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Abstract
In this paper, we propose an artificial market to model high-frequency

trading where fast traders use threshold rules strategically to issue orders
based on a signal reflecting the level of stochastic liquidity prevailing on the
market. A market maker is in charge of adjusting prices (on a fast scale) and
of setting closing prices and transaction costs on a daily basis, controlling for
the volatility of returns and market activity.

We first show that a baseline version of the model with no frictions is
able to generate returns endowed with several stylized facts. This achieve-
ment suggests that the two time scales used in the model are one (possibly
novel) way to obtain realistic market outcomes and that high-frequency trad-
ing can amplify liquidity shocks. We then explore whether transaction costs
can be used to control excess volatility and improve market quality. While
properly implemented taxation schemes may help in reducing volatility, care
is needed to avoid excessively curbing activity in the market and intensifying
the occurrence of abnormal peaks in returns.

Keywords: Artificial markets; High-frequency trading; Liquidity shocks;
Transaction costs.

1 Introduction
Financial markets aggregate the beliefs and trading decisions of a myriad of agents
endowed with different objectives, strategies, information, and abilities. The stun-
ning complexity of the outcomes is revealed in the nontrivial properties of financial
returns that feature a set of intriguing and almost universal statistical properties
known as stylized facts.1 For a review, see Lux (2009) or the evergreen Cont (2001).

1This terminology, now quite common in the financial literature but possibly less used elsewhere,
was actually introduced by the economist Nicholas Kaldor to refer to the most relevant elements
requiring explanation. In his words, “The theorist... ought to start off with a summary of the
facts which he regards as relevant to his problem [and] concentrate on broad tendencies, ignoring
individual detail, and proceed on the ‘as if’ methods, i.e. construct a hypothesis that could account
for these ‘stylized facts’...”, see Kaldor (1961).
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In the last two decades, many models have to some extent been able to generate a
handful of such regularities, suggesting possible sufficient drivers for the presence of
stylized facts.

In this paper, we explore a relatively new avenue and describe an artificial mar-
ket where actions take place over two time scales: at the daily level, a market maker
(or some entity/organization in charge of running the exchange) adjusts the price
based on the excess demand for a risky asset and on some adjustable transaction cost
(or tax). The closing price crucially depend also on a slowly varying market depth
stochastic process, which can be thought of in terms of exogenous fluctuating (in-
verse) liquidity of the market. On the intra-day time scale, a large number of traders
interact, crudely aiming at maximizing their short-term returns (net of transaction
costs). Given the furious pace of this high-frequency trading, traders make their
decisions using fast rules based on activation thresholds. These thresholds trigger
sales or purchases that are contingent on a heterogenous individual signal and on an
educated guess of the direction the price will take due to the decisions of all other
agents.

The market maker mechanically mediates fast trades and sets trading costs based
on the prevailing liquidity level with no explicit or modelled objective. In contrast,
the fast agents in the model strive to ideally find a local-in-time Nash equilibrium
where everyone optimally buys/sells the asset given his/her noisy individual signal
and actions of other traders. The result of this mechanism design is a sequence of
frequent (discrete) adjustments of the intra-day price for the risky asset. In our opin-
ion, this modeling assumption, which resembles the idea of frequent batch auctions
recently discussed in Budish et al. (2015), is a simple but realistic representation of
the market: high-frequency traders have some sophistication, use private signals,
do not want to be outsmarted, and have to decide using fast rules in a sequence of
best responses to other traders who quickly approximate a (local) pricing equilib-
rium. The resulting end-of-day price is finally determined by a market maker who
takes into account the liquidity of the market once a day and sets the appropriate
trading costs (or, in an alternative interpretation, levies a transaction tax).

Our results are threefold. Firstly, the returns of our artificial market are endowed
with fat tails, sizeable (excess) kurtosis, no linear predictability, and some volatility
clustering. Another important result is the observation that this dual-scale mecha-
nism, where strategic interaction happens at the intra-day level, can intensify and
magnify liquidity shocks occurring over much longer (daily) time scales. Thirdly, we
show that transaction costs have a non-trivial impact on the statistical properties
of returns: while there is some potential to neutralize liquidity shocks, increased
frictions appear to reduce volatility and activity, but generate spikes in prices and
larger kurtosis in returns.

Our paper takes into account the increasing awareness that (substantial) hetero-
geneity is needed in models of financial markets to obtain more realistic returns, see
Lux (2009) and Kirman (1992) for a critical discussion of the representative agent
approach. In our setup, traders’ decisions are based on heterogeneous thresholds
as well as on strategic interaction with other agents, as pioneered in Granovetter
(1978). Several papers in the last two decades have linked financial markets with
dynamics arising from simple models where basic ‘particles’ influence each other
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at the individual level to produce interesting aggregates, often taking the limit for
a large number of traders. While it may still be a challenge to provide a canoni-
cal microfoundation of such interactions, many results are of interest for financial
economists and deserve wider recognition; see the survey provided in Lux (2016).

Another stream of literature has influentially pointed out how a detailed mi-
crostructural representation of exchange may play an important role in obtaining
realistic returns, or may even be responsible for the presence and intensity of several
stylized facts and large jumps; see, for instance, Chiarella et al. (2009) and Maslov
(2000). The model presented in this paper differs from previous works in that many
details of current intra-day markets are abstracted away to focus on the strategic
search for a local pricing equilibrium. As such, we incorporate some form of herding
effect and shared sentiment in the fast component of our model, as done in dis-
tinct ways in LeBaron and Yamamoto (2008) or Chiarella et al. (2017). In order
to obtain our distributional results, however, there is no need to include a detailed
implementation of a continuous double auction that would most likely reinforce our
findings. Our model may also suggest that high-frequency trading can create lively
price dynamics even if, as in our setup, returns are ultimately settled and smoothed
by a conservative market maker on a daily basis; see Hasbrouck and Saar (2009,
2013) for insightful descriptions of how fast trading and technological innovations
impact traditional market models.

The paper is organized as follows. In Section 2, we define the model and its
two basic components, namely how agents are involved in high-frequency trading.
We also provide a description of the market maker who, on a daily basis, sets the
closing price and adjusts the prevailing transaction costs, generally accounting for an
exogenous liquidity measure. The third section is devoted to an analysis of returns:
we outline the procedure used to determine the parameters of the model with the aim
of matching some of the most significant stylized facts known in the literature; we
then discuss the relationships between return/prices and liquidity in the market; we
ultimately propose two different mechanisms for introducing a non-null transaction
cost and describe the resulting impact on returns and market quality. Section 4
summarizes and draws up some closing remarks.

2 An artificial market for high-frequency trading
In this section we present a stylized artificial market for high-frequency trading.
Agents can buy or sell a share of a risky asset and base their action upon the
forecast of short-period returns. A market maker, or another external authority,
sets (daily) prices and possibly exacts a transaction cost on returns.

Since we are aiming at modeling fast trading and the relative emerging daily
prices, we introduce two time scales: a fast time scale for intra-day activities (revise
trading strategies, adjust prices) and a slow time scale for daily activities (compute
daily returns, set daily transaction costs). We use n ∈ N to denote the daily calendar
dates: for each n, we assume that a random number τn of intra-day time steps take
place: t = 1, . . . , τn. Put differently, each time the market moves (i.e. we have some
activities), the fundamentals of the market change and we account for this using the
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intra-day (fast) time scale. Finally, we assume that (τn)n∈N is a sequence of i.i.d.
random numbers extracted from a Poissonian distribution.

In the remainder of this section, we describe how trading occurs in the market,
determining the demand for the asset and the intra-day (internal) returns of each
trading operation; finally, we discuss how the time series of returns and prices are
influenced by changing the level of taxation on the market.

2.1 High-frequency trading on a fast intra-day time scale
Fast trading requires simple rules to determine an order for buy or sell operations.
In particular, we focus on a simple threshold: if the expected internal return of
a buy operation is large enough, say bigger than a certain threshold level T b, the
action is Buy; if the return is smaller than a lower threshold T s, the operation is Sell.
Otherwise, the agent does not activate any operation. Thresholds T b and T s depend
on the expected return Rn(t) being realized in the short run by a purchase/sale at
the intra-day period t and calendar date n.2

Having this baseline paradigm in mind, we rely on the stylized artificial market
proposed in Fontini et al. (2016) to model market activities. On the market, I agents
are active and can trade one share of the asset at discrete intra-day time steps. To
keep the mechanism as simple as possible, we assume that, at each trading time
step, agents may own at most one share of the asset. We denote the ownership state
variable by ωi(t) ∈ {0, 1}, for i = 1, . . . , I: ωi(t) = 1 means that agent i owns the
share on (t, t + 1]; if not, ωi(t) = 0 means that agent i owns no share of the asset.
They bet on which return Rn(t) is going to prevail in the next trading period, where
the return is proportional to the excess demand for the asset:3

Qn(t) = 1
I

I∑
j=1

ωj(t), for t = 1, . . . , τn (1)

In more detail,
Rn(t) = kn ∆n(t), (2)

where kn measures the market depth at date n (it can be thought of as an inverse
of the liquidity available on the market) and where

∆n(t) = Qn(t)−Qn(t− 1)

is a measure of the variation in demand for the asset at each time step.
Each agent is endowed with a private signal ε(t), statistically and independently

drawn from a common distribution η about the realized return. As commonly as-
sumed in the standard literature on discrete choice models (see, for instance, Brock

2To facilitate the comprehension, we use capital letters to denote all intra-day variables, whereas
small letters are used to denote daily variables. Accordingly, intra-day variables are indexed by t,
whereas calendar dates are indexed by n.

3We assume that the demand is always fulfilled by a market maker, who adjusts taxation in
order to limit/entice activity on the market.
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and Durlauf (2001)), we assume that η is a centered logistic distribution with dis-
persion parameter β > 0, so that

P(ε < x) = 1
1 + e−βx

. (3)

It can be shown that the variance of the distribution is equal to π2/3β2. Therefore,
the larger β is, the less dispersed agents’ opinion about returns is. Finally, agents’
decisions also depend on the level of transaction cost imposed by the market maker.
For simplicity, we assume that this is done by deducting a predetermined term
µn ≥ 0 from the realized returns.

In sum, the decision scheme works as follows. Each trader i = 1, . . . , I observes
µn and kn, and forms an expectation Ei[Rn(t)] about the prevailing return.4 Finally,
he decides whether or not to invest during intra-day period t, depending on payoffs
U , as described in Table 1.

ωi(t− 1)→ ωi(t) Ui(ωi(t);ωi(t− 1))
0→ 1 (buy) Ei[Rn(t)]− µn + εi(t)
0→ 0 (sleep) 0
1→ 1 (keep) Ei[Rn(t)] + εi(t)
1→ 0 (sell) −µn

Table 1: Scheme of the four possible actions and related payoffs.

The payoffs depend on both previous and actual actions. They summarize, for
each possible situation, the monetary gain (loss) expressed in terms of returns. For
example, the payoff related to a buy operation is related to the benefit from ownership
(the expected return plus the private signal) minus the cost µn to be paid to enter
the market. Note that µn is equivalent to a transaction cost proportional to the
asset price that is exchanged. Similarly, the payoff related to a sell operation is
simply given by the exit cost −µn.The owner will be more willing to pay the cost if
he forecasts a negative return larger than µn in absolute value.

An agent j, who does not hold the share, decides to enter the market as soon
as the perceived return, net of the cost, is higher than the stay-out option (which
yields null return in the period under consideration). Eventually, this happens when
Ej[Rn(t)] + εj(t)− µn > 0. This translates into an agent-specific threshold

T bj (t) = −Ej[Rn(t)] + µn,

triggering a purchase when εJ(t) > T bj (t). Conversely, agent i, who owns the asset,
decides to leave the market when the perceived return is smaller than the exit cost
µn, i.e. Ei[Rn(t)] + εi(t) < −µn. The threshold signaling to sell is, therefore,

T si (t) = −Ei[Rn(t)]− µn.

The expected return, the random signal and the transaction cost shape the agents’
final decision, expressed in terms of endogenous thresholds, as shown in Table 2.

4Ei[·] is the expectation with respect to the joint distribution of vector ε−i = (εj)j 6=i.
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Original status (state variable) Threshold Action
Owner (ωi(t− 1) = 1 ) εi(t) < T si (t) Sell

Non-owner (ωj(t− 1) = 0 ) εj(t) > T bj (t) Buy

Table 2: Threshold levels and related actions.

Two remarks must be made. Firstly, the returns depend on kn and µn, which
are not constant but are slowly varying on the daily time scale. Therefore, for the
purposes of fast traders, they will be considered as constant for intra-day activities.
Secondly, note that Rn(t) is a function of Qn(t) and, therefore, it implicitly depends
on the actual trading strategy of all agents on the market. This introduces a strategic
interaction mechanism: the single decision ωi(t) of agent i involves his forecast of
the entire vector ω(t) = (ω1(t), . . . , ωI(t)). As a consequence, the expected returns
and thresholds T b and T s themselves are implicitly determined, and are related to
the existence of a Nash equilibrium for the game played by I agents at each trading
time step t. We postpone the discussion of the existence of such thresholds and the
mechanism leading to their identification to Section 2.2.

Having defined intra-day returns, it is possible to determine intra-day price val-
ues. Given an initial price Pn(0) for the asset, intra-day prices are

Pn(t) = Pn(t− 1) · eRn(t), t = 1 . . . , τn. (4)

At each date n, the market maker computes the closing price pn = Pn(τn) and makes
it public.5 Similarly, daily returns are computed as rn = log(pn/pn−1), for n ≥ 1.
Therefore, daily prices corresponding to closing values and returns are determined
once an initial price p0 > 0 has been provided. Note that pn (respectively, rn) refers
to daily prices (returns) and differs from Pn (Rn), which reflects the intra-day price
(return).

In order to complete the description of the market mechanism, we must set
kn and µn. Concerning the latter, for the moment we simply assume µn ≡ 0. We
postpone a discussion about the market maker policy and its implications to Section
3.3. Concerning the former, we assume that (kn)n∈N evolves as a discretized version
of an Ornstein-Uhlenbeck process constrained to be positive. Therefore, we define
k̃n as

k̃n = k̃n−1 + θ (α− k̃n−1) + σηn, (5)

for suitable parameters (θ, α, σ), an initial condition k̃0, and where (ηn)n is a sequence
of i.i.d. standard normal random variables. Finally, for all n ≥ 1, we set6

kn = max{k̃n, 0}. (6)
5We stress that the market maker also operates on a fast scale: he adjusts prices on the fast

intra-day time scale and, eventually, makes the closing daily price available for time series analysis.
6The truncation to positive values is just one of the possible positive transformations of the

Ornstein-Uhlenbeck process. See, for instance, Almgren (2012) for other specifications of positive
transformations for mean-reverting stochastic processes representing liquidity on markets.
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2.2 The artificial market at work: endogenous thresholds
and intra-day returns

Each calendar date n ∈ N , the population I of agents trade on the market based
on the liquidity prevailing that day (signalled by market depth kn) and cost µn. In
particular, at each intra-day time step t ∈ {1, . . . , τn}, agents are asked to decide
their trading strategy. Indeed, each agent i ∈ I is either endowed with the asset
or not. Suppose he does not own it, so that ωi(t − 1) = 0 (a similar argument
holds for the case of ownership). Therefore, he can either be a buyer or be idle.
As described in Table 2, he reads the private signal εi and compares it with the
computed threshold T bi (t), where

T bi (t) = −Ei[Rn(t)] + µn = −kn
(
Ei
[1
I

I∑
j=1

ωj(t)
]
−Qn(t− 1)

)
+ µn,

and Ei[·] is the expectation with respect to the joint distribution of vector ε−i =
(εj)j 6=i. Note that this expectation is justified by the fact that ωj depends on εj
for all j 6= i and that vector ε−i is not observed by the i-th agent. As said, the
mechanism is strategic: each agent forms his expectation about all other agents’
actions. Given payoffs as in Table 1, agents who perceive that they would be better
off changing their strategy (from ω = 0 to ω = 1, or vice versa) will act accordingly.
This will cause a change in Qn(t) and Rn(t), so that other agents could also possibly
decide to change their minds. Indeed, the procedure ends when all agents are happy
with their actual strategy profile, meaning that the system has reached a Nash
equilibrium ω∗. Each equilibrium vector ω∗ is in a one-to-one relationship with a
vector of thresholds T = (T bi , T si )i∈I .

In this respect, the vector of thresholds T = (T bi , T si )i∈I can be interpreted as
a Nash equilibrium in an I-player game played at time step t. We now show the
existence of such an equilibrium and a possible way to identify it explicitly as an
iteration of a suitable best-response map. For reasons of clarity, as time step t is
fixed, in the rest of this section we omit the time index. First of all, note that, for
any buyer (and, similarly, for the seller),

ωi = I{εi>T b
i }
.

The binary action ωi translates into the real threshold T bi ∈ R ∪ {−∞,+∞} := R̄.
The vector of actions is therefore T = (T bi , T si )i∈I ∈ R̄2N . Finally, call T−i,∗, the
(I−1)-dimensional vector formed by the optimal strategies excluding agent i. It can
be shown that map Ti(T−i,∗) is continuous (see Dai Pra et al. (2013) for more details).
Being the best-response map T 7→ T ∗ continuous on the compact and convex domain
R̄2N , it admits at least one fixed point. Thus, we conclude that at least one Nash
equilibrium exists. We have basically proved the following proposition.

Proposition 1. For each date n ∈ N and each intra-day time step t ∈ {1, . . . , τn},
at least one Nash equilibrium exists, and it can be represented by threshold vectors

(T b(t), T s(t)).
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This finding resembles previous models in the field of agent-based models for
trading. For example, in Ghoulmie et al. (2005), probabilistic time-varying thresh-
olds are based on past returns. The main novelty of our methodology is that the
thresholds we derive are implicitly determined at the equilibrium by assuming that
agents forecast the level of returns prevailing on the market in the next time step
and act strategically in a game-theoretical setting.

Having proved that the thresholds are well-defined, agents play according to the
rules as in Table 2. We now briefly address the mechanism under which the Nash
equilibrium can be numerically computed. Suppose we are at date n and at the
beginning of the intra-day time step t. Each agent is endowed with common infor-
mation about the market outlook. In particular, kn, µn, and Qn(t − 1) (the actual
demand) are known to all agents. Moreover, each agent i knows his actual strategy
ωi(t− 1) and receives a new private signal εi(t), which will play a fundamental role
in a possible revision of his strategy. In order to compute the Nash equilibrium, we
start with the actual vector of actions ω(t − 1). We denote it by s(0), this being
the starting point of a new iteration procedure of the best-response map. Now, by
sequentially playing according to a randomly selected order, each agent decides his
best action. In doing so, he assumes that all other agents take their preferred action;
this may imply a change in one entry of the state vector: s(0) 7→ s(1). The best-
response iteration stops when no agent is willing to revise his own action, meaning
that a Nash equilibrium ω∗ is determined. As seen, this equilibrium is characterized,
equivalently, by a vector (T b, T s) of real thresholds. Moreover, the related demand
Qn(t) = ∑

i ω
∗
i /I is revealed. Returns Rn(t) are realized on the intra-day market,

and daily closing prices are computed. In the next section, we analyze the statistical
properties of daily returns, prices, and market activity.7

3 Results
In this section, we present the results of the model. In particular, the next subsection
outlines the procedure used to determine a set of parameters that give rise to several
stylized facts, which are examined in Subsection 3.2. Finally, in the last part of the
section, non-null transaction costs are introduced, and we describe their effects on
returns and on market activity.

3.1 Parameters
Some parameters are related to the market, whereas others reflect traders’ charac-
teristics.

• Market characteristics. The only parameter related to the asset is the initial
price p0; without loss of generality, we set p0 = 1. Concerning the time span,

7The Matlab code used to numerically simulate our returns, including
the iteration procedure of the best response map, can be downloaded at
https://drive.google.com/open?id=1Gx-UpwslWZPpPvabaARFtj5YSWpw4weg. The simula-
tions produced by this code are exactly the ones that are statistically analyzed in Section
3.2.
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we analyze time series formed by N = 360 calendar dates. As seen, the number
of intra-day periods at dates n ∈ N are i.i.d. random variables (τn)n∈N with
distribution Pois(τ̄). We fix τ̄ = 30.8

• Traders characteristics. As discussed, at each trading date n, agents receive
random signals εi(t), for i = 1, . . . , I and t = 1, . . . , τn. Signals are independent
in time and across agents, and are distributed according to a centered logistic
distribution with parameter β = 10. Concerning the number of traders, we
assume that I = 1000 agents are active on the market.9 Among them, a
certain proportion Qn(0) is endowed with the asset. We assume that Qn(0) is
random and, being a fraction of I = 1000, we model it as a Beta distribution
Beta(b1, b2), where b1 = b2 = 4 (truncating it at the second digit). The
values of the parameters have been chosen to produce a bell-shaped symmetric
distribution on (0, 1), centered at 0.5.

The parameters related to the market depth (liquidity) signal, i.e. α, σ, θ, as defined
in equation (5), are yet to be determined. They have been simply (but crudely)
adjusted in order to generate some stylized facts of real financial markets. We use
a quadratic fit measure to match some features of daily returns. In particular, we
aimed to get the empirical average, standard deviation, and kurtosis of returns to be
close to 0, 0.01, and 7, respectively.10 In addition, we aspired to have approximately
null first-lag autocorrelation of returns and first-lag autocorrelation of absolute re-
turns close to 0.2. The reference values are reported for convenience in Table 3.

avref sdref kuref coretref coabsref
0 0.01 7 0 0.2

Table 3: Reference values for statistics used for the fit function.

To simplify the analysis and to reduce the non-trivial numerical complexity, we
initially proceed by setting θ = 1; in this way, we basically disregard the memory
of the mean-reverting exogenous market depth process, and concentrate on the mo-
ments of the distribution of returns. Note that when θ = 1, (k̃n)n turns out to be
a sequence of independent random variables distributed according to N (α, σ). We

8The level of τ̄ is not crucial, provided that it is large enough to reach a stable value for intra-day
returns. A value of τ̄ that is too low would not let the intra-day market stabilize on an equilibrium
value for returns.

9The values of β and I are standard when studying the behavior of large populations using
binary choice models. See, for instance, Phan et al. (2003) and Nadal et al. (2005), where the same
value of β and a similar value for the number of agents is used.

10We used the EuStockMarkets dataset, which is available in R Core Team (2017) and contains
the time series of the DAX, the SMI, the CAC and the FTSE from the beginning of 1991 to the
end of 1998 (1860 daily observations for each index) to compute summary statistics of the returns.
For instance, standard deviations and kurtosis are 0.010, 0.009, 0.011, 0.008 and 9.28, 8.74, 5.39,
5.64 for the four time series, respectively. Similar figures are reported as examples for stocks and
indices in Campbell et al. (1997), even though there is obviously considerable variability among
different assets or financial acitvities. In Pagan (1996), the estimate of autocorrelation at lag 1 of
squared returns for US stocks is 0.189.
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minimize the following reduced form fit function

F (α, σ|θ = 1) = (av − avref )2 + (sd− sdref )2 + (ku− kuref )2,

for a range of values of α and σ over a grid where α ∈ [0.02, 0.2] and σ ∈ [0.02, 0.2].
This analysis suggests that α̂ = 0.11 and σ̂ = 0.03.11

Given the lack of memory in the process k̃n, as expected, time series of returns do
not show autocorrelation of absolute returns. We then keep α̂ = 0.11 and σ̂ = 0.03,
and look for the value of θ that approximately minimizes over θ the full fit function

F (θ) = (av−avref )2+(sd−sdref )2+(ku−kuref )2+(coret−coretref )2+(coabs−coabsref )2,
(7)

where θ ∈ (0, 1]. We find θ̂ = 0.4. In Table 4, we collect all values of the parameters
described above and implemented in the simulations.

α σ θ µ p0 N τ̄ β I b1 b2
0.11 0.03 0.4 0 1 360 30 10 1000 4 4

Table 4: Parameter values used in the simulations.

3.2 Returns, prices, and activity: analysis and discussion
In this section, we discuss the main statistical properties of the time series of daily
returns generated by the model using the values of parameters as in Table 4. Figure 1
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Figure 1: Time series (left) and histogram (right) of daily returns for the 19 simu-
lations produced. Parameters are set as in Table 4.

11To run the numerical fit, we fix a seed for the generation of the random signals of the Ornstein-
Uhlenbeck process. We then use a 20 × 20 grid of values for µ and σ. This calibration operation
required about 30 hours of machine time on a Core i7-6700 processor. The same methodology was
implemented in a second round for the calibration of θ, where we used a grid of ten values ranging
from 0.1 to 1. Note that implementation of a Monte Carlo experiment with M = 20 trajectories
would require approximately 20 days. A statistical robustness check of this result follows from the
analysis of time series produced by the model relying on those values of the parameters.
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shows how returns are usually close to zero, with some exceptions where pronounced
and visible peaks are present on both the positive and negative side. In Table 5, we
report the median values for the main statistics of the time series of returns.12

av sd ku coret coabs
−0.000007 1.01% 7.374 −0.063 0.241

Table 5: Summary statistics for time series of daily returns.

The average of the returns is basically null. The standard deviation, about 1%,
is a reasonable value for many risky assets and traded financial activities. The
distribution of the returns has substantial kurtosis, with the median exceeding 7.
Moreover, some persistence of volatility is demonstrated by the 1-lag autocorrelation
of absolute returns, 0.241, and by autocorrelograms reported in Figure 2. In this
figure, we see an absence of autocorrelations of returns (left panel), but significant
autocorrelations of absolute returns for a few lags (right panel).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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0.6

0.8

1

Figure 2: Autocorrelograms of daily returns (left panel) and absolute returns (right
panel). As usual, the boxplots depict the median value, the inter-quartile range (the
box); and outlying values marked with circles.

Simulated returns are fat-tailed and approximately power-law distributed, as seen
in Figure 3, where we plot on log-log scales probability P (rn > R) in a representative
case. We estimated power exponents for the 19 simulated series, see Gillespie (2015),
and obtained results in the range [2.50, 7.23]. This is in very good agreement with
Cont (2001), where it is claimed that the tail index is higher than 2 and less than
5 for many financial data (to be precise, 15 out of 19 simulated series have tail
exponents between 2 and 5). Note that no attempt was made to obtain realistic
tail exponents in the calibration of the parameters, and this unexpected outcome
appears to validate the model’s overall goodness of fit.13

It is also interesting to contrast the time series of daily returns and market depth
kn. We choose Simulation 9, which shows the highest abnormal return (rn ≈ 10.6%

12Figures in Table 5 are computed as the median values extracted from the 19 simulations.
13We thank an anonymous referee for his or her useful remarks on tail exponents.
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Figure 3: Log-log plot of P (rt > R) for Simulation 19. The fitted red line on the
right tail has a -4.09 slope.

at calendar date n = 244). In this case, as is immediately apparent in Figure 4,
we also see a peak in liquidity at the same date. We can interpret this fact as
follows: agents on the market leverage on the liquidity shock to obtain abnormal
returns on the fast-trading time scale. Note that the occasional presence of a large
value of the market depth is not automatically transformed into excess returns: at
date n = 223 of the same trajectory, we see a peak in k, which is not immediately
realized on the market as an abnormal return. This suggests that our model, by
mimicking a strategic mechanism, shows different possible reactions of traders to
exogenous signals. This intuition is reinforced by statistically testing for the presence
of linear correlation between returns and market depth signals. The hypothesis of
null correlation cannot be rejected for all the simulations. Conversely, the hypothesis
of null correlation between absolute returns and market depth must be rejected. In
particular, considering the 19 simulations, we find a median correlation between
absolute returns and market depth of 0.373 (maximum and minimum values are
0.440 and 0.293, respectively).

In Figure 5, we plot time series of daily prices. To improve legibility, we represent
the ten odd trajectories generated by our simulations. On visual inspection, the time
series resemble geometric Brownian motions with jumps. In particular, we recognize
an upward jump at date n = 244 for Simulation 9 (the green line in the plot).

Another significant aggregate measure describing one important dimension of
the market is activity. Using A(t) to denote the proportion of agents trading in a
certain intra-day trading period, it turns out that

An(t) = 1
I

I∑
i=1

ωi(t)(1−ωi(t−1))+ 1
I

I∑
i=1

ωi(t−1)(1−ωi(t)), for t ∈ {1, . . . , τn}. (8)

Note that An(t) proxies trading volumes at time step t: in our stylized market,
An(t) coincides with volumes, since agents can only trade one share of the asset per
period. In order to compare market activity with other figures, we compute an, an
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Figure 4: Comparison between daily returns (blue bottom line) and the exogenous
signal of market depth (black upper line) for Simulation 9.

average daily activity, defined as

an = 1
τn

τn∑
t=1

An(t).

In Figure 6, we plot an together with the daily returns rn for Simulation 9. As
expected, the daily returns have peaks corresponding to dates involving a high level
of activity. The median value of daily activity across the 19 simulations is 0.5018,
meaning that, without any taxation, we expect approximately half of the agents
to trade one share of the asset at each intra-day period. We have also computed a
proxy for the correlation between market activity and market volatility. The median
value for the 19 simulations is 0.284.14

3.3 The impact of transaction costs on high-frequency trad-
ing

We have described a microfounded market for fast trading, where a large popula-
tion of agents strategically interact to forecast returns and take advantage of high-
frequency trends in prices. We have seen that our market mechanism is capable
of reproducing the most significant stylized facts of real time series of returns and
prices. It remains to discuss the role of transaction costs and whether it is possible
to control high-frequency activities without affecting market performance.

To this end, we distinguish between two different approaches: a passive policy,
where the market maker simply chooses a predetermined level µ > 0 to reduce

14As a proxy for volatility of daily returns, we have used the standard deviation of intra-day
returns.
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Figure 5: Time series of daily prices, for the simulations with odd numbers (from 1
to 19).

fluctuations of returns and excessive market activity. The advantage of this approach
is firmly rooted in its simplicity. However, such a simplistic scheme can harm the
market in periods of low activity. The second approach is a proactive policy, where
the market maker reacts day by day to the signal about market liquidity and sets
time-varying transaction costs. To keep the analysis simple, we analyze a policy that
resembles the idea proposed by Spahn in one of his famous contributions, Spahn
(1995). In particular, we propose a two-tier policy: the transaction cost µn > 0 is
switched on only at dates when market depth kn exceeds a certain upper threshold
k and, therefore, the risk of abnormal returns increases.

Approach 1: Constant transaction costs

As mentioned above, the first approach deals with a fixed non-zero transaction cost.
To show the effects of µ on returns and activity, we consider two different scenarios.
Scenario 1 with µ = 0.005 and Scenario 2 with µ = 0.05. The results are summarized,
in terms of stylized facts, in Table 6 and in Figure 7.

Scenario Parameters av sd ku coret coabs Activity
Scen. 1 µ = 0.005 0.0000383 1.02% 7.962 0.011 0.221 0.5009
Scen. 2 µ = 0.05 0.0000277 0.50% 8.581 −0.008 0.200 0.4691

Table 6: Summary statistics for time series of daily returns and activity with µ =
0.005 and µ = 0.05.

The introduction of a low-level cost basically has no significant consequences on
the market. In contrast, a high level of transaction costs has a considerable effect on
the variability of returns but, on the other hand, it harms activity: in this simulation,
we see that the loss in activity is about 7% compared to the baseline scenario with
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Figure 6: Time series of daily returns and market activity for Simulation 9.

µ = 0, where the median value for activity an is 0.5018. Moreover, since returns
are generally flat, few abnormal returns make the kurtosis higher compared to the
µ = 0 baseline case (see Table 5).

Approach 2: Time-varying transaction cost

The second approach, referred to previously as the proactive policy, is more sophis-
ticated and considers the possibility of introducing a transaction cost only in case of
a liquidity shock on the market (signalled by a high value of kn). In the discussion
of Figure 4, we point out that liquidity shocks may have a great impact on returns,
inflating statistics such as standard deviations and kurtosis: the sudden reaction of
fast traders to these shocks amplifies the effect of bad signals, affecting market out-
comes. To control for this issue, we analyze a cost policy that resembles some ideas
of the transaction tax proposed by Spahn. Indeed, we consider a two-tier policy
such that µn > 0, but only when kn is large enough. We have, for all n ∈ N ,

µn = µ · I{kn≥k}, (9)

where µ > 0 is a predetermined cost and k is a suitable threshold level for the
market depth parameter kn. We must then determine µ and k. On the one hand,
sustained activity is needed to keep the market vital; on the other hand, overly
high levels of liveliness make the returns too volatile. The market maker is likely to
strike a balance between these two conflicting goals. Again, we consider two different
scenarios: Scenario 3, where k = 0.1 and µ = 0.01; and Scenario 4, where k = 0.1
and µ = 0.05. Statistics are reported in Table 7 and results displayed in Figure 8.
Scenario 3, characterized by µ = 0.01, shows no significant difference compared to
the baseline case with µ = 0. Scenario 4, where a rather significant cost (µ = 0.05)
is imposed only if market depth is above threshold k = 0.1, turns out to be more
interesting. In this case, variability (standard deviation) is much lower than in the
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baseline scenario of frictionless markets, and is in line with the case of a flat cost
µ = 0.05 (see Scenario 2 in Table 6). Interestingly, activity is not harmed as much
as in the case of Scenario 2: activity is now reduced only by 3.9% compared to the
baseline case without frictions.

Scenario Parameters av sd ku coret coabs Activity
Scen. 3 k = 0.1 & µ = 0.01 0.0000459 0.97% 7.945 0.019 0.201 0.5003
Scen. 4 k = 0.1 & µ = 0.05 −0.000494 0.55% 7.306 −0.010 0.119 0.4822

Table 7: Summary statistics for time series of daily returns and activity under
a Spahn-style policy with k = 0.1 and under two scenarios for the level of cost
µ = 0.01 and µ = 0.05, respectively.

4 Conclusions
In this paper, we discuss an artificial market where actions unfold according to
two time scales: in the model, many high-frequency traders interact using simple
threshold rules, strategically attempting to maximize their short-term returns and
taking into account the whole set of orders produced by other agents to reach a local
Nash equilibrium; on a much slower scale, (inverse) liquidity in the market evolves
following an autocorrelated exogenous process, and a market maker sets the closing
daily price and can adjust transaction costs to reduce, say, outlying returns and curb
excess kurtosis, while maintaining sustained activity in the marketplace.

The baseline model with no transaction costs, after some calibration aimed to
attain a host of relevant stylized facts, is indeed able to reproduce several significant
statistical regularities of realistic financial time series, including fat-tailed returns,
sizeable excess kurtosis, no linear predictability of returns, and some volatility clus-
tering. The model thus suggests that fast strategic interaction at the intra-day level
can amplify liquidity-related shocks and trigger streams of orders leading to outlying
returns, even in the presence of a slow and conservative market mechanism.

Quite interestingly, a liquidity stochastic process with memory turns out to be
filtered by the artificial market and is morphed in a white sequence of uncorre-
lated returns, which are no longer normally distributed and exhibit volatility bursts.
While we believe that the results can chiefly be ascribed to the effects of the fierce
and fast strategic interaction occurring during a trading session, additional research
would be needed to endogenize the prevailing liquidity and clarify the role of some
key parameters: θ, for example, appears to play an important role in obtaining
some stylized facts that are generated only if θ < 1, thus inducing some (small)
predictability in the sequence of daily market depth kn.

Finally, we discuss the impact of a transaction cost on daily returns, prices,
and market activity. In particular, we propose two alternative mechanisms: (i) a
fixed cost to be paid at each transaction on the realized returns, irrespective of
the exogenous signal of market depth; (ii) a variable cost to be paid only when the
market depth exceeds a predetermined threshold. The model suggests that the latter
mechanism, referred to as the proactive policy, may help in preventing the amplifying
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effects of fast trading over the liquidity-related signal. On the other hand, at dates
when the signal is ordinary (i.e. below the activation threshold), the transaction
cost is set to zero so that activity is not detrimentally harmed. In this perspective,
our proactive policy resembles the two-tier taxation proposed in Spahn (1995).

Our results further reinforce a pattern that has been gaining momentum in recent
studies, and stress the still-overlooked fact that substantial agent heterogeneity is
needed if credible returns are to be generated (in our model, orders are induced by
heterogenous thresholds and signals that are independently and repeatedly drawn
while trading). At the same time, the microstructure of the model is quite simplistic;
more detailed exchange structures than a simple market maker may improve the
quality and intensity of the stylized facts detected in the simulated data.
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Figure 7: Time series of daily returns (top), histogram of returns (center), correl-
ograms of absolute returns (bottom) under Scenario 1 (left panels) and Scenario 2
(right panels).
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Figure 8: Time series of daily returns (top), histogram of returns (center) and
correlograms (bottom) under Scenario 3 (left panels) and Scenario 4 (right panels).
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