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Abstract. We study a class of close-packed dimer models on the square
lattice, in the presence of small but extensive perturbations that make
them non-determinantal. Examples include the 6-vertex model close to
the free-fermion point, and the dimer model with plaquette interaction
previously analyzed in [1, 2, 22, 23]. By tuning the edge weights, we
can impose a non-zero average tilt for the height function, so that the
considered models are in general not symmetric under discrete rotations
and reflections. In the determinantal case, height fluctuations in the
massless (or ‘liquid’) phase scale to a Gaussian log-correlated field and
their amplitude is a universal constant, independent of the tilt. When
the perturbation strength λ is sufficiently small we prove, by fermionic
constructive Renormalization Group methods, that log-correlations sur-
vive, with amplitude A that, generically, depends non-trivially and non-
universally on λ and on the tilt. On the other hand, A satisfies a uni-
versal scaling relation (‘Haldane’ or ‘Kadanoff’ relation), saying that it
equals the anomalous exponent of the dimer-dimer correlation.

1. Introduction

The question of universality, that is the independence of the critical prop-
erties of macroscopic systems from the microscopic details of the underlying
model Hamiltonian, is a central issue in statistical physics, whose mathe-
matical understanding is largely incomplete. A convenient framework where
it can be studied is that of planar dimer models, which exhibit a rich criti-
cal behavior: algebraic decay of correlations, conformal invariance, ... The
dimer model on a bipartite planar lattice is integrable and, more precisely,
determinantal (also said ‘free fermionic’): its correlation functions are given
by suitable minors of the so-called inverse Kasteleyn matrix [27]. The
model is parametrized by edge weights t and has a non-trivial phase di-
agram. By varying t, one can impose an average non-zero tilt ρ for the
height field. A central object of the dimer model is the so-called charac-
teristic polynomial P (z, w), where z, w are complex variables. For instance,
the infinite-volume free energy is given by an integral of log |P (z, w)| over
the torus T = {|z| = |w| = 1}. Also, the large-distance decay of corre-
lations is dictated by the so-called spectral curve, i.e. the algebraic curve
C(P ) = {(z, w) ∈ C2 : P (z, w) = 0}. When the edge weights are such
that the spectral curve intersects T transversally one is in the “liquid” or
“massless” phase, where the two-point dimer-dimer correlation of the model
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decays like the inverse distance squared. Correspondingly the height field
scales to a Gaussian Free Field (GFF) and the variance grows like the loga-
rithm of the distance times 1/π2. Remarkably, this pre-factor is independent
of the weights t and of the specific choice of the bipartite periodic planar
lattice. This is related [29] to the fact that C(P ) is a so-called Harnack curve.
Summarizing, in the massless phase the scaling limit of height fluctuations
of the dimer model is universal, in a very strong sense: the limit is always
Gaussian, with logarithmic growth of the variance; moreover, the pre-factor
in front of the logarithm in the variance is independent of the details of the
underlying microscopic structure (edge weights and lattice).

The previous results heavily rely on the determinantal structure of the
model, but universality is believed to hold much more generally. Motivated
by this, we consider weak, translation-invariant, perturbations of the dimer
model (for simplicity, we restrict to the square lattice). Generically, as soon
as we switch on the perturbation, the determinantal structure provided by
Kasteleyn’s theory breaks down. Two particular examples of perturbed,
non-determinantal, models that we consider are: the 6-vertex model with
general weights a1, . . . , a6, in the disordered phase, close to, but not exactly
at, the free-fermion point; and the dimer model with plaquette interaction,
originally introduced in [1, 2]. There is a basic difference between two such
cases: the 6-vertex model, even if non-determinantal, is still solvable via
Bethe Ansatz (BA), see [3] and reference therein (note that the BA solution
is not as explicit as the Kasteleyn solution of standard dimers: only a few
thermodynamic functions can be explicitly computed). On the other hand,
dimers with plaquette interaction are believed not to be solvable, i.e., not
even the basic thermodynamic functions admit an explicit representation.
From the exact solution, one finds that some of the critical exponents of the
6-vertex model depend continuously on the vertex weights1; they differ, in
general, from those of the standard dimer model. On the other hand, the
existence of non-trivial critical exponents in the dimer model with plaquette
interaction, as well as in other planar models in the same ‘universality class’
(such as coupled Ising models, Ashkin-Teller and 8-vertex models) can be
proved by constructive Renormalization Group (RG) methods [5, 7, 21, 30],
which allow one to express them as convergent power series in the interaction
strength.

In this setting, it is natural to ask whether the height fluctuations are still
described by a GFF at large scales and, in case, whether the pre-factor in
front of the logarithm still displays some universal features. The very fact
that the critical exponents depend non-trivially on the interaction strength
suggest that universality cannot then be true in the naive, strong, sense
that ‘large-scale properties are independent of the microscopic details of the
model’: in fact, in this context, a weaker form of universality is expected, in
the form of a number of scaling relations, originally proposed by Kadanoff
[26], which allow one to determine all the critical exponents of the critical

1More precisely, the limit of the critical exponents of the 8-vertex model as the addi-
tional vertex weights a7 = a8 tend to zero have a non-trivial continuous dependence on
the remaining vertex weights a1, . . . , a6, see [3, Eqs.10.12.23 and 10.12.27].
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theory in terms of just one of them; this form of universality is often re-
ferred to as ‘weak universality’, see e.g. [3, Section 10.12]. Support for the
Kadanoff scaling relations comes from the so-called bosonization picture, see
e.g. [23] for a basic introduction. Only some of these universality relation
have been rigorously proven [5, 7]; an example is the identity XcXe = 1 [26,
Eq.(13b)], relating the “crossover exponent” Xc and “energy exponent” Xe,
see [5, Eq.(1.10)]. The proof in [5] covers both solvable and non-solvable
models, but only works for scaling relations involving the critical exponents
of the “local observables”, i.e., those that admit a representation in terms
of a local fermionic operator. Other scaling relations, involving the criti-
cal exponents of non-local observables (e.g. monomer-monomer correlations
in dimer models, or spin-spin correlations in the Ashkin-Teller model) re-
mained elusive for many years. In particular, the relation Xp = Xe/4 [26,
Eq.(13a)], relating the energy exponent Xe to the “polarization exponent”
Xp in the AT model, remained unproven at a rigorous level.

In this paper, we prove the stability of the Gaussian nature of the height
fluctuations for non-integrable perturbations of the dimer model, with loga-
rithmic growth of the variance in the whole liquid region. The pre-factor A
in front of the logarithm depends, in general, non-trivially on the strength
of the perturbation (see Remark 4 below) and on the dimer weights, so it is
not universal in a naive, strong, sense. The non-trivial dependence of A on
the interface tilt has been also verified numerically for the 6-vertex model
[24]. Nevertheless, A satisfies a scaling relation, that connects it with the
critical exponent of the dimer-dimer correlations.

Main Theorem. In a weakly perturbed dimer model with perturbation of
strength λ, the variance of the height difference between two faraway points
grows like the logarithm of the distance, with a pre-factor A/π2, where A =
1 + O(λ) is an analytic function of λ and of the dimer weights. Moreover,
the pre-factor satisfies the scaling relation

A = ν, (1.1)

where 2ν is the anomalous decay exponent of the dimer-dimer correlation.
Higher cumulants of the height difference between two points are bounded
uniformly in their distance, that is, the fluctuations of the height difference
are asymptotically Gaussian.

For a more precise statement, see Theorem 2 and the remarks and com-
ments that follow it. Note that in the un-perturbed case, λ = 0, the dimer-
dimer correlation decays at large distances like (dist.)−2 in the whole liquid
phase, i.e., its decay exponent is equal to 2 (so that ν = 1), irrespective of
the specific choice of the dimer weights. In this case, of course, our result
reduces to the one of [29], A = 1. Note also that our result covers both
integrable models, such as 6-vertex, and non-integrable ones, in the spirit of
the universality picture.

Scaling relations involving exponents and amplitudes were conjectured
by Haldane [25] and proved by Benfatto and Mastropietro [10, 11] in the
context of quantum one-dimensional models. Even if formulated in differ-
ent notations, the scaling relation (1.1) is strictly related to one of those
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proposed by Kadanoff, in particular to the above-mentioned, elusive, iden-
tity Xp = Xe/4 [26, Eq.(13a)]. In fact, there is a duality (called ‘discrete
bosonization’ in [16]) between the 6-vertex model, which is part of the class
of perturbed dimer models considered in this paper, and the AT model; the
duality implies non-trivial identities between the correlations of 6-vertex
model and those of AT, see [16, Section 2.6]. In particular, the two-point
correlation of the polarization operator in AT equals the ‘electric correla-
tor’ 〈eiπ(hx−hy)〉6V of the 6-vertex model, see [16, Section 2.6]2, while the
energy critical exponent of AT equals the anomalous decay exponent of the
arrow-arrow correlations of 6-vertex3. Given these identities, (1.1) implies
that Xp = XE/4 [26, Eq.(13a)], provided that

〈eiπ(hx−hy)〉6V ∼ e
−π

2

2
〈(hx−hy)2〉6V ∼ e−

A
2

log |x−y| (1.2)

at large distances, as suggested by the asymptotic Gaussian behavior of the
height difference4.

To prove our results, we start by periodizing the non-integrable dimer
model on the toroidal graph of size L. Then we map it into a system of inter-
acting two-dimensional lattice fermions, by rewriting its moment generating
function as an integral over Grassmann variables, with non-quadratic ac-
tion. At this point, we apply tools from the so-called constructive fermionic
RG to control the L → ∞ limit of the correlation functions. In particular,
we need a very sharp asymptotic description of the large-distance behavior
of the dimer-dimer correlation function (cf. Theorem 1). The large-scale
logarithmic behavior of height correlations, as well as the validity of the
‘Haldane’ scaling relation (1.1), rely on non-trivial identities (cf. (2.43))
between the coefficients appearing in the large-distance asymptotics of the
dimer-dimer correlation function. In turn, (2.43) is the result of so-called
Ward identities, i.e. exact relations between the correlation functions of the
interacting lattice fermionic model, which the dimer model maps into.

The analogs of Theorems 1 and 2 have been proven in our previous works
[22, 23] for the specific case of plaquette interaction and uniform edge weights
t ≡ 1. In this case, the average tilt of the height field is just ρ = 0 and the
model has all the discrete symmetries of the lattice Z2. The extension to
the general case, achieved here, is non-trivial: the loss of discrete rotation
and reflection symmetries results, in the RG language, in the emergence of
four new running coupling constants (two “Fermi velocities” and two “Fermi
points”), whose flow, along the multi-scale integration procedure, has to be
controlled via the choice of suitable counter-terms. Another consequence of
the loss of rotation and reflection symmetry is that the cancellation at the
basis of the logarithmic growth of the variance does not follow simply from

2Here hx is the height function of the 6-vertex model at face x and 〈·〉6V is the
corresponding statistical average; the factor π at the exponent depends on our definition
of height function, which differs by a multiplicative factor 2π from that of [16].

3In the dimer formulation of 6-vertex, the arrow-arrow correlations translate into the
dimer-dimer correlations.

4As discussed in [22, Remark 2], our method allows us to compute the average of
exp{iπ(hx − hy)} only after coarse-graining the height difference at exponent against a
smooth test function.
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the basic symmetries of the model, as it was the case in [22, 23]: the proof of
the key identity, (2.43), now requires the use of a lattice Ward Identity for the
dimer model, in combination with an emergent Ward Identity for an effective
continuum model, which plays the role of ‘infrared fixed point’ of the RG
flow. Quite surprisingly, the loss of rotation and reflection symmetry plays a
role also in the technical control of the thermodynamic limit of correlations:
in [22, 23], in order to simplify the analysis of the finite-size corrections to
the critical correlation functions, we first studied a modified, slightly massive
model of mass m > 0 (the modification consisted in adding a modulation of
size m on the horizontal dimer weights; in the tilt-less case, this was enough
to guarantee that the modified correlations decayed exponentially with rate
m), and then we took the massless limit m → 0 after the thermodynamic
limit. However, this strategy fails for general dimer weights: in this case,
neither a modulation of the dimer weights nor other simple modifications
of the model produce a mass; therefore, in the present paper, we directly
derive quantitative estimates on the corrections to the thermodynamic limit
of the massless correlations, by a careful control of the finite-size effects in
the multi-scale procedure.

1.1. Related works. Let us conclude this introduction by mentioning some
recent related works. While most literature on dimer models focuses on the
determinantal case, there have been recently various attempts to go be-
yond the exactly solvable situation [32]. As far as “limit shape phenomena”
(i.e. laws of large numbers for the height profile) for non-solvable random
interface models are concerned, let us mention for instance [15, 31, 13].
Closer in spirit to our results is [14], that provides a central limit theorem
for height fluctuations of ∇φ-interface models with continuous heights and
strictly convex potential. This work uses the Helffer-Sjöstrand formula, that
is not available for discrete-height model like the dimer model. Finally, a
very interesting recent development is [12]: while in this work the conver-
gence to the GFF is proven only for the non-interacting dimer model, the
method of proof, that goes through Temperley’s bijection and Wilson’s al-
gorithm rather than via Kasteleyn’s theory, might prove robust enough to
allow for extensions to some non-determinantal situations.

1.2. Organization of the article. The rest of this work is organized as
follows. The dimer model is defined in Section 2. There, we recall the
large-scale behavior of the integrable model and we state our results for
the non-integrable one. In Section 3 we give the Grassmann representation
of the interacting dimer model and its lattice Ward identities. In Section
4 we recall the continuum reference model that plays the role of infrared
fixed point of interacting dimers. Theorems 1-2 are proven in Section 5,
conditionally on technical results, based on the multi-scale expansion, whose
proofs are postponed to Section 6.

2. Model and main results

2.1. Dimers and height function. A dimer covering, or perfect matching,
of a graph Γ is a subset of edges that covers every vertex exactly once.
The set of dimer coverings of Γ is denoted ΩΓ. We color the vertices of
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Figure 1. The graph TL for L = 6.

the bipartite graph Z2 black and white so that neighboring vertices have
different colors. A white vertex is assigned the same coordinates x = (x1, x2)
as the black vertex just at its left. The choice of coordinates is such that
the vector ~e1 is the one of length

√
2 and angle −π/4 w.r.t the horizontal

axis, while ~e2 is the one of length
√

2 and angle +π/4. The finite graph
TL denotes Z2 periodized (with period L) in both directions ~e1, ~e2. See Fig.
1. For simplicity we assume that L is even. Black/white sites are therefore
indexed by coordinates x ∈ Λ = {(x1, x2), 1 ≤ xi ≤ L}. An edge e = (b, w)
of TL is said to be of type r ∈ {1, 2, 3, 4} if its white endpoint w is to the
right, above, to the left or below the black endpoint b. If e = (b, w) is an
edge of type r and x(b) is the coordinate of b then x(w) = x+ vr, with

v1 = (0, 0) v2 = (−1, 0) v3 = (−1,−1) v4 = (0,−1). (2.1)

If Γ is planar and bipartite, the height function allows us to interpret a dimer
covering as a two-dimensional discrete surface. Let us recall the standard
definition of height function for the infinite lattice Z2. Given M ∈ ΩZ2 , the
height function h(·) := hM (·) is defined on the dual lattice (Z∗)2, i.e. on the
faces η of Z2. We set h(η0) := 0 at a given reference face η0, and we let its
gradients be given by

h(η′)− h(η) =
∑

e∈Cη→η′

σe(1e − 1/4) (2.2)

where η, η′ are any two faces, 1e denotes the dimer occupancy, i.e., the
indicator function that e is occupied by a dimer in M , while Cη→η′ is any
nearest-neighbor path on the dual lattice (Z∗)2 from η to η′ (the right side
of (2.2) is independent of the choice of Cη→η′). The sum runs over the edges
crossed by the path and σe = +1/ − 1 depending on whether the oriented
path Cη→η′ crosses e with the white site on the right/left.
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2.2. Definition of the model. We define here both the non-interacting
dimer model [27] and the interacting one. Both are probability measures
on ΩL := ΩTL , denoted PL,t and PL,λ,t respectively, where λ ∈ R is the
interaction strength and t are the edge weights. For lightness of notation,
the index t will be dropped.

2.2.1. The non-interacting dimer model. We assign a positive weight to each
edge. More precisely, an edge of type r ∈ {1, 2, 3, 4} is given a weight tr > 0.
Then, the weight of a configuration M ∈ ΩL is

PL(M) =
t
N1(M)
1 t

N2(M)
2 t

N3(M)
3 t

N4(M)
4

Z0
L

, (2.3)

Z0
L =

∑
M ′∈ΩL

t
N1(M ′)
1 t

N2(M ′)
2 t

N3(M ′)
3 t

N4(M ′)
4 (2.4)

with Ni(M) the number of dimers on edges of type i in configuration M .
Since the total number of dimers is constant, we can rescale all weights by
a common factor and we will set t4 ≡ 1 from now on. It is known that the
free energy per site has a limit as L→∞ (the infinite volume free energy):

F (t) = lim
L→∞

1

L2
logZ0

L =
1

(2π)2

∫
[−π,π]2

dk logµ(k), (2.5)

µ(k) = t1 + it2e
ik1 − t3eik1+ik2 − ieik2 . (2.6)

Note that

µ(k) = µ∗((π, π)− k). (2.7)

The “characteristic polynomial” mentioned in the introduction is P (z, w) :=
µ(−i log z,−i logw).

Also, the measure PL itself has a limit P as L → ∞, in the sense that
the probability of any local event converges. The non-interacting model is
integrable, and both the measure PL and its limit P admit a determinantal
representation, recalled in Section 3.1.

In the special case where t1 = t3 =: t and t2 = 1, i.e. assigning weight t
to horizontal edges and 1 to vertical ones, one recovers the model originally
solved by Kasteleyn [27]. For general weights t1, t2, t3, the model is equiva-
lent to Kasteleyn’s model with different weights for horizontal and vertical
edges, and a non-zero average slope ρ = ρ(t1, t2, t3) ∈ R2 for the height
function, i.e.,

E(h(η + ~ei)− h(η)) = ρi, i = 1, 2, (2.8)

where E denotes the average with respect to P. In fact, the weights ti are
chemical potentials by which one can fix the densities of the four types of
edges. Then, the slope ρ is obtained as a function of the four densities using
the definition (2.2) of height function.

Another special case is obtained letting e.g. t3 → 0: then, the model re-
duces to the closed-packed dimer model on the hexagonal graph with weights
1, t1, t2 for the three types of edges.

Note that the condition µ(k) = 0 gives

eik2 =
t1 + it2e

ik1

i+ t3eik1
(2.9)
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that determines the intersections of two circles in the complex plane. We
will make the following important assumption:

Assumption 1. The parameters t are such that µ(·) has two distinct simple
zeros, that we call p+ and p−, on [−π, π]2 (i.e. the two circles intersect
transversally). In view of (2.7), one has p+ + p− = (π, π).

Remark 1. Note that, under Assumption 1, none of the weights t1, t2, t3, 1
exceeds the sum of the other three, otherwise µ(k) would vanish nowhere on
[−π, π]2. Note also that pω, ω = ± cannot coincide with any of the four
values k = (ε1π/2, ε2π/2), ε1 = ±1, ε2 = ±1, otherwise one would have
p+ = p− (modulo (2π, 2π)).

Under Assumption 1, it is known [29] that the infinite-volume measure has
power-law decaying correlations (in the language of [29], the dimer model is
said to be in a “liquid phase”). With the nomenclature of condensed matter
theory, the zeros p± are called “Fermi points”.

2.3. The interacting dimer model, and relation to the 6-vertex
model. In order to study the effect of the breaking of integrability we in-
troduce interacting dimer measures of the following form:

PL,λ(M) =
pL,λ(M)

ZL
(2.10)

where

pL,λ(M) = t
N1(M)
1 t

N2(M)
2 t

N3(M)
3 eλWL(M),

ZL =
∑
M∈ΩL

pL,λ(M) (2.11)

and the interaction potential WL is given as

WL(M) =
∑
x∈Λ

f(τxM), (2.12)

where f is some fixed local function of the dimer configuration and τxM
denotes the configuration M translated by x1~e1 + x2~e2. We do not require
f(·) to be symmetric under reflections or rotation by π/4.

Let us mention two interesting particular examples of interaction WL(M).
The first one is the plaquette interaction that was considered in our works
[22, 23] and previously in the theoretical physics literature [1] in the context
of quantum dimer models. Namely,

WL(M) =
∑
η∈T∗L

1η(M) (2.13)

where the sum runs over all faces of TL and 1η(M) is the indicator function
that two of the four edges surrounding η are occupied by dimers. In this
case the function f in (2.12) is

fP (M) = 1e11e2 + 1e31e4 + 1e11e5 + 1e61e7 (2.14)

with e1, . . . , e7 as in Fig. 2.
Another important example is

f6v(M) := 1e11e2 + 1e31e4 . (2.15)
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e1 e2

e3

e4

e5

e7

e6 b

Figure 2. The edges appearing in (2.14). b is any fixed
black vertex, say the one of coordinates (0, 0).

a1 a2 a3 a4 a5 a6

Figure 3. The six possible vertex configurations of the 6-
vertex model and the associated weights.

In this case, the interaction WL(M) in (2.13) is modified in that the sum
runs only over one of the two sub-lattices of T∗L (the subset of faces with
black top-right vertex). Then, it is known that this interacting dimer model
is equivalent to the 6-vertex model [4, 17, 18]. Recall that configurations of
the 6-vertex model are assignments of orientations (arrows) to the edges of
Z2 such that at each vertex there are two incoming and two outgoing arrows.
There are 6 possible arrow configurations at any vertex, each being assigned
a positive weight a1, . . . , a6 (see Fig. 3) and the weight of a configuration is
the product of the weights over all vertices. By multiplying all weights by
a common factor, one can reduce e.g. to a3 = 1. Moreover, on the torus,
the number of vertices of type 5 equals the number of vertices of type 6, so
one can set without loss of generality a5 = 1. One is left with four positive
weights a1, a2, a4, a6 and the model can be mapped to the interacting dimer
model with weights t1, t2, t3, interaction (2.15) and interaction parameter λ
such that

t1 = a1, t2 = a4, t3 = a2, (t1t3 + t2)eλ = a6. (2.16)

More precisely, as in Fig. 4, the dimer model lives on a square grid rotated
by 45 degrees w.r.t. the lattice of the 6-vertex model. The mapping is
obtained by associating to the arrow configuration at a vertex x of G6v a
dimer configuration at the even face of Gd containing x, as in Fig. 5. The
map is one-to-many because arrow configurations of type 6 are mapped to
two possible dimer configurations. However, it is easily checked that the
partition functions of the two models are equal provided the parameters are
identified as in (2.16). Moreover, the height function of the dimer model,
restricted to odd faces of Gd, equals (up to a global prefactor) the canonical
height function of the 6-vertex model [34]. The 6-vertex model is known to
be free-fermionic (i.e. determinantal) if and only if

∆ :=
a1a2 + a3a4 − a5a6

2
√
a1a2a3a4

= 0. (2.17)
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Figure 4. The 6-vertex model lives on the square grid G6v

with dotted edges, while the dimer model lives on the square
grid Gd with full edges. Faces of Gd containing a vertex of
G6v are called “even faces” and the others “odd faces”.

or

Figure 5. The local arrow-to-dimer mapping

It is immediately checked that this condition is equivalent to λ = 0 for the
interacting dimer model.

2.4. Non-interacting model: dimer-dimer correlations and loga-
rithmic height fluctuations. It is known [29] that, under the infinite-
volume measure P of the non-interacting model, dimer-dimer correlations
decay like the inverse distance squared and the height field behaves on large
scales like a massless Gaussian field. We briefly recall the basic facts here,
since they serve to motivate our main result for the interacting dimer model.
For ω = ±, we let

αω = ∂k1µ(pω) = −t2eip
ω
1 − it3ei(p

ω
1 +pω2 ) = −it1 − eip

ω
2 , (2.18)

βω = ∂k2µ(pω) = −it3ei(p
ω
1 +pω2 ) + eip

ω
2 = −it1 + t2e

ipω1 , (2.19)

where p± are the two zeros of µ(·), as in Assumption 1. (The complex
numbers αω, βω are called “Fermi velocities” in the jargon of condensed
matter.) Define also

φω : x ∈ R2 7→ φω(x) := ω(βωx1 − αωx2) ∈ C. (2.20)
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Remark 2. Under Assumption 1 on the weights t, the complex numbers αω
and βω are not colinear, as elements of the complex plane [29], i.e. αω/βω
is not real. Therefore, φω is a bijection from R2 to the complex plane. More
precisely, one has that

Im(β+/α+) > 0. (2.21)

In fact, parametrize the weights t1, t2, t3 as

t1 = te−B1 , t2 = e−B1−B2 , t3 = te−B2 , B1, B2 ∈ R.
For B1, B2 = 0 it is immediately checked that p+ = (0, 0), p− = (π, π) and
that (2.21) holds. On the other hand, once t is fixed, it is known [29] that
the set Bt of values of B = (B1, B2) for which Assumption 1 holds is a
connected subset of R2 on which Im(β+/α+) vanishes nowhere, and it is
therefore everywhere positive.

Because of the symmetry (2.7), one has αω = −α∗−ω, βω = −β∗−ω and
φ∗ω(·) = φ−ω(·).

The relation between the massless Gaussian field and the height function
is given by the following results. Let n be an integer and ηj , j ≤ 2n be faces
of Z2. With some abuse of notation, we identify a face η with its mid-point.
Then,

E [(h(η1)− h(η2)); (h(η3)− h(η4))] (2.22)

=
1

2π2
< log

(
(φ+(η4)− φ+(η1))(φ+(η3)− φ+(η2))

(φ+(η4)− φ+(η2))(φ+(η3)− φ+(η1))

)
+O

(
1

mini 6=j≤4 |ηi − ηj |+ 1

)
where φ+(ηi)− φ+(ηj) should be read as 1 in case ηi = ηj . Also,

E [(h(η1)− h(η2)); . . . ; (h(η2n−1)− h(η2n))]

= O

(
1

mini 6=j≤2n |ηi − ηj |+ 1

)
(2.23)

where E(X1; . . . ;Xk) denotes the joint cumulant of the random variables
X1, . . . , Xk. In particular, as |η1 − η2| → ∞,

VarP(h(η1)− h(η2)) =
1

π2
< log(φ+(η1)− φ+(η2)) +O(1) (2.24)

while the cumulants of order n ≥ 3 of (h(η1) − h(η2)) are bounded from
above, uniformly in η1, η2. It is well known that (2.22) and (2.23) imply
that the height field tends, in the scaling limit, to a GFF with covariance

− 1

2π2
< log(φ+(η1)− φ+(η2)). (2.25)

For (2.22) see [29] and for (2.23) see e.g. [22, Th. 5] (in [22] the weights ti
are all 1 and η1 = η3 = . . . η2n−1, η2 = η4 = · · · = η2n; the proof of (2.23) in
the general case works the same way).

Remark 3. Note that the prefactor 1/π2 is independent of the weights t.
In [29], such universality is related to the fact that the spectral curve, i.e.
the algebraic curve defined by the zeros on C2 of the polynomial P (z, w) :=
µ(−i log z,−i logw), is a so-called Harnack curve.
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It is useful to recall the key points of the proof of (2.22) in order to
understand the main new features posed by the presence of the interaction.
From the definition of height function,

E [(h(η1)− h(η2)); (h(η3)− h(η4))]

=
∑

e∈Cη1→η2

∑
e′∈Cη3→η4

σeσe′E(1e;1e′) (2.26)

where E(1e;1e′) is the dimer-dimer correlation function

E(1e;1e′) := E(1e1e′)− E(1e)E(1e′).

This correlation function has an exact expression involving the inverse Kaste-
leyn matrix of the infinite lattice; at large distances, it can be expressed as

E(1e;1e′) = Ar,r′(x, x
′) +Br,r′(x, x

′) +Rr,r′(x, x
′), (2.27)

Ar,r′(x, x
′) =

1

4π2

∑
ω=±

Kω,rKω,r′

(φω(x− x′))2

Br,r′(x, x
′) =

1

4π2

∑
ω=±

K−ω,rKω,r′

|φω(x− x′)|2
ei(p

ω−p−ω)·(x−x′)

where:

• the edge e (resp. e′) is of type r = r(e) (resp. r′ = r(e′)) and the
coordinate of its black endpoint is x = x(e) (resp. x′ = x(e′));
• Kω,r = Kre

−ipω ·vr (see (2.1) for the definition of vi) with

K1 = t1, K2 = it2, K3 = −t3, K4 = −i; (2.28)

note that K−ω,r = K∗ω,r.

• Rr,r′(x, x′) is a remainder, decaying like |x− x′|−3 at large distance.

Note that, since p± are distinct by assumption, the complex exponential
in the definition of Br,r′ is genuinely oscillating. For simplicity, assume
that the paths Cη1→η2 , Cη3→η4 are a concatenation of elementary steps in
direction ±~e1 and ±~e2, connecting faces of the same parity: e.g., assume
that an elementary step s(x, 1) in direction +~e1 ‘centered at x’ consists in
crossing the two bonds (•, ◦) = (x, x + v3) and (•, ◦) = (x, x + v4) with
the white vertex on the right, while an elementary step s(x, 2) in direction
+~e2 centered at x consists in crossing the two bonds (•, ◦) = (x, x) and
(•, ◦) = (x− v4, x) with the white vertex on the right. A simple but crucial
observation is that∑

e∈s(x,1)

σeKω,r(e) = K3e
−ipωv3 +K4e

−ipωv4 = −iβω = −iω∆1φω (2.29)

∑
e∈s(x,2)

σeKω,r(e) = K1e
−ipωv1 +K4e

−ipωv4 = iαω = −iω∆2φω (2.30)

where ∆jφω denotes the discrete gradient in direction ~ej of the affine function
φω defined in (2.20). By inserting (2.27) in (2.26) one can see that the
contribution from Rr,r′ is subdominant, and the same for Br,r′ due to the
oscillating complex exponential. As for the dominant contribution to (2.26),
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coming from the term Ar,r′ , one sees using (2.29) that it approximately
equals the integral in the complex plane

− 1

2π2
<
∫ φ+(η2)

φ+(η1)
dz

∫ φ+(η4)

φ+(η3)
dz′

1

(z − z′)2
(2.31)

whose explicit evaluation gives the main term in the r.h.s. of (2.22).

2.5. The interacting case: main results. In the presence of the interac-
tion, λ 6= 0, Kasteleyn theory is not valid anymore, so that one cannot rely
on an explicit computation of the dimer correlations to check the validity of
the asymptotic Gaussian behavior of the height function. However, dimer
correlations can be written as a renormalized expansion based on multiscale
analysis. From now on, we will assume that the interaction is small:

|λ| ≤ ε (2.32)

and all claims above hold if ε is small enough (uniformly in L).
Our first result is:

Theorem 1. Given a local function g of the dimer configuration, the limit

Eλ(g) := lim
L→∞

EL,λ(g) (2.33)

exists. The infinite-volume dimer-dimer correlations are given by

Eλ(1e;1e′) = Ār,r′(x, x
′) + B̄r,r′(x, x

′) + R̄r,r′(x, x
′) (2.34)

Ār,r′(x, x
′) =

1

4π2

∑
ω=±

K̄ω,rK̄ω,r′

φ̄ω(x− x′)2
(2.35)

B̄r,r′(x, x
′) =

1

4π2

∑
ω

H̄−ω,rH̄ω,r′

|φ̄ω(x− x′)|2ν
ei(p̄

ω−p̄−ω)·(x−x′) (2.36)

where:

• r = r(e) is the type of the edge e, x = x(e) is the coordinate of the
black site of e, and similarly for r′, x′;
• φ̄ω(x) = ω(β̄ωx1 − ᾱωx2);
• one has

ν = 1 +O(λ) ∈ R, (2.37)

K̄ω,r = Kω,r +O(λ) ∈ C, H̄ω,r = Kω,r +O(λ) ∈ C
ᾱω = αω +O(λ) ∈ C, β̄ω = βω +O(λ) ∈ C, (2.38)

p̄ω = pω +O(λ) ∈ [−π, π]2; (2.39)

these are all analytic functions of λ and satisfy the symmetries

ᾱ∗ω = −ᾱ−ω, β̄∗ω = −β̄−ω, (2.40)

K̄∗ω,r = K̄−ω,r, H̄∗ω,r = H̄−ω,r (2.41)

p̄+ + p̄− = (π, π). (2.42)

Finally, R̄r,r′(x, x
′) = O(|x−x′|−5/2) (the exponent 5/2 could be replaced by

any δ < 3 provided λ is small enough).
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[A warning on notation: given a quantity (such as αω, φω) referring to
the non-interacting model, the corresponding λ-dependent quantity for the
interacting model will be distinguished by a bar, such as ᾱω, etc. On the
other hand, we denote by z∗ the complex conjugate of a number z.]

Note that the interaction modifies the decay rate of the correlation, pro-
ducing a non-trivial (‘anomalous’) critical exponent ν. The analytic func-
tions appearing in (2.37) are expressed as convergent power series but, due
to the complexity of the expansion, the coefficients can be explicitly eval-
uated only at the lowest orders. This makes impossible to verify directly
the validity of relations like (2.29), which were essential for the proof of
large-scale Gaussian behavior of the height field in the non-interacting case.
However, we can prove non-perturbatively that the parameters appearing
in (2.34) are not independent, but related by exact relations, which are the
central result of the present work:

Theorem 2. One has ∑
e∈s(x,j)

σeK̄ω,r(e) = −iω
√
ν∆jφ̄ω, (2.43)

where ν = ν(λ) is the same as the critical exponent in Theorem 1. Here,
s(x, j) is the elementary step in direction +~ej centered at x, thought of as a
collection of two bonds, as defined before (2.29). As a consequence,

Eλ [(h(η1)− h(η2)); (h(η3)− h(η4))]

=
ν

2π2
< log

(
(φ̄+(η4)− φ̄+(η1))(φ̄+(η3)− φ̄+(η2))

(φ̄+(η4)− φ̄+(η2))(φ̄+(η3)− φ̄+(η1))

)
+O

(
1

mini 6=j≤4 |ηi − ηj |1/2 + 1

)
(2.44)

(the exponent 1/2 could be replaced by any δ < 1 provided λ is small enough;
as in (2.22), when ηi = ηj, φ̄+(ηi)− φ̄+(ηj) has to be read as 1).

Note that the result contains two non-trivial pieces of information: first,
the sum of σeK̄ω,r(e) along a step in direction ~ei is proportional to the discrete

gradient of φ̄ω in the same direction; second, the coefficient of proportionality
is related in an elementary way to the critical exponent ν that appears in
(2.36). The latter relation immediately implies the identity (cf. (2.44))
between height fluctuation amplitude and critical exponent ν and is a form
of universality.

Remark 4. Recall that for the non-interacting model ν = 1, in particular it
is independent of the weights ti. This is not true anymore for the interacting
model. Indeed, an explicit calculation of ν at first order in λ for the model
with plaquette interaction shows a non-trivial dependence both on λ and on
the weights.

Theorem 2 follows from a combination of exact relations among corre-
lation functions of the interacting dimer model (“lattice Ward identities”)
together with chiral gauge symmetry emerging in the continuum scaling
limit; it is remarkable that such a symmetry, valid only in the continuum
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limit, implies nevertheless exact relations for the coefficients of the lattice
theory.

Remark 5. The analog of Theorem 1 has been proven in [22], [23] in the
special case t1 = t2 = t3 = 1 and with plaquette interaction as in (2.14),
which has the same discrete symmetries as the lattice. In that case, for sym-

metry reasons one obtains automatically that the ratios
K̄ω,r
Kω,r

are independent

of r, ω and that ᾱω
αω

= β̄ω
βω
, the ratios being again ω-independent. Then, the

analog of Theorem 2 is trivial in that case.
Let us add also that, in the works [22, 23], the existence of the L → ∞

limit of the measure PL,λ itself was not proven: instead, we modified the
measure PL,λ by an infra-red cut-off m > 0 (mass) and then we took the
limit where first L→∞ and then m→ 0. We explain in Section 6 how the
need of the cut-off m can be bypassed.

To upgrade Theorem 2 into a statement of convergence of the height field
to a Gaussian Free Field with covariance

− ν

2π2
< log(φ̄+(x)− φ̄+(y)),

one needs to complement (2.44) with the statement that higher cumulants
are negligible, i.e. that, for n > 2 and some θ > 0,

Eλ [(h(η1)− h(η2)); . . . ; (h(η2n−1)− h(η2n))] = O((min
i 6=j
|ηi − ηj |+ 1)−θ).

In turn, this requires an analog of (2.34) for multi-dimer correlation func-
tions. This can be done following the ideas of Sections 5 and 6 below but, in
order to keep this work within reasonable length, we decided not to develop
this point. The interested reader may look at [22, Theorem 3 and Sec. 7],
where the precise statements on multi-dimer correlations and on the conver-
gence to the GFF are given in detail for the model with edge weights t ≡ 1
and interaction (2.13).

3. Grassmann integral representation

3.1. Kasteleyn theory. For the statements of this section and more details
on Kasteleyn theory, we refer the reader for instance to [28, 29].

The partition function and the correlations of the non-interacting model
(2.3) can be explicitly computed in determinantal form, via the so-called
Kasteleyn matrixK. This is a square matrix of size L2×L2 with rows/columns
indexed by black/white vertices b/w of TL, as follows. If b, w are not neigh-
bors, then K(b, w) = 0. Otherwise, if (b, w) is an edge of type r one sets
K(b, w) = Kr, cf. (2.28). We actually need four Kasteleyn matrices Kθ,
θ = (θ1, θ2) ∈ {0, 1}2, where the two indices label periodic/anti-periodic
boundary conditions (depending on whether the index is 0/1) in the direc-
tions ~ei. To obtain Kθ from K, one multiplies by (−1)θ1 (resp. by (−1)θ2)
the matrix elements corresponding to edges (b, w) where w has first co-
ordinate equal L and b has first coordinate equal 1 (resp. w has second
coordinate equal L and b has second coordinate equal 1). See Fig. 1. Of
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course, K00 = K. We have then [27, 28] that

Z0
L =

1

2

∑
θ∈{0,1}2

cθ det(Kθ) (3.1)

where cθ ∈ {−1,+1} and, moreover, three of the cθ have the same sign and
the fourth one has the opposite sign. More precisely, for the square grid,
with our choice of Kasteleyn matrix, one finds

cθ =

 +1 if θ = (0, 1) or θ = (1, 0)
(−1)1L=0 mod 4 if θ = (0, 0)
(−1)1L=0 mod 2 if θ = (1, 1)

(3.2)

(recall that we are assuming that L is even). The matrices Kθ are diago-
nalized in the Fourier basis and

det(Kθ) =
∏

k∈P(θ)

µ(k), (3.3)

where µ(·) is as in (2.5) and

P(θ) = {k = (k1, k2), ki =
2π

L
(ni + θi/2) , ni = 0, . . . , L− 1}. (3.4)

The matrices Kθ are not necessarily invertible (e.g., if ti ≡ 1 then K00 is
not because µ(0) = 0) and this question will play a role in Section 6. How-
ever, if the four matrices Kθ are invertible, then the correlation functions of
the non-interacting measure can be written as

PL(e1, . . . , ek ∈M) =
1

2Z0
L

×
∑

θ∈{0,1}2
cθ det(Kθ)

 k∏
j=1

Kθ(bj , wj)

det{K−1
θ (wn, bm)}1≤n,m≤k (3.5)

where the edge ej has black/white vertex bj/wj . The inverse of the matrix
Kθ can be computed explicitly as

K−1
θ (wx, by) =

1

L2

∑
k∈P(θ)

e−ik(x−y)

µ(k)
=: gθL(x, y), (3.6)

where wx (resp. by) is the white (resp. black) site with coordinate x (resp.
y). Provided that

|k − p±| � L−2, ∀k ∈ P(θ), (3.7)

it is easy to see that K−1
θ (wx, by) = g(x, y) + o(1) as L→∞, where

g(x, y) :=

∫
[−π,π]2

dk

(2π)2

e−ik(x−y)

µ(k)
. (3.8)

Condition (3.7) can fail for some values of L and of θ. For this reason, in
Section 6 the values k±θ ∈ P(θ) that are closest to the zeros of µ will be
treated separately, see in particular Sections 6.1 and 6.5.
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Due to the two zeros of µ, the matrix element g(x, y) decays only as the
inverse distance between wx and by. More precisely

g(x, y) =
1

2π

∑
ω=±

e−ip
ω(x−y)

φω(x− y)
+ r(x, y) (3.9)

where r(x, y) = O(1/|x− y|2) and φω was defined in (2.20).

3.2. Grassmann representation of the generating functions. We re-
fer for instance to [19] for an introduction to Grassmann variables and Grass-
mann integration; here we just recall a few basic facts. It is well known that
determinants can be represented as Gaussian Grassmann integrals. For our
purposes, we associate a Grassmann variable ψ+

x (resp. ψ−x ) with the black
(resp. white) site indexed x. We denote by

∫
Dψf(ψ) the Grassmann inte-

gral of a function f and since the variables ψ±x anti-commute among them-
selves and there is a finite number of them, we need to define the integral
only for polynomials f . The Grassmann integration is a linear operation
that is fully defined by the following conventions:∫

Dψ
∏
x∈Λ

ψ−x ψ
+
x = 1, (3.10)

the sign of the integral changes whenever the positions of two variables are
interchanged (in particular, the integral of a monomial where a variable
appears twice is zero) and the integral is zero if any of the 2|Λ| variables
is missing. We also consider Grassmann intergrals of functions of the type
f(ψ) = exp(Q(ψ)), with Q a sum of monomials of even degree. By this,
we simply mean that one replaces the exponential by its finite Taylor series
containing only the terms where no Grassmann variable is repeated.

It is well known that the definition of Grassmann integration allows one
to write the determinant of a matrix as the integral of the exponential of
the associated Grassmann quadratic form (such integral will be called a
“Gaussian Grassmann integral”, for the obvious formal analog with usual
Gaussian integrals). In particular,

det(Kθ) =

∫
(θ)
Dψ eS(ψ), (3.11)

where

S(ψ) = −
∑
x,y∈Λ

K00(bx, wy)ψ
+
x ψ
−
y (3.12)

and the index (θ) below the integral means that one has to identify ψ±(L+1,x2) :=

(−1)θ1ψ±(1,x2) and similarly ψ±(x1,L+1) := (−1)θ2ψ±(x1,1). More compactly we

write

S(ψ) = −
∑
e

Ee

where the sum runs over edges of TL and, if e is an edge (b, w),

Ee = K00(b, w)ψ+
x(b)ψ

−
x(w). (3.13)
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Our goal here is to express, via a Grassmann integral, the partition func-
tion of the interacting dimer model, and more generally the generating func-
tion WΛ(A) defined by

eWΛ(A) :=
∑
M∈ΩL

pL,λ(M)
∏
e

eAe1e (3.14)

where the product runs over the edges of TL and Ae ∈ R. Note that eWL(0)

is the partition function and that any multi-dimer truncated correlation
function of the type EL,λ(1e1 ; . . . ;1ek) can be obtained by differentiating
WΛ(A) with respect to Ae1 , . . . , Aek and setting A ≡ 0.

Recall that the perturbed probability weight pL,λ depends on the local
‘energy function’ f via (2.11)-(2.12). Without loss of generality, we can
assume that (2.12) holds with

f(M) =
n∑
s=1

cs1Ps(M) (3.15)

where cs are real constants, n is an integer, Ps are finite collections of edges
such that no space translation of Ps coincides with a Ps′ , s 6= s′ and 1Ps =∏
e∈Ps 1e is the indicator that all edges in Ps belong to M . Again without

loss of generality we assume that each Ps contains at least 2 edges (if Ps
consists in just one edge, its effect is just to modify the weights t). Under
these assumptions, the following representation holds.

Proposition 1. Let λ be small enough. Then, one has

eWL(A) =
1

2

∑
θ∈{0,1}2

cθ

∫
(θ)
Dψ eS(ψ)+V (ψ,A) (3.16)

where

V (ψ,A) = −
∑
e

(eAe − 1)Ee +
∑
γ⊂Λ

c(γ)
∏
b∈γ

Ebe
Ab . (3.17)

The first sum runs over all edges of TL and Ee is as in (3.13). In the second
sum, γ are finite subsets of disjoint edges of TL such that |γ| ≥ 2, and c(γ)
is a real constant satisfying translation invariance (c(γ) = c(τxγ)) and the
bound

|c(γ)| ≤ (a|λ|)max{1,bδ(γ)}, (3.18)

for some constants a, b > 0, independent of L, and δ(γ) the tree distance
of γ, that is, the length of the shortest tree graph on Λ containing γ (the
precise definition of c(γ) is given below).

Remark 6. Both S(ψ) and V (ψ,A) are invariant under the following sym-
metry transformation of the Grassmann fields:

ψ±x → (−1)xψ±x , c→ c∗, (3.19)

where c→ c∗ indicates that all the constants appearing in S(ψ) and V (ψ,A)
are mapped to their complex conjugates. Also, we used the notation (−1)x :=
(−1)x1+x2. It is straightforward to check that, under this transformation,
Ee → Ee, for all the edges e, which clearly shows that the considered trans-
formation is in fact a symmetry of the Grassmann action. This symmetry
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will play a role in Section 6, in reducing the number of independent running
coupling constants arising in the multiscale computation of the Grassmann
generating function.

Proof of Proposition 1. The proposition has been proven in [22] in the case
of constant weights ti ≡ 1 and plaquette interaction as in (2.14); the exten-
sion to the present situation is rather straightforward, so we will be concise.

Let

S = {τxPs, s = 1, . . . , n, x ∈ Λ}
and remark that by assumption all elements of S are distinct and contain
at least two edges. If B ∈ S is a space translation of Ps, set

u(B) = exp(λcs)− 1. (3.20)

We start by writing

eWL(A) =
∑
M∈ΩL

w(A)(M)
∏
x∈Λ

n∏
s=1

(1 + (eλcs − 1)1τxPs(M))

= Z
0,(A)
L

∑
σ⊂S

E(A)
L

(∏
B∈σ

u(B)1B(M)

)
(3.21)

with

w(A)(M) = t
N1(M)
1 t

N2(M)
2 t

N3(M)
3 e

∑
b∈M Ab , Z

0,(A)
L =

∑
M∈ΩL

w(A)(M)

and P(A)
L the probability measure with density w(A)(M)/Z

0,(A)
L . By manip-

ulating the sum in the r.h.s. of (3.21), one can rewrite it as∑
n≥0

∗∑
γ1,...,γn

Z
0,(A)
L E(A)

L

(
n∏
i=1

c̃(γi)1γi(M)

)
(3.22)

where the term n = 0 has to be interpreted as equal to 1 and the sum
∑∗ is

over non-empty, mutually disjoint subsets γi of edges of TL. The constant
c̃(γ) is given as follows. Let Σγ be the set of all collections of the type
Y = {B1, . . . , B|Y |} where: Bi ∈ S, Bi 6= Bj for i 6= j, ∪iBi = γ and such
that Y cannot be divided into two non-empty sub-collections {Bi1 , . . . , Bik}
and {Bik+1

, . . . , Bi|Y |} with (∪j≤kBij ) ∩ (∪j>kBij ) = ∅. Then

c̃(γ) =
∑
Y ∈Σγ

∏
B∈Y

u(B). (3.23)

Now we rewrite (3.22) as

∑
n≥0

∗∑
γ1,...,γn

n∏
j=1

c̃(γj)

∏
b∈γj

∂Ab

Z0,(A)
L . (3.24)

The partition function Z
(A)
L corresponds to a non-interacting dimer model,

with edge-dependent weights tee
Ae . Then, as in (3.1) and (3.11) we have

Z
0,(A)
L =

1

2

∑
θ∈{0,1}2

cθ

∫
(θ)
Dψ eS(ψ)−

∑
e(e

Ae−1)Ee . (3.25)
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Using expression (3.25) in (3.24) one readily concludes, as in [22], that (3.17)
holds with

c(γ) = (−1)|γ|c̃(γ). (3.26)

If λ is small enough, it is easy to see that the bound (3.18) holds.

For the 6-vertex model with interaction (2.15), the potential V is exactly
quartic in the fields ψ: indeed, c(γ) 6= 0 only if γ is the pair of edges
γ = {e1, e2} or γ = {e3, e4} as in Fig. 2 or a translation thereof. For the
plaquette model with interaction (2.14), instead, c(γ) is non-zero only if
γ is a collection of |γ| ≥ 2 adjacent parallel edges, in which case c(γ) =

(−1)|γ|(eλ − 1)|γ|−1.
In the following (in the comparison between the discrete lattice model and

the continuum reference model) we will also need the generating function
for mixed dimer and fermionic correlations. Namely, let {φ+

x , φ
−
x }x∈Λ be

Grassmann variables that anti-commute among themselves and with the
ψ± variables. Then, we let

eW
(θ)
L (A,φ) :=

∫
(θ)
Dψ eS(ψ)+V (ψ,A)+(ψ,φ) (3.27)

and

eWL(A,φ) :=
1

2

∑
θ∈{0,1}2

cθe
W(θ)
L (A,φ). (3.28)

Here, V (ψ,A) is as in Proposition 1, while

(ψ, φ) :=
∑
x∈Λ

(ψ+
x φ
−
x + φ+

x ψ
−
x ).

We define gL(e1, . . . , ek;x1, . . . , xn; y1, . . . , yn) as the truncated correla-
tions associated with the generating function5 WL(A, φ):

gL(e1, . . . , ek;x1, . . . , xn; y1, . . . , yn)

:= ∂Ae1 . . . ∂Aek∂φ−y1
. . . ∂φ−yn

∂φ+
x1
. . . ∂φ+

xn
WL(A, φ)

∣∣∣
A≡0,φ≡0

. (3.29)

Two cases that will play a central role in the following are k = 0, n = 1 (the
interacting propagator), and k = n = 1 (the interacting vertex function),
which deserve a distinguished notation.
Interacting propagator:

gL(∅;x; y) =
1

2ZL

∑
θ

cθ

∫
(θ)
Dψ eS(ψ)+V (ψ,0)ψ−x ψ

+
y =: G

(2)
L (x, y); (3.30)

that is, G
(2)
L (x, y) = 〈ψ−x ψ+

y 〉L, where 〈f〉L indicate the Grassmann “aver-

age” 1
2ZL

∑
θ cθ

∫
(θ)Dψ e

S(ψ)+V (ψ,0)f(ψ).

Interacting vertex function:
if Ie = ∂AeV (ψ,A)

∣∣
A=0

is the Grassmann counterpart of the dimer observ-
able at e, and e is an edge of type r with black site labelled z, then

gL(e;x; y) = 〈Ieψ−x ψ+
y 〉L − 〈Ie〉L〈ψ

−
x ψ

+
y 〉L =: G

(2,1)
r,L (z, x, y); (3.31)

5See e.g. [23, Remark 5] for the conventions in the definition of derivatives with respect
to Grassmann variables
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that is, G
(2,1)
r,L (z, x, y) = 〈Ie;ψ−x ψ+

y 〉L, where the semicolon indicates trun-
cated expectation.

In the following we will also need a distinguished notation for the two-
point dimer-dimer correlation: if e1, e2 are two edges of type r, r′, and black
sites labelled x, y, respectively, we let

gL(e1, e2; ∅; ∅) =: G
(0,2)
r,r′,L(x, y). (3.32)

Note that all the correlations gL(e1, . . . , ek;x1, . . . , xn; y1, . . . , yn) are well
defined for any finite L, despite the fact that the Kasteleyn matrix Kθ may
not be invertible for some choices of θ, L. The multipoint correlations,

gL(e1, . . . , ek;x1, . . . , xn; y1, . . . , yn),

admit a thermodynamic limit as L → ∞, as shown in Section 6; the limit
can be expressed as a convergent multiscale fermionic expansion and will be
denoted

g(e1, . . . , ek;x1, . . . , xn; y1, . . . , yn).

In particular, the thermodynamic limit of the two-point dimer-dimer correla-

tion will be denoted by G
(0,2)
r,r′ (x, y), while the L→∞ limit of the interacting

propagator and vertex function will be denoted G(2)(x, y) and G(2,1)(z, x, y).

3.3. Lattice Ward Identity. The generating function WL(A, φ) has a
gauge symmetry property that implies certain identities (lattice Ward iden-
tities) involving its derivatives. These identities were derived in [23] for the
model with ti ≡ 1 and they hold (with the same proof) also for the general
model studied here. We recall here, without giving the proof, the Ward
Identity for the ‘vertex function’, but similar relations can be easily derived
for higher point correlations: for any finite L,

4∑
r=1

G
(2,1)
r,L (x, y, z) = −δx,zG(2)

L (y, x), (3.33)

4∑
r=1

G
(2,1)
r,L (x− vr, y, z) = −δx,yG(2)

L (x, z), (3.34)

with δx,y the Krokecker delta, see [23, Eq.(4.9)-(4.10)]. By taking the dif-
ference between these two equations, we get (see [23, Eq.(4.17)])

δx,yG
(2)
L (x, z)− δx,zG(2)

L (y, x) = −
4∑
r=2

∇−vrG
(2,1)
r,L (x, y, z), (3.35)

where (∇nf)(x, y, z) := f(x + n, y, z) − f(x, y, z) is the (un-normalized)
discrete derivative acting on the x variable. By taking the limit L→∞, we
get the infinite volume version of (3.33)–(3.35).
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In Fourier space, we define

Ĝ(2)(p) =
∑
x

G(2)(x, 0)eipx (3.36)

Ĝ(2,1)
r (k, p) =

∑
x,z

e−ipx−ikzG(2,1)
r (x, 0, z) (3.37)

Ĝ
(0,2)
r,r′ (p) =

∑
x

e−ipxG
(0,2)
r,r′ (x, 0). (3.38)

Then, the infinite-volume limit of (3.33)–(3.35) can be rewritten as

4∑
r=1

Ĝ(2,1)
r (k, p) = −Ĝ(2)(k + p), (3.39)

Ĝ(2)(k + p)− Ĝ(2)(k) =
4∑
r=2

(e−ipvr − 1)Ĝ(2,1)
r (k, p). (3.40)

In the following the asymptotic behavior at large distances of the interacting
propagator and vertex function will be computed in terms of a reference
continuum model, see next section, which plays the role of the ‘infrared
fixed point’ of our lattice dimer model in its Grassmann formulation.

4. The infrared fixed point theory

In order to introduce the “infra-red fixed point” of our theory (referred
to in the following as “the continuum model” or “the reference model”), we
need a couple of preliminary definitions. First, we letM be the 2×2 matrix
with unit determinant

M =
1√
∆

(
β̄1 β̄2

−ᾱ1 −ᾱ2

)
(4.1)

where ᾱj , β̄j ∈ R, j = 1, 2 and ∆ = ᾱ1β̄2− ᾱ2β̄1 > 0 (for the moment, these
are free parameters; eventually, they will be the real and imaginary parts
of the functions ᾱω, β̄ω that appear in Theorem 1). Also, given L > 0 (the
system size), an integer N (ultra-violet cut-off) and Z > 0, we introduce

a Grassmann Gaussian integration6 P
[≤N ]
Z (dψ) on the family of Grassmann

variables

{ψ̂±k,ω, ω = ±1, k ∈ K}, K =

{
M · p

∣∣∣∣ p ∈ (2π

L

)
(Z + 1/2)2

}
,

defined by the propagator∫
P

[≤N ]
Z (dψ)ψ̂−k,ωψ

+
k′,ω′ = δω,ω′δk,k′

L2

Z

χN (k)

D̄ω(k)
(4.3)

6 We recall (cf. e.g. [19, Sec. 4]) that, given a family {ψ−x , ψ+
x }x∈I of Grassmann

variables and a |I| × |I| matrix g, the “Grassmann Gaussian integration with propagator
g”, denoted sometimes

∫
Pg(dψ) . . . in the following, is the linear map acting on poly-

nomials of the Grassmann variables, such that
∫
Pg(dψ)ψ−x1ψ

+
y1 . . . ψ

−
xnψ

+
yn = detGn(x, y)

with Gn(x, y) the n × n matrix with entries [Gn(x, y)]ij = g(xi, yj). If the matrix g is
non-singular, one can write more explicitly∫

Pg(dψ)f(ψ) = [det(g)]−1

∫
Dψ e−ψ

+gψ− f(ψ). (4.2)
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where:

• χN (k) = χ(2−N |M−1k|), with χ : R+ → [0, 1] a C∞ cut-off function
that is equal to 1 if its argument is smaller than 1 and equal to 0 if
its argument is larger than 2;
• D̄ω(k) = ᾱωk1 + β̄ωk2, with

ᾱω = ωᾱ1 + iᾱ2, β̄ω = ωβ̄1 + iβ̄2. (4.4)

Observe that, since we are assuming ∆ > 0, we have that

ᾱω
β̄ω
6∈ R. (4.5)

While K is an infinite set, we effectively have only a finite number of non-
zero Grassmann variables ψ̂±k,ω, because χN (k) is non-zero only for a finite

number of values of k in K.
Note that, setting q =M−1k, the r.h.s. of (4.3) equals

δω,ω′δq,q′
L2

Z
√

∆

χ(2−N |q|)
−iq1 + ωq2

. (4.6)

In the language of Quantum Field Theory, in the limit limL→∞,N→∞, (4.6)
is just the propagator of chiral massless relativistic fermions.

It is convenient to define, for x ∈ R2, the Grassmann variables

ψ±x,ω :=
1

L2

∑
k∈K

e±ikxψ̂±k,ω. (4.7)

Note that ψ±x,ω has anti-periodic boundary conditions on

Λ := (MT )−1TL, TL = R2/(LZ2)

and that

g
[≤N ]
R,ω (x− y)

Z
:=

∫
P

[≤N ]
Z (dψ)ψ−x,ωψ

+
y,ω =

1

ZL2

∑
k∈K

e−ik(x−y)χN (k)

D̄ω(k)
. (4.8)

The generating functional WL,N (J, φ) of the continuum model is

eWL,N (J,φ) =

∫
P

[≤N ]
Z (dψ)eV(

√
Zψ)+

∑2
j=1(J(j), ρ(j))+Z (ψ,φ) , (4.9)

where J = {J (j)
x,ω}j=1,2

ω=±, x∈Λ are external “sources” (real-valued test functions)

and φ = {φσx,ω}
σ,ω=±
x∈Λ are “external Grassmann sources”, i.e. φσx,ω is a Grass-

mann variable. Also, we used the notation

(J (j), ρ(j)) :=
∑
ω=±

∫
Λ
dx J (j)

x,ωρ
(j)
x,ω,

with

ρ(1)
x,ω = ψ+

x,ωψ
−
x,ω , ρ(2)

x,ω = ψ+
x,ωψ

−
x,−ω (4.10)

and

(ψ, φ) :=
∑
ω=±

∫
Λ
dx (ψ+

x,ωφ
−
x,ω + φ+

x,ωψ
−
x,ω) .
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Finally, the interaction V in (4.9) is

V(ψ) =
λ∞
2

∑
ω=±

∫
Λ
dx

∫
Λ
dy v(x− y)ψ+

x,ωψ
−
x,ωψ

+
y,−ωψ

−
y,−ω , (4.11)

where λ∞ ∈ R, v(x) = v0(MTx) and v0(·) is a smooth rotationally invariant
potential, exponentially decaying to zero at large distances, normalized as∫

R2

dx v0(x) =

∫
R2

dx v(x) = 1. (4.12)

We emphasize that, while this expression seems to depend on an uncountable
set of Grassmann variables {ψ±x,ω, φ±x,ω}x∈Λ, writing everything in Fourier
space there is only a finite number of non-zero Grassmann variables.

In the special case ᾱω = (−i− ω), β̄ω = (−i+ ω), that is relevant for the
interacting dimer model with t ≡ 1, the continuum model reduces to that
studied in [23, Sec. 5], if the constants Z(1) and Z(2) that appear there are
fixed to 1. Setting instead ᾱω = −i, β̄ω = ω in (4.9) (so that ∆ = 1) one
obtains, apart from minor differences, the model studied in [5, Sec. 3] and
[10, Sec. 3].

Remark 7. In order to recognize the equivalence of the model (4.9) with
ᾱω = −i, β̄ω = ω and the one in, e.g., [10, Section 3] (or, analogously, the
one in [5, Section 3]), one needs to set to zero some of the external fields,
rotate the coordinate system and rescale some constants. More precisely,

if WL,N (J (1), φ) denotes the generating functional used in [10] with J
(1)
x,ω =

Z(3)Jx + ωZ̃(3)J̃x, see [10, Eq. (28)], then, setting J
(2)
x ≡ 0 in (4.9),

WL,N ((J (1), 0), φ;λ∞) = const.+ WL,N (J (1), ϕ;−∆−1λ∞) (4.13)

where the constant is independent of J (1), φ (so that it does not influence
the correlation functions; it depends upon ∆ and is due to the rescaling of
the Grassmann fields), while

J (1)(x) := ∆1/2J (j)((MT )−1x), ϕ±(x) := ∆1/4φ±((MT )−1x), (4.14)

and we denoted explicitly the dependence of the generating function on λ∞.
This immediately implies obvious relations between the correlation functions

G
(2,1)
R,ω′,ω(x, y, z), G

(2)
R,ω(x, y) and S

(j,j)
R,ω,ω′(x, y), defined below, and the analo-

gous ones of [10].

The peculiarity of the continuum model is that its correlations can be
computed exactly. This is because, as compared to its lattice counterpart,
the continuum model is “chiral gauge invariant”, which means that the
correlation functions satisfy two hierarchies of Ward Identities, distinguished
by the choice of the ‘chirality index’ ω, see (4.23) below. These additional
symmetries, together with other identities among correlation functions (the
so-called Schwinger-Dyson equations), allow one to get closed equations for
correlations functions. In this sense, the infrared fixed point theory can be
regarded as “integrable”.
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We shall use the following definitions: if x, y, z are distinct points of Λ,

G
(2,1;L,N)
R,ω′,ω (x, y, z) =

∂3

∂J
(1)
x,ω′∂φ

−
z,ω∂φ

+
y,ω

WL,N (J, φ)|J=φ=0

G
(2;L,N)
R,ω (x, y) :=

∂2

∂φ−y,ω∂φ
+
x,ω
WL,N (J, φ)|J=φ=0 (4.15)

S
(j,j;L,N)
R,ω,ω′ (x, y) :=

∂2

∂J
(j)
x,ω∂J

(j)
y,ω′

WL,N (J, φ)|J=φ=0.

From the construction of the correlation functions of the model, see e.g. [5,
Section 3 and 4], one obtains in particular the existence of the following
limits where cut-offs are removed:

G
(2,1)
R,ω′,ω(x, y, z) = lim

L→∞
lim
N→∞

G
(2,1;L,N)
R,ω′,ω (x, y, z) ,

G
(2)
R,ω(x, y) = lim

L→∞
lim
N→∞

G
(2;L,N)
R,ω (x, y) , (4.16)

S
(j,j)
R,ω,ω′(x, y) = lim

L→∞
lim
N→∞

S
(j,j;L,N)
R,ω,ω′ (x, y) .

Away from x = 0, the so-called “density-density” correlation S(1,1) is given
by [23, Eq. (5.12)]

S
(1,1)
R,ω,ω(x, 0) =

1

4π2Z2(1− τ2)

1

(φ̄ω(x))2
+R1(x), (4.17)

where φ̄ω(x) := ω(β̄ωx1 − ᾱωx2),

τ = − λ∞
4∆π

and |R1(x)| ≤ C|x|−3. On the other hand, the “mass-mass correlation”

S(2,2) satisfies (see [23, Eq.(6.14)])

S
(2,2)
R,ω,−ω(x, 0) =

B̄

4π2Z2

1

|φ̄ω(x)|2ν
+R2(x), (4.18)

where B̄ is an analytic function of λ∞, Z, ᾱω, β̄ω, which is equal to 1 at
λ∞ = 0,

ν =
1− τ
1 + τ

, (4.19)

see [23, Eq.(6.15)] and [23, Appendix C], and R2 is a correction term such
that |R2(x)| ≤ C|x|−2−θ, for some θ > 0 that, e.g., can be chosen θ = 1/2.

We will not need the explicit form of G
(2)
R,ω(x, 0) and G

(2,1)
R,ω′,ω(x, 0, z); let

us just mention that they diverge as x, z tend to zero but they are locally
integrable functions (see, e.g., the expression of the interacting propagator
in [5, eq.(4.18)]) and therefore admit Fourier transforms in the sense of
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distributions7,

Ĝ
(2,1)
R,ω′,ω(k, p) =

∫
dx

∫
dy e−ipx+i(k+p)y G

(2)
R,ω′,ω(x, y, 0) ,

Ĝ
(2)
R,ω(k) =

∫
dx eikxG

(2)
R,ω(x, 0). (4.20)

For later use, let us mention that the small-momenta behavior of Ĝ
(2,1)
R,ω,ω

and Ĝ
(2)
R,ω are (see, e.g., [8, Theorem 2])

|Ĝ(2)
R,ω(p)| ∼ const× c−1+O(λ2

∞) (4.21)

|Ĝ(2,1)
R,ω,ω(k, p)| ∼ const× c−2+O(λ2

∞) (4.22)

if p, k are both of order c→ 0.
A very useful consequence of the exact solution of the continuum model is

that the “propagator” and the “vertex function” satisfy the following Ward
Identity (see [23, Eq.(5.9)]):

Z
∑
ω′=±

D̄ω′(p)Ĝ
(2,1)
R,ω′,ω(k, p) =

1

1− τ v̂(p)
[Ĝ

(2)
R,ω(k)− Ĝ(2)

R,ω(k + p)] . (4.23)

Note that this identity resembles formally the lattice Ward identity (3.40)
of the dimer model, with the crucial difference that (4.23) are actually two
identities (one for each choice of ω).

5. Comparison between lattice and continuum model, and
proof of Theorems 1-2

The reason why the continuum model plays the role of the “infrared fixed
point theory” for our interacting dimer model is that the large distance
behavior of the dimer correlation functions can be expressed in terms of
linear combinations of the correlations of the continuum model, for a suitable
choice of the parameters Z, λ∞, ᾱω, β̄ω. Let us spell out the explicit relation
between correlation functions of the two models, in the special cases of
the dimer interacting propagator, the vertex function and the dimer-dimer
correlation. The result is a consequence of the multi-scale analysis described
in Section 6 (see in particular Section 6.6) and can be stated as follows.

For λ small enough, there exist two real analytic functions λ 7→ p̄ω, with
ω = ±, called the interacting Fermi points, satisfying (2.39) and (2.42),
which are the only singularity points of the Fourier transform of the in-
teracting dimer propagator Ĝ(2)(·) of (3.36). In addition, there exist two

7On the other hand, the notion of Fourier transform for S
(j,j)

R,ω,ω′(x, y) requires a little

more care. Regarding S
(1,1)

R,ω,ω′(x, y), from its expression one sees that it is not locally inte-

grable; still, it defines a tempered distribution if the singularity at the origin is interpreted

in the sense of the principal part: therefore, its Fourier transform Ŝ
(1,1)

R,ω,ω′(p) exists in the

sense of distributions. This is not the case for S
(2,2)

R,ω,ω′(x, y) when ν ≥ 1 (in particular,

when λ = 0, where ν = 1) since 1/|x|2ν is not locally integrable on R2. In this respect,

[23, eq.(6.2)] does not make sense as is: however, that equation is correct if Ŝ
(2,2)
R,ω,−ω(p) is

replaced by S̃
(2,2)
R,ω,−ω(p), that is the Fourier transform of S

(2,2)
R,ω,−ω(x, 0) multiplied by a C∞

function that vanishes for |x| ≤ 1/2 and equals 1 for |x| ≥ 1.
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complex analytic functions λ 7→ ᾱω, λ 7→ β̄ω, and two real analytic functions
λ 7→ Z, λ 7→ λ∞, satisfying (2.38), (2.40) and

Z = 1 +O(λ), λ∞ = c∞λ+O(λ2),

with c∞ a real constant, such that if c ≤ |k| ≤ 2c, then

Ĝ(2)(k + p̄ω)
c→0
= Ĝ

(2)
R,ω(k)[1 +O(cθ)], (5.1)

for some θ > 0 (e.g., we can choose θ = 1/2; from now on, this is the choice
that the reader should keep in mind, unless otherwise stated).

A similar statement is valid for the vertex function: there exist complex
analytic functions λ 7→ K̂ω,r, such that K̂+,r = K̂∗−,r, K̂ω,r = Kω,r + O(λ),
and, if 0 < c ≤ |p|, |k|, |k + p| ≤ 2c, then,

Ĝ(2,1)
r (k + p̄ω, p)

c→0
= −

∑
ω′=±

K̂ω′,rĜ
(2,1)
R,ω′,ω(k, p)[1 +O(cθ)] . (5.2)

Finally, the dimer-dimer correlation can be represented in the following form:

G
(0,2)
r,r′ (x, y) =

∑
ω=±

K̂ω,rK̂ω,r′S
(1,1)
R,ω,ω(x, y) (5.3)

+
∑
ω=±

ei(p̄
ω−p̄−ω)(x−y)Ĥ−ω,rĤω,r′S

(2,2)
R,ω,−ω(x, y) +Rr,r′(x, y) ,

where: in the first line K̂ω,r is the same as in (5.2); in the second line, Ĥω,r

is a complex analytic function of λ, such that Ĥ+,r = Ĥ∗−,r and Ĥω,r =
Kω,r + O(λ); the correction term Rr,r′(x, y) is translational invariant and

satisfies |Rr,r′(x, 0)| ≤ C|x|−5/2.
Using (4.17) and (4.18), we immediately obtain the main statement of

Theorem 1, namely Eq. (2.34), with

K̄ω,r = K̂ω,r
1

Z
√

1− τ2
, H̄ω,r = Ĥω,r

√
B̄

Z
. (5.4)

5.1. Proof of Theorem 2. The key ingredient in the proof of Theorem
2 is the analogue of (2.29)-(2.30) for the interacting case, namely formula
(2.43). We start by discussing the proof of this formula that, as we shall
see, is a direct consequence of the identities (5.1)–(5.2), and of the lattice
Ward Identity (3.40). In fact, combining these three identities, we obtain:∑

ω′=±
Dω′(p)Ĝ

(2,1)
R,ω′,ω(k, p) =

[
Ĝ

(2)
R,ω(k)− Ĝ(2)

R,ω(k + p)
]

[1 +O(cθ)], (5.5)

where (with vr as in (2.1))

Dω′(p) = −i
4∑
r=2

K̂ω′,r p · vr

and, as before, 0 < c ≤ |p|, |k|, |k + p| ≤ 2c. By comparing this equation
with (4.23), and recalling that v̂(0) = 1 (see (4.12)) we get

Z(1− τ)
∑
ω′=±

D̄ω′(p)Ĝ
(2,1)
R,ω′,ω(k, p) =

∑
ω′=±

Dω′(p)Ĝ
(2,1)
R,ω′,ω(k, p)[1 +O(cθ)] .

(5.6)
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This implies that

− i
4∑
r=2

K̂ω,r(vr)1 = Z(1− τ)ᾱω, −i
4∑
r=2

K̂ω,r(vr)2 = Z(1− τ)β̄ω. (5.7)

In order to deduce (5.7) from (5.6), one can proceed as follows: by [23, Eq.
C.24], we have that

G
(2,1)
R,−ω,ω(k, p) = τ v̂(p)

D̄ω(p)

D̄−ω(p)
Ĝ

(2,1)
R,ω,ω(k, p). (5.8)

By plugging this identity into (5.6) we get (keeping the terms of dominant
order as p→ 0 only):

Z(1− τ2)D̄ω(p)D̄−ω(p) = Dω(p)D̄−ω(p) + τD̄ω(p)D−ω(p). (5.9)

Computing this formula at p2 = 0, p1 6= 0 first, both for ω = + and ω = −
and then repeating the computation for p1 = 0, p2 6= 0, one gets a system of
linear equations for the coefficients −i

∑4
r=2 K̂ω,r(vr)j , with j = 1, 2, ω = ±,

whose solution is (5.7).
By replacing (5.4) into (5.7) and recalling that ν = 1−τ

1+τ , cf. (4.19), we
find

K̄ω,2 + K̄ω,3 = −i
√
νᾱω, K̄ω,3 + K̄ω,4 = −i

√
νβ̄ω. (5.10)

We claim that
∑4

r=1 K̄ω,r = 0 (we shall prove this fact in a moment): there-
fore, the first equation can be rewritten as K̄ω,1 + K̄ω,4 = i

√
νᾱω. In terms

of the ‘elementary steps’ s(x, j) in direction ~ej centered at x, introduced
before (2.29), the two equations in (5.10) become∑

e∈s(x,1)

σeK̄ω,r(e) = −i
√
νβ̄ω = −iω

√
ν∆1φ̄ω (5.11)

∑
e∈s(x,2)

σeK̄ω,r(e) = i
√
νᾱω = −iω

√
ν∆2φ̄ω, (5.12)

which are the desired identities.
In order to complete the proof of (5.11)-(5.12), we need to prove that∑4
r=1 K̄ω,r = 0, as claimed above. For this purpose, we consider (3.39), and

combine it with (5.1)-(5.2), thus getting, if 0 < c ≤ |p|, |k|, |k + p| ≤ 2c

4∑
r=1

∑
ω′=±

K̂ω′,rĜ
(2,1)
R,ω′,ω(k, p)[1 +O(cθ)]

c→0
= Ĝ

(2)
R,ω(k + p)[1 +O(cθ)]. (5.13)

By using (5.8) and the fact that v̂(0) = 1, this becomes

Ĝ
(2,1)
R,ω,ω(k, p)

4∑
r=1

(
K̂ω,r + τK̂−ω,r

D̄ω(p)

D̄−ω(p)

)
[1 +O(cθ)] = (5.14)

= Ĝ
(2)
R,ω(k + p)[1 +O(cθ)].

Now, using (4.21), (4.22) and taking the limit c→ 0, one obtains that

4∑
r=1

(
K̂ω,r + τK̂−ω,r lim

pj→0

D̄ω(pj)

D̄−ω(pj)

)
= 0, (5.15)
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for any sequence pj along which the ratio D̄ω(pj)/D̄−ω(pj) admits a limit.
Note that, in general, the limit depends upon the chosen subsequence. For
instance, if pj = (sj , 0) with sj → 0 then the limit is −α2

ω/|αω|2 while if
pj = (0, tj) with tj → 0 the limit is −β2

ω/|βω|2. On the other hand, these
two values cannot be equal since we know that the ratio αω/βω is not real

(cf. (4.5)). In conclusion, we find that
∑4

r=1 K̂ω,r = 0 that, in light of (5.4),

is equivalent to
∑4

r=1 K̄ω,r = 0, as desired.
With the identities (5.11)-(5.12) at hand, we can easily prove (2.44), by

repeating the analogue of the discussion leading, in the non-interacting case,
to (2.31). We will be very sketchy since the analogous argument has been
given in detail in [22] in the case of the model with weights t ≡ 1. We start
from the very definition of the covariance of the height difference:

Eλ [(h(η1)− h(η2)); (h(η3)− h(η4))] =
∑

e∈Cη1→η2

∑
e′∈Cη3→η4

σeσe′Eλ(1e;1e′),

(5.16)
where Cη1→η2 and Cη3→η4 are two lattice paths connecting η1 with η2, and
η3 with η4, respectively. For simplicity, we assume that η1 and η2 have the
same parity, and similarly for η3 and η4: in this way, it is possible to choose
the two paths Cη1→η2 and Cη3→η4 to be concatenations of ‘elementary steps’
s(x, j) in directions ±~ej , see the discussion after (2.28) above. For simplicity,
let us also assume that the mutual distances between the faces η1, . . . η4 are
all comparable, i.e.

0 < c <
mini 6=j |ηi − ηj |
maxi 6=j |ηi − ηj |

. (5.17)

In this case, we choose the two paths Cη1→η2 and Cη3→η4 to be of length at
most C maxi 6=j |ηi − ηj | and to be at mutual distance C−1 maxi 6=j |ηi − ηj |,
for some constant C = C(c).

We now insert (2.34) into (5.16) and, by repeating the discussion of [22,
Section 3.2], we find that the dominant contribution comes from Ār,r′ (the
contribution from B̄r,r′ is sub-dominant due to the oscillating pre-factors):

Eλ [(h(η1)− h(η2)); (h(η3)− h(η4))] = (5.18)

=
∑

e∈Cη1→η2

∑
e′∈Cη3→η4

σeσe′Ār(e),r(e′)(x(e), x(e′)) (5.19)

+O

(
1

mini 6=j≤4 |ηi − ηj |1/2 + 1

)
, (5.20)

where r(e) is the type of the edge e, x(e) is the coordinate of the black site of
e. By using the explicit expression of Ār,r′ , (2.35), and by decomposing the
two paths Cη1→η2 , Cη3→η4 , into a sequence of elementary steps, we obtain
(denoting the generic elementary step in Cη1→η2 , resp. Cη3→η4 , by s(x, j),
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resp. s(x′, j′))

(5.18) =
1

4π2

∑
ω=±

∑
s(x,j)∈Cη1→η2
s(x′,j′)∈Cη3→η4

∑
e∈s(x,j)
e′∈s(x′,j′)

K̄ω,r(e)K̄ω,r(e′)

(φ̄ω(x− x′))2
(5.21)

+O

(
1

mini 6=j≤4 |ηi − ηj |1/2 + 1

)
.

We now use (5.11)-(5.12), the symmetry φ̄ω = φ̄∗−ω and realize that the
dominant term in (5.21) is the Riemann sum approximation to the following
integral:

− ν

2π2
<
∫ φ̄+(η2)

φ̄+(η1)
dz

∫ φ̄+(η4)

φ̄+(η3)
dz′

1

(z − z′)2
(5.22)

whose explicit evaluation gives the main term in the r.h.s. of (2.44). Putting
together the error terms, we obtain the statement of Theorem 2, as desired.

In the case where (5.17) fails (e.g. when η1 = η3, η2 = η4 and (5.16) is just
the variance of the height gradient), one chooses the paths Cη1→η2 , Cη3→η4

to be “as well separated as possible” (cf. [22, Sec. 3.2]) and the rest of the
argument works the same.

6. Renormalization Group analysis

In this section we discuss the multiscale analysis of the dimer model and
the comparison with the continuum model, which leads us to the results
spelled out in the last two sections.

The goal is to obtain sharp estimates onW(θ)
L (A, φ), see (3.27), as L→∞,

for all θ ∈ {0, 1}2. These will then be combined as in (3.28), to finally
obtain the control of the large-scale behavior of the correlation functions of
the interacting dimer model. From now on, C,C ′, . . . , and c, c′, . . . , denote
universal constants, whose specific values might change from line to line.

6.1. Preliminaries. As a preliminary step, we rewrite the quadratic part
S of the action in (3.27) as a “dressed” term S0 plus a ”counter-term”
N = S−S0, whose role is to fix the location of the interacting Fermi points
and Fermi velocities. Namely, letting as usual

ψ̂±k =
∑
x∈Λ

ψ±x e
∓ikx, k ∈ P(θ), ψ±x =

1

L2

∑
k∈P(θ)

e±ikxψ̂±k , (6.1)

we write:

S(ψ) = −L−2
∑

k∈P(θ)

µ(k)ψ̂+
k ψ̂
−
k ≡ S0(ψ) +N(ψ), (6.2)

where S0(ψ) = −L−2
∑

k∈P(θ) µ0(k)ψ̂+
k ψ̂
−
k , with

µ0(k) = µ(k)+
∑
ω=±

χ̄0(k− p̄ω) [−µ(p̄ω) + aω(k1 − p̄ω1 ) + bω(k2 − p̄ω2 )] . (6.3)

In this equation:
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(1) p̄ω = p̄ω(λ), with ω = ±, are points in [−π, π]2, such that p̄+ + p̄− =
(π, π), and they will be fixed via the multiscale construction. A
posteriori they can be interpreted as “dressed Fermi points”; they
are the same functions appearing in Theorem 1.

(2) aω = aω(λ) ∈ C and bω = bω(λ) ∈ C are such that aω = −a∗−ω and
bω = −b∗−ω; they will also be fixed via the multiscale construction.
A posteriori, their choice fixes the “dressed Fermi velocities” via the
following relations:

∂p1µ0(p̄ω) = ∂p1µ(p̄ω) + aω =: ᾱω, (6.4)

∂p2µ0(p̄ω) = ∂p2µ(p̄ω) + bω =: β̄ω, (6.5)

where ᾱω, β̄ω are the same functions appearing in Theorem 1.
(3) the function χ̄0 is defined as: χ̄0(k′) = χ̄(|M−1k′|), where: (1)M is

the same matrix as (4.1), with ᾱ1 and ᾱ2 (resp. β̄1 and β̄2) the real
and imaginary parts of ᾱ+ (resp. β̄+); (2) χ̄ : R+ → [0, 1] is a C∞

cut-off function in the Gevrey class of order 2 (see [22, Appendix C])
that is equal to 1, if its argument is smaller than c0/2, and equal
to 0, if its argument is larger than c0; here c0 is a small enough
constant, such that in particular the support of χ̄0(·− p̄+) is disjoint
from the support of χ̄0(· − p̄−). For later reference, we also let for h
a negative integer

χ̄h(k′) := χ̄0(2−hk′). (6.6)

From the properties just stated of p̄ω, aω, bω and χ̄(·), we see that

µ0((π, π)− k) = µ∗0(k). (6.7)

In the integration over ψ in (3.27), the Fourier modes k that are the
closest to the zeros of µ0(·) play a somewhat special role, so they have to
be treated separately, at the very last step of the multi-scale procedure (cf.
Section 6.5). Namely, given θ ∈ {0, 1}2, let k±θ be the values of k ∈ P(θ)

that are closest to p̄± and note that k+
θ = (π, π)− k−θ [If there is more than

one momentum at minimal distance from p̄± (there are at most four), any
arbitrary choice will work]. Next, we decompose the quadratic action S0(ψ)
as a sum of a term depending only on k±θ plus a term depending only on the
modes in

P ′(θ) := P(θ) \ {k+
θ , k

−
θ },

and we rewrite (3.27) as

eW
(θ)
L (A,φ) =

∫
Dψ e

−L−2
∑
ω=± µ0(kωθ )ψ̂+

kω
θ
ψ̂−
kω
θ (6.8)

× e−L
−2

∑
k∈P′(θ) µ0(k)ψ̂+

k ψ
−
k +N(ψ)+V (ψ,A)+(ψ,φ).

We multiply and divide by

eL
2E(0)

:=
∏

k∈P ′(θ)

µ0(k), (6.9)

(the product is non-zero since we singled out the possibly zero modes k±θ )
and, letting

Ψ̂±ω := ψ̂±kωθ
, (6.10)
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we rewrite the generating function as

eW
(θ)
L (A,φ) =

∫
DΨ̂e−L

−2
∑
ω=± µ0(kωθ )Ψ̂+

ω Ψ̂−ω+W(θ)
L (A,φ,Ψ). (6.11)

Here

Ψ±x =
1

L2

∑
ω=±

e±ik
ω
θ xΨ̂±ω ,

∫
DΨ̂

∏
ω=±

Ψ̂−ω Ψ̂+
ω = L4, (6.12)

(the L4 factor comes from the fact that (3.10) translates in Fourier space

into
∫
Dψ

∏
k∈P(θ)[L

−2ψ̂−k ψ̂
+
k ] = 1) and

eW
(θ)
L (A,φ,Ψ) := eL

2E(0)

∫
Pg0(dψ)eN(Ψ+ψ)+V (Ψ+ψ,A)+(Ψ+ψ,φ), (6.13)

with Pg0 the Grassmann Gaussian integration (cf. footnote 6) with propa-
gator

g0(x, y) = L−2
∑

k∈P ′(θ)

e−ik(x−y)

µ0(k)
. (6.14)

From this point, we proceed as follows. First, we perform in a multi-scale
way the integration over the Grassmann variables ψ, i.e. over the Fourier
modes except k±θ : the inductive integration procedure, including the defini-
tion of the running coupling constants (RCC), is described in Section 6.2;
the outcome of the construction can be conveniently expressed in terms of
a Gallavotti-Nicolò tree expansion, similar to the one described in [22, Sec-
tion 6.2]. The main definitions (and the main differences compared to the
case treated in [22]) are summarized in Section 6.3; in the same section, we
also state the bounds satisfied by the kernels of the effective potential, see
Proposition 2, under the assumption that the RCC are uniformly bounded
in the infrared, see condition (6.64). The proof that the RCC remain in fact
bounded under the iterations of the renormalization group map is given in
Section 6.4; the flow of the RCC can be controlled only if their initial data
are properly fixed: as shown there, the choice of the initial data fixes the
dressed Fermi points p̄ω and the dressed Fermi velocities ᾱω, β̄ω, as antici-
pated after (6.3). In Section 6.5 we describe the integration of the last two
modes and prove the existence of the thermodynamic limit for the correla-
tion functions, with explicit bounds on the speed of convergence as L→∞.
Finally, in Section 6.6, we compute the fine asymptotics of the correlations
functions, via a comparison of the tree expansion of the dimer model with
that of the continuum model of Section 4; in particular, we show how to
obtain (5.1), (5.2), (5.3), relating the dimer correlations with those of the
reference model, thus concluding the proofs of Theorems 1-2.

6.2. Multi-scale analysis. In this section we describe the multi-scale com-

putation of W(θ)
L (A, φ,Ψ), see (6.13). We consider explicitly only the case

φ = 0; the general case can be treated analogously but we will not belabor
the details in this paper.

The procedure is based on a systematic use of the ‘addition principle’
for Gaussian Grassmann integrals, namely the following property [19, Sec.
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4]: if Pg(dψ) is the Grassmann Gaussian integration with propagator g and
g = g1 + g2 then∫

Pg(dψ)F (ψ) =

∫
Pg1(dψ1)Pg2(dψ2)F (ψ1 + ψ2). (6.15)

We apply this formula to Pg0 , in connection with the following decomposition
of the propagator g0(x, y):

g0(x, y) = g(0)(x, y) +
∑
ω=±

e−ip̄
ω(x−y)g(≤−1)

ω (x, y) (6.16)

where

g(0)(x, y) = L−2
∑

k∈P ′(θ)

e−ik(x−y) 1− χ̄−1(k − p̄+)− χ̄−1(k − p̄−)

µ0(k)
(6.17)

and, if P ′ω(θ) = {k′ : k′ + p̄ω ∈ P ′(θ)},

g(≤−1)
ω (x, y) = L−2

∑
k′∈P ′ω(θ)

e−ik
′(x−y) χ̄−1(k′)

µ0(k′ + p̄ω)
. (6.18)

By using the decomposition (6.16) and (6.15), we rewrite (6.13) as

eW
(θ)
L (A,0,Ψ) = eL

2E(0)

∫
P(≤−1)(dψ

(≤−1))× (6.19)

×
∫
P(0)(dψ

(0))eN(ψ(0)+ψ(≤−1)+Ψ)+V (ψ(0)+ψ(≤−1)+Ψ,A),

where ψ(0) + ψ(≤−1) + Ψ is a shorthand notation for

{ψ(0)±
x +

∑
ω

e±ip̄
ωxϕ±x,ω}x∈Λ, ϕ±x,ω := ψ(≤−1)±

x,ω + L−2e±i(k
ω
θ−p̄

ω)xΨ̂±ω .

(6.20)

P(0) is the Grassmann Gaussian measure with propagator g(0)(x, y), while
P(≤−1) is the Grassmann Gaussian measure with propagator

δω,ω′g
(≤−1)
ω (x, y) =

∫
P(≤−1)(dψ)ψ(≤−1)−

x,ω ψ
(≤−1)+
y,ω′ .

Since the cutoff function χ̄−1 in (6.18) is a Gevrey function of order 2,

the propagator g(0) has stretched-exponential decay at large distances:

|g(0)(x, y)| ≤ Ce−κ
√
|x−y|, (6.21)

for suitable L-independent constants C, κ > 0, if |x − y| is the distance on

the torus Λ. This is seen by writing g(0) via the Poisson summation formula
as a sum of Fourier integrals, as in [22, App. A]; each integral decays in the
desired way because it is the Fourier transform of a Gevrey function [33].

Next, we denote by V (0)(·, J) the combination N(·)+V (·, A), re-expressed
in terms of the variables J = {Jx,r}x∈Λ, 1≤r≤4, instead of A: here, if b is the

bond of type r and black site x, we let Jx,r := eAb − 1. The result of the

integration over ψ(0) is rewritten in exponential form:

eL
2E(0)

∫
P(0)(dψ

(0))eV
(0)(ψ(0)+ϕ,J) = eL

2E(−1)+S(−1)(J)+V (−1)(ϕ,J), (6.22)
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where [19, Sec. 4]

L2(E(−1) − E(0)) + S(−1)(J) + V (−1)(ϕ, J) = (6.23)

=
∑
n≥1

1

n!
ET0 (V (0)(ψ(0) + ϕ, J); · · · ;V (0)(ψ(0) + ϕ, J))︸ ︷︷ ︸

n times

,

with ET0 the truncated expectation8 w.r.t. the Grassmann Gaussian integra-

tion P(0)(dψ
(0)), and E(−1), S(−1)(·) are fixed by the condition S(−1)(0) = 0,

V (−1)(0, J) = 0. The series in the r.h.s. is absolutely summable, for λ suffi-
ciently small (independently of L), see [19, Sec. 4.2]. The reason is that the

propagator g(0) has a fast decay in space, uniformly in L, as in (6.21).
The effective potential on scale −1 can be represented as in the following

formula (which is a definition of the kernels W
(−1)
n,m;ω,r):

V (−1)(ϕ, J) =
∑

n,m≥0:
n even, n≥2

∑
x, y, ω, r

W (−1)
n,m;ω,r(x, y)

×ϕ+
x1,ω1

ϕ−x2,ω2
· · ·ϕ+

xn−1,ωn−1
ϕ−xn,ωnJy1,r1 · · · Jym,rm , (6.24)

where: x = (x1, . . . , xn) ∈ Λn, y ∈ Λm, ω ∈ {−1,+1}n, r ∈ {1, . . . , 4}m; the

Grassmann variables ϕ±x,ω were defined in (6.20). Moreover, the kernels can
be written as

W (−1)
n,m;ω,r(x, y) = W̃ (−1)

n,m;r(x, y) exp{i
n∑
j=1

(−1)j−1p̄ωjxj},

with W̃
(−1)
n,m;r(x, y) a function that is independent of ω, translationally invari-

ant, periodic of period L in yi, and θ-periodic of period L in xi (here we
say that, e.g., a function is (0, 1)-periodic if it is periodic in the first coor-
dinate and anti-periodic in the second, and similarly for the other cases).
Due to the anti-commutation of Grassmann variables and to the fact that
Jy,r are ordinary commuting variables, one can assume without loss of gen-

erality that the kernels W
(−1)
n,m;ω,r(x, y) are symmetric under permutations of

the indices (y1, r1), . . . , (ym, rm), and anti-symmetric under permutations of
the indices {(x2i, ω2i)}1≤i≤n/2 and of the indices {(x2i−1, ω2i−1)}1≤i≤n/2. An

analogous representation is valid for S(−1)(·), and we denote its kernels by

W
(−1)
0,m;ω,r(y).

There is an equivalent expression for V (−1) in Fourier space. We use the
following convention for the Fourier transforms of the fields ψ, J :

ϕ±x,ω = L−2
∑

k∈Pω(θ)

e±ik·xϕ̂±k,ω, Jx,r = L−2
∑

p∈P(0)

Ĵp,re
−ipx,

where Pω(θ) := {k : k + p̄ω ∈ P(θ)}. The reason why k ∈ Pω(θ) (and not
in P(θ) as in (6.1)) is that the combination e±ip̄

ωxϕ±x,ω is θ-periodic, and

not ϕ±x,ω itself. This sum includes also the momenta k = kωθ − p̄ω, ω = ±.

8in other words, ET0 (V (0); · · · ;V (0)︸ ︷︷ ︸
n times

) is the n−th cumulant of V (0) w.r.t. the Grassmann

Gaussian integration P(0). See [19, Sec. 4 and App. A.3]
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Of course, recalling that the only non-zero modes of ψ±x,ω (resp. Ψ±x,ω) are
in P ′ω(θ) (resp. {kωθ − p̄ω}ω=±), we have that

ϕ̂±k,ω =

{
ψ̂±k,ω, if k ∈ P ′ω(θ),

Ψ̂±ω , if k 6∈ P ′ω(θ).

Then, (6.24) becomes

V (−1)(ϕ, J) =
∑

n,m≥0:
n even, n≥2

L−2(n+m)
∑

k, p, ω, r

Ŵ (−1)
n,m;ω,r(k2, . . . , kn, p1, . . . , pm)×

× ϕ̂+
k1,ω1

ϕ̂−k2,ω2
· · · ϕ̂+

kn−1,ωn−1
ϕ̂−kn,ωn Ĵp1,r1 · · · Ĵpm,rmδω(k, p), (6.25)

where k = (k1, . . . , kn), with ki ∈ Pωi(θ), p = (p1, . . . pm) ∈
[
P(0)

]m
and

δω(k, p) = L2×
{

1 if
∑n

j=1(−1)j−1(kj + p̄ωj ) =
∑m

j=1 pj mod (2π, 2π)

0 else
(6.26)

is the periodized Kronecker delta enforcing momentum conservation. Also,

Ŵ
(−1)
n,m;ω,r(k2, . . . , kn, p1, . . . , pm) is just the Fourier transform of W̃

(−1)
n,m;r, com-

puted at momenta k2 + p̄ω2 , . . . , kn + p̄ωn , p1, . . . , pm (it depends only on

n+m− 1 momenta, due to translation invariance of W̃
(−1)
n,m;r in real space).

Using the Battle-Brydges-Federbush-Kennedy (BBFK) determinant for-
mula and the Gram-Hadamard bound [19, Sec. 4.2] for the truncated ex-

pectation in (6.23), we find that E(−1), and W
(−1)
n,m;ω,r(x, y) are absolutely

convergent series and real analytic functions of

(ν0,ω, a0,ω, b0,ω, λ0), (6.27)

for max{|ν0,ω|, |a0,ω|, |b0,ω|, |λ0|} ≤ ε with ε sufficiently small, where we
denoted (for uniformity of notation with the running coupling constants
νh,ω, ah,ω, bh,ω, λh, to be introduced below):

ν0,ω := −µ(p̄ω), a0,ω := aω, b0,ω := bω, λ0 := λ. (6.28)

Moreover, |E(−1)| ≤ Cε and, using also the exponential decay of the bare
potential, (3.18), we find that

‖W (−1)
n,m ‖κ,−1 ≤ Cn+mεmax{1,cn}, (6.29)

for suitable constants κ,C, c > 0 independent of the system size. Here

‖W (−1)
n,m ‖κ,−1 := L−2 sup

ω,r

∑
x,y

|W (−1)
n,m;ω,r(x, y)|eκ

√
2−1d(x,y), (6.30)

and d(x1, . . . , xl) is the length of the shortest tree on the torus Λ connecting
the l points in (x1, . . . , xl). The choice of the stretched-exponential weight
in (6.30) is related to the stretched-exponential decay of the propagator,
see (6.21). For technical details about the proof (6.30), or, better, of its
analogue in a similar context, the reader can consult, e.g., [20, Section III.A
and Eq. (3.19)].

Remark 8. The fact that the kernels W
(−1)
n,m;ω,r are absolutely convergent

series of (ν0,ω, a0,ω, b0,ω, λ0), that each term in the expansion admits a limit
as L → ∞ (as one can check by inspection) and that they satisfy uniform
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bounds as L→∞, see (6.29), implies that their infinite volume limits exist
and satisfy the same bounds. For later reference, the infinite volume limit of

W
(−1)
n,m;ω,r will be denoted by W

(−1),∞
n,m;ω,r , and similarly for its Fourier transform.

After this first integration step, we still need to integrate ψ(≤−1) out,
see (6.19). Let us first informally explain how this is done, before giving
the precise inductive procedure in Sections 6.2.1–6.2.3. The idea is to re-
peat the same procedure as above: we rewrite (via the addition principle)

ψ
(≤−1)
ω = ψ

(−1)
ω + ψ

(≤−2)
ω , where ψ

(−1)
ω (resp. ψ

(≤−2)
ω ) is a Grassmann field

with propagator supported, in momentum space, on momenta k′ ∈ P ′ω(θ)

with |k′| ∼ 2−1 (resp. |k′| . 2−2); we integrate ψ
(−1)
ω out; we exponentiate

the result of the integration, thus defining the effective potential on scale −2,
in analogy with (6.22)-(6.23); and so on. One after the other, we integrate

the fields ψ(−2), . . . , ψ(h+1) out, define the effective potential V (h) on scale
h (which involves fields ψ(≤h) with momenta k′ ∈ P ′ω(θ) that belong to the
support of χ̄h(·) (cf. (6.6)), and continue until we reach the ‘last scale’, hL,
fixed by the finite volume L, which induces a natural infrared cut-off. More
precisely, hL is fixed as the smallest (in absolute value) negative integer h
such that the support of χ̄h(·) has empty intersection with P ′ω(θ). Note that,
since all momenta in P ′ω(θ) are at distance at least π/L from p̄ω, we have
hL ∼ − log2 L for L large. The result of the integration of the Grassmann

fields ψ(≤hL) gives the generating function W(θ)
L (A, 0,Ψ), as desired.

In order for the bounds on the generating function to be uniform in L,
we need to improve the procedure roughly described here: at each step,
before integrating the field on the next scale, we actually need to isolate
and re-sum a certain selection of potentially dangerous contributions to the
effective potential, the so-called marginal and relevant terms. We refer, e.g.,
to [22, Sec. 5], see in particular [22, Section 5.2.2] for a dimensional clas-
sification of the divergent terms arising in a ‘naive’ multiscale scheme. As
discussed there, see [22, Eq. (5.8)] and following lines, the scaling dimen-
sion of the kernels with n external fields of type ψ and m external fields of
type J is 2− n/2−m; in the renormalization group jargon, positive scaling
dimension (that is, 2− n/2−m > 0 ⇔ (n,m) = (2, 0)) corresponds to rele-
vant contributions, vanishing scaling dimension (that is, 2−n/2−m = 0⇔
(n,m) = (4, 0), (2, 1)) corresponds to marginal contributions, and negative
scaling dimension corresponds to irrelevant ones. In order to cure the poten-
tial divergences associated with the terms with (n,m) = (2, 0), (4, 0), (2, 1),
at each step of the multiscale construction we properly ‘localize’ and re-sum
these terms, via an iterative procedure that we now describe.

6.2.1. The inductive statement. Let us inductively assume that the fields
ψ(0), ψ(−1), . . . , ψ(h+1), h ≥ hL, have been integrated out, and that after their
integration the generating function has the following structure, analogous
to the one at scales 0,−1:

e−L
−2

∑
ω µ0(kωθ )Ψ̂+

ω Ψ̂−ω+W(θ)
L (A,0,Ψ) = eL

2E(h)+S(h)(J) × (6.31)

×e−L−2Zh
∑
ω µh,ω(kωθ−p̄

ω)Ψ̂+
ω Ψ̂−ω

∫
P(≤h)(dψ)eV

(h)(
√
Zh(ψ+Ψ),J),
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for suitable real constants E(h), Zh, and suitable ‘effective potentials’ S(h)(J),

V (h)(ϕ, J), to be defined inductively below, and fixed in such a way that

V (h)(0, J) = S(h)(0) = 0. In the second line,

µh,ω(k) := D̄ω(k) + rω(k)/Zh,

where
D̄ω(k) = ᾱωk1 + β̄ωk2

and

rω(k) = µ(k + p̄ω)− µ(p̄ω)− ∂k1µ(p̄ω)k1 − ∂k2µ(p̄ω)k2 (6.32)

is a remainder of order O(k2) for k small. Finally, P(≤h)(dψ) is the Grass-
mann Gaussian integration with propagator (diagonal in the index ω)

1

Zh
g(≤h)
ω (x, y) =

1

Zh

1

L2

∑
k∈P ′ω(θ)

e−ik(x−y) χ̄h(k)

µh,ω(k)
. (6.33)

We will also prove inductively that:

(1) V (h)(ϕ, J) has the same structure as (6.25), with the upper index
(−1) in the kernels replaced by (h);

(2) the kernels of V (h)(ϕ, J) satisfy the following symmetry:

Ŵ
(h)
n,m;−ω,r(k, p) =

[
Ŵ (h)
n,m;ω,r(−k,−p)

]∗
. (6.34)

Remark 9. It is important to emphasize right away that we will view the

kernels W
(h)
n,m;ω,r, h ≤ −2, as functions of:

(i) a sequence of running coupling constants

{λh′ , νh′,ω, ah′,ω, bh′,ω, Yh′,r,(ω,ω′)}h<h′≤−1.

(ii) a sequence of single-scale propagators {g(h′)
ω /Zh′−1}h<h′≤−1, of the

form

1

Zh−1
g(h)
ω (x, y) :=

1

L2

∑
k∈P ′ω(θ)

e−ik(x−y) fh(k)

Z̃h−1(k)D̄ω(k) + rω(k)
, (6.35)

where fh(k) = χ̄h(k)− χ̄h−1(k) and

Z̃h−1(k) = Zh−1χ̄h(k) + Zh(1− χ̄h(k));

(iii) the irrelevant part of V (−1), denoted by RV (−1).

The running coupling constants, as well as the irrelevant part of the effective
potentials, will be defined along the iterative procedure.

6.2.2. The inductive statement for h = −1. The representation (6.31) with
(6.33)-(6.32) is valid at the initial step, h = −1, with Z−1 = 1. To see this,
one needs to use that, if k belongs to the support of χ̄−1, then µ0(k+ p̄ω) =
µ(k + p̄ω)− µ(p̄ω) + aωk1 + bωk2, see (6.3). Moreover, by using (6.4)-(6.5),
we can also rewrite µ(k+ p̄ω)−µ(p̄ω) +aωk1 + bωk2 = D̄ω(k) + rω(k), which
implies that (6.33) at h = −1 is the same as (6.18).

To see that (6.34) holds for h = −1, note that it is equivalent to requiring

that V (−1) is invariant under the transformation ϕ±ω,x → ϕ±−ω,x together
with complex conjugation of the kernels. On the other hand, by Remark 6,
we know that the potential V (0)(ψ, J) is invariant under conjugation of the
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kernels together with the transformation ψ±x = (ψ
(0)±
x +

∑
ω e
±ip̄ωϕ±ω,x) →

(−1)xψ±x , i.e., ψ
(0)±
x → (−1)xψ

(0)±
x , ϕ±ω,x → ϕ±−ω,x. The statement (6.34)

for h = −1 easily follows from the relation (6.23) between V (0) and V (−1)

together with the fact that the propagator g(0) in (6.17) satisfies

[g(0)(x, y)]∗ = (−1)x+yg(0)(x, y),

because p̄+ + p̄− = (π, π).

6.2.3. The inductive step. We assume that (6.31) holds with V (h) satisfying
the properties specified in the inductive statement, and we discuss here how
to get the same representation at the next scale h − 1. First, we split V (h)

into its local and irrelevant parts: V (h) = LV (h) + RV (h) where, denoting

by Ŵ
(h),∞
n,m;ω,r the infinite volume limit of Ŵ

(h)
n,m;ω,r,

LV (h)(ϕ, J) := (6.36)

= L−2
∑
ω

∑
k∈Pω(θ)

ϕ̂+
k,ω[Ŵ

(h),∞
2,0;(ω,ω)(0) + k · ∂kŴ

(h),∞
2,0;(ω,ω)(0)

]
ϕ̂−k,ω

+
∑
x∈Λ

∑
ω1,...,ω4

ϕ+
x,ω1

ϕ−x,ω2
ϕ+
x,ω3

ϕ−x,ω4
Ŵ

(h),∞
4,0;(ω1,...,ω4)(0, 0, 0)

+
∑
x∈Λ

∑
ω1,ω2,r

Jx,rϕ
+
x,ω1

ϕ−x,ω2
ei(p̄

ω1−p̄ω2 )xŴ
(h),∞
2,1;(ω1,ω2),r(0, p̄

ω1 − p̄ω2).

Remark 10. A few remarks about this definition are in order:

(1) The existence of the limit of Ŵ
(h)
n,m;ω,r as L→∞ is a corollary of the

inductive bounds on the kernels of V (h), which are uniform in L, as
it was the case for h = −1, cf. with Remark 8. More details on the
inductive bounds on the kernels of V (h) are discussed below.

(2) The reason why, in the second line of (6.36), we only include terms
where the Grassmann fields have the same index ω, is that the terms
with opposite ω indices give zero contribution to the generating func-
tion, due to the support properties of the Grassmann fields. In

fact, in (6.31) we need to compute V (h) at Grassmann fields ψ̂
(≤h)±
k,ω

that, in momentum space, have the same support as ĝ
(≤h)
ω (k), i.e.,

|M−1k| ≤ c02h (note that the support properties of ĝ
(≤h)
ω are the

same as those of χ̄h (cf. (6.6)), and these were discussed in the third
item after (6.3)). If h ≤ −1 and c0 is sufficiently small, quadratic

terms of the form ψ̂
(≤h)+
k,ω ψ̂

(≤h)−
k+p̄ω−p̄−ω ,−ω would involve two fields that

cannot both satisfy this support property.
(3) Due to the Grassmann anti-commmutation rules and the anti-symmetry

of the kernels, the quartic term in (6.36) can be rewritten as

4
∑
x∈Λ

ϕ+
x,+ϕ

−
x,+ϕ

+
x,−ϕ

−
x,−Ŵ

(h),∞
4,0;(+,+,−,−)(0, 0, 0).

Along the induction step, we will need a function W
(h),R
2,0;(ω,ω)(x1, x2) (the

upper index ’R’ stands for “relativistic”) which should be thought of as the
kernel for n = 2,m = 0 of a relativistic model. More precisely, at step h =
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−1, one simply lets W
(−1),R
2,0;(ω,ω)(x1, x2) ≡ 0. For h < −1, W

(h),R
2,0;(ω,ω) is defined

as a suitable modification of W
(h),∞
2,0;(ω,ω) (that, by the induction hypothesis,

has already been defined); more precisely, W
(h),R
2,0;(ω,ω) is obtained by making

the following replacements in W
(h),∞
2,0;(ω,ω) (which should be thought of as a

function of the running coupling constants, of the single scale propagators
and of the irrelevant part of V (−1), as explained in Remark 9):

(i) the running coupling constants {νh′ , ah′,ω, bh′,ω}h′>h are set zero,
(note that the running coupling constants λh′ are not set equal to
zero);

(ii) the single-scale propagators g
(h′)
ω /Zh′−1 are replaced by the ‘rela-

tivistic’ single-scale propagators g
(h′)
R,ω/Zh′−1, for all h < h′ ≤ −1,

where

g
(h′)
R,ω(x, y) =

∫
R2

dk

(2π)2
e−ik(x−y) fh′(k)

D̄ω(k)
; (6.37)

(iii) RV (−1) is set to zero.

The function W
(h),R
2,0;(ω,ω) will be shown to satisfy both the identity (6.34)

and the extra symmetries (in Fourier space)

Ŵ
(h),R
2,0;(−ω,−ω)(k) = −[Ŵ

(h),R
2,0;(ω,ω)(k)]∗,

Ŵ
(h),R
2,0;(ω,ω)(A

−1σ1Ak) = iω[Ŵ
(h),R
2,0;(ω,ω)(k)]∗, (6.38)

Ŵ
(h),R
2,0;(ω,ω)(A

−1σ3Ak) = [Ŵ
(h),R
2,0;(ω,ω)(k)]∗

where A =

(
ᾱ1 β̄1

ᾱ2 β̄2

)
while σ1, σ3 are the first and third Pauli matrices. Let

us assume that W
(h′),R
2,0;(ω,ω), h

′ ≥ h has been already shown to satisfy (6.38)

and below we explain how to prove the same at scale h− 1.
In order to define the running coupling constants on scale h, we decompose

the term containing ∂kŴ
(h),∞
2,0;(ω,ω)(0) in (6.36), by rewriting

∂kŴ
(h),∞
2,0;(ω,ω)(0) = ∂kŴ

(h),R
2,0;(ω,ω)(0) + ∂kŴ

(h),s
2,0;(ω,ω)(0), (6.39)

(’s’ stands for ‘subdominant’). From the symmetries (6.38), a straightfor-
ward computation (see Appendix A) shows that

k · ∂kŴ
(h),R
2,0;(ω,ω)(0) = −zh(ᾱωk1 + β̄ωk2) = −zhD̄ω(k), (6.40)

for some real constant zh. We now combine this term with the Grassmann
Gaussian integration P(≤h)(dψ), and define:

P(≤h)(dψ)e
−zhZhL−2

∑
ω

∑
k∈P′ω(θ) D̄ω(k)ψ̂+

k,ωψ̂
−
k,ω ≡ eL2thP̃(≤h)(dψ), (6.41)

where P̃(≤h)(dψ) is the Grassmann Gaussian integration with propagator

g̃
(≤h)
ω (x, y)

Zh−1
=

1

L2

∑
k∈P ′ω(θ)

e−ik(x−y) χ̄h(k)

Z̃h−1(k)D̄ω(k) + rω(k)
, (6.42)
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with

Z̃h−1(k) := Zh(1 + zhχ̄h(k)), Zh−1 := Z̃h−1(0) = Zh(1 + zh), (6.43)

and eL
2th is a constant that normalizes P̃(≤h)(dψ) to 1:

th =
1

L2

∑
ω

∑
k∈P ′ω(θ)

log
(

1 +
zhχ̄h(k)D̄ω(k)

D̄ω(k) + rω(k)/Zh

)
. (6.44)

By using (6.41), we rewrite the Grassmann integral in the right side of
(6.31) as∫

P(≤h)(dψ)eV
(h)(
√
Zh(ψ+Ψ),J) = eL

2th−zhZhL−2
∑
ω D̄ω(kωθ−p̄

ω)Ψ̂+
ω Ψ̂−ω ×

×
∫
P̃(≤h)(dψ)eV̂

(h)(
√
Zh−1(ψ+Ψ),J), (6.45)

where

V̂ (h)(ϕ, J) = L−2
∑
ω

∑
k∈Pω(θ)

ϕ̂+
k,ω[2hνh,ω + ah,ωk1 + bh,ωk2

]
ϕ̂−k,ω

+ λh
∑
x∈Λ

ϕ+
x,+ϕ

−
x,+ϕ

+
x,−ϕ

−
x,− (6.46)

+
∑

ω1,ω2,r

Yh,r,(ω1,ω2)

Zh−1

∑
x∈Λ

Jx,re
i(p̄ω1−p̄ω2 )xϕ+

x,ω1
ϕ−x,ω2

+ RV (h)(
√
Zh/Zh−1 ϕ, J),

and the running coupling constants at scale h are defined as

2hνh,ω =
Zh
Zh−1

Ŵ
(h),∞
2,0;(ω,ω)(0), (6.47)

ah,ω =
Zh
Zh−1

∂k1Ŵ
(h),s
2,0;(ω,ω)(0), bh,ω =

Zh
Zh−1

∂k2Ŵ
(h),s
2,0;(ω,ω)(0),

λh = 4
( Zh
Zh−1

)2
Ŵ

(h),∞
4,0;(+,+,−,−)(0, 0, 0),

Yh,r,(ω1,ω2) = ZhŴ
(h),∞
2,1;(ω1,ω2),r(0, p̄

ω1 − p̄ω2).

Thanks to the symmetry (6.34) of the kernels (that by inductive hypoth-
esis holds at step h) the running coupling constants satisfy the following:

νh,ω = ν∗h,−ω, ah,ω = −a∗h,−ω, bh,ω = −b∗h,−ω, Yh,r,ω = Y ∗h,r,−ω. (6.48)

Moreover λh ∈ R: for this, one uses both (6.34) and the fact that

Ŵ
(h)
4,0;(+,+,−,−)(0, 0, 0) = Ŵ

(h)
4,0;(−,−,+,+)(0, 0, 0).

For later reference, we rewrite the local part of V̂ (h)(ϕ, J) as

LV̂ (h)(ϕ, J) =
∑
ω

[
2hνh,ωFν;ω(ϕ) + ah,ωFa;ω(ϕ) + bh,ωFb;ω(ϕ)

]
+ λhFλ(ϕ) +

∑
r,ω

Yh,r,ω
Zh−1

FY ;r,ω(ϕ, J), (6.49)
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(for the definitions of Fν;ω(ϕ), Fa;ω, Fb;ω, etc., compare (6.49) with the first
two lines of (6.46)).

We now decompose the propagator (6.42) as

g̃(≤h)
ω (x, y) = g(h)

ω (x, y) + g(≤h−1)
ω (x, y),

with g
(≤h−1)
ω as in (6.33) and g

(h)
ω as in (6.35). To see that this decomposition

holds, note that Z̃h−1(k) ≡ Zh−1 on the support of χ̄h−1(·).
Then, rewrite (6.45) as∫

P(≤h)(dψ)eV
(h)(
√
Zh(ψ+Ψ),J) = eL

2th−zhZhL−2
∑
ω D̄ω(kωθ−p̄

ω)Ψ̂+
ω Ψ̂−ω ×

×
∫
P(≤h−1)(dψ)

∫
P(h)(dψ

′)eV̂
(h)(
√
Zh−1(ψ+ψ′+Ψ),J), (6.50)

which implies the validity of the representation (6.31) at scale h − 1, with

E(h−1), S(h−1)(·) and V (h−1)(·) defined by

eL
2E(h−1)+S(h−1)(J)+V (h−1)(

√
Zh−1(ψ+Ψ),J) = (6.51)

= eL
2(E(h)+th)+S(h)(J)

∫
P(h)(dψ

′)eV̂
(h)(
√
Zh−1(ψ+ψ′+Ψ),J),

that is,

L2(E(h−1) − E(h) − th) + (S(h−1)(J)− S(h)(J)) + V (h−1)(ϕ, J)(6.52)

=
∑
n≥1

1

n!
ETh (V̂ (h)(ϕ+

√
Zh−1ψ

′, J); · · · ; V̂ (h)(ϕ+
√
Zh−1ψ

′, J)︸ ︷︷ ︸
n times

,

with ETh the truncated expectation w.r.t. the Grassmann Gaussian inte-

gration P(h)(dψ), and E(h−1), S(h−1)(·) fixed as usual by the conditions

S(h−1)(0) = 0 and V (h−1)(0, J) = 0.
To conclude the proof of the induction step, it remains to prove that the

kernels of V (h−1) satisfy (6.34) and that (6.38) holds, at scale h − 1. The
proof of the former statement is very similar (but not identical) to the ar-
gument used in Section 6.2.2 to prove (6.34) at scale h = −1 starting from

the symmetries of V (0). Namely, thanks to (6.34) at scale h, the potential

V (h) is invariant under ϕ±x,ω → ϕ±x,−ω together with complex conjugation
of the kernels. Then, the claim follows from the representation (6.52), to-

gether with the fact that the propagator g(h) (defined in (6.35)) satisfies the
symmetry

[g(h)
ω (x, y)]∗ = g

(h)
−ω(x, y). (6.53)

As for (6.38) at scale h− 1, the proof uses the symmetries of the relativistic
propagator (6.37), together with the fact that λh′ is real. See Appendix A.

Remark 11. Note that, if the function zh′ in (6.43) is sufficiently small for

all the scales h ≤ h′ ≤ −1, say |zh′ | ≤ ε uniformly in L, h′, then e−cε|h| ≤
Zh ≤ ecε|h|. As a consequence, g

(h)
ω satisfies a bound analogous to (6.21),

namely

|g(h)
ω (x, y)| ≤ C02he−κ

√
2h|x−y|. (6.54)
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In fact, note that on the support of fh(·) (which is concentrated on k : |k| ∼
2h), Z̃h−1(k)/Zh−1 = 1 + O(ε) and recall that rω(·) is quadratic for small
values of its argument, so that rω(k)/Zh−1 is negligible w.r.t. D̄ω(k). The

propagator g
(h)
R,ω satisfies the same estimate as (6.54), while the difference

g
(h)
ω − g(h)

R,ω satisfies an estimate that is better by a factor 2h.

6.2.4. The Beta function. The iterative integration scheme described above
allows us to express the kernels of V (h) and, in particular, the running cou-
pling constants (RCC) at scale h, as functions of the sequence of RCC on
higher scales, {λh′ , νh′,ω, ah′,ω, bh′,ω, Yh′,r,ω}h<h′≤−1, of the single-scale prop-

agators {g(h′)
ω /Zh′−1}h<h′≤−1, and of RV (−1). We shall write:

νh−1,ω = 2νh,ω +Bν
h,ω ah−1,ω = ah,ω +Ba

h,ω, bh−1,ω = bh,ω +Bb
h,ω,

λh−1 = λh +Bλ
h , Yh−1,r,ω = Yh,r,ω +BY

h,r,ω, (6.55)

where B#
h,·, h ≤ −1, is the so-called Beta function. One has to think of B#

h,·
as a function of the RCC on scales h′ with h ≤ h′ ≤ 0. Note that the first
four equations makes sense also with h = 0, in which case they express the
relation between (ν−1,ω, a−1,ω, b−1,ω, λ−1) and (ν0,ω, a0,ω, b0,ω, λ0), see (6.28).

Note also that by construction the beta function B#
h,· depends on Zh′ only

via the combinations Zh′/Zh′−1 = (1 + zh′)
−1, with h < h′ < 0. For later

reference, we rewrite the definition of zh, (6.40), in a form analogous to
(6.55),

zh−1 = Bz
h, h ≤ 0, (6.56)

where the right side is thought of as a function of (λh′ , zh′)h≤h′≤0, with the

convention that z0 = z−1 = 0 (the latter is because W
(−1),R
2,0;(ω,ω) ≡ 0).

Remark 12. The components of the beta function for νh,ω, ah,ω, bh,ω, λh are
independent of Yh′,r,ω, h

′ > h. Therefore, we can first solve the flow equation
for νh,ω, ah,ω, bh,ω, λh and then inject the solution into the flow equation for
Yh,r,ω.

Before we proceed in describing the dimensional bounds satisfied by the
kernels of the effective potential, let us comment on their structure. We have
proven inductively that V (h) has, in momentum space, the same structure
as (6.25). If one writes V (h) in real space, due to iterative action of the
R operator in the inductive procedure explained above, the structure that
emerges naturally is that of a polynomial with spatial derivatives acting on
some of the Grassmann fields ϕ±x,ω. For an explanation of why this is the
case see [22, Section 6.1.4] and Appendix B below, where finite-size effects

associated with the action of R are also discussed. Correspondingly, V (h)

can be represented as

V (h)(ϕ, J) =
∑

n,m≥0:
n even, n≥2

∑
x, y, ω, r, i,q

W
(h)
n,m,i,q;ω,r(x, y)× (6.57)

× ∂̂q1i1 ϕ
(≤h)+
x1,ω1

· · · ∂̂qnin ϕ
(≤h)−
xn,ωn Jy1,r1 · · · Jym,rm .

The main difference between this formula and (6.24), besides the scale label
h replacing −1, is the presence of the indices i = (i1, . . . , in) ∈ {1, 2}n and
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q = (q1, . . . , qn) ∈ {0, 1, 2}n and the operators ∂̂qi acting on the Grassmann
fields: this is a differential operator, dimensionally equivalent to a derivative
of order q in direction i. Let us stress that the representation in (6.57) is
not unique: the claim is that there exists such a representation, with the
kernels satisfying natural dimensional estimates, discussed below.

In order for the iterative construction to allow us to compute the ther-
modynamic and correlation functions, we need to prove that: (i) the RCC
νh,ω, ah,ω, bh,ω, λh, zh are small, uniformly in the scale (say, smaller than a
sufficiently small constant ε), provided the functions p̄ω, aω, bω (see (6.3))
have been properly fixed; (ii) the kernels of the effective potential are all
well defined (i.e. the sums (6.52) are convergent uniformly in L), quasi-
local (i.e., fast decaying, with a stretched-exponential behavior) and satisfy
natural scaling properties, i.e.,

‖W (h)
n,m,i,q‖κ,h ≤ C

n+mεmax{1,cn}2h(2−n/2−m−|q|)
(

max
h′≥h

|Yh′,·|
|Zh′ |

)m
, (6.58)

with |q| =
∑n

i=1 qi, |Yh′,·| = maxr,ω |Yh′,r,ω|, and

‖W (h)
n,m,i,q‖κ,h := L−2 sup

ω,r

∑
x,y

|W (h)
n,m,i,q;ω,r(x, y)|eκ

√
2hd(x,y), (6.59)

for suitable constants C, c, κ, independent of L, h.

The boundedness of the flow of the RCC and the validity of the dimen-
sional bounds for the kernels of the effective potential will, in fact, be the
final outcome of our analysis. The logic of proof goes as follows: one first
proves the validity of the dimensional bounds on the kernels, under the as-
sumption that the RCC remain small. These bounds will, in particular,
imply that the components of the beta function are well defined and sat-
isfy bounds that are uniform in L and h. This part of the proof is pretty
standard: it follows from a representation of the effective potential in terms
of Gallavotti-Nicolò (GN) trees, see Section 6.3 below, and an iterative ap-
plication of the Battle-Brydges-Federbush-Kennedy (BBFK) determinant
formula, see, e.g., [22, Lemma 3].

Next, we prove that the RCC remain bounded, by studying the flow
generated by the beta function. The key point is that, as long as the RCC
on scales larger than h are small, then the beta function on scale h is well
defined, and can be used to control the evolution of the RCC for another step.
This opens the way to an inductive proof of the smallness of the RCC. Of
course, the fact that RCC remain small at all scale requires a specific (model-
dependent) structure of the beta function. In our case, we are lucky enough
that the beta function has structure which maintains the RCC small at all
scale, provided the initial data are small, and that p̄ω, aω, bω are properly
fixed, see Section 6.4 below. It is not just a matter of luck, of course: a
key point in the analysis is played by the comparison of the λ-component of
the beta function of our dimer model, with the corresponding quantity for
the reference continuum model (the two functions are the same at dominant
order). The exact solvability of the reference model implies the validity of
a remarkable cancellation in the λ-component of the beta function for the
reference model and, therefore, a posteriori, for our dimer model, as well.



44 ALESSANDRO GIULIANI, VIERI MASTROPIETRO, AND FABIO LUCIO TONINELLI

6.3. Tree expansion for the effective potential. As anticipated above,
the detailed structure of the kernels of V (h), arising from the iterative con-
struction described in the previous section, can be conveniently represented
in terms of GN trees. The definition of GN trees, of their values, and the
procedure leading to their introduction have been discussed at length in
several previous papers and will not be repeated here, see e.g. [19]; in par-
ticular, we refer to [22, Section 5.2.1 and 6.2] for a description of the GN
tree expansion in a context very similar to the present one, i.e., in the case of
isotropic, ‘tilt-less’, interacting dimer models with weights t ≡ 1 and plaque-
tte interaction. The present case differs from the one treated in [22] for the
fact that here the model is anisotropic (and, correspondingly, the height has
an average slope that is different from zero). Technically, this means that
in the present case the expansion involves more running coupling constants
than those considered in [22]: the RCC νh,ω, ah,ω, bh,ω are identically zero
in the tilt-less case. In particular, the trees involved in our construction are
characterized by the following features, slightly different from those listed
in [22, Section 6.2]:

(1) A GN tree τ contributing to V (h), S̃(h)(J) := S(h)(J) − S(h+1)(J),

or to Ẽ(h) = E(h) − E(h+1) − th+1 has root on scale h and can have
endpoints (either ‘normal’ or ‘special’, which are those represented
as black dots or white squares, respectively, in [22], see, e.g., [22,
Fig.13]) on all possible scales between h+ 2 and 0. The endpoints v
on scales hv < 0 are preceded by a node v′ of τ , on scale hv′ = hv−1,
that is necessarily a branching point. The family of GN trees with
root on scale h, Nn normal endpoints and Ns special endpoints is

denoted by T (h)
Nn,Ns

.

(2) A normal endpoint v on scale hv ≤ 0 can be of five different types,

λ, ν, a, b, or RV (−1). If v is of type λ, ν, a or b, then it is associated
with λhv′Fλ(

√
Zhv′−1ϕ

(≤hv′ )), or
∑

ω νhv′ ,ωFν;ω(
√
Zhv′−1ϕ

(≤hv′ )), or∑
ω ahv′ ,ωFa;ω(

√
Zhv′−1ϕ

(≤hv′ )), or
∑

ω bhv′ ,ωFb;ω(
√
Zhv′−1ϕ

(≤hv′ )),
depending on its type (recall that the monomials Fλ, Fν;ω, etc., were
defined in (6.49)); in this case, the node v′ immediately preceding
v on τ , of scale hv′ = hv − 1, is necessarily a branching point. If
v is of type RV (−1), then hv = 0, and v is associated with (one of

the monomials contributing to) RV (−1)(ϕ(≤−1), 0); in this case, the
node immediately preceding v on τ , of scale hv−1, is not necessarily
a branching point.

(3) A special endpoint v on scale hv ≤ 0 can be either local, or non-local.
If v is local, then it is associated with

Yhv′ ,r,ω

Zhv′−1
FY ;r,ω(

√
Zhv′−1ϕ

(≤hv′ ), J), (6.60)

for some r ∈ {1, 2, 3, 4}, ω = (ω1, ω2) ∈ {±}2; if ω1 = ω2, we shall
say that v is a ‘density endpoint’, while, if ω1 6= ω2, that v is a
‘mass endpoint’. Note that the factors Zhv′−1 in (6.60) simplify: the

summand equals Yhv′ ,r,ωFY ;r,ω(ϕ(≤hv′ ), J); in (6.60), these factors are
kept just for uniformity of notation with the cases in the previous
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item. In the case that v is local, the node v′ immediately preceding
v on τ , of scale hv′ = hv − 1, is necessarily a branching point. If
v is non-local, then hv = 0, and v is associated with (one of the

monomials contributing to) V (−1)(ϕ(≤−1), J) − V (−1)(ϕ(≤−1), 0); in
this case, the node immediately preceding v on τ , of scale hv − 1, is
not necessarily a branching point.

In addition to the items above, let us recall that each vertex of the tree
that is not an endpoint and that is not the special vertex v0 (the leftmost
vertex of the tree, immediately following the root on τ) is associated with
the action of an R operator.

In terms of the tree expansion, we can express the effective potential and
the single-scale contributions to the free energy and generating function as

L2Ẽ(h) + S̃(h)(J) + V (h)(
√
Zhϕ, J) =

∑
Nn,Ns≥0:
Nn+Ns≥1

∑
τ∈T (h)

Nn,Ns

V (h)(τ,
√
Zhϕ, J),

(6.61)
where

V (h)(τ,
√
Zhϕ, J) = (6.62)

=
∑
P∈Pτ

√
Zh
|Pψv0 |

∑
T∈T

∑
i,q

∑
xv0

Wτ,P,T,i,q(xv0)Dq
i ϕ(Pψv0

) J(P Jv0
) .

Eq.(6.62) is the analogue of [22, (6.64)], and we refer the reader to that
paper for the notation and a sketch of the proof (in this formula, the indices

i,q replace the multi-indices β ∈ BT [22, (6.64)]). We recall that Pψv0 and
P Jv0

are two sets of indices that label the Grassmann external fields and the

external fields of type J , respectively; moreover, J(P Jv0
) =

∏
f∈PJv0

Jy(f),r(f)

and
Dq

i ϕ(Pψv0
) =

∏
f∈Pψv0

∂̂
q(f)
i(f) ϕ

ε(f)
x(f),ω(f) . (6.63)

Clearly, the kernels in (6.57) are obtained by summing Wτ,P,T,i,q(xv0) over

τ ∈ T (h)
Nn,Ns

, under the constraint that the number of external fields of type
ψ and J is equal to n and m, respectively, that the elements of i are the
same as i, etc. The bound (6.58) is a corollary of the following fundamental
bound on the weighted L1 norm of Wτ,P,T,i,q, which is the analogue of [22,
Proposition 8] and of [9, (3.110)]; for the proof, we refer the reader to [9, 22].
See also Appendix B below for some technical details.

Proposition 2. There exists L-independent constants ε, C, c, κ > 0 such
that, if

max
h′>h
{|λh′ |, |νh′,ω|, |ah′,ω|, |bh′,ω|, |zh′ |} ≤ ε, (6.64)

and τ ∈ T (h)
Nn,Ns

, then

‖Wτ,P,T,i,q‖κ,h ≤ CNs (Cε)max{Nn,c|Iψv0 |} 2h(2− 1
2
|Pψv0 |−|P

J
v0
|−|q|) (6.65)

×

[ ∏
v s.e.p.

sup
r,ω

∣∣∣Yhv−1,r,ω

Zhv−1

∣∣∣][ ∏
v not
e.p.

C
∑sv
i=1 |Pvi |−|Pv |

sv!
2
ε
2
|Pψv |22− 1

2
|Pψv |−|PJv |−z(Pv)

]
,
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where: |Iψv0 | =
∑

v e.p. |P
ψ
v | is the total number of Grassmann fields associ-

ated with the endpoints of the tree; the first product in the second line runs
over the special endpoints, while the second over all the vertices of the tree
that are not endpoints. Moreover |q| =

∑
f∈Pψv0

q(f) and

z(Pv) =


1 if (|Pψv |, |P Jv |) = (4, 0), (2, 1),

2 if (|Pψv |, |P Jv |) = (2, 0),

0 otherwise.

(6.66)

The dimensional gain 2−z(Pv) associated with the marginal and relevant

vertices, i.e., those with (|Pψv |, |P Jv |) = (4, 0), (2, 1), (2, 0), comes from the
action of R, as explained in [22, Section 6.1.4] and in Appendix B below.

Since the exponents 2 + ε
2 |P

ψ
v | − 1

2 |P
ψ
v | − |P Jv | − z(Pv) in (6.65) are all

strictly negative, one can sum (6.65) over τ ∈ T (h)
Nn,Ns

, over T ∈ T, and over

P ∈ Pτ , under the constraint that |Pψv0 | = n and |P Jv0
| = m, we get the

bound (6.58); see also the discussion after [22, Proposition 8]. Similarly, if

we sum (6.65) over τ ∈ T (h)
Nn,Ns

, T ∈ T, P ∈ Pτ , with |Pψv0 | = n, |P Jv0
| = m,

under the additional constraint that τ has at least one node on scale k > h,
then we get a bound that is the same as (6.58) times an additional gain

factor 2θ
′(h−k), where θ′ is a positive constant, smaller than 1 (estimates are

not uniform as θ′ → 1−; from here on, we will choose θ′ = 3/4). This is the
so-called short memory property, see Remark 16 after [22, Proposition 8].

6.4. The flow of the running coupling constants. As explained above,
as long as the RCC νh′,ω, ah′,ω, bh′,ω, λh′ , zh′ stay small, for all h′ > h, in the
sense of (6.64), the beta function controlling the flow of the same constants
on all scales larger or equal to h, see (6.55)-(6.56), can be represented in
terms of a convergent GN expansion, induced by the one of the kernels of
the effective potential discussed above. The goal is then to fix the initial data
ν0,ω, a0,ω, b0,ω, in such a way that the resulting flow of νh,ω, ah,ω, bh,ω, λh, zh
driven by the beta function stays uniformly small in the scale index. For
this purpose, not only we have to make a careful choice of the ‘counter-
terms’ ν0,ω, a0,ω, b0,ω, but we also need to exploit a number of remarkable
cancellations, some of which follow from the exact solution of the reference
model of Section 4. Let us emphasize that we have the right to fix the
counter-terms, that up to now were chosen arbitrarily in (6.3) (recall (6.28)),
but we cannot change λ0 = λ, that enters the definition of the model.

We look for a solution of the flow equation for uh such that, as h→ −∞:

(1) νh,ω, ah,ω, bh,ω tend exponentially to zero; more precisely, recalling
that |νh,+| = |νh,−|, and similarly for |ah,ω|, |bh,ω|, we require that

‖(ν, a, b)‖θ := sup
h≤0
{2−θh|νh,+|, 2−θh|ah,+|, 2−θh|bh,+|} ≤ ε, (6.67)

for ε small enough and θ = 1/2;
(2) λh tends exponentially to a finite limiting value λ−∞; more pre-

cisely, given a positive constant ε′ smaller than the constant ε in the
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previous item, we require that |λ0| ≤ ε′ and

‖λ‖θ := sup
h≤0
{2−θh|λh−1 − λh|} ≤ ε′, (6.68)

where θ is the same as in the previous item; note that, from the
condition on λ0 and (6.68), it follows that

|λh| ≤
ε′

1− 2−θ
+ ε′, (6.69)

uniformly in h.

6.4.1. Fixing (zh)h≤−1. Given a sequence λ := (λh)h≤−1 satisfying (6.68),
we construct the solution of the beta function equation

zh−1 = Bz
h(λ, z) (6.70)

iteratively in h, starting from h = 0 [where z := (zh)h≤−1 and, of course,
the right side only depends on the components of λ, z of scale index larger
or equal to h; note that by definition Bz

h does not depend on λ0]. We denote
this solution by z∗(λ). By using the tree expansion of the beta function,
we now show that z∗(λ) is a Cauchy sequence, differentiable in λ; more
precisely, we prove that, for λ0 fixed, such that |λ0| ≤ ε′, and λ satisfying
(6.68),

|z∗h−1(λ)− z∗h(λ)| ≤ C0(ε′)22θh,
∣∣∣∂z∗h(λ)

∂λk

∣∣∣ ≤ C0ε
′2θ(h−k), (6.71)

for all h ≤ k ≤ −1. Once this is done, we plug z∗(λ) in the flow equations for
νh,ω, ah,ω, bh,ω, λh, i.e., the first four equations of (6.55), so that a posteriori
their beta functions are re-expressed purely in terms of λ0 and u, where

u = (ν, a, b, λ), (6.72)

with ν := (νh,ω)
ω∈{±}
h≤0 , a := (ah,ω)

ω∈{±}
h≤0 and b := (bh,ω)

ω∈{±}
h≤0 .

Let us prove the first inequality in (6.71), inductively in h. Note that
at the first step, h = 0, the inequality is trivially true, simply because
z∗0(λ) = z∗−1(λ) = 0. We assume that |z∗h′−1(λ) − z∗h′(λ)| ≤ C0(ε′)22θh

′
, for

all scales h < h′ ≤ 0, and we want to prove that the same bound holds for
h′ = h. Note that, for ε′ sufficiently small, the first inequality in (6.71) also
implies that |z∗h′(λ)| ≤ ε′ ≤ ε, ∀h ≤ h′ ≤ −1, uniformly in λ. Recall that the

definition of Bz
h is induced by (6.40). The kernel W

(h),R
2,0;(ω,ω) can be written as

a sum over GN trees, analogous to (6.62), and the contribution associated
with each tree can be bounded as in Proposition 2. Therefore, Bz

h itself can
be written as a sum over trees that, by definition, have only endpoints of
type λ (and, more precisely, at least two such endpoints):

Bz
h(λ, z∗) =

∑
N≥2

∑
τ∈T (h)

N,0

∑
P∈Pτ

∑
T∈T

Bz
h(λ, z∗; τ,P, T ), (6.73)

where z∗ = z∗(λ) (recall that Bz
h depends only on the components of z∗

with scale index ≥ h, which have already been inductively defined), and
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Bz
h(λ, z∗; τ,P, T ) can be bounded in a way analogous to (6.65):

|Bz
h(λ, z∗; τ,P, T )| ≤ (Cε′)N

[ ∏
v not
e.p.

C
∑sv
i=1 |Pvi |−|Pv |

sv!
2
ε′
2
|Pψv |22− 1

2
|Pv |−z(Pv)

]
.

(6.74)
Here we used the fact that the endpoints are all of type λ, and that their
values are bounded as in (6.69). We now split Bz

h(λ, z∗) as follows:

Bz
h(λ, z∗) =

[
Bz
h(λ, z∗)−Bz

h(λ, z∗)
∣∣
λ−1=0

]
+Bz

h(λ, z∗)
∣∣
λ−1=0

. (6.75)

By definition, the difference in square brackets is expressed in terms of a sum
over trees that have at least one endpoint on scale 0, while Bz

h(λ, z∗)
∣∣
λ−1=0

is a sum over trees that have no endpoints on scale 0. By using the short
memory property (see comments after the statement of Proposition 2), we
find ∣∣∣Bz

h(λ, z∗)−Bz
h(λ, z∗)

∣∣
λ−1=0

∣∣∣ ≤ C(ε′)22θh. (6.76)

An important remark is that by rescaling h → h + 1, we can re-express
Bz
h(λ, z∗)

∣∣
λ−1=0

in terms of Bz
h+1:

Bz
h(λ, z∗)

∣∣
λ−1=0

= Bz
h+1(Sλ, Sz∗), (6.77)

where S is the shift operator, namely, (Sλ)h := λh−1, and similarly for Sz∗.
In conclusion,

z∗h−1(λ)− z∗h(λ) =
[
Bz
h(λ, z∗)−Bz

h(λ, z∗)
∣∣
λ−1=0

]
(6.78)

+
[
Bz
h+1(Sλ, Sz∗)−Bz

h+1(λ, z∗)
]
.

We want to bound the difference in the second line as∣∣Bz
h+1(Sλ, Sz∗)−Bz

h+1(λ, z∗)
∣∣ ≤ C(ε′)22θh. (6.79)

The beta function Bz is O((ε′)2) because N ≥ 2 in (6.73), so we have just
to get the extra factor 2θh. The left-hand side can be rewritten as

Bz
h+1(Sλ, Sz∗)−Bz

h+1(λ, z∗) =

∫ 1

0
dt

d

dt
Bz
h+1(λ(t), z∗(t)), (6.80)

with λ(t) := λ+ t(Sλ− λ), and similarly for z∗(t). Bz
h+1 can be written in

terms of its tree expansion, see (6.73), so that, when the derivative w.r.t.
t acts on it, it can act on the factors λh′(t) associated with the endpoints
v of the tree, or on the factors z∗h′(t) associated with the propagators and
with the branches of the tree. If it acts on an endpoint of type λ, whose
value is λh′(t), its effect is to replace it by λh′ − λh′−1, which is bounded

by ε′2θh
′
, see (6.68); if it acts on a factor z∗h′(t), its effect is to multiply the

tree value by z∗h′(λ)− z∗h′−1(λ), which is bounded by C0(ε′)22θh
′
, thanks to

the inductive hypothesis. Using these facts and the short memory property,
(6.79) follows. Putting this together with (6.76), we get the desired bound
on z∗h−1(λ)− z∗h(λ).

The proof of the second inequality (6.71) is completely analogous: it can
be proved inductively in h (at the first step is trivially valid, again because
z∗−1(λ) ≡ 0), by using the tree representation of the beta function, (6.73),
and the short memory property. The details are left to the reader.
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Remark 13. The limiting value of z∗h(λ) as h→ −∞, which certainly exists,
due to the first of (6.71), only depends on λ−∞(λ) := λ0 +

∑
h≤0(λh−1 −

λh). This fact follows from the recursive equation for z∗, (6.70), from the
tree representation of the beta function, (6.73), and from the short memory
property.

6.4.2. The solution of the flow equation as a fixed point. Given |λ0| ≤ ε′ and
λ satisfying (6.68), we fix z = z∗(λ) as described in the previous subsection,
and plug it into the flow equations for νh,ω, ah,ω, bh,ω, λh: these are coupled
equations, whose beta functions are thought of as functions of λ0 and u, with
u as in (6.72). In order to find the desired solution to these flow equations,
we first note that the equations for νh,ω, ah,ω, bh,ω in (6.55) imply that, for
k < h ≤ 0,

νh,ω = 2k−hνk,ω −
∑
k<j≤h

2j−h−1Bν
j,ω(λ0, u), (6.81)

ah,ω = ak,ω −
∑
k<j≤h

Ba
j,ω(λ0, u), bh,ω = bk,ω −

∑
k<j≤h

Bb
j,ω(λ0, u).

[Clearly, B·j,ω(λ0, u) actually depends only on the the components of u on

scales larger than j.] If we send k → −∞ in (6.81) and impose the de-
sired condition on the exponential decay of νh,ω, ah,ω, bh,ω, see (6.67), we get

νh,ω = −
∑

j≤h 2j−h−1Bν
j,ω, ah,ω = −

∑
j≤hB

a
j,ω, and bh,ω = −

∑
j≤hB

b
j,ω.

Regarding λh, we study its flow equation by extracting the first order
contribution in (λ0, u) from the beta function. By inspection, one verifies
that the first order contribution does not depend on u: therefore, we can
write

Bλ
h(λ0, u) = cλhλ0 + B̃λ

h(λ0, u), (6.82)

where B̃λ
h is at least of second order in (λ0, u) and cλh can be computed

in terms of first order perturbation theory. Note that the GN trees that
contribute to it have only a normal endpoint at scale 0, of type RV (−1).
Then, due to the short memory property,

|cλh| ≤ C̄ 2θh, (6.83)

for some C̄ > 0. By iterating the beta function equation for λh, we get:

λh−1 = Cλhλ0 +
0∑

j=h

B̃λ
j (λ0, u), (6.84)

where Cλh = 1 +
∑0

j=h c
λ
j .

In conclusion, given a sufficiently small λ0, we look for initial data ν0,ω, a0,ω,
b0,ω, depending on λ0, such that the corresponding flow satisfies, for all scales
h ≤ 0, 

νh,ω = −
∑

j≤h 2j−h−1Bν
j,ω(λ0, u),

ah,ω = −
∑

j≤hB
a
j,ω(λ0, u),

bh,ω = −
∑

j≤hB
b
j,ω(λ0, u)

λh−1 = Cλhλ0 +
∑0

j=h B̃
λ
j (λ0, u),

(6.85)
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with u satisfying (6.67), (6.68). The system (6.85) will be viewed as a fixed
point equation u = T (u) for a map T on the space of sequences

Xε := {u : ‖(ν, a, b)‖θ ≤ ε, ‖λ‖θ ≤ ε′}, (6.86)

see (6.67), (6.68). In this equation, and from now on, we let ε be sufficiently
small, and we fix θ = 1/2 and

ε′ = ε/K, K = max

{
1,

C1

1− 2−θ
,

2C ′1
1− 2−θ

}
, (6.87)

where C1, C
′
1 are the constants in (6.90) and (6.96) below, whose explicit

values can be computed in terms of the first order contributions in λ to
Bν
h,ω, Ba

h,ω, Bb
h,ω.

We now want to prove that T is a contraction on Xε, with respect to the
metric d(u, u′) := ‖u− u′‖, where

‖u‖ := max{‖(ν, a, b)‖θ, K sup
h≤−1

|λh|}. (6.88)

More precisely, we intend to prove that the image of Xε under the action
of T is contained in Xε, and that ‖T (u) − T (u′)‖ ≤ (1/2) ‖u − u′‖ for all
u, u′ ∈ Xε. If this is the case, then T admits a unique fixed point in Xε,
which corresponds to the desired initial data ν0,ω, a0,ω, b0,ω, generating a
flow satisfying conditions (1)-(2) discussed at the beginning of this section.

6.4.3. Invariance of Xε under the action of T . In this subsection we show
that T (Xε) ⊆ Xε, i.e. ‖T (u)‖ ≤ ε under the condition that

|λ0| ≤
ε

2K
min{1, C̄−1}, (6.89)

where C̄ is the same as in (6.83). Note that, in order to prove that T (Xε) ⊆
Xε, it is enough to show that

|Bν
h,ω(λ0, u)|, |Ba

h,ω(λ0, u)|, |Bb
h,ω(λ0, u)| ≤ C1K

−1ε2θh, (6.90)

|B̃λ
h(λ0, u)| ≤ C2ε

22θh, (6.91)

for some K-independent constants C1, C2 (in order to see that (6.90)-(6.91)
imply ‖T (u)‖ ≤ ε, it is enough to plug them in the right side of (6.85) and
use (6.87) and (6.89)).

1. The bound on Bν
h,ω(λ0, u). We start by proving the bound on Bν

h,ω(λ0, u)

in (6.90). Recall that the definition of Bν
h,ω is induced by the first of (6.47),

combined with the first of (6.55). As for the case of Bz
h discussed in Section

6.4.1, Bν
h can be written as a sum over trees:

Bν
h,ω(λ0, u) =

∑
N≥1

∑
τ∈T (h)

N,0

∑
P∈Pτ

∑
T∈T

Bν
h,ω(λ0, u; τ,P, T ), (6.92)

and Bν
h,ω(λ0, u; τ,P, T ) can be bounded in a way analogous to (6.65):

|Bν
h,ω(λ0, u; τ,P, T )| ≤ CN

[ ∏
v e.p.

|Fv|
]
× (6.93)

×
[ ∏
v not
e.p.

C
∑sv
i=1 |Pvi |−|Pv |

sv!
2
ε
2
|Pψv |22− 1

2
|Pv |−z(Pv)

]
.
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Here, |Fv| equals |νhv′ ,+|, |ahv′ ,+|, |bhv′ ,+| or |λhv′ |, if v is of type ν, a, b, or λ,
see item (2) in the list of properties of trees in Section 6.3; if v is of type

RV (−1), then Fv is a kernel of RV (−1) (the one associated with the given
choice of Pv), and |Fv| is its norm (6.30) (more precisely, it is its un-weighted
counter-part, i.e., the case κ = 0), which is bounded as in (6.29).

We now split Bν
h,ω in a dominant plus a subdominant contribution, in the

same spirit as the decomposition (6.39): Bν
h,ω = Bν,R

h,ω + Bν,s
h,ω, where: Bν,R

h,ω

includes the sum over the trees whose endpoints are all of type λ and all

the single-scale propagators g
(k)
ω /Zk−1 have been replaced by g

(k)
R,ω/Zk−1, see

(6.37); Bν,s
h,ω is the remainder, which includes the sum over trees that have

at least one endpoint of type a, b, ν or RV (−1) (the scale k of the endpoints
of type λ, a, b, ν satisfies h < k ≤ 0, while the scale of the endpoints of type
RV (−1) is necessarily k = 0), or at least one ‘remainder propagator’ on some

scale k between h and 0, (g
(k)
ω − g(k)

R,ω)/Zk−1.

The key observation is that Bν,R
h,ω = 0: in fact the definition of Bν,R

h,ω is

induced by the first of (6.47), with Ŵ
(h),∞
2,0;(ω,ω)(0) replaced by Ŵ

(h),R
2,0;(ω,ω)(0)

which is zero, as follows immediately from (6.38).
The subdominant contribution, Bν,s

h,ω, is not zero, but it is easy to bound.

We further distinguish various contributions to it. (1) Let us start with
the contributions from trees with at least two endpoints, one of which is
of type ν, a, b,RV (−1) and is on scale k ∈ [h + 1, 0]: these are bounded

proportionally to ε22θ
′(h−k)2θk, where θ′ = 3/4 > θ; the factor 2θ

′(h−k) is
due to the short memory property (see the comment after (6.66)), while
the factor ε2θk comes from the norm |Fv| associated with the endpoint of

type ν, a, b,RV (−1) on scale k, and the other ε from the second endpoint.
Summing the bound over k in [h + 1, 0], we get const × ε22θh, with the
constant being independent of K. (2) Next, we consider the contributions

from trees with exactly one endpoint, of type RV (−1) (and, therefore, on
scale 0). Recalling that the norm of the value of the endpoint, |Fv|, is
proportional to |λ0| ≤ ε/(2K), we find that the total contribution from
these trees is O(εK−12θh), the factor 2θh coming from the short memory
property, the proportionality factor being independent of K. (3) Finally, we
are left with the contributions from trees whose endpoints are all of type λ
and at least one remainder propagator on some scale k between h and 0,

(g
(k)
ω − g(k)

R,ω)/Zk−1. Recalling from Remark 11 that the dimensional bound

of the remainder propagator is better by a factor 2θk, as compared to the

bound of g
(k)
R,ω/Zk−1, we find that the these contributions are bounded by

const× (ε/K)
∑0

k=h 2θ
′(h−k)2θk ≤ const× (ε/K)2θh (once again, the factor

2θ
′(h−k) is due to the short memory property, and the constant is independent

of K). Putting things together, we obtain the desired estimate on Bν
h,ω.

2. The bound on Ba
h,ω, B

b
h,ω. By definition, see (6.47) and the definition of

Ŵ
(h),s
2,0;(ω,ω) after (6.39), the trees contributing to Ba

h,ω, B
b
h,ω either have an

endpoint of type ν, a, b,RV (−1), or their values contain a ‘remainder propa-

gator’ (g
(k)
ω − g(k)

R,ω)/Zk−1 on some scale k between h and 0. By proceeding
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as in the previous item, in particular in the discussion of the bound on Bν,s
h,ω,

we find that |Ba
h,ω| ≤ const × (ε/K)

∑0
k=h 2θ

′(h−k)2θk, which is the desired

estimate, and similarly for |Bb
h,ω|.

3. The bound on B̃λ
h . The fact that |B̃λ

h | = O(ε2) is obvious, because B̃λ
h

is a sum of trees with two or more endpoints, given that we have extracted
the first-order contribution cλhλ0. The non-trivial issue is to show that the

bound is proportional to 2θh. For this purpose, we split B̃λ
h into a dominant

and a subdominant part, following once again the same logic: we write

B̃λ
h = Bλ,R

h + Bλ,s
h , where: Bλ,R

h the sum over the trees whose endpoints

are all of type λ and all the single-scale propagators g
(k)
ω /Zk−1 have been

replaced by g
(k)
R,ω/Zk−1, see (6.37); Bλ,s

h is the remainder, which includes the

sum over trees that have at least one endpoint of type a, b, ν or RV (−1),
or at least one ‘remainder propagator’ on some scale k between h and 0,

(g
(k)
ω − g(k)

R,ω)/Zk−1.

The key observation is that the dominant term, Bλ,R
h = Bλ,R

h (λ) is the
same as the one of the reference model discussed in Section 4: by this, we

mean that Bλ,R
h (λ) is the same that we would get in the reference model,

by applying the same multi-scale integration procedure. On the other hand,
for the continuum model it is known that, if we denote by λ∗1 the constant
sequence (λ∗1)h ≡ λ∗, then

|Bλ,R
h (λ∗1)| ≤ (const.)|λ∗|22θh, (6.94)

for λ∗ sufficiently small, see [6, Theorem 3.1]. Moreover, once the bound
(6.94) is known for the beta function computed on the constant sequence
λ∗1, by using the short memory property, we find that the same bound

holds for more general sequences: more precisely, we find that Bλ,R
h (λ) ≤

(const.)ε22θh, for any Cauchy sequence λ satisfying ‖λ‖θ ≤ ε, as desired.

We are left with the subdominant term, Bλ,s
h (λ), that, non surprisingly,

can be bounded in a way similar to the subdominant contribution Bν,s
h,ω; the

result is, once again, |Bλ,s
h (λ)| ≤ (const.)ε22θh (details left to the reader).

This concludes the proof of (6.90)-(6.91) and, therefore, that T (Xε) ⊂ Xε.

6.4.4. T is a contraction on Xε. We now show that ‖T (u) − T (u′)‖ ≤
(1/2)‖u− u′‖, for all pairs of sequences u, u′ ∈ Xε (here ‖ · ‖ is the norm in
(6.88)). We consider the component at scale h of T (u)− T (u′),

[
T (u)− T (u′)

]
h

=


−
∑

j≤h 2j−h−1
(
Bν
j,ω(λ0, u)−Bν

j,ω(λ0, u
′)
)

−
∑

j≤h
(
Ba
j,ω(λ0, u)−Ba

j,ω(λ0, u
′)
)

−
∑

j≤h
(
Bb
j,ω(λ0, u)−Bb

j,ω(λ0, u
′)
)∑

j≥h
(
B̃λ
j (λ0, u)− B̃λ

j (λ0, u
′)
)
.

(6.95)

In order to prove that T is a contraction, it is enough to show that, if
u, u′ ∈ Xε and λ0 satisfies (6.89), then the analogues of (6.90)-(6.91) hold,
namely:

|B#
h,ω(λ0, u)−B#

h,ω(λ0, u
′)| ≤ C ′1K−1‖u− u′‖2θh, for # = ν, a, b,

|B̃λ
h(λ0, u)− B̃λ

h(λ0, u
′)| ≤ C ′2ε‖u− u′‖2θh , (6.96)
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for some K-independent constants C ′1, C
′
2.

The proof of (6.96) is very similar to the one of (6.90)-(6.91): in order
to illustrate the main ideas, let us focus on Bν

h,ω(u) − Bν
h,ω(u′), the other

components being treatable in a similar manner. By using (6.92), we rewrite
the difference under consideration as a sum over trees:

Bν
h,ω(λ0, u)−Bν

h,ω(λ0, u
′) = (6.97)

=
∑
Nn≥1

∑
τ∈T (h)

Nn,0

∑
P∈Pτ

∑
T∈T

(
Bν
h,ω(λ0, u; τ,P, T )−Bν

h,ω(λ0, u
′; τ,P, T )

)
.

We further rewrite the difference in parentheses in the right side in a way
similar to (6.80):

Bν
h,ω(λ0, u; τ,P, T )−Bν

h,ω(λ0, u
′; τ,P, T ) = (6.98)

=

∫ 1

0
dt

d

dt
Bν
h,ω(λ0, u(t); τ,P, T ),

with u(t) := u′ + t(u− u′). When the derivative w.r.t. t acts on Bν
h,ω(u(t);

t,P, T ), it can act on the modified running coupling constants νh′,ω(t),
ah′,ω(t), bh′,ω(t), λh′(t) associated with the endpoints v of the tree, or on
the modified constants z∗h′(λ(t)) associated with the propagators and with
the branches of the tree. If, e.g., it acts on an endpoint v of type ν, which
is associated with νh′,ω(t), its effect is to replace it by νh′,ω − ν ′h′,ω; when
bounding the norm of the tree value, the endpoint v comes with a factor
|νh′,ω−ν ′h′,ω|, which leads to a factor ‖u−u′‖; this has to be compared with

the ‘standard’ factor |νh′,ω| appearing in the bound of the un-modified tree
value, which led to a factor ‖u‖ ≤ ε in (one of the contributions to) the first
of (6.90): therefore, the bound on d

dtB
ν
h,ω(u(t); τ,P, T ) is qualitatively the

same as the one on Bν
h,ω(u; τ,P, T ), up to an additional factor ‖u − u′‖/ε.

The terms in which the derivative w.r.t. t acts on other RCCs, or on z∗h′((t))
are treated similarly. In light of these considerations, recalling the bound
|Bν

h,ω(u)| ≤ C1K
−1ε2θh on the un-modified ν-component of the beta func-

tion, we obtain the bound in the first line of (6.96) with # = ν. The other
components are treated similarly, but we do not belabor further details here.

This concludes the proof that the map T defined by (6.85) is a contraction
on Xε: therefore, it admits a unique fixed point u on Xε, whose components
at h = 0 correspond to the initial data generating a flow that satisfies the
conditions (1) and (2) spelled at the beginning of Section 6.4.

6.4.5. Analyticity of the fixed point sequence and inversion of the countert-
erms. Thanks to the convergence of the tree expansion for the components
of the beta function, the components of u, and, in particular, those at h = 0,
are all real analytic functions of λ0 = λ, in the ball (6.89). We write:

ν0,ω = fν;ω(λ), a0,ω = fa;ω(λ), b0,ω = fb;ω(λ). (6.99)

From now on, with some abuse of notation, we denote by νh,ω = νh,ω(λ),
ah,ω = ah,ω(λ), bh,ω = bh,ω(λ), λh = λh(λ), zh = zh(λ) ≡ z∗h(λ(λ)) the
components of the fixed point sequence, thought of as functions of λ0 =
λ. Recalling that ν0,ω(λ) = −µ(p̄ω), from the first equation in (6.99) we
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calculate p̄ω = p̄ω(λ) (via the implicit function theorem; recall that αω =
∂p1µ(pω) 6= 0, βω = ∂p2µ(pω) 6= 0 and that αω/βω 6∈ R), and find that
p̄ω(λ) = pω+O(λ). Finally, recalling that ᾱω, β̄ω are related to aω = a0,ω(λ),
bω = b0,ω(λ) via (6.4)-(6.5), we find that ᾱω = ᾱω(λ) = αω + O(λ) and
β̄ω = β̄ω(λ) = βω +O(λ), as desired.

6.4.6. The flow of Zh and its critical exponent η. Once the initial data are
fixed as in (6.99) and the corresponding flow of RCC is bounded and expo-
nentially convergent, we immediately find that

Zh =
0∏

k=h+1

(1 + zk) =: (1 + z−∞(λ))−hAh, (6.100)

where Ah = 1 +O(λ2) and Ah = A−∞(1 +O(λ22θh)), as easily follows from
(6.71). Note that, while z−∞ depends only on λ−∞, A−∞ depends on the
whole sequence. For future reference, we let η = η(λ) = log2(1+z−∞(λ)) be
the so-called critical exponent of the wave function renormalization. Then,

Zh = 2−ηhAh = A−∞2−ηh(1 +O(λ2 2θh)). (6.101)

Remark 14. The critical exponent η(λ) only depends on the asymptotic
value of zh as h→ −∞ that, in turn, only depends on λ−∞(λ), see Remark
13. Recall that, by its very definition, the flow equation of zh involves a beta

function expressed in terms of Ŵ
(h),R
2,0;(ω,ω) and, therefore, it is the same as

we would get in a multiscale expansion of the reference model of Section 4:
as a consequence, the critical exponent η(λ) is the same as the one of the
reference model, ηR(λ∞), provided that the bare coupling λ∞ of the reference
model is fixed in such a way that the infrared limit λ−∞,R = λ−∞,R(λ∞) of
its coupling equals that of the dimer model,

λ−∞,R(λ∞) = λ−∞(λ). (6.102)

This equation is analytically invertible w.r.t. λ∞, as one can show by re-
peating the study of the flow of λh for the reference model: in that case,
λh,R satisfies the analogue of the fourth equation in (6.85), which reads

λh,R = λ∞ +
∑0

j=hB
λ
h,R(λ∞, uR), where Bλ

h,R is given by a convergent tree

expansion, and satisfies |Bλ
h,R(λ∞, uR)| ≤ (const.)|λ∞|22θh. With respect

to the dimer model (cf. (6.82)), note that there is no linear term in the
beta function of λ: this is because the interaction potential of the continuum
model is exactly quartic in the Grassmann fields. From this, one finds that
λ−∞ = λ∞ + fλ,R(λ∞), where fλ,R is analytic in λ∞ and of second order
in λ∞; in particular, λ−∞,R(λ∞) is analytically invertible with respect to

λ∞. In conclusion, (6.102) can be inverted into λ∞ = λ−1
−∞,R

(
λ−∞(λ)

)
; this

choice guarantees that the asymptotic couplings as h → −∞ of the dimer
and reference models are the same. Finally, by inspection of second order
perturbation theory, it turns out [8, Th. 2] that ηR(λ∞) = aλ2

∞ + O(λ3
∞),

for a suitable a > 0. Therefore, by fixing λ∞ as in (6.102) and recalling that
λ−∞,R(λ∞) = λ∞ +O(λ2

∞), we find η(λ) = a[λ−∞(λ)]2 +O(λ3).
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6.4.7. The flow of Yh,r,ω. On scale −1, one sees by direct inspection of the

non-interacting dimer model that Y−1,r,(ω1,ω2) := −Kre
−ip̄ω2 ·vr +O(λ). Once

the fixed point sequence u has been determined, we can plug it into the beta
function equation for Yh,r,ω,

Yh−1,r,ω = Yh,r,ω +BY
h,r,ω(u, Y r), h ≤ −1, (6.103)

where Y r = (Yh,r,ω)h≤−1, ω∈{±}2 . Note that, by definition, BY
h,r,ω is linear in

Y r. This equation can be solved iteratively in h, via a procedure analogous
to the one used to compute z given λ, see Subsection 6.4.1. In particular,
BY
h,r,ω admits a tree expansion, by using which (6.103) can be rewritten as

Yh−1,r,ω = Yh,r,ω +

−1∑
k=h

∑
ω′

BY,R
k,h;ω,ω′(u)Yk,r,ω′ +

−1∑
k=h

∑
ω′

BY,s
k,h;r,ω,ω′(u)Yk,r,ω′ ,

(6.104)

where: BY,R
h,k;ω,ω′ is the relativistic contribution, i.e., it is expressed as a sum

over trees whose endpoints are all of type λ and all the propagators have
been replaced by relativistic ones (it is easy to check, by inspection, that

BY,R
h,k;ω,ω′ is independent of r), and BY,s

h,k;r,ω,ω′ is the remainder. Thanks to

the short memory property, and the known bounds on the components of
the fixed point sequence u, we find that

|BY,R
k,h;ω,ω′(u)| ≤ C|λ|2θ′(h−k), |BY,s

k,h;r,ω,ω′(u)| ≤ C|λ|2θ′h. (6.105)

We now let yh,r,ω = Yh−1,r,ω/Yh,r,ω − 1, and iteratively compute yh,r,ω for
h ≤ −1 from (6.104), starting from h = −1. Proceeding by induction, as
in subsection 6.4.1, we find that yh,r,ω is a Cauchy sequence, whose limiting
value as h→ −∞, y−∞,ω(λ), only depends on λ−∞(λ), see Remark 13. This
limiting value defines new critical exponents, ηω(λ) := log2(1 + y−∞,ω(λ)).
By using the same considerations in Remark 14, we conclude that ηω(λ) are
the same as the corresponding exponents in the continuum model, provided
that the bare coupling λ∞ is fixed in such a way that λ−∞,R(λ∞) = λ−∞(λ).
Thanks to the symmetries of the reference model, it is known that η(ω1,ω2)(λ)
are real and only depend on the product ω1ω2; we denote by η1(λ), resp.
η2(λ), the critical exponent with ω1 = −ω2, resp. ω1 = ω2. Remarkably, it
is known also that η2(λ) = η(λ), see [8, Theorem 3]. On the other hand,
an explicit computation shows that η1(λ) = bλ−∞(λ) + O([λ−∞(λ)]2), for
a suitable b 6= 0, so that in particular η1(λ) 6= η(λ) (recall that η(λ) =
a[λ−∞(λ)]2 + O(λ3), as discussed in Remark 14). In terms of these critical
exponents, we can rewrite Yh,r,ω in a way analogous to (6.101)

Yh,r,(ω,ω) = 2−ηhBh,r,ω = 2−ηhB−∞,r,ω(1 +O(λ 2θh)), (6.106)

Yh,r,(ω,−ω) = 2−η1hCh,r,ω = 2−η1hC−∞,r,ω(1 +O(λ 2θh)),

for suitable complex constants Bh,r,ω, Ch,r,ω, such that Bh,r,−ω = B∗h,r,ω and
Ch,r,−ω = C∗h,r,ω.

The critical exponent ν of Theorems 1 and 2 is given in terms of η(λ), η1(λ)
by the simple relation

ν(λ) = 1 + η(λ)− η1(λ). (6.107)
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6.5. Thermodynamic limit for the correlation functions. In the pre-
vious sections, we have obtained a convergent expansion for the effective
potentials, valid for |λ| small enough and a suitable choice of p̄ω = p̄ω(λ),
ᾱω = ᾱω(λ), β̄ω = β̄ω(λ). In particular, after the integration of all the scales
h > hL we obtain9 from (6.31) with h = hL

W(θ)
L (A, 0,Ψ) = L−2

∑
ω

[µ0(kωθ )− ZhLµθ,ω]Ψ̂+
ω Ψ̂−ω

+ L2E(hL) + S(hL)(J) + V (hL)(
√
ZhLΨ, J), (6.108)

where we defined

µθ,ω := µhL,ω(kωθ − p̄ω) = D̄ω(kωθ − p̄ω) + rω(kωθ − p̄ω)/ZhL

and E(hL), S(hL)(J) and V (hL)(Ψ, J) are given by the convergent tree expan-
sion discussed above. In order to obtain the Grassmann generating function

with θ boundary conditions, W(θ)
L (A, 0), we need to integrate out Ψ, see

(6.11); finally, the dimer generating function is obtained by taking a linear

combination of eW
(θ)
L (A,0), see (3.28). Using (6.108) we write:

eW
(θ)
L (A,0) = eL

2E(hL)+S(hL)(J) × (6.109)

×
∫
DΨ̂e−L

−2ZhL
∑
ω µθ,ωΨ̂+

ω Ψ̂−ω+V (hL)(
√
ZhLΨ,J).

In order to study the thermodynamic limit for correlations, it is important
to characterize how E(hL), S(hL)(J) and V (hL)(Ψ, J) depend on the system
size L and on the boundary conditions θ. For illustrative purposes, we start
by considering the case A = J = 0, in which case the generating function

reduces to the partition function. As shown in Appendix C, Zθ := eW
(θ)
L (0,0)

can be rewritten as

Zθ =
[ ∏
k∈P ′(θ)

µ0(k)
]
eL

2∆(λ)(1 + sθ(λ))× (6.110)

× 1

Z2
hL

∫
DΨ̂e−L

−2ZhL
∑
ω µθ,ωΨ̂+

ω Ψ̂−ω+V (hL)(
√
ZhLΨ,0),

where: ∆ is analytic in λ, independent of L and of the boundary conditions;
sθ(λ) depends on L,θ and is of order O(λ), uniformly in L,θ;

V (hL)(Ψ, 0) = L−3
∑
ω

uθ,ω(λ)Ψ̂+
ω Ψ̂−ω + L−6vθ(λ)Ψ̂+

+Ψ̂−+Ψ̂+
−Ψ̂−−, (6.111)

with uθ,ω(λ), vθ(λ) of order O(λ), uniformly in L,θ. From now on, for
lightness of notation, we drop the argument λ in uθ,ω(λ), vθ(λ), sθ(λ). The
integration of Ψ is elementary, and gives (recall (6.12))

Zθ =
[ ∏
k∈P ′(θ)

µ0(k)
]
eL

2∆(λ)(1 + sθ)
[ ∏
ω=±

(−µθ,ω +
uθ,ω
L

) +
vθ
L2

]
, (6.112)

9Recall that hL is the first scale at which the support of χ̄h has empty intersection
with P ′ω, so that (cf. (6.33)) at scale hL one can remove in (6.31) the integration w.r.t.
P(≤hL) and just replace ψ with 0.



UNIVERSALITY FOR NON-INTEGRABLE DIMERS 57

or, equivalently,

Zθ = eL
2∆(λ)(1 + sθ)

(
Z0
θ + Z̃0

θ L
−2σθ

)
(6.113)

where we defined

Z̃0
θ =

∏
k∈P ′(θ)

µ0(k), Z0
θ = µθ,+ µθ,− Z̃

0
θ, (6.114)

σθ = −L
∑
ω=±

uθ,ω µθ,−ω + uθ,+uθ,− + vθ. (6.115)

We now let θ0 be the boundary conditions for which kωθ is at the largest
distance from p̄ω; if L is large enough,

|µθ0,ω| ≥ (1/2) |µθ,ω|, ∀θ ∈ {0, 1}2 (6.116)

and

c−1
− /L ≤ |µθ0,ω| ≤ c−/L, (6.117)

for a suitable L-independent constant c−. Moreover,

c−1
+ ≤ |Z̃0

θ/Z̃
0
θ′ | ≤ c+, (6.118)

for a suitable L-independent constant c+, for all choices of θ,θ′ (see Appen-

dix D.1). We now multiply and divide the term Z̃0
θ L
−2σθ in (6.113) by Z0

θ0

and rewrite it as

Z̃0
θ L
−2σθ = Z0

θ0

Z̃0
θ

Z̃0
θ0

σθ
L2µθ0,+ µθ0,−

=: Z0
θ0σθ,θ0 . (6.119)

By using (6.116)–(6.118), we immediately conclude that σθ,θ0 = O(λ), uni-
formly in L,θ. If we now take the appropriate linear combination of Zθ, we
obtain the partition function of the interacting dimer model that, in light of
the previous considerations, can be written as

ZL =
1

2

∑
θ

cθZθ =
eL

2∆(λ)

2

∑
θ

(1 + sθ(λ))
[
cθZ

0
θ + Z0

θ0cθσθ,θ0

]
. (6.120)

We now let Q0
L = 1

2

∑
θ cθZ

0
θ; we recall that the constants cθ are either 1 or

−1, depending on θ and on the parity of L/2, see the definition after (3.1).
A simple computation shows that

cθZ
0
θ = |Z0

θ| for all θ, (6.121)

see Appendix D.2. Therefore, Q0
L = 1

2

∑
θ |Z0

θ|, so that

1

2
max
θ
|Z0

θ| ≤ Q0
L ≤ 2 max

θ
|Z0

θ|. (6.122)

If we use these inequalities in (6.120), we get

ZL = eL
2∆(λ)Q0

L(1 + rL(λ)), (6.123)

where the error term rL(λ) is of order O(λ), uniformly in L.
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Let us now adapt the previous discussion to eW
(θ)
L (A,0), in the presence

of the external field A. In this case, the analog of (6.112) (the proof being
based on a similar reasoning, see also Appendices B and C) is

eW
(θ)
L (A,0) = Z̃0

θe
L2∆+SL(J)+Sθ(J)(1 + sθ)×

× 1

Z2
hL

∫
DΨ̂e−L

−2ZhL
∑
ω µθ,ωΨ̂+

ω Ψ̂−ω+V (hL)(
√
ZhLΨ,J). (6.124)

In the first line, Z̃0
θ was defined in (6.114), ∆ = ∆(λ), sθ = sθ(λ) are the

same as in (6.110). SL(J),Sθ(J) have the following properties: SL(J) is
independent of θ and can be written as

SL(J) =
∑
m≥1

∑
r∈{1,...,4}m

∑
y∈Λm

Jy1,r1 · · · Jym,rm × (6.125)

×
∑
h≤0

∑
n2,...,nm∈Z2

W
(h),∞
0,m;r (y1, y2 + n2L, . . . , ym + nmL),

with W
(h),∞
0,m;r (y) a translationally invariant, L-independent function, satisfy-

ing

‖W (h),∞
0,m;r ‖κ,h ≤ C

m2h(2−m)2C|λ|m, (6.126)

for some C, κ > 0 [here ‖W (h),∞
0,m;r ‖κ,h is defined in analogy with (6.30), namely

‖W (h),∞
0,m;r ‖κ,h := sup

r

∑
y2,...,ym∈Z2

|W (h),∞
0,m;r (0, y2, . . . , ym)|eκ

√
2hd(0,y2,...,ym)];

Sθ(J) can be written as

Sθ(J) =
∑
m≥1

∑
r∈{1,...,4}m

∑
y∈Λm

Jy1,r1 · · · Jym,rmwθ,L
m;r(y), (6.127)

with wθ,L
m;r(y) a translationally invariant function, satisfying

‖wθ,L
m;r‖∞ ≤ CmL−m(1−C|λ|), (6.128)

for some C > 0. Moreover, in the second line of (6.124), V (hL)(Ψ, J) admits
the following explicit expression:

V (hL)(Ψ, J) = L−3
∑
ω=±

uθ,ω(λ)Ψ̂+
ω Ψ̂−ω + L−6vθ(λ)Ψ̂+

+Ψ̂−+Ψ̂+
−Ψ̂−−

+ L−4
4∑
r=1

∑
ω1,ω2=±

yθ,r,(ω1,ω2)(λ)Ĵkω1
θ −k

ω2
θ ,rΨ̂

+
ω1

Ψ̂−ω2

+ L−7
4∑
r=1

zθ,r(λ)Ĵ0,rΨ̂
+
+Ψ̂−+Ψ̂+

−Ψ̂−−. (6.129)

In this equation, uθ,ω, vθ are the same as in (6.110), while yθ,r,(ω1,ω2)(λ) =

LO(λ) and zθ(λ) = O(λ) × LO(λ), uniformly in θ. If we now compute the
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integral over DΨ̂ in (6.124), we get

eW
(θ)
L (A,0) = eL

2∆+SL(J)+Sθ(J)(1 + sθ)
{
Z0
θ + Z̃0

θ L
−2σθ (6.130)

+ Z̃0
θ L
−2
∑
r

Ĵ0,r

[∑
ω

yθ,r,(ω,ω)(−µθ,−ω + L−1uθ,−ω) + L−1zθ,r
]

+ Z̃0
θ L
−4
∑
r,r′

yθ,r,(+,+)yθ,r,(−,−)Ĵ0,rĴ0,r′

− Z̃0
θ L
−4
∑
r,r′

yθ,r,(+,−)yθ,r,(−,+)Ĵk+
θ −k

−
θ ,r
Ĵk−θ −k

+
θ ,r
′

}
,

or, equivalently, using that Ĵp,r =
∑

y∈Λ Jy,re
ipy,

eW
(θ)
L (A,0) = eL

2∆+SL(J)+Sθ(J)(1+sθ)
{
Z0
θ +

Z̃0
θ

L2

2∑
m=0

∑
r,y

[ m∏
i=1

Jyi,ri
]
w̃θ,L
m;r(y)

}
,

for suitable translationally invariant functions w̃θ,L
m;r(y) (the summand with

m = 0 should be interpreted as being equal to σθ), such that

‖w̃θ,L
m;r‖∞ ≤ CmL−m(1−C|λ|), m = 1, 2.

Finally, we take the appropriate linear combination of eW
(θ)
L (A,0) in order to

obtain the generating function of the interacting dimer model:

eWL(A,0) =
1

2

∑
θ

cθe
W(θ)
L (A,0) = ZLe

SL(J)+S̃L(J), (6.131)

where (recall (6.123))

S̃L(J) = log

∑
θ cθe

Sθ(J)(1 + sθ)
{
Z0
θ +

Z̃0
θ
L2

∑2
m=0

∑
r,y

[∏m
i=1 Jyi,ri

]
w̃θ,L
m;r(y)

}
2Q0

L(1 + rL)
.

(6.132)

By using the properties described above for Sθ(J) and w̃θ,L
m;r(y), it is easy

to see that S̃L(J) admits a representation analogous to (6.127), with wθ,L
m;r

replaced by a modified kernel w̄Lm;r, satisfying the same estimate as (6.128).

Thanks to these estimates, and to the explicit form of SL(J), we conclude, as
desired, that the thermodynamic limit of the correlations of the interacting
dimer model exist and are given by (we let ei be the edge of type ri with
black vertex xi, and we assume the m edges e1, . . . em to be all different from
each other):

Eλ(1e1 ; · · · ;1em) = m!
∑
h≤0

W
(h),∞
0,m;(r1,...,rm)(x1, . . . , xm). (6.133)

A similar discussion can be repeated for mixed dimer/Grassmann field cor-
relations, but we will not belabor further details here.

6.6. Asymptotic behavior of the dimer correlation functions. In or-
der to complete the proof of our main theorems, we are left with proving
that the large distance behaviour of the (thermodynamic limit of the) in-
teracting propagator, vertex function and dimer-dimer correlation can be
expressed in term of linear combinations of the appropriate correlations of
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the reference model, as stated in Section 5. We limit ourselves to the discus-
sion of the asymptotic behaviour of the two-point dimer-dimer correlation,

Eλ(1e1 ;1e2) ≡ G(0,2)
r1,r2(x1, x2), i.e., to the proof of (5.3), and we leave the anal-

ogous discussion for the propagator and vertex function (leading to (5.1),
(5.2)) to the reader.

We use a strategy analogous to the one of [22, Section 7.1 and 7.2] and
we refer the reader to those sections for further details. The starting point
is (6.133) with m = 2, which we write as

G(0,2)
r1,r2(x1, x2) = 2

∑
h≤0

W
(h),∞
0,2;(r1,r2)(x1, x2). (6.134)

This is the analogue of [22, Eq. (7.4)] with q = m = 2. The multiscale

construction implies, of course, that W
(h),∞
0,2;(r1,r2)(x1, x2) can be written as a

sum over trees with root at scale h and two external J fields, that is

G(0,2)
r1,r2(x1, x2) =

∑
h≤0

∑
N≥0

2∑
n=1

∑
τ∈T (h)

N,n

∑
P∈Pτ :

|Pv0 |=|P
J
v0
|=2

Sτ,P,(r1,r2)(x1, x2); (6.135)

this is the analogue of [22, Eq. (7.5)]. We now decompose (6.135) as in [22,
Eq. (7.7)], namely,

G(0,2)
r1,r2(x1, x2) = S(1)

r1,r2(x1, x2) + S(2)
r1,r2(x1, x2) + S(3)

r1,r2(x1, x2), (6.136)

where: S(1)
r1,r2 (resp. S(2)

r1,r2) is the sum (6.135) restricted to trees whose
normal endpoints are all of type λ, whose special endpoints are both density
endpoints (resp. mass endpoints), see the definition after (6.60), and whose

value is computed by replacing all the propagators by relativistic ones; S(3)
r1,r2

is the remainder, which is given by a sum over trees, which either have at
least one endpoint of type ν, a, b,RV (−1), or have at least one ‘remainder

propagator’ g
(h)
ω − g(h)

R,ω.

Not surprisingly, the easiest term to bound in (6.136) is the third one: by

a proof analogous to the one leading to (6.90), we find that S(3)
r1,r2 can be

bounded as

|S(3)
r1,r2(x1, x2)| ≤ C

∑
h≤0

2h(2−2C|λ|)2θhe−κ
√

2h|x1−x2| ≤ C ′

|x1 − x2|2+θ−C|λ| , .

(6.137)
Note that, for λ small enough, at large distances the r.h.s. of (6.137) is

negligible w.r.t. both S
(1,1)
R,ω,ω(x, y) and S

(2,2)
R,ω,−ω(x, y) (recall the estimates

(4.17) and (4.18)) and therefore S(3)
r1,r2(x1, x2) can be absorbed in the error

term Rr1,r2(x, y) in (5.3). A couple of comments about how the bound
(6.137) is obtained will be useful (see [22, Sec. 7.1] for more details on

similar estimates). The factor 2h(2−2C|λ|)e−κ
√

2h|x1−x2| is the ‘dimensional
bound’ on trees with root on scale h and external fields Jx1,r1 , Jx2,r2 . The

factor 2θh is the ‘dimensional gain’ arising from the fact that all the trees

contributing to S(3)
r1,r2 have at least one endpoint of type ν, a, b,RV (−1) or

one remainder propagator. In fact, recall that the value of an endpoint of
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type ν, a, b,RV (−1), if located at scale h ≤ k ≤ 0, is of the order O(2θkλ);

by the short memory property, we get a factor 2θ
′(h−k), θ < θ′ < 1 and a

sum over k ≥ h finally produces the factor 2θh in the right side of (6.137).
The contributions with one remainder propagator on scale k ≥ h are treated
analogously.

Let us now consider S(1)
r1,r2(x1, x2) and S(2)

r1,r2(x1, x2). First of all, note that
they can be naturally rewritten as

S(1)
r1,r2(x1, x2) =

∑
ω=±
S(1)
r1,r2;ω,ω(x1, x2), (6.138)

S(2)
r1,r2(x1, x2) =

∑
ω=±
S(2)
r1,r2;ω,−ω(x1, x2), (6.139)

where S(1)
r1,r2;ω,ω is the sum over the trees whose special endpoints have labels

(ω, ω); similarly, S(2)
r1,r2;ω,−ω is the sum over the trees whose special endpoint

with coordinate label x1 (resp. x2) has label (ω,−ω) (resp. (−ω, ω)). In

the tree expansion for S(j)
r1,r2;ω1,ω2 , we further decompose the tree values in

a dominant plus a subdominant part, the dominant part being obtained via
the following replacements: replace all the values λh of the endpoints of type
λ by λ−∞ = λ−∞(λ); replace all the values zh of the rescaling factors by
z−∞ = z−∞(λ); replace all the values Yh,r,(ω,ω)/Zh−1 (resp. Yh,r,(ω,−ω)/Zh−1)
of the density (resp. mass) endpoints, by

2−ηB−∞,r,ω/A−∞ (6.140)

and

2(η−η1)h 2−ηC−∞,r,ω/A−∞ (6.141)

respectively, that is their asymptotic value as h→ −∞ (recall Eqs. (6.101)
and (6.106)). The decomposition of the tree values into dominant and sub-

dominant parts induces a similar decomposition of S(j)
r1,r2;ω1,ω2 :

S(j)
r1,r2;ω1,ω2

(x1, x2) = S(j),d
r1,r2;ω1,ω2

(x1, x2) + S(j),s
r1,r2;ω1,ω2

(x1, x2), j = 1, 2,

with obvious notation. By using the fact that λh, zh, Ah, Bh,r,ω, Ch,r,ω all
converge exponentially fast to their limiting values as h → −∞, we find

that S(j),s
r1,r2 ω1,ω2(x1, x2) can be bounded in the same way as (6.137) and can

be absorbed in the error term Rr1,r2(x, y) in (5.3).

We are left with the dominant parts, S(j),d
r1,r2;ω1,ω2 , j = 1, 2, and to prove

(5.3) we need to connect them to the correlation functions of the continuum
model of Section 4. Let us fix the coupling constant λ∞ of the continuum
model in such a way that λ−∞;R(λ∞) = λ−∞(λ), so that the critical ex-
ponents η(λ), η1(λ) are the same as for the dimer model and one has, in
analogy with (6.101), denoting by Zh;R the wave function renormalization
of the reference model,

Zh;R = Ã−∞2−ηh(1 +O(λ2 2θh)), (6.142)

with Ã−∞ an analytic function of λ∞ (and therefore of λ) that equals 1
for λ = 0. The form of the special endpoints is different for the dimer and
the continuum model, simply because the external fields J of the continuum
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model have the structure J
(j)
x,ω instead of Jx,r. In fact, when the multi-

scale construction is applied to the continuum model, the value of a special
endpoint of type j = 1 (density) or j = 2 (mass) is of the form (to be
compared with (6.60))

Y
(j)
h;R

Zh−1;R
FRY,j,ω(

√
Zh−1;Rψ

(≤h)), FRY,j,ω(ψ) =

∫
Λ
dxJ (j)

x,ωρ
(j)
x,ω,

with ρ
(j)
x,ω as in (4.10). As h→ −∞ one has, in analogy with (6.106),

Y
(1)
h;R = B̃−∞2−ηh(1 +O(λ 2θh)), (6.143)

Y
(2)
h;R = C̃−∞2−η1h(1 +O(λ 2θh)),

for suitable analytic functions B̃−∞, C̃−∞ of λ, that equal 1 for λ = 0.

Now call S(j),d;R
ω1,ω2 the analog of S(j),d

r1,r2;ω1,ω2 for the continuum model. The
two functions differ only because the values associated with the special
endpoints differ: in the dimer model, these are given as in (6.140) (if
j = 1) or (6.141) (if j = 2); in the reference model, one needs to replace

A−∞ → Ã−∞, B−∞,r,ω → B̃−∞, C−∞,r,ω → C̃−∞. In conclusion,

S(1),d
r1,r2;ω,ω(x1, x2) = K̂ω,r1K̂ω,r2S(1),d;R

ω,ω (x1, x2), (6.144)

S(2),d
r1,r2;ω,−ω(x1, x2) = ei(p̄

ω−p̄−ω)(x1−x2)Ĥ−ω,r1Ĥω,r2S
(2),d;R
ω,−ω (x1, x2),

with

K̂ω,r =
Ã−∞B−∞,r,ω

B̃−∞A−∞
, Ĥω,r =

Ã−∞C−∞,r,−ω

C̃−∞A−∞
.

The oscillating prefactor ei(p̄
ω−p̄−ω)(x1−x2) appears because it is included in

the definition of FY ;r,ω. Finally, S(j),d;R
ω,ω′ (x1, x2) equals S

(j,j)
R,ω,ω′(x1, x2) (cf.

(4.15), (4.16)), up to subdominant corrections that can be absorbed in the
error term Rr1,r2(x1, x2) and we obtain (5.3), as wished. A similar discussion
leads to (5.1), (5.2), and we leave the details to the reader. This concludes
the proofs of Theorems 1 and 2.

Appendix A. Symmetries

The propagator g
(h)
R,ω(x, y) in (6.37) satisfies three symmetries, which are

the real-space counterparts of the following:

D̄−ω(k) = −D̄∗ω(k),

D̄ω(A−1σ1Ak) = iωD̄∗ω(k), (A.1)

D̄ω(A−1σ3Ak) = D̄∗ω(k).

This means that the quadratic action associated to the Grassmann inte-

gration with propagator g
(h)
R is invariant under three transformations: for

instance, the one associated to the first of (A.1) is ϕ̂±k,ω 7→ iϕ̂±k,−ω and at the

same time any constant appearing in the action is replaced by its complex
conjugate. Then, one sees inductively that the effective potentials one ob-
tains by setting {νh′,ω, ah′,ω, bh′,ω}h<h′≤−1 to zero (as is done in the definition
of relativistic kernels) satisfy the same three symmetries. As a consequence,

Ŵ
(h),R
2,0;(ω,ω)(k) inherits the symmetries analogous to (A.1), that are (6.38).
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Note that biliner terms such as νh′,ωFν;ω(ϕ), ah′,ωFa;ω(ϕ), bh′,ωFb;ω(ϕ) in
(6.49) would break the above-mentioned symmetries, unless the coefficients
νh′,ω, etc. are zero. On the other hand, terms such as λh′Fλ(ϕ) are invariant
because we know by induction that λ′h, h

′ > h is real.
Next, let us show that (6.38) implies (6.40). Write for lightness of notation

ζω := D̄ω(k), ζ∗+ = −ζ−. Since k · ∂kŴ
(h),R
2;(+,+)(0) is linear in k, we can write

it as f(ζ+, ζ−) = cζ+ + c′ζ− for some complex constants c, c′. Note that
the transformation k 7→ A−1σ3Ak (resp. k 7→ A−1σ1Ak) implies (ζ+, ζ−) 7→
(−iζ−, iζ+) (resp. (ζ+, ζ−) 7→ (−ζ−,−ζ+)). By linearizing the second and
third equation in (6.38) we get:

f(−iζ−, iζ+) = i[f(ζ+, ζ−)]∗, f(−ζ−,−ζ+) = [f(ζ+, ζ−)]∗, (A.2)

which readily imply that c′ = 0, c ∈ R. This is the desired formula for
ω = +. By using the first of (6.38), we get the desired formula for ω = −.

Appendix B. Finite size corrections and bounds on RV (h)

The bounds on the kernels of the effective potential arising in the multi-
scale procedure, such as Proposition 2, as well as the reason why the action
of R, responsible for the factors 2−z(Pv) in (6.65), makes the renormalized
perturbation theory convergent, have been discussed several times in the
literature in similar models, see e.g. [22, Section 6.1.4]. In particular, finite-
size details have been discussed in [9], but the definition of the L,R operators
given there is different from the one proposed in this paper: in [9] the action

of L on the kernels of V (h) explicitly depends on the size L of the box,
see [9, eq.(2.74)], while in the present case it only depends on the L → ∞
limit of the kernels, see (6.36). This new definition simplifies some technical
aspects of the multi-scale construction: for instance, the flow of the running
coupling constants is independent of L in the present work. The goal of this
appendix is to discuss the modifications induced by the new definition of
L,R on the proof of the bounds on the kernels of RV (h). Familiarity with
[22, Sec. 6] is assumed.

For illustrative purposes, we restrict our attention to the part of RV (h),

denoted RV (h)
4 , that is quartic in the Grassmann fields, has no derivative

terms ∂̂ϕ, and is independent of J . A similar discussion applies to the terms
quadratic in the Grassmann fields (either independent of or linear in J), but
we shall not belabor the details here. For the quartic term (using the same
notation for the kernel as in (6.57)), we have from (6.36):

RV (h)
4 (ϕ) =

∑
x1,...,x4∈Λ
ω1,...,ω4

ϕ+
x1,ω1

ϕ−x2,ω2
ϕ+
x3,ω3

ϕ−x4,ω4

[
W

(h)
4,0,0;ω(x1, x2, x3, x4)

−1x1=x2=x3=x4

∑
x′2,x

′
3,x
′
4∈Z2

W
(h),∞
4,0,0;ω(x1, x

′
2, x
′
3, x
′
4)
]
. (B.1)

The kernel W
(h)
4,0,0;ω is given by a tree expansion:

W
(h)
4,0,0;ω(x1, x2, x3, x4) =

∑
N≥1

∑
τ∈T (h)

N,0

∗∑
P∈Pτ
xv0

∑
T∈T

Wτ,P,T (xv0), (B.2)
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where the ∗ indicates the constraint that the field and coordinate labels
associated with the external fields must match with the prescribed values of
ω1, . . . , ω4, x1, . . . , x4. Among the various contributions to the right side of
(B.2), there are those from trees such that |Pv| > 4, for which the action of
R on all its vertices v > v0 (i.e. for all vertices of v that are descendants

of v0 along the tree), is trivial; we let T̄ (h)
N,0 be the family of these trees,

and W̄
(h)
4,0,0;ω be the analogue of (B.2), with the sum over τ in the right side

restricted to T̄ (h)
N,0 ; in terms of these kernels, we let

RV̄ (h)
4 (ϕ) =

∑
x1,...,x4∈Λ
ω1,...,ω4

[
ϕ+
x1,ω1

ϕ−x2,ω2
ϕ+
x3,ω3

ϕ−x4,ω4
W̄

(h)
4,0,0;ω(x1, x2, x3, x4)

−δx1,x2δx1,x3δx1,x4

∑
x′2,x

′
3,x
′
4∈Z2

W̄
(h),∞
4,0,0;ω(x1, x

′
2, x
′
3, x
′
4)
]
. (B.3)

In this appendix, we limit our discussion to RV̄ (h)
4 (ψ), the ‘complementary

term’, R(V
(h)

4 (ψ)− V̄ (h)
4 (ψ)), being treatable similarly10. A convenient fact

is that, if τ ∈ T̄ (h)
N,0 , then Wτ,P,T (xv0) has the following explicit expression:

Wτ,P,T (xv0) =
[ ∏
v not e.p.

(1 + zhv)
−|Pψv |/2

][ ∏
v e.p.

K(hv)
v (xv)

]
×

×
{ ∏
v not e.p.

1

sv!

∫
dPTv(tv) det(Mhv ,Tv(tv))

[ ∏
`∈Tv

g
(hv)
`

]}
, (B.4)

where the notations are analogous to [22, eq.(6.63)], to which we refer for
details (in particular, Mhv ,Tv(tv) is a matrix whose elements are propagators
on scale hv, like the one defined in [22, Lemma 3]). The infinite volume

limit of W̄
(h)
4,0,0;ω, denoted by W̄

(h),∞
4,0,0;ω, admits the same explicit expression

as W̄
(h)
4,0,0;ω, modulo the following changes: the sum over the coordinates in

xv0 in (the analogue of) (B.2) runs over Z2, rather than over Λ; all the
propagators appearing in (B.4) (both those in the elements of Mhv ,Tv and
those in the last product) should be replaced by their infinite volume limits.

We recall that, if τ ∈ T̄ (h)
N,0 and the RCC satisfy (6.64), by using (B.4),

the Gram-Hadamard bound on det(Mhv ,Tv(tv)) (see [22, Eq.(6.60)]) and the
dimensional bound (6.54) on the propagators, we find

‖Wτ,P,T ‖κ,h ≤ (Cε)max{N,c|Iψv0 |}
∏
v not
e.p.

C
∑sv
i=1 |Pvi |−|Pv |

sv!
22− 1−ε

2
|Pψv | , (B.5)

10The minor technical complication arising in the ‘complementary’ case is that, if we

restrict our attention to one of the trees contributing to R(V
(h)
4 (ψ)− V̄ (h)

4 (ψ)), the action
of R on a vertex v1, if non trivial, can interfere with the one on a vertex v < v1 preceding
it. Such interference does not cause any conceptual extra difficulty, but it complicates
the explicit form of the corresponding tree values must be expressed in an inductive form,
rather than by a formula as explicit as (B.4). For a discussion of these issues, see e.g. [9,
Sections 3.3 and 3.4].
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which is the analogue of (6.65) (the factors z(Pv) are absent because R
acts on none of the the vertices v > v0; this bound on “non-renormalized
trees” has been discussed in several previous papers, see e.g. [19, Section 6]).

After summation over τ,P, T , this leads to the bound ‖W̄ (h)
4,0,0;ω‖κ,h ≤ Cε,

uniformly in L: in particular, the bound applies to the kernel of RV̄ (h)
4 ,

simply because it applies separately to W̄
(h)
4,0,0;ω and to W̄

(h),∞
4,0,0;ω.

On the other hand, by suitably taking into account cancellations between
the two terms in the right side of (B.3), one can find an improved bound on

RV̄ (h)
4 , which we now discuss.

1. Let us first consider the terms in the right side of (B.3) such that either

the argument of W̄
(h)
4,0,0;ω, (x1, x2, x3, x4), or the argument of W̄

(h),∞
4,0,0;ω, (x1, x

′
2,

x′3, x
′
4), have tree-distance (i.e. length of the shortest tree on Λ including

the four points) larger than L/4 (this is the first ‘finite size correction’ that
we intend to discuss in this appendix). Recall that each of the trees con-
tributing to these kernels comes with a a product of propagators ‘along

the spanning tree’, see the factor
∏
v not e.p.

∏
`∈Tv g

(hv)
` in the right side of

(B.4). Therefore, by using the stretched exponential decay of the propa-
gators in (6.54), we find that each of these contributions can be bounded
by the right side of (B.5) times an additional, exponentially small, factor

e−(κ/4)
√

2hL = e−(const.)2(h−hL)/2
, which is the desired dimensional gain.

2. After having estimated the terms in the previous item, we are left with
the terms with tree distance smaller than L/4, which can be rewritten as∑

x1∈Λ
ω1,...,ω4

∑
x2,x3,x4:

d(x1,...,x4)<L/4

[
ϕ+
x1,ω1

ϕ−x2,ω2
ϕ+
x3,ω3

ϕ−x4,ω4
W̄

(h)
4,0,0;ω(x1, x2, x3, x4)

−ϕ+
x1,ω1

ϕ−x1,ω2
ϕ+
x1,ω3

ϕ−x1,ω4
W̄

(h),∞
4,0,0;ω(x1, x2, x3, x4)

]
. (B.6)

In the first line we rewrite

W̄
(h)
4,0,0;ω(x1, x2, x3, x4) = w̄

(h)
4,0,0;ω(x1, x2, x3, x4) + W̄

(h),∞
4,0,0;ω(x1, x2, x3, x4),

(B.7)
so that

(B.6) =
∑
x1∈Λ
ω1,...,ω4

∑
x2,x3,x4:

d(x1,...,x4)<L/4

[
ϕ+
x1,ω1

ϕ−x2,ω2
ϕ+
x3,ω3

ϕ−x4,ω4
w̄

(h)
4,0;ω(x1, x2, x3, x4)

+
( 4∏
i=1

ϕεixi,ωi −
4∏
i=1

ϕεix1,ωi

)
W̄

(h),∞
4,0,0;ω(x1, x2, x3, x4)

]
. (B.8)

In the two products in the second line, εi := (−1)i−1; notice that the Grass-
mann variables in the first product are computed at xi, while in the second
product they are computed at x1.

The term in the second line is the ‘usual’, infinite volume, renormalized
term, which can be treated as discussed in, e.g., [22, Section 6.1.4]; we refer
to that section for a discussion of why these terms have the ‘usual’ dimen-
sional gains leading to the factors 2−z(Pv) in (6.65). The term in the first
line is, instead, the second ‘finite size correction’ that we intend to discuss in
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this appendix. By using the representation of W̄
(h)
4,0,0;ω in terms of a tree ex-

pansion, we find that w̄
(h)
4,0,0;ω itself can be written as a sum over trees. Each

tree comes with a difference between a sum over xv0 (within Λ) of the tree
value in (B.4) and a sum over xv0 (extended to the whole Z2) of the infinite
volume limit of (B.4). We further split this difference in two parts: the first
corresponds to the case where both the sums over xv0 involve at least one
coordinate at a distance larger than L/3 from (x1, x2, x3, x4); by proceeding
as in item 1, we find that this first part has a bound that is better than

(B.5) by a factor e−(const.)
√

2hL, as desired. The second part corresponds to
the case where we sum the difference between the tree value in (B.4) and its
infinite volume counterpart over coordinates xv0 that are all closer than L/3
to (x1, x2, x3, x4). In the finite volume expression of the tree value, (B.4), we

replace every finite volume propagator g
(h)
ω (x, y) appearing either in the ma-

trices Mhv ,Tv(tv) or in the products over spanning trees
∏
`∈Tv g

(hv)
` by the

following infinite linear combination of infinite volume propagators, namely
(“Poisson summation formula”, see e.g. [22, Eq. (A.8)]):

g(h)
ω (x, y) =

∑
n∈Z2

(−1)n·θg(h),∞
ω (x+ nL, y) ≡ g(h),∞

ω (x, y) + δg(h)
ω (x, y)

where g
(h)
ω is as in (6.35), while g

(h),∞
ω is the same expression where 1/L2

times the sum over k ∈ P ′ω(θ) is replaced by (2π)−2
∫

[−π,π]2 dk. By using

this decomposition, the difference between the tree value in (B.4) and its
infinite volume counterpart can be re-expressed as a sum of terms, each of

which involves at least one ‘remainder propagator’ δg
(h)
ω (x, y). Note that,

by construction, any pair of sites x, y involved in the expression under con-
sideration is closer than L/3: therefore, using (6.54),

|δg(h)
ω (x, y)| ≤ C2he−κ

√
2hL. (B.9)

Putting things together, we find that also this second part has a bound that

is better than (B.5) by a factor e−(const.)
√

2hL, as desired.

Appendix C. Finite size corrections to the partition function

In this section, we prove (6.110), which is equivalent to the fact that

E(hL) − E(0) = ∆(λ) + L−2 log(1 + sθ(λ))− 2L−2 logZhL , (C.1)

with ∆(λ) independent of L,θ and such that |∆(λ)| ≤ C|λ|, |sθ(λ)| ≤
C|λ| uniformly in L,θ and ZhL as in (6.101), and that (6.111) holds, with
|uθ,ω(λ)|, |vθ(λ)| ≤ C|λ|, uniformly in L,θ. The analogous estimates on the
generating function, stated after (6.124), can be derived in a similar way,
and are left to the reader.

We start by proving (6.111). One starts from the general representation
of the effective potential, i.e. (6.25) with the index (−1) replaced by hL and
J ≡ 0, so that m = 0. On the other hand, the field Ψ contains only the
four modes Ψ̂±ω , so that the sum is limited to n = 2, 4. Moreover, due to the
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Krokecker delta δω(k, 0), V (hL) reduces to the simple form

V (hL)(Ψ, 0) = L−2
∑
ω

ũ2Ψ̂+
ω Ψ̂−ω + L−6ũ4Ψ̂+

+Ψ̂−+Ψ̂+
−Ψ̂−−, (C.2)

for some constants u2, u4 depending on λ, L,θ. Using the dimensional esti-
mates (see (6.58)), it is easy to deduce that

|un| ≤ Cn|λ|2hL(2−n/2) (C.3)

uniformly in θ, which implies the desired estimates on uθ,ω, vθ, because
hL ∼ − log2 L.

Let us now prove (C.1). From the multiscale computation of the effective
potential, it follows that

E(hL) − E(0) =
∑

hL<h<0

(th + Ẽh), (C.4)

where th was defined in (6.44), and Ẽh is the sum of the vacuum diagrams
with smallest scale label equal to h, namely

Ẽh = L−2
∑
n≥1

1

n!
ETh (V̂ (h)(

√
Zh−1ψ

′, 0); · · · ; V̂ (h)(
√
Zh−1ψ

′, 0)︸ ︷︷ ︸
n times

, (C.5)

which can be represented as a sum over trees, see (6.61)-(6.62). Let us start
by discussing the contribution from th; using the definition (6.44), we rewrite

th = L−2
∑
ω

∑
k∈Pω(θ)

log
(

1 +
zhχ̄h(k)D̄ω(k)

D̄ω(k) + rω(k)/Zh

)
(C.6)

− L−2
∑
ω

log
(

1 +
zhχ̄h(kωθ − p̄ω)D̄ω(kωθ − p̄ω)

D̄ω(kωθ − p̄ω) + rω(kωθ − p̄ω)/Zh

)
.

Using Poisson summation formula (see e.g. [22, Eq. (A.8)]), the first sum
in the right side can be rewritten as∑

ω

∑
m∈Z2

(−1)θ·m
∫
R2

dk

(2π)2
log
(

1 +
zhχ̄h(k)D̄ω(k)

D̄ω(k) + rω(k)/Zh

)
eiL(k+p̄ω)·m. (C.7)

The term with m = 0, which we denote by t0,h, is L,θ independent and
satisfies

|t0,h| ≤ C|λ|22h. (C.8)

To see this, observe that the area of the support of χ̄h is O(22h) and recall
that rω(k) = O(k2), that |zh| ≤ C|λ| uniformly in h and that Zh = O(2−ηh)
(see (6.101)), with η(λ) that tends to zero for λ→ 0. The sum of the terms
with m 6= 0, which we denote by t1,h, is bounded from above as

|t1,h| ≤ C|λ|22he−c
√
L2h , (C.9)

the stretched-exponential decay coming from the fact that the integrand is
a function in the Gevrey class of order 2, by assumption on χ̄h. Finally,
recalling that χ̄h(kωθ − p̄ω) = 1 for all h > hL and that 1+zh = Zh−1/Zh, we
find that, if h > hL, the sum in the second line of (C.6) can be rewritten as

− 2L−2 log(Zh−1/Zh) + t2,h, |t2,h| ≤ CL−2|λ|2h(1−|η|). (C.10)
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Putting things together we write:∑
hL<h<0

th = −2L−2 logZhL +
∑
h<0

t0,h +
[ ∑
hL<h<0

(t1,h + t2,h)−
∑
h≤hL

t0,h

]
.

(C.11)
The second term in the right side contributes to ∆(λ): it is L,θ independent
and, thanks to (C.8), it is bounded by C|λ|. The term in brackets contributes
to L−2 log(1+sθ(λ)): thanks to (C.8) and (C.10), it is bounded by CL−2|λ|,
as we wanted.

We are left with the sum over scales of Ẽh, see (C.4)-(C.5). As mentioned

after (C.5), Ẽh can be written as a sum over trees,

Ẽh =
∑
N≥1

∑
τ∈T (h)

N,0

E(τ), (C.12)

where E(τ), τ ∈ T (h)
N,0 , is bounded as in (6.65), with |Pψv0 | = |P Jv0

| = |q| = 0,
namely

|E(τ)| ≤ (C|λ|)max{1,cN}22h
∏
v not
e.p.

C
∑sv
i=1 |Pvi |−|Pv |

sv!
2C|λ||P

ψ
v |22− 1

2
|Pψv |−|PJv |−z(Pv).

(C.13)

We now rewrite Ẽh as a sum of two terms: the first, which we denote by
Ẽ0,h, is the sum over trees of the thermodynamic limit of the tree values
(where sums over lattice points in Λ are replaced by sums on Z2 and single-

scale propagators g
(h′)
ω are replaced by their infinite-volume counterparts

g(h′),∞). The second is the finite-size remainder, which we denote by Ẽ1,h.

By construction, Ẽ0,h is L,θ independent, and it is bounded by the sum
over trees of the right side of (C.13), which gives

|Ẽ0,h| ≤ C|λ|22h. (C.14)

The finite size remainder admits an improved dimensional bound of the form

|Ẽ1,h| ≤ C|λ|22he−c
√
L2h , (C.15)

which can be proved via discussion analogous to the one after (B.8) on

the bound on the finite size contribution to the local quartic kernel w
(h)
4,0;ω =

W
(h)
4,0,0;ω−W

(h),∞
4,0,0;ω; details are left to the reader. By using the decomposition

Ẽh = Ẽ0,h + Ẽ1,h, we rewrite∑
hL≤h<0

Ẽh =
∑
h<0

Ẽ0,h +
[ ∑
hL≤h<0

Ẽ1,h −
∑
h<hL

E0,h

]
. (C.16)

The first term in the right side contributes to ∆(λ): it is L,θ independent
and, thanks to (C.14), it is bounded by C|λ|. The term in brackets con-
tributes to L−2 log(1 + sθ(λ)): thanks to (C.15), it is bounded by CL−2|λ|,
as desired. This concludes the proof of (C.1), with the desired bounds on
∆(λ), sθ(λ).
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Appendix D. Two technical results on the non-interacting
model

D.1. Proof of (6.118). It is sufficient to prove the claim when θ−θ′ equals
either (1, 0) or (0, 1) and, for definiteness, assume we are in the former case.
Also, without loss of generality, assume that |k±θ − p̄

±| ≤ |k±
θ′
− p̄±|. From

the definition (3.4) of P(θ) we see that

π

2L
≤ |k±

θ′
− p̄±| ≤

√
2π

L
, (D.1)

while |k±θ − p̄
±| can be much smaller, possibly zero. Write

Z̃0
θ

Z̃0
θ′

=
µ0(k+

θ′
)µ0(k−

θ′
)

µ0(k+
θ )µ0(k−θ )

e
∑
k∈P(θ)(logµ0(k)− 1

2
log µ0(k←)− 1

2
log µ0(k→)) (D.2)

with k→ = k+(π/L, 0) ∈ P(θ′) and k← = k− (π/L, 0) ∈ P(θ′). Decompose
P(θ) as the disjoint union A ∪ B, with A containing the values of k at
distance at most, say, 10/L from either p̄+ or p̄−, and B all the others. The
cardinality of A is uniformly bounded as a function of L.

Note that for all k ∈ A, |µ0(k←)| and |µ0(k→)| are upper and lower
bounded by positive constants times 1/L, because µ0 vanishes linearly at
p̄± and the values of k→, k← are at distance of order 1/L from p̄± (cf. (D.1)).
The same holds for |µ0(k)|, k ∈ A, except possibly for k = k±θ . One has then

c1 ≤

∣∣∣∣∣µ0(k+
θ′

)µ0(k−
θ′

)

µ0(k+
θ )µ0(k−θ )

e
∑
k∈A(logµ0(k)− 1

2
logµ0(k←)− 1

2
logµ0(k→))

∣∣∣∣∣ ≤ c2. (D.3)

It remains to prove that the sum in (D.2), with k restricted to B, is upper
and lower bounded (in absolute value) by L-independent positive constants.
Write

logµ0(k)− 1

2
logµ0(k←)− 1

2
logµ0(k→) (D.4)

= −π
2

L2
∂2
k1

logµ0(k)− π3

6L3
∂3
k1

logµ0(k)|k=k′ (D.5)

where k′ is a point in the segment joining k← and k→. Since µ0(·) vanishes
linearly at p̄±,

|∂3
k1

logµ0(k′)| = O((min(|k − p̄+|, |k − p̄−|)−3).

Here it is important that k ∈ B, since this means that ∂3
k1

logµ0(k′), com-

puted in the unknown point k′, can be safely replaced by the derivative
computed at k. Therefore,

1

L3

∑
k∈B

∂3
k1

logµ0(k′) = O(1). (D.6)

The sum of the term involving ∂2
k1

logµ0(k) requires more care since at first
sight it diverges like logL. However, write

π2

L2
∂2
k1

logµ0(k) =
1

4

∫
Qk

∂2
q1 logµ0(q)dq +O(L−3|∂3

k1
logµ0(k)|), (D.7)
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with Qk the square of side 2π/L centered at k. Therefore, the sum in (D.2),
with k restricted to B, plus the integral

1

4

∫
[−π,π]2\(N+∪N−)

dk ∂2
k1

logµ0(k), (D.8)

with N± the neighborhood of radius 10/L around p̄±, is upper and lower
bounded in absolute value by positive constants.

The integral (D.8) has a finite limit as L → ∞. Indeed, since (cf. (6.4)-
(6.5)) µ0(p̄ω +k′) = ᾱωk

′
1 + β̄ωk

′
2 +O(|k′|2), the possibly singular part of the

integral is proportional to∫
dk

(ᾱωk1 + β̄ωk2)2
1{(10/L)≤|k|≤1}. (D.9)

We make the change of variables q1 = ω(ᾱ1k1 + β̄1k2), q2 = (ᾱ2k1 + β̄2k2),
where ᾱj , β̄j were defined in (4.4). The Jacobian matrix Aω has non-zero
determinant (this is because, as observed in Remark 2, the ratio αω/βω is
not real so that the same holds for ᾱω/β̄ω if λ is small enough). Then, the
integral becomes

det(Aω)

∫
dq

(q1 + iq2)2
1{(10/L)≤|Aωq|≤1} (D.10)

= det(Aω)

∫
dq

(q1 + iq2)2
1{(10/L)≤|q|≤1} +O(1) = O(1). (D.11)

In the first equality we used the fact that the symmetric difference between
the balls of radius 10/L for q and for Aωq has area of order L−2, while the
integrand is O(L2) there; in the second step, we noted that the integral is
zero, using the symmetry (q1, q2)↔ (q2,−q1).

D.2. Proof of (6.121). Recall that the values of cθ are given in (3.2). Fur-
ther, note that if k ∈ P(θ), then also (π, π)−k ∈ P(θ); if these two momenta
are distinct, then they contribute µ0(k)µ0((π, π)− k) = |µ0(k)|2 ≥ 0 to the
product Z0

θ. Here, we used the symmetry (6.7). Also, unless

k = (ε1π/2, ε2π/2), ε1 = ±1, ε2 = ±1, (D.12)

one has that (π, π) − k 6= k mod (2π, 2π). To determine the sign of Z0
θ, it

is therefore sufficient to determine whether the momenta (D.12) belong to
P(θ). The four momenta (D.12) belong to P((0, 0)) if L = 0 mod 4 and to
P((1, 1)) if L = 2 mod 4. Also, note that∏

ε1=±1

∏
ε2=±1

µ0(ε1π/2, ε2π/2) =
∏
ε1=±1

∏
ε2=±1

µ(ε1π/2, ε2π/2)

= (t1 − t2 + t3 + 1)(t1 − t2 − t3 − 1)(t1 + t2 − t3 + 1)(t1 + t2 + t3 − 1).
(D.13)

To get the first equality, observe first that pω cannot equal any of the four
momenta (D.12), otherwise one would have p+ = p− mod (2π, 2π), which
is excluded by Assumption 1 on the edge weights. The same is true for p̄ω

provided λ sufficiently small, as p̄ω = pω +O(λ). Then, the first equality in
(D.13) follows by assuming that the support of the cut-off function χ̄(·) in
(6.3) is sufficiently small (this can be guaranteed by choosing the constant
c0, that enters the definition of χ̄(·), to be small enough). Finally, the last
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product in (D.13) is strictly negative, as follows from Remark 1. Wrapping
up, one has that

sign(Z0
θ) =

 +1 if θ = (0, 1) or θ = (1, 0)
(−1)1L=0 mod 4 if θ = (0, 0)
(−1)1L=0 mod 2 if θ = (1, 1)

. (D.14)

In other words, sign(Z0
θ) = cθ and the claim follows.

Acknowledgements We would like to thank Ron Peled and Jean-Marie
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20133 Milano, Italy

Email address: vieri.mastropietro@unimi.it
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