
Prepared for submission to JCAP

Local Primordial Non-Gaussianities

and Super-Sample Variance

Emanuele Castorinaa and Azadeh Moradinezhad Dizgahb

aTheoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
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Abstract. Fluctuations with wavelengths larger than the volume of a galaxy survey affect

the measurement of the galaxy power spectrum within the survey itself. In the presence

of local Primordial Non- Gaussianities (PNG), in addition to super-sample matter density

and tidal fluctuations, the large-scale gravitational potential also induces a modulation of

the observed power spectrum. In this work we investigate this modulation by computing for

the first time the response of the redshift-space galaxy power spectrum to the presence of

a long wavelength gravitational potential, fully accounting for the stochastic contributions.

For biased tracers new response functions arise due to couplings between the small-scale

fluctuations in the density, velocity and gravitational fields, the latter through scale depen-

dent bias operators, and the large-scale gravitational potential. We study the impact of the

super-sample modes on the measurement of the amplitude of the primordial bispectrum of

the local-shape, f loc
NL, accounting for modulations of both the signal and the covariance of the

galaxy power spectrum by the long modes. Considering DESI-like survey specifications, we

show that in most cases super-sample modes cause little or no degradation of the constraints,

and could actually reduce the errorbars on f loc
NL by (10 - 30)%, if external information on the

bias parameters is available.ar
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1 Introduction

Statistical homogeneity and isotropy of the cosmological fields are two key assumptions in

cosmology. They imply that the two-point correlation function, and in general any n-point

function, is statistically invariant under translation and rotation. However, observational

effects can break these assumptions. A well known example is the redshift-space distortions,

i.e. the contribution to the measured redshift of an object of its peculiar velocity [1], which

partially breaks isotropy. In particular since homogeneity and isotropy are properties of the

statistical correlators of the fields and not of fields themselves, they will hold only if we can

take the proper ensemble average over the full observable Universe.

In practice, in galaxy surveys we only observe a finite volume of our past light-cone, and

we cannot determine a priori whether the super-survey modes (fluctuations larger than the

volume of a given survey) correspond to the mean cosmological value or if they take a non

zero finite value. This fact per se does not automatically imply that the measured n-point

functions do not correspond to the cosmological averages. But it is also essential that the

fields evolve non-linearly and structure form. Only in this case small-scale modes inside the

survey can couple to the long-wavelength mode of the size of the survey or larger is possible.

The effect of the isotropic part of the long modes on the power spectrum has been

studied extensively [2–17]. For instance, it can be used to measure the bias of dark matter

halos or of the Lyman-alpha forest [18–22]. Recently, the effects of the tidal part of the

super-sample mode has also been investigated [23–29]. It has been shown that in redshift-

space both the mean and the tidal part of the long modes contribute to further breaking
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rotational invariance, causing shifts in the inferred cosmological parameters [26]. Due to their

stochastic nature, super-sample modes have been traditionally considered as an additional

source of noise in the covariance matrix of the power spectrum and bispectrum [2, 4, 30–32],

hence the name Super-Sample Covariance (SSC). Alternatively one can consider long modes

as extra signal [12] and marginalize over their amplitude.

In a Universe with Gaussian initial conditions (ICs), the response of the power spectrum

depends only on the mean density and tidal super-sample modes. But the Gaussianity of the

ICs is an assumption of the baseline cosmological model, the breaking thereof could point

towards new physics in the very early Universe. The simplest models of inflation with only

one degree of freedom, i.e. the inflaton, with a canonical kinetic term and starting from a

Bunch-Davies vacuum state, predict a nearly Gaussian distribution of primordial fluctuations.

Stringent constraints on, or detection of PNG would allow distinguishing between different

inflation models generating the seed of the observed structure [33]. The next generation of

CMB experiments [34, 35] and galaxy surveys [36–40], as well as potential intensity mapping

surveys with various spectral lines [41–43] offer promising possibilities of constraining several

shapes of PNG, beyond the current best constraints by Planck satellite [44]. Among various

shapes, the local PNG is of particular interest, both theoretically and also because of its ob-

servational prospect. This type of PNG can be phenomenologically parameterized by adding

a quadratic contribution to the primordial gravitational field φ = ϕG + f loc
NL(ϕ2

G −
〈
ϕ2
G

〉
),

with ϕG being a Gaussian field and f loc
NL the amplitude of the non Gaussian contribution.

In single-field models of inflation, the primordial bispectrum of the local-shape is expected

to be nearly zero, independent of the details of the model [45, 46]. Therefore, a detection

of local PNG is considered a smoking gun of multi-field models of inflation. In addition to

imprints on the 3-point statistics of the LSS [47–50], local PNG also leave a unique imprint

on the 2-point statistics of biased tracers on large scales [51–54]. This signature, referred

to as scale-dependant bias has been used to constrain local PNG from current generation of

galaxy surveys [55–57]. While the errorbars, σ(f loc
NL) ' 25, are still larger than the ones from

CMB data σ(f loc
NL) ' 5, they are expected to dramatically improve for the upcoming galaxy

surveys [57–59]. Taking advantage of cosmic variance cancellations techniques can play an

important role in reaching the target sensitivity of σ(f loc
NL) ≤ 1, using measurements of galaxy

power spectrum only [60–62].

In this paper we study the effect of the super-sample gravitational potential on the

galaxy power spectrum. This type of long-short modes correlation is present only if the ICs

are non Gaussian. By focusing on the local case, our work expands on Refs. [63, 64] by

considering redshift-space distortions and accounting for the correlation between the small-

scale tidal fields and the super-sample gravitational potential.

The rest of the paper is organized as follows. After setting up the notation in the

rest of this section and outlining the survey specifications we use, in Section 2, we present

the calculation of the response of the real-space galaxy power spectrum to the presence of

super-sample modes, while in Section 3, we extend the computation to redshift-space. We

then discuss the implication of our results for a determination of f loc
NL from data using Fisher

matrix approach in Section 4, and present the summary and future outlook in Section 5.
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1.1 Notation

In a survey of volume Vs and typical size Ls ' V
1/3
s , the main observable is the product of

the underlying galaxy density field, δg(x), with the survey window function, W (x),

δ̂g(x, z) = δg(x, z)W (x) . (1.1)

In this work variables with a (̂) indicate quantities estimated/measured within the survey.

Over the full, but still finite, volume Vs, the mean value of the dark matter overdensity field

doesn’t have to be zero, i.e. the cosmological mean, but it is instead given by

∆0 =

∫
d3p

(2π)3
δ(p, z)W (−p) , (1.2)

where δ(p, z) and W (−p) are the Fourier Transform of the density field and window function

respectively. Note that we have drop the explicit redshift dependence of the long modes.

When no confusion arises we will use the same symbol for a variable and its Fourier Transform.

We are also interested in the mean tidal field in the survey τij ,

τij =

∫
d3p

(2π)3

(
pipj −

1

3
δKij

)
δ(p, z)W (−p) (1.3)

and more precisely in its projection along a certain direction n̂. We follow [26] and define

the isotropic (L = 0) and tidal part (L = 2) of the long wavelength modes as

∆L(n̂) =

∫
d3p

(2π)3
δ(p, z)W (−p)LL(n̂ · p̂) , (1.4)

where LL are Legendre polynomials.

For simplicity, in this work we assume the window function is spherically symmetric and

normalized to unity, e.g. a spherical top-hat, such that the variance of the long mode reads

σ2
L =

1

2L+ 1

∫
dk

2π2
k2P (k, z)W 2(k) , (1.5)

in terms of the linear dark matter power spectrum P (k, z). The mean value of the DM

density field in the survey volume, ∆0, is thus a number drawn from a Gaussian with mean

zero and variance σ2
0, and similarly for the tidal field. The same arguments apply to estimate

the value of the long wavelength gravitational potential φ0, with P (k, z) replaced by Pφ(k) =

P (k, z)M−2(k, z), with

M(k, z) ≡ 2c2k2T (k)D(z)

3ΩmH2
0

, (1.6)

where T (k) is the linear transfer function, c is the speed of light, D(z) is the linear growth

factor normalized to (1 + z)−1 in the matter-dominated era, Ωm is the matter density pa-

rameter at z = 0, and H0 is the present-day Hubble parameter. To compute the variance of

φ0 defined as

σφ =

∫
dk

2π2
k2Pφ(k)W 2(k) , (1.7)
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we need to impose a cut-off at low-k, which we choose to be the present day horizon1. In

this work we assume a Planck+BAO fiducial cosmology [65].

1.2 Survey specification and fiducial galaxy biases

In this work we consider two galaxy samples to show the effects of the super-sample modes,

one at z ' 1 with linear bias of b1 = 1.35 and one at z = 2.5 with linear bias of b1 = 4.

Loosely speaking they could be identified with the ELG and QSO sample of DESI [58]. The

value of the shot-noise for the two sample is N [h−1 Mpc)3] = {3×103, 105}, for the low- and

high-z sample respectively. Other important parameters in computing the Fisher forecast are

the volume of the survey, Vs, which sets the largest available scale kmin = 2π/V
(1/3)
s , and the

largest wavenumber included in the analysis kmax. For Vs we take the volume corresponding to

roughly the entire ELG or QSO sample, VELG ' (3.5h−1 Gpc)3 and VQSO ' (5.5h−1 Gpc)3.

We will show results for different choices of kmax.

Let us also outline the choices of the values of the galaxy biases used in describing

the galaxy overdensity field given in Eq. (2.1), that we use throughout the paper, both in

computing the response functions and in the Fisher forecasts. For the second-order in density

bias b2, we use the fitting formula presented in Ref. [21] to relate it to linear bias, while for

the second-order tidal bias bs2 we take the co-evolution prediction bs2 = −2/7(b−1). We use

the Peak-Background-Split to fix the fiducial value of the Non-Gaussian biases (see [66] for

a review)

bφ = 2δc(b1 − 1) , bφδ = 2[δc(b2 + 13/21(b1 − 1))− b1 + 1] . (1.8)

2 Responses in real-space

In the presence of local-shape primordial non-Gaussianity, in addition to matter density field

and tidal tensor, the galaxy over-density also depends on gravitational potential. Expanding

in terms of renormalized operators, the galaxy overdensity up to second order in perturbation

theory is given by [67–69]

δg(x, z) = b1δ(x, z) +
1

2
b2δ

2(x, z) + bs2s
2(x, z)

+ f loc
NL[bφφ(q, z) + bφδδ(x, z)φ(q, z)]

+ ε(x) + εδ(x)δ(x) + f loc
NLεφ(x)φ(q, z) , (2.1)

where we have only kept the terms linear in f loc
NL and neglected the contributions from higher-

order derivative operators. To avoid clutter we have dropped the explicit redshift-dependence

of the bias parameters. Here φ is the primordial gravitational potential, and q = x −Ψ(q)

is the Lagrangian coordinate, which at leading order is related to the linear density field by

δL = −∇Ψ. The second order field s2 corresponds to the traceless part of the shear field and

1We checked that changing the IR cutoff to the present day Hubble scale H−1
0 does not qualitatively change

any of the results.
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is defined as

s2(x, z) =

∫
d3k

(2π)3
eik·x

∫
d3q

(2π)3

([
q · (k− q)

|q||k− q|

]2

− 1

3

)
δ(q)δ(k− q) . (2.2)

We include stochastic terms in the last line Eq. (2.1), which we assume to be of Poisson

origin. They will play the role of the noise in the Fisher analysis.

The linear galaxy power spectrum according to this bias model reads

Pg(k, z) =
[
b21 + 2f loc

NLb1bφM−1(k, z)
]
P (k, z) +N , (2.3)

where N ≡ 〈 εε 〉 = 1/n̄ is the Poissonian shot-noise, and we have only kept terms linear in

f loc
NL. The measured power spectrum P̂g(k) in a survey of finite volume Vs, however, is the

average of the galaxy fluctuations for a fixed realization of the long modes; therefore, does

not necessarily correspond to the cosmological average power spectrum Pg(k). The power

spectrum of short-scale modes within the survey volume in the presence of super-survey

modes can be schematically written as

P̂g(k, z) ≡
〈
δg(k, z)δ

∗
g(k, z)|∆0, φ0

〉
= Pg(k, z) +R∆(k, z)∆0 +Rφ(k, z)φ0 , (2.4)

where, the functions R∆ and Rφ are called response functions. Notice the long wavelenghts

modes ∆0 and φ0 are in configuration space, while the galaxy perturbations are in Fourier

space. The modulation of the measured power spectrum by the long wavelength modes can

be seen as an extra term in the power spectrum covariance, hence the name super-sample

variance. At the same time we can think of it as extra signal, with the amplitude of ∆0 and

φ0 the two new free parameters one has to marginalize over when constraining cosmological

parameters.

We can compute the response functions from the squeezed limit of the bispectrum

Bg(p,k1,k2, z), where one mode is much longer than the other two, p � k1 ' k2 = k

[9, 13, 15, 70]. This configuration captures the correlation between one large-scale mode and

two small-scale ones that we are interested in. One then has to average over the angular

part of the super-sample mode p̂ since it is unknown. The angle-averaged squeezed-limit of

galaxy bispectrum is related to response functions as∫
dΩp̂

4π
Bsq
g (p,k1,k2, z) ≡ lim

p�k1,k2

∫
dΩp̂

4π
Bg(p,k1,k2, z)

= b1R∆(k, z)P (p, z) + [b1Rφ(k, z) + f loc
NLbφR∆(k, z)]Pφδ(p, z) . (2.5)

The explicit expression of the galaxy bispectrum at tree level, which we use to derive the

response functions, and includes the contributions from primordial non-Gaussianity and grav-

itational evolution is given in Appendix A. More details on the derivation can be found in

Refs. [26, 71, 72].

The response function R∆ originates from the coupling between the large-scale density

field and the small-scale modes, either in density or gravitational potential. It contains a
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Gaussian piece, due to nonlinear evolution, and a non-Gaussian one of primordial origin,

R∆(k, z) =

[
47

21
b21 + 2b1b2 −

b21
3

d logP

d log k

]
P (k, z) +

b1
n̄

+ f loc
NL

[
26

21
b1bφ + 2b1bφδ + 2b2bφ −

2

3
b1bφ

(
d logP

d log k
− d logM

d log k

)]
Pφδ(k, z)

≡ RG
∆(k, z) + f loc

NLR
NG
∆ (k, z) . (2.6)

Notice RNG
∆ (k, z) contains only terms proportional to PNG bias parameters, i.e. they corre-

spond to couplings between ∆0 and the short wavelength φ. In other words RNG
∆ (k, z) = 0 for

the response of the dark matter power spectrum to the long mode density field even for non

Gaussian initial conditions. The presence of a long mode changes both the expansion history

and the growth of dark matter fluctuations [10]. The terms proportional to P (k) or Pφδ are

often called growth terms [12], and arise because positive (negative) amplitude of the long

modes enhances (reduces) the growth of structure. The terms proportional to derivatives of

power spectra instead show the effect of the long modes on the expansion history and are

usually called dilation terms [12]. The shot-noise term comes from the following contribution

of the stochastic operators to the Bispectrum

Bsq(p,k1,k2, z) ⊃ b1
〈
δ(p, z)

[
ε(k1) +

1

2

∫
d3q

(2π)3
εδ(q)δ(k1 − q)

]
ε(k2)

〉
+ k1 ←→ k2

= b1 〈 εδε 〉 〈 δ(p, z)δ(k2, z) 〉+ k1 ←→ k2

= 2b1PεεδP (p, z) =
b21P (p, z)

n̄
. (2.7)

The other response function Rφ contains couplings between φ0 and the small-scales

fields; therefore, it is identically zero in the absence of PNG

Rφ(k, z) = 2f loc
NL

[
(2b21 + b1bφδ)P (k, z) +

bφ
2n̄

]
. (2.8)

The first term in the above equations comes from the primordial Bispectrum and it would

be there even for dark matter, while the second one is present only for biased tracers. The

response to φ0 contains only growth terms, since the response to f loc
NL is locally equivalent to

rescaling of the amplitude of the fluctuations [52].

In redshift surveys the galaxy overdensity is usually estimated by computing the mean

number of objects ˆ̄ng within the survey itself. The latter is also affected by the presence of

long wavelength galaxy fluctuations ∆g,

ˆ̄ng = n̄g(1 + ∆g) = n̄g(1 + b1∆0 + f loc
NLbφφ0) . (2.9)

For a power spectrum normalized by ˆ̄n−2
g the response functions become

R∆(k, z) −→ R∆(k, z)− 2b1Pg(k, z) , Rφ(k, z) −→ Rφ(k, z)− 2f loc
NLbφPg(k, z) . (2.10)

Note that in the above equation, when computing Rφ, we drop the term proportional to

f loc
NL in Pg(k, z) since their contribution to Rφ would be quadratic in f loc

NL. In the literature

– 6 –



10-3 3·10-3 10-2 3·10-2 10-1 3·10-1

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

k [h/Mpc]

R
(k
,
z)
/P
g
(k
,
z;
f N
Llo
c
=
0)

b1 = 1.35, z = 1.0, n -1= 3·103

RΔ

RΔ , fNL
loc =0

Rϕ

10-3 3·10-3 10-2 3·10-2 10-1 3·10-1

-10

-9

-8

-7

-6

-5

-4

-3

k [h/Mpc]

R
(k
,
z)
/P
g
(k
,
z;
f N
Llo
c
=
0)

b1 = 4.0, z = 2.5, n -1= 105

RΔ

RΔ , fNL
loc =0

Rϕ

Figure 1: Real Space response functions for two different configurations: a DESI-ELG like

on the left, and a DESI-QSO like on the right.

the response functions that include the piece arising from the normalization of the density

field are usually called the local ones, whereas the global ones do not have this extra term.

Note that if one chooses instead to normalize the power spectrum by n̄−1
g , as usually done in

galaxy survey with the FKP estimator [32], then the one has to drop the factor of 2 in the

second term in Eq. (2.10). For galaxy surveys the local responses are the relevant ones, so

we will stick to them in the rest of this work.

Before discussing the shape of the response functions, let use make two additional notes

regarding the shot-noise contributions. First, the factor of Pg(k, z) in the above equations

includes the shot noise contribution to the galaxy power spectrum. This term partially cancels

with the shot noise contribution to the squeezed limit of the Bispectrum. The cancellation

will be exact for a FKP estimator. It is important to notice the cancellation holds only

for Poissonian shot-noise. Compared to previous work, our derivation of the shot noise

contribution to the super-sample signal using the squeezed limit of the Bispectrum highlights

the physical difference between the normalization of the power spectrum and the terms in

Eq. (2.7). Second, in Eq. (2.8) and Eq. (2.10) we see that the shot noise induces new

PNG terms. One could be tempted to consider it an extra signal, but it is easy to see this

contribution just changes the value of the true shot noise which is always marginalized over

as a free parameter. It is however important to keep noise terms in the super-sample signal

in the forecast analysis, discussed in Section 4, as they increase the variance of the power

spectrum.

Figure 1 shows the real-space response functions for low- and high-redshift samples for

a DESI-like survey described in Section 1.2. We have set the value of f loc
NL = 1, assumed the

second-order bias b2 as a function of b1 according the fit presented in Ref. [21], and set the

value of bs2 using the coevolution prediction [73, 74]. The effect of PNG on R∆ can be seen
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on large scales where the difference between the blue and the dashed blue lines is manifest.

This was expected since the non-Gaussian part of the response to ∆0 is proportional to

Pφδ � P (k) at high-k. Both growth and dilation terms contribute to R∆, as one can notice

from the oscillations around the BAO scale. As discussed above the response Rφ, shown

in red, does not contain dilation terms, hence no large wiggles are present. Both responses

are negative because the dominant contribution is coming from the rescaling of the mean in

Eq. (2.10).

3 Responses in redshift-space

The redshift-space response functions are also straightforward to calculate. The main differ-

ence with respect to the real-space calculation is that RSD break isotropy of space; therefore,

one expects a different response to the isotropic and shear part of the long modes. We start

from the expression for the second order galaxy overdensity field in redshift-space, δsg(k),

δsg(k, z) = δg(k, z) + fµ2
kθ(k, z)−

fµkk

2

∫
d3q

(2π)3
[δg(q, z) + fµ2

qθ(q, z)]

× (k− q) · n̂
|(k− q)|2

θ(k− q, z) + q←→ (k− q) , (3.1)

where f is the linear growth rate, θ(k, z) is the divergence of the velocity field, and n̂ is the line

of sight (LOS) direction. We work in the plane parallel-limit and neglect wide angle/curved

sky corrections to the above formula [75–77]. In the presence of local-shape PNG, the galaxy

power spectrum at tree-level, including the linear RSD [1](Kaiser term), is given by

P sg (k, µ, z) =
[
(b1 + fµ2)2 + 2f loc

NL(b1 + fµ2)bφM−1(k, z)
]
P (k, z) +N . (3.2)

In the squeezed limit the bispectrum between one long-wavelength real space galaxy mode,

δg(p), and two redshift-space small-scales modes can be written in the following way

lim
p�k1,k2

Bs
g(p,k1,k2, z) = lim

p�k1,k2

〈
δg(p, z)δ

s
g(k1, z)δ

s
g(k2, z)

〉
=
∑
`1,`2

f`1,`2(p, k, µk, z)L`1(ν)L`2(µp) , (3.3)

where µk = k̂ · n̂, ν ≡ k̂ · p̂ and µp ≡ p̂ · n̂.

Similar to the real-space computation, to compute the responses we just have to average

the squeezed Bispectrum with the appropriate weight according to the definition of the long

modes in Eq. (1.4),
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Figure 2: Redshift-space response functions for two different configurations: a DESI-ELG

like on the left, and a DESI-QSO like on the right.

(2`+ 1) lim
p�k1,k2

∫
dΩp̂

4π
Bg(p,k1,k2, z)L`(µp)

= (2`+ 1)

∫
dΩp̂

4π

∑
`1,`2

f`1,`2(p, k, µk, z)L`1(ν)L`2(µp)L`(µp)

= (2`+ 1)

∫
dΩp̂

4π

∑
`1,`2

f`1,`2(p, k, µk, z)L`1(ν)
∑
L

(
`2 ` L

0 0 0

)2

(2L+ 1)LL(µp)

= (2`+ 1)
∑
`1,`2

f`1,`2(p, k, µk, z)

(
` `1 `2
0 0 0

)2

L`1(µk) , (3.4)
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and finally read off the terms proportional to power spectra of the super-sample modes as in

Eq. (2.5). We schematically write

P̂ sg (k, µk, z) ≡
〈
δsg(k, z)δ

s,∗
g (k, z)

〉
∆0,∆2,φ0

= P sg (k, µk, z) +Rs∆0
(k, µk, z)∆0 +Rs∆2

(k, µk, z)∆2 +Rsφ(k, µk, z)φ0 , (3.5)

with the three response functions given by

Rs∆0
(k, µk, z) = P (k, z)

[
−1

3

d logP

d log k

(
fµ2 + 1

) (
b1 + fµ2

)
2

+
1

21

(
b1 + fµ2

) (
fµ2 (42b1 − 7f + 31) + 7b1f + 47b1 + 42b2 + 28f2µ4

)]
+ f loc

NLPφδ(k, z)

[
2

3

(
d logM
d log k

− d logP

d log k

)
bφ
(
fµ2 + 1

) (
b1 + fµ2

)
+

2

21

(
fµ2

(
bφ
(
14fµ2 + 5

)
+ 21bφδ

)
+ b1bφ

(
7f
(
3µ2 + 1

)
+ 13

)
+ 21b2bφ + 21b1bφδ

)]
+

(b1 + f/3)

n̄
, (3.6)

Rsφ(k, µk, z) = 2f loc
NL

{(
b1 + fµ2

) [
fµ2 (bφ + 2) + bφδ + 2b1

]
P (k, z) +

bφ
2n̄

}
, (3.7)

Rs∆2
(k, µk, z) = P (k, z)

[
2

21

(
b1 + fµ2

) (
µ2 (12b1 + 42bs2 − f(7f + 8)) + 7b1f − 4b1 − 14bs2

+4f(7f + 6)µ4
)
− 1

3

d logP

d log k

(
(2f + 3)µ2 − 1

) (
b1 + fµ2

)
2

]
+ f loc

NLPφδ(k, z)

[
4

21
bφ
(
µ2 (6b1 + 21bs2 − 4f) + 7b1f − 2b1 − 7bs2 + 2f(7f + 6)µ4

)
+

2

3

(
d logM
d log k

− d logP

d log k

)
bφ
(
(2f + 3)µ2 − 1

) (
b1 + fµ2

)]
+

2

3n̄
f . (3.8)

As expected for local PNG there is no response to the tidal part of the long wavelength

gravitational potential. For f loc
NL = 0 our expressions agree with Ref. [26] 2. The normalization

of the density fluctuations also shifts the redshift-space response functions,

Rsδ,0 → Rsδ,0 − 2(b1 + f/3)Pg(k, µk, z) ,

Rsφ → Rsφ − 2f loc
NLbφPg(k, µk, z) ,

Rsδ,2 → Rsδ,2 − 4/3fPg(k, µk, z) . (3.9)

Analogously to the real space calculation the shot-noise contribution to the squeezed limit

bispectrum is partially canceled by the change in the mean number density.

2Notice that Ref. [26] define the responses in terms of d logP/d log k ≡ d log k3P (k, z)/d log k.
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The redshift-space response functions are shown in Figure 2 for the same two galaxy

samples of Figure 1. The upper panel shows the µ = 0 response and the lower one the µ = 1

response. As first noted in [26], the µ = 0 responses do not reduce to the real space ones,

as we have already performed an angular average to define them. The real-space responses

can be recovered also sending f → 0. It is worth noticing that in redshift-space the large-

scale tidal field couples with PNG bias parameters, i.e. Rs∆,2 contains terms proportional to

f loc
NL. In general the response functions are increasing function of µk. It is straightforward to

project the two-dimensional power spectrum into multipoles P`(k) but the final expressions

are not very illuminating, so we dont show them here.

4 Super-sample modes and constraints on local PNG

Our next goal is to assess the impact of marginalization over the amplitude of the super-

sample modes on f loc
NL constraints. We use a Fisher Matrix approach for this purpose, as-

suming a fiducial value of f loc
NL = 0. We focus on redshift-space, but results for real space

are very similar. The free parameters are θ ≡ {b1, b2, γ2, N, f
loc
NL,∆0,∆2}, where N is the

amplitude of the Poissonian shot noise term in the power spectrum. We do not include φ0

as a free parameter since it always enters multiplied by f loc
NL and would therefore make the

Fisher matrix singular for f loc
NL = 0. As we will see later the value of φ0 affects the results in

some cases, therefore we present the constraint on f loc
NL for different values of φ0 in the range

[−5σφ, 5σφ]. The value of ∆fid
L will change accordingly in the range [−5σL, 5σL], but it has

basically no impact on the PNG constraints.

A few points are in order regarding the choices of the varied parameters, the priors and

the fiducial values. While we use the fit in Ref. [21] to set the fiducial value of b2, it is

important to stress that for QSO samples the values of b2 could be very different than the fit

to mass selected halos used for the fit. Furthermore, the non-Gaussian bias parameters could

deviate from the simple peak-background split prediction shown above [52]. The shot-noise

contribution to response function should also be considered as an independent free parameter

since it comes from the squeezed limit of the bispectrum, see Eq. (2.7). It is however very

degenerate with the shot-noise in the galaxy power spectrum, and we will therefore use only

a single stochastic free parameter N . Finally, when fitting the data from galaxy surveys to

constrain PNG, it is a common practice to keep the shape of the power spectrum fixed, i.e. the

cosmological parameters are given and one marginalizes only over galaxy bias parameters and

shot noise. We shall do the same here, which implies a prior on ∆L will likely be available.

We will show results with and without a prior on the long modes3. When super-sample modes

are included we also need to set the fiducial values of ∆L. We take ±{1, 3, 5}-σ values. In

order to reduce the noise in the inversion of the Fisher matrix we impose very mild prior of

b2 and bs2 , σ(b2)/b2 = σ(bs2)/bs2 = 5.

The Fisher matrix is defined as [78]

Fαβ =
∑

`1,`2,i,j

∂P̂g,`1(ki)

∂θα
[C`1`2(ki, kj)]

−1∂P̂g,`2(kj)

∂θβ
(4.1)

3The strength of the prior is irrelevant for the final error on f loc
NL .
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Figure 3: The error on f loc
NL in the high-z sample for different analysis choices. The blue

line shows the standard case when no super-sample modes are considered. The red line

present the effect of a prior on b1. The impact of marginalizing over super-sample modes

with or without a prior is shown by the orange and cyan lines. The green lines correspond

to difference fiducial values of the large-scale gravitational potential φ0.

where the sum runs over the multipoles of the power spectrum `1, `2 = 0, 2, 4, 6 and the

binned value of the wavenumber ki, kj . The binned covariance of the power spectrum mul-

tipoles C`1`2(ki, kj) for our fiducial value of f loc
NL = 0 has been computed in [26] and it

contains a diagonal piece due to cosmic variance, and diagonal and off-diagonal entries due

to super-sample variance (see also [32]). We work at sufficiently small k that the trispectrum

contribution to the covariance can be safely ignored [79]. For the results presented in the

next Sections the SSC does not play any significant role.

4.1 High-z, high bias sample

The error on f loc
NL as a function of kmax, after marginalizing over the bias parameters and the

amplitude of the long modes, is presented in Figure 3. The standard case is shown in blue,

and as widely known it exhibits a very weak dependence on the smallest scale included in

the analysis [80]. If we include a prior on b1, yielding a 40% better measurement of linear

bias compared to the error at kmax = 0.2 hMpc−1, the constraint on f loc
NL also improves by

approximately 10% at kmax = 0.2 hMpc−1 (shown in red line). Such a prior could arise from

cross-correlation with other probes, e.g. the CMB, other LSS tracers, or from the analysis

of the bispectrum. The impact of marginalizing over the values of the long modes without

assuming any prior on their values is shown as the orange line. For the orange line, the

constraint is almost independent of the fiducial value ∆0, ∆2 and the value of φ0. Therefore,

we only plot the 1-σ case for their fiducial value. The error on PNG is larger than the

standard analysis, especially for low values of kmax . 0.1 hMpc−1. For kmax ' 0.2 hMpc−1
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Figure 4: Same as Figure 3 but for the low-z sample.

the degradation in the errorbar is less than a 10%. Including a 3-σ prior on the amplitude of

the long modes results in the cyan line, which overlaps almost perfectly with the blue line.

This is good news as we expect to be able to put strong theoretical priors on the value of the

long wavelength modes.

The most interesting case is when we put a prior on both b1 and the amplitude of the

long modes. The constraints on f loc
NL with both priors are shown with green lines. In this

scenario σ(f loc
NL) depends on the fiducial value of φ0. This is easy to understand by noting

that ∂P̂g/∂f
loc
NL contains terms proportional to the value of the long modes. In particular

since Rφ(k, z) is negative (see Figure 2) positive values of φ0 reduce the response of the

galaxy power spectrum to PNG, while negative values enhances it. This was not manifest

for the the cyan and orange line, when the marginalized constraint was dominated by the

degeneracy between b1 and f loc
NL.

In the left panel the three green curves show the value of σ(f loc
NL) for negative fiducial

values of φ0. Continuous, dashed and dot-dashed lines correspond to φ0 = −{1, 3, 5}-σφ.

For large, therefore, more unlikely values of φ0 the constraint on f loc
NL can be up to 10% better

than the case without long modes, shown in red. As expected lower, but more likely, values of

φ0 show diminishing returns. For positive values of φ0 there are no significant improvements

over the standard case by adding a prior on b1, as shown in the right panel. This could

potentially be a problem for multi-tracer analyses, as the benefits of a better measurement

of linear bias could be hampered by the presence of super-sample modes.

4.2 The low-z, low bias sample

The low-z sample covers less volume and has a lower value of b1, bφ and bφδ compared to the

high-z sample . We thus expect it to be less sensitive to local PNG. On the other hand, the

lower value of the shot-noise compared to the high-z sample means super-sample modes could
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contribute more to the total signal-to-noise of f loc
NL. Figure 4 shows the results using the same

color coding of Figure 3. The standard case is shown in blue, and we find the forecasted error

on f loc
NL is ' 3 times worse than than in the high-z sample. As before if we do not include

any prior on the amplitude of the long modes, the constraint slightly degrades (the orange

line), but even a very generous prior on ∆L results in the cyan line which basically matches

the blue one. It is important to notice that although the error on f loc
NL is comparable between

orange and the blue line, the linear bias b1 is measured three times worse when super-sample

modes are present. This is a because long wavelength modes mainly change the amplitude

of the galaxy power spectrum; therefore they are very degenerate with the linear bias.

It is thus interesting to see how imposing a prior on linear bias, making the constraint on

b1 is similar with and without the long modes, could affect the constraint on PNG. We then

include a prior on b1 such that σ(b1) at kmax = 0.2 hMpc−1 becomes 40% better than the

standard case (the blue line), yielding the same measurement of linear bias irrespective of the

presence of the super sample fluctuations. In the absence of the long modes, the constraint

on f loc
NL, shown with a red line, improves by roughly 10% at the highest kmax. When we

include the super-sample modes, the improvement due to the prior on b1 varies between (10

- 30)% for negative values of φ0, with the rarest negative 5σ fluctuation yielding more than

30% better constraints on f loc
NL. This was possible due the low shot noise level of the low-z

sample. The picture is somewhat reversed for positive values of φ0, where we do not find

significant improvement over the standard case in the presence of super-sample signal.

5 Conclusions

In this paper we investigated the effect of super-survey modes on the galaxy power spectrum

in the presence of primordial non-Gaussianity. We extended previous work in real-space and

computed for the first time the response of the multipoles of the redshift-space power spec-

trum to the super-sample gravitational potential. We also clarified the role of the stochastic

terms in the bias expansion when computing such responses. PNG generate new couplings

between the small-scale gravitational potential and the isotropic and tidal part of the super-

sample modes, as well as correlations between the large-scale gravitational potential and the

small-scale fluctuations. The former are a specific feature of biased tracer and would be zero

for dark matter, while the latter is generic outcome for all fields.

We then forecasted the effect of super-sample modes on the determination of f loc
NL, in-

cluding their contribution to both the signal and the noise part of the covariance of the

redshift-space multipoles of the galaxy power spectrum. Focusing on two hypothetical galaxy

samples, one at low-z and one at high-z, we find that the addition of the long modes as new

free parameters, without any prior, degrades σ(f loc
NL) by roughly 10% at high-k compared to

the standard Fisher forecast that neglects the super-sample effects. A mild prior on the long

wavelength fluctuations is able to recover the constraint in the standard scenario. We find

that although the error on f loc
NL is similar with and without long modes, the linear bias is

measured three times worse in the latter case. We therefore studied a scenario where a prior

on b1 makes the linear bias measured to a similar precision independently of the presence of

super-sample modes. In this case we find that negative values of the long wavelength gravi-
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tational potential φ0 yields smaller σ(f loc
NL) compared to the φ0 ≥ 0 cosmology. For samples

with a high enough number density, like the DESI ELG sample, the improvement can be up

to 30% for large negative values of φ0. However, it is worth reminding that such values are

the most unlikely to be realized.

A number of simplifying assumptions have been made in this work, and they would have

to be addressed before application of our formalism to real data is possible. For instance

a varying LOS in curved sky analysis, more complicated window functions, or the so called

radial integral constraint [81]. We leave those to future work, but anticipate that they would

not lead to qualitative changes in the results presented in this paper.
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A Tree-level galaxy bispectrum

A.1 Real-space

Assuming statistical isotropy and using the bias expansion in Eq. (2.1), the galaxy bispectrum

at tree-level can be written as

Bg(k1, k2, k3, z) = BG
g (k1, k2, k3, z) +BNG

g (k1, k2, k3, z), (A.1)

where the first contribution is induced by gravitational evolution and is given by

BG
g (k1, k2, k3) = 2b21

[
b1F2(k1,k2) + b2 + bs2s

2(k1,k2)
]
P (k1, z)P (k2, z) + 2 perms, (A.2)

while the second contribution is due to primordial non-Gaussianity and is given by [69]

BNG
g (k1, k2, k3, z) = b31B(k1, k2, k3, z) + f loc

NL

{
b21 bφ

[
k1

k2
M−1(k1, z) +

k2

k1
M−1(k2, z)

]
µ12

+ 2b1bφ
[
M−1(k1, z) +M−1(k2, z)

] [
b1F2(k1,k2) + b2 + bs2s

2(k1,k2)
]

+ b21 bφδ
[
M−1(k1, z) +M−1(k2, z)

]}
P (k1, z)P (k2, z) + 2 perms. (A.3)

Here, µ12 = k̂1.k̂2 is the angle between the two wavevectors k1 and k2, and F2 is the second-

order kernel in standard perturbation theory,

F2(k1,k2) =
5

7
+

1

2

(
k1

k2
+
k2

k1

)
µ12 +

2

7
µ2

12 , (A.4)

and B is the linear matter bispectrum that is sourced by non-zero primordial bispectrum

B(k1, k2, k3, z) =M(k1, z)M(k2, z)M(k3, z)B
loc
φ (k1, k2, k3) . (A.5)

with

Bloc
φ (k1, k2, k3) = 2f loc

NL [Pφ(k1)Pφ(k2) + 2 perms] . (A.6)

– 15 –



A.2 Redshift-space

In redshift-space, the bispectrum depends on 5 variables, which we can choose to be three

sides of the triangles and two angles to define the position of the triangles with respect to the

line of sight. At tree-level in perturbation theory, and including primordial non-Gaussianity,

the bispectrum is given by

Bg(k1,k2,k3, z) = Z1(k1)Z1(k2)Z1(k2)B(k1, k2, k3)

+ {2Z1(k1)Z1(k2)Z2(k1,k2)P (k1, z)P (k2, z) + 2 perms} , (A.7)

where

Z1(k1) = b1 + fµ2
1 + f loc

NLbφM−1(k1, z) ,

Z2(k1,k2) =
b2
2

+ b1F2(k1,k2) + fµ2
3G2(k1,k2)

− fµ3k3

2

[
µ1

k1
Z1(k2) +

µ2

k2
Z1(k1)

]
+ bs2s

2(k1,k2)

+ bφf
loc
NL

[
k1

k2
M−1(k1, z) +

k2

k1
M−1(k2, z)

]
µ12

+ bφδf
loc
NL

[
M−1(k1, z) +M−1(k2, z)

]
, (A.8)

with µi = k̂i.n̂ being the angles between a given wavevector and line-of-sight direction, and

G2 is the second-order kernel of matter velocity contrast

G2(k1,k2) ≡ 3

7
+

1

2

(
k1

k2
+
k2

k1

)
µ12 +

4

7
µ2

12 . (A.9)

Note that in deriving the response functions, we only keep the terms linear in f loc
NL. Compared

to the similar expressions in Ref. [37], we have an additional contribution to Z2 kernel, which

is due to the transformation of the gravitational potential φ from Lagrangian to Eulerian

coordinates.
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