. b The reflection rates as a function of θ2 for R(0°, θ2) and R(θ2, 0°), F= 66 fN. Points are experimental data. Lines represent Eq. (2)
with parameters b= 4.6 µm, kBT= 4.14 zJ. R(0°, θ2) is much larger than R(θ2, 0°) when θ2 > 15°, this makes it possible to confine interstitials within grain 1.
Error bars are standard deviations of the data points. c The superposition of particle positions in a striped pattern in experiments over a 1000 s time period.
The 5–7 pairs at the GB of the inner stripe are highlighted. F= 66 fN. The four GBs (from bottom to top) have GB angles (0°, −19.1°), (19.1°, 0°), (0°, 19.1°)
and (−19.1°, 0°), respectively.
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lattice of lattice spacing b, with fitting parameters x0, y0, θ, where (x0, y0) are the
coordinates of one of the lattice points and θ the lattice orientation. With (x0, y0)
and θ, the position of all other lattice points are calculated. δr of a particle is then
the distance between the particle and the nearest lattice point. An interstitial is
defined as a cluster of close-packed particles whose δr > 1.2 μm. The position of an
interstitial is the center-of-mass position of the cluster. The velocity of individual
interstitials can then be calculated from the time series of their center-of-mass
displacements.

Calculation of average delay time. To calculate the average delay time of inter-
stitials crossing symmetric GBs with angle θ, as shown in Fig. 3b, we measure the
average velocity v(θ) of interstitials crossing the GB and traveling for an horizontal
distance Δx. As a reference, we take the average velocity for interstitials in a single
crystal—i.e., v(θ= 0). The average delay time is then defined to be: Δx/v(θ)−Δx/v(0).
Δx= 300 μm in both experiments and simulations. To calculate v(θ) in experiments,
the average velocity vp(θ) of each colloidal particle in the field of view during a time
period of ~1000 s is measured. Then, v(θ)=Npvp(θ)/Nint, where Np ~ 3500 is the
number of particles and Nint= Σiwi ~ 100 is the total number of interstitials (weighted
by their width wi). wi ≥ 3 in most cases. The calculated v(θ)/v(0) is shown in Sup-
plementary Fig. 5 for both experiments and simulations. v(θ)/v(0) reaches a minimum
around θ= 15°, corresponding to the longest delay of interstitials.

Determination of pile-up ratio of interstitials. We define the pile-up ratio as p=
(∫−Δx/2<x<0δr2(x)dx− ∫0<x<Δx/2δr2(x)dx)/∫−Δx/2<x<Δx/2δr2(x)dx, i.e. the difference of
the shaded areas at x < 0 and at x > 0 in Supplementary Fig. 6, normalized by the
entire shaded area, where δr2(x)= 1/Y × ∫0<y<Δy δr2(x,y)dy is the y-averaged δr2,
Δx= 300 μm and Δy= 240 μm.

Evaluation of the grain boundary defect density. The precise local structure of
the GBs depends on the alignment of the two neighboring grains relative to the
direction of the GB itself. We can predict very accurately the average defect con-
centration and its composition in terms of topological defects. As shown in Sup-
plementary Fig. 7, due to the lattice misalignment, the number of lattice lines
joining at the GB from the left is generally different from the number of lattice lines
joining from the right. To account for this discrepancy, one 5–7 pair is generated at
the GB for each lattice line difference. Using this simple geometric observation, we
propose simple formulas to describe the density of 5–7 pairs in any GB between
triangular lattices. In general, there are only two independent ways (highlighted in
red and blue in Supplementary Fig. 7) for the lattice lines in the two grains to join
at the GB with minimum deflection, therefore there are two sets of 5–7 pairs at the
GB. For one set, the (average) distance between 5–7 pairs is D′= √3/2 b/(cos(θ1)−
cos(β)); for the other set, the distance between 5–7 pairs is D″= √3/2 b/(cos(θ1+
60°)− cos(β− 60°)). The angle β depends on the relative orientation of the two
grains and is related to which directions present minimal deflection: β= θ2 if θ1+
θ2 < 30° and β= 60°− θ2 if θ1+ θ2 > 30°. The total density of 5–7 pairs is then
ρp= 1/D′+ 1/D″. We find that these formulas accurately describe the structural
properties of the GBs constructed according to the algorithm of ref. 29. The value of
ρp is 0 at θ1+ θ2= 0° and 60° and reaches the maximum value near θ1+ θ2= 30°.
More illustrations of GBs and their 5–7 pairs with different values of θ1 and θ2 are
shown in Supplementary Fig. 8.

Reflection and transmission analysis. In a first approximation a GB can be
considered as a barrier that exerts a normal force onto approaching interstitials. See
Supplementary Fig. 9, a driving force F parallel to the GB, and with magnitude
F, has component Fcrossing= F cos(30°+ θ2) in the direction of transmission, and
F cos(30°+ θ1) in the direction of reflection. The interstitial is attracted to the GB in
the direction of the incoming lattice line with a force equal to P= F cos(30°− θ1). The
resulting normal force, approximating the GB as a hard wall, is N= F cos(30°− θ1)
sin(30°− θ1). When this normal force is projected back to the reflection direction, it
gives a contribution F cos(30°− θ1) sin(30°− θ1) cos(60°− θ1). Consequently, the
total force in the direction of reflection is Freflect= F cos(30°+ θ1)+ F cos(30°− θ1)
sin(30°− θ1) cos(60°− θ1). This quantity is an ingredient of Eq. (2).

Modeling and molecular dynamics. The substrate corrugation V(r) explored by a
single particle at position r is the sum of terms Vdimple(|r− ri|), where ri are the
centers of the individual potential wells, as placed in a regular two-dimensional
lattice or, near a GB, according to the Voronoi algorithm29. Vdimple(|r|) is a smooth
approximation of the potential-energy profile for a sphere of radius R located at a
distance r from the center of a cylindrical well. To avoid cusps in the potential
energy, we use Vdimple(r)=−ϵ for |r| < rm; Vdimple(r)=−ϵ/2 tanh((ξ− wd)/(ξ(1−
ξ))− 1.0) for rm < |r| < rM; Vdimple(r)= 0 for |r| > rM. Here, ξ= (r− rm)/(rM− rm).
The parameters wd= 0.29, rm= 0.6 µm and rM= 2.0 µm have been fitted to best
replicate the experimental profile experienced by the σ= 4.28 μm spheres on the
b= 4.6 µm substrate. We adopt an energy corrugation depth ϵ= 170 zJ, consistent
with a well depth of ~500 nm. For the investigation of the colloidal-particles
dynamics, we use a sum of two-body interaction potentials of the form vint(|ri−
rj|)=+∞ for |ri− rj| < r0; vint(|ri− rj|)= vLJ(|ri− rj|− r0) for |ri− rj| > r0. This
combines a hard-core repulsion at distances smaller than r0= 1.0 µm and a softer
Lennard-Jones repulsion at larger distances, with ϵLJ= 1 zJ, σLJ= 3.6 µm and a

“truncated and shifted force” cutoff at 1.6 σLJ. The parameters have been chosen to
fit structural properties of experimental interstitials. We perform T= 0 Langevin
dynamics with a damping rate γ= 20.0 ms−1, within a fourth-order Runge–Kutta
integration scheme.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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