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Abstract
We focus on the transfer of some known orthogonal factorization systems from Cat to the
2-category Fib(B) of fibrations over a fixed base category B: the internal version of the com-
prehensive factorization, and the factorization systems given by (sequence of coidentifiers,
discrete morphism) and (sequence of coinverters, conservative morphism) respectively. For
the class of fibrewise opfibrations in Fib(B), the construction of the latter two simplify to
a single coidentifier (respectively coinverter) followed by an internal discrete opfibration
(resp. fibrewise opfibration in groupoids). We show how these results follow from their ana-
logues in Cat, providing suitable conditions on a 2-category C, that allow the transfer of the
construction of coinverters and coidentifiers from C to FibC(B).

Keywords Internal fibration · Factorization system · Coidentifier · Coinverter

Mathematics Subject Classification 18A32 · 18D05 · 18D30

1 Introduction

The crucial point of the work [2] was to recover Yoneda’s Classification Theorem in [17,
§3.2] as a result of the factorization of a regular span S : X → B × A through an internal
discrete opfibration, in the 2-category Fib(B) of fibrations over B. Yoneda’s Theorem was
the base to give a new interpretation of cohomology groups in the additive case. Theorem 3.2
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in [2], which extends the above factorization to any fibrewise opfibration (see Definition 4.7)
with codomain a split fibration, allows us to enlarge this point of view to non-additive cases,
such as cohomology of groups and of associative algebras.

The first aim of the present work is to show that the abovementioned result, obtained in [2]
via an ad hoc construction, is actually an application of an orthogonal factorization system
in Fib(B), whose right class is given by internal discrete opfibrations. This is explained in
Theorem 4.10, which generalizes to Fib(B) the well known comprehensive factorization
system of Cat [15]. The above theorem relies on the fact that, for the class of opfibrations,
the comprehensive factorization system coincides with the orthogonal factorization system
in Cat given by (sequence of coidentifiers, discrete functor), whose construction in this case
simplifies to a single coidentifier (see Theorem 4.1 and Corollary 4.2). Actually, a similar
phenomenon occurs in Fib(B). In fact, Fib(B) inherits fromCat the latter factorization system
(see Theorem4.5 (i)), which, restricted to fibrewise opfibrations, can be performed by a single
coidentifier. This implies that for such class it coincides with the internal comprehensive
factorization system (see Corollary 4.11).

As an obvious consequence of the results reported so far, we get a reflection of any mor-
phism in Fib(B) onto a discrete morphism. For some purposes, this may cause an undesired
loss of information with respect to the initial data. So, one may look for a finer reflection,
where fibres are turned into groupoids. This gives a richer structure which is at the base, for
example, of the interpretation given in [1] of Schreier–Mac Lane Theorem on the classifica-
tion of group extension and its further generalizations (see Proposition 2.7 in [1]).

The main goal of the present work is to show first in Theorem 4.5 (ii) that Fib(B) inherits
such a finer factorization from the one in Cat given by (sequence of coinverters, conservative
functor) introduced in [7]; second, that for fibrewise opfibrations, it is performed by a single
coinverter followed by a fibrewise opfibration whose fibres are groupoids (Theorem 4.12).

The achieved results rely on specific 2-categorical properties of Cat and of Fib(B) which
are studied in detail in Sect. 3. In particular, in Proposition 3.8 we detect a sufficient condition
to transfer the construction of coidentifiers and coinverters from a 2-category C to the 2-
category FibC(B) of internal fibrations over a fixed object B. This happens when the 2-monad
R : C/B → C/B, whose pseudo-algebras define internal fibrations (in the sense of Street
[10]), preserves coidentifiers and coinverters of identees. In Propositions 3.13 and 3.16 we
prove that the property stated above holds when C = Cat and C = Fib(B), for any B, thanks
to the exponentiability of fibrations and opfibrations in Cat.

Throughout the paper, 2-limits and 2-colimits are to be understood in a strict sense.

2 Review of Internal Fibrations

Let C be a finitely complete 2-category [11]. For a fixed object B in C, we shall denote by
C/B the slice 2-category over B and by C//B the pseudo-slice 2-category over B.

We shall denote as follows the (strict) comma objects in C of identities, along identities
on the left and on the right respectively, and iso-comma along identities:

B/B

d0

d1
B

1

B/ f
d1

R f

A

f

f /B
L f

d0

B

1

f /∼=B
I f

w f

B

1

B
1

μB

B B
1

ϕ f

B A
f

ψ f

B A
f

ω f

∼

B

(1)
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Discrete and Conservative Factorizations in Fib(B)

Following [10], one can extend the assignment f �→ L f to 1-cells and 2-cells, yielding
a 2-functor L : C//B → C//B. Moreover there exist: a pseudo 2-natural transformation
u : 1C//B → L , a (strict) 2-natural transformationm : L2 → L and amodification λ : Lu →
uL such that (L, u,m, λ) gives rise to a KZ-doctrine in the sense of Definition 1.1 in [9]. In
other words, this structure provides a lax-idempotent 2-monad.

Let us observe that, in fact, L : C//B → C//B factors through the inclusion of C/B in
C//B, and the above 2-monad on C//B restricts to a strict 2-monad on C/B, which is also
part of a KZ-doctrine by the same λ. We will adopt the same notation for both monads as far
as no confusion arises.

Like L , also the 2-functors R and I on C//B, defined by the corresponding comma squares
in (1), can be endowed with a structure of 2-monad, which is colax-idempotent in the case
of R and pseudo-idempotent in the case of I . In both cases, these structures restrict to strict
2-monads (R, v, n, ρ) and (I , i, l, ι) on C/B.

One of the most important features of KZ-doctrines is that the corresponding (pseudo-)
algebra structures are unique up to isomorphism for each object and they are characterized
as right (pseudo-)inverse left adjoint to the unit component of the monad. Applying this
observation and its dual to the special cases of the 2-functors L , R and I described above,
one can characterize (pseudo-)opfibrations (and dually fibrations) and isofibrations in C.

Proposition 2.1 For a morphism f : A → B in C the following conditions are equivalent
and define an internal fibration (respectively pseudo-fibration):

1. (i) For all X in C, C(X , f ) : C(X , A) → C(X , B) is a fibration (respectively pseudo-
fibration) in Cat;

(ii) for all g : Y → X, the commutative square below is a morphism of fibrations
(respectively pseudo-fibrations) in Cat:

C(X , A)
C(g,A)

C(X , f )

C(Y , A)

C(Y , f )

C(X , B) C(g,B)
C(Y , B)

2. f admits a structure of pseudo-algebra for the 2-monad R : C/B → C/B (respectively
R : C//B → C//B);

3. The morphism v f : f → R f admits a right adjoint in C/B (respectively C//B);
4. (Chevalley criterion) The morphism f1 : A/A → B/ f , determined by the equations

⎧
⎨

⎩

(R f ) f1 = f d0
d1 f1 = d1
ϕ f f1 = f μA

admits a right adjoint in C with counit an identity (respectively isomorphism).

In practice, given an internal fibration according to the above form 2 of Proposition 2.1,
it is convenient to fix a corresponding pseudo-algebra structure once and for all (which in
Cat means to fix a cleavage). Accordingly, throughout the paper, FibC(B) will denote the
2-category whose objects are pseudo-algebras for the monad R : C/B → C/B, whose 1-cells
are strict pseudo-algebra morphisms, and with the obvious 2-cells (we shall write just Fib(B)

for C = Cat).
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Remark 2.2 The definition of internal fibration (resp. pseudo-fibration) in a representable
2-category appears in the form 2 of Proposition 2.1 in the works of Street [10,12]. The char-
acterizations 1 and 3 in Proposition 2.1 are well-known and already present in the literature
(see, for example, [16]). As for the Chevalley criterion, it was first proved by Gray [4] for
fibrations in Cat, while an internal version of it appears in [10, Proposition 9], asking for the
unit to be an isomorphism. In fact, the latter characterizes pseudo-opfibrations (see (3.17)
in [12]). This is the reason why we consider the characterization 4 also for internal (strict)
fibrations.

Definition 2.3 An internal fibration is said to be discrete if the functor C(X , f ) in 1. (i) of
Proposition 2.1 is a discrete fibration.

The equivalent conditions of Proposition 2.1 may be easily adapted to define internal
opfibrations (respectively pseudo-opfibrations), replacing the monad R with the monad L .
For the reader’s convenience, throughout the paper, most of the results are stated in terms of
fibrations. Where not explicitly provided, the corresponding results for opfibrations can be
obtained by duality.

Proposition 2.4 For a morphism f : A → B in C the following conditions are equivalent
and define an internal isofibration:

1. For all X in C, C(X , f ) : C(X , A) → C(X , B) is an isofibration in Cat;
2. f admits a structure of pseudo-algebra for the 2-monad I : C/B → C/B;
3. the morphism i f : f → I f admits a right adjoint in C/B.

3 Coinverters and Coidentifiers in FibC(B)

From now on, let C be a finitely complete 2-category with coidentifiers and coinverters of
reflexive 2-cells, whose definition we recall for the sake of completeness (the reader may
refer to [8,13] for example).

Definition 3.1 The coidentifier (respectively coinverter) of a 2-cell α is a 1-cell q such that:

1. qα is an identity (resp. isomorphism);
2. for any other 1-cell f such that f α is an identity (resp. isomorphism), there exists a

unique 1-cell t with tq = f ;
3. for any 2-cell β : f → f ′ such that f α and f ′α are identities (resp. isomorphisms),

there exists a unique 2-cell γ with γ q = β;

In this paper we will consider in particular coidentifiers (coinverters) of identees (inver-
tees). Given a 1-cell f , we denote by (K , κ) its identee, where κ is the 2-universal 2-cell
making f κ an identity. We denote by (W , ω) the invertee of f , where ω is the 2-universal
2-cell making f ω an isomorphism.

Later on, we will take advantage of the following results concerning isofibrations. Recall
that a 2-cell is called f -vertical if its image under f is an identity.

Lemma 3.2 Let f be an isofibration and α a 2-cell such that f α is an isomorphism. Then α

factorizes as α = σ · τ , where τ is f -vertical and σ is an isomorphism.

Proof Since f is an isofibration, the isomorphism f α admits a cartesian lifting σ , which is
an isomorphism, at the codomain of α. Then τ is the unique f -vertical factorization of α

through σ . ��
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Corollary 3.3 Let f be an isofibration, then:

(i) f is conservative if and only if its fibres are groupoids;
(ii) the coinverter of the identee of f coincides with the coinverter of its invertee.

Proof Let (W , ω) and (K , ωc) be the invertee and the identee, respectively, of f :

K
c

W
w1

w0

ω A
f

B .

Since f ω is an isomorphismby definition, as in Lemma 3.2, we can factorizeω as a composite
ω = σ ·τ , where σ is a cartesian lifting of f ω, and τ the unique f -vertical comparison 2-cell.
τ being vertical, there is a unique c′ : W → K such that ωcc′ = τ . So we have factorized ω

as in the following diagram:

W
c′

w1

K
c

σ

W

w1 w0
ω

A .

It is now easy to see that f is conservative, i.e. its invertee is an isomorphism, if and only if
its fibres are groupoids, i.e. its identee is an isomorphism.

As for the second statement, it suffices to observe that the coinverter of the identee ωc
coinverts also ω = σ · ωcc′. ��

Obviously the last result does not hold in general if f is not an isofibration, as it is
witnessed by the non-constant functor from the arrow-category 2 to the groupoid I with two
objects and two non-trivial arrows.

Identees in C/B are computed in C, while this is not true for invertees (and 2-limits in
general). On the other hand, it is easy to check that the following holds for 2-colimits.

Lemma 3.4 The forgetful 2-functor dom : C/B → C creates 2-colimits, and in particular
coidentifiers and coinverters of identees.

We are going to explore the behaviour of the monad R with respect to these limits and
colimits. Analogous results can be proved for the monad L .

Remark 3.5 It is worth observing that the functor R can be described by means of the fol-
lowing construction:

B/ f
d∗
1 f

R f

d1

B/B
d0

d1

B

A
f

B

μB

B.

That is, R = (d0)!d∗
1 , i.e. the composite of the change-of-base 2-functor along d1 with the

composition 2-functor with d0, which is left adjoint to d∗
0 .
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Lemma 3.6 The monad R : C/B → C/B preserves identees.

Proof By Remark 3.5, the thesis follows from the fact that d∗
1 preserves limits, being a right

adjoint, and (d0)! preserves identees. ��
Lemma 3.7 The identee of a morphism p : (A, f ) → (C, g) in FibC(B) can be computed
as in C.

Proof Let

K

h

k0

k1

κ A

f

p
C

g

B

(2)

be an identee diagram in C/B (which means that κ is also the identee of p in C). Since p is a
morphism in FibC(B) and R preserves identees by Lemma 3.6, it is straightforward to prove
that the adjunctions v f 	 r f and vg 	 rg in the diagram

B/h

rh

Rk0

Rk1

Rκ B/ f

r f

Rp
B/g

rg

K

vh 	
k0

k1

κ A
p

	v f

C

	vg

induce an adjunction vh 	 rh by the universal property of the identees. ��
There’s no obvious reason why coinverters and coidentifiers should be preserved by the

monad R, however this happens in some cases of interest which we will explore later on. So,
for a given object B in C, we shall consider the property
(†) The monad R : C/B → C/B preserves coidentifiers and coinverters of identees.

Proposition 3.8 Let B be an object in C satisfying (†), p : (A, f ) → (C, g) a morphism in
FibC(B) and κ its identee in C. Then we get a factorization

A

p

f

q Q

gs

s C

g

B

of p in FibC(B) in either of the following ways:

(i) taking as q the coidentifier of κ in C; then q : (A, f ) → (Q, gs) is the coidentifier of
κ in FibC(B);

(ii) taking as q the coinverter of κ in C; then q : (A, f ) → (Q, gs) is the coinverter of κ
in FibC(B).
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Proof We shall only prove (i i), (i) is proved analogously.
Recall thatκ is also the identee of p inC/B and consider the corresponding identee diagram

(2) in C/B. Since p (and then f ) coinverts κ , the morphisms s and gs in the factorization
above are uniquely determined by the universal property of q , and this explains why q is a
coinverter of κ in C/B.

Since f is a fibration, the unit component v f : (A, f ) → (B/ f , R f ) admits a right
adjoint r f in C/B. We call η f and ε f the corresponding unit and counit. Likewise, vg has a
right adjoint rg , and pr f = rg(Rp) since p is a morphism in FibC(B). Let us consider the
following diagram:

B/h

rh

Rk0

Rk1

Rκ B/ f

r f

Rp

Rq
B/(gs)

rgs

Rs
B/g

rg

K

	vh

k0

k1

κ A

p

q

	v f

Q

	vgs

s
C

	vg

Now, pr f (Rκ) = rg(Rp)(Rκ) = 1, hence r f (Rκ) factors through κ and qr f (Rκ) is an
isomorphism. By the assumption (†), Rq is the coinverter of Rκ , so there exists a unique
rgs : B/(gs) → Q such that rgs(Rq) = qr f . By the 2-dimensional universal property of
the coinverters q and Rq , one can prove that a unit ηgs and a counit εgs are induced by η f

and ε f respectively, making vgs 	 rgs an adjoint pair in C/B, so that gs is a fibration. As a
consequence of this construction, q turns out to be a morphism of fibrations over B.

It remains to show that for each c : (A, f ) → (Y , y) in FibC(B) such that cκ is an
isomorphism, the unique comparison morphism t in C/B, induced by the coinverter q and
such that tq = c, is actually amorphism in FibC(B). Let us denote by ry the R-pseudo-algebra
structure on y, i.e. the right adjoint to vy , and observe that the diagram

B/(gs)

rgs

Rt
B/y

ry

Q
t

Y

commutes since Rq is a coinverter, then epimorphic, and precomposition with Rq gives the
commutative square presenting c as a morphism of R-pseudo-algebras. ��
Corollary 3.9 Let B be an object in C satisfying (†), f : A → B a fibration in C, κ its
identee in C, and q : A → Q its coinverter (respectively coidentifier) in C. Then the unique
comparison morphism s : Q → B, such that sq = f , is a fibration and q is the coinverter
(respectively coidentifier) of κ in FibC(B).

Proof Apply Proposition 3.8 to the morphism f : (A, f ) → (B, 1B) in FibC(B). ��
In the cases we are interested in, which will be studied in Sect. 3.1, the property (†) relies

upon the exponentiability of split opfibrations in C. In this context, exponentiability is to
be understood in a 2-categorical sense: a 1-cell f is exponentiable if the change-of-base
2-functor along f has a right adjoint.
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Lemma 3.10 If for an object B in C, the comma projection d1 in the diagram

B/B
d0

d1

B

B

μB

B

is exponentiable, then the functor

R : C/B → C/B

has a right adjoint, hence B satisfies the condition (†). In particular, this holds for any B
when split opfibrations in C are exponentiable.

Proof By Remark 3.5, R = (d0)!d∗
1 . Hence R is left adjoint to (d1)∗d∗

0 , where (d1)∗ denotes
the right adjoint to d∗

1 , which exists by assumption. ��
Proposition 3.11 Under the assumptions of Lemma 3.10, the functor dom : FibC(B) → C
creates 2-colimits.

Proof One can repeat the same arguments of the proof of Proposition 3.8, using the fact that
now R preserves any 2-colimit, and that dom : C/B → C creates 2-colimits. ��
Remark 3.12 If instead of (†) we ask for

(†′) The monad L : C/B → C/B preserves coidentifiers and coinverters of identees,

then the results of Proposition 3.8 hold with FibC(B) replaced by OpFibC(B). Accordingly,
if d0 is exponentiable, and in particular when split fibrations are exponentiable in C, then L
admits a right adjoint, (†′) holds for B, and dom : OpFibC(B) → C creates colimits.

3.1 Case Study: Cat and Fib(B)

It is well-known that fibrations in Cat are exponentiable [3] in the classical 1-categorical
sense. As observed by Johnstone [6], this property holds also in the 2-categorical sense
recalled above. As a consequence, by Lemma 3.10 and Remark 3.12, we have:

Proposition 3.13 In the 2-category Cat, each object B satisfies the conditions (†) and (†′).

We will see in Proposition 3.16 that one can extend the last property from Cat to Fib(B)

for each B, by means of the pseudo-functorial interpretation of fibrations in Cat.

Proposition 3.14 Let B be a category. Then

(i) 2-colimits, in particular coidentifiers and coinverters of identees, exist in Fib(B);
(ii) their construction can be performed fibrewise.

Proof (i) The existence is guaranteed by Proposition 3.11, since Cat is 2-cocomplete. We
shall prove (i i) just for coidentifiers, the general case can be treated likewise.

Let us consider a morphism p : (A, f ) → (C, g) in Fib(B) and focus our attention
on its restriction pb to a single fibre over some b in B. We can consider the coidentifier
qb : Ab → Qb of its identee (Kb, κb). Since f and g are fibrations, the assignments b �→ Ab

and b �→ Cb are pseudo-functorial and the collection of the functors pb gives rise to a
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natural transformation of pseudo-functors from Bop to Cat. By the universal property of the
coidentifiers qb for each b, the assignment b �→ Qb is also pseudo-functorial and the qb’s
organize in a natural transformation. Let us briefly show how this can be proved.

In fact, the assignment b �→ Kb is also pseudo-functorial and together with the collection
of the κb’s, it determines the identee (K , κ) of the cartesian functor p. Given an arrow
β : b′ → b in B, we always denote by β∗ its associated change of base functor for any
chosen fibration over B. Since qb′β∗κb = qb′κb′β∗ = 1, by the universal property of the
coidentifier qb there is a unique functor β∗ : Qb → Q′

b such that β
∗qb = qb′β∗:

Kb κb

β∗

Ab
qb

β∗

Qb

β∗

Kb′ κb′ Ab′
qb′

Qb′ .

Given a composable pair of arrows

b′′ β ′
b′ β

b

in B, let φβ,β ′ : (β ′)∗β∗ → (ββ ′)∗ be the corresponding coherence isomorphism induced by
the fibration f . Since qb′′φβ,β ′ is a 2-cell between qb′′(β ′)∗β∗ = (β ′)∗β∗qb and qb′′(ββ ′)∗ =
(ββ ′)∗qb, then by the universal property of the coidentifier qb there exists a unique invertible
2-cell ψβ,β ′ such that ψβ,β ′qb = qb′′φβ,β ′ .

Ab
qb

β∗

(ββ ′)∗

φβ,β′
∼

Qb

β∗ (ββ ′)∗
ψβ,β′

∼
Ab′

qb′

(β ′)∗

Qb′

(β ′)∗

Ab′′
qb′′

Qb′′ .

Finally, the coherence conditions on the ψ’s making the assignment b �→ Qb into a pseudo-
functor can be deduced once again by the universal property of the qb’s. Since for a morphism
t : (A, f ) → (Y , y) in Fib(B), tκ = 1 if and only if tbκb = 1 for each b in B, q is actually
the coidentifier of κ in Fib(B). ��

Lemma 3.15 For each internal fibration (resp. opfibration) p : (E, e) → (A, a) in Fib(B),
the change of base 2-functor p∗ : Fib(B)/(A, a) → Fib(B)/(E, e) preserves coidentifiers
and coinverters of identees.

Proof We will prove the result concerning internal fibrations and coinverters, the variations
involving opfibrations and coidentifiers are obtained analogously.
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Let the arrow q : ((C, c), f ) → ((D, d), g) in the diagram

K

k

u

v

κ C

c

f

q
A

a

D
g

d

B

be the coinverter in Fib(B)/(A, a) of an identee κ , and consider its image under the change
of base 2-functor p∗, i.e. the upper part of the next diagram (we omit all arrows over B, all
pullbacks provide in fact fibrations over B):

K ×A E

p∗u

p∗v

p∗κ C ×A E
p∗ f

p∗q

E

pD ×A E
p∗g

K

u

v

κ C
f

q

A.

D
g

We would like to show that p∗q is the coinverter of the identee p∗κ in Fib(B)/(E, e). To
this end, we consider the restriction of the above diagram to the fibres over any object b in
B. By limit commutation, the latter is the same as the corresponding change of base diagram
in the fibres over b:

Kb ×Ab Eb

p∗
bub

p∗
bvb

p∗
bκb Cb ×Ab Eb

p∗
b fb

p∗
bqb

Eb

pbDb ×Ab Eb
p∗
b gb

Kb

ub

vb

κb Cb
fb

qb

Ab.

Db

gb

Now observe that, by Proposition 3.14 (ii), qb is the coinverter of κb. Moreover, since pb is
a fibration in Cat by assumption, it is exponentiable, hence p∗

b is a left adjoint and p∗
bqb is

the coinverter of p∗
bκb. Finally, again by Proposition 3.14, p∗q is the coinverter of p∗κ in

Fib(B), and hence in Fib(B)/(A, a). ��

Proposition 3.16 In the 2-category Fib(B), each object satisfies the conditions (†) and (†′).

123



Discrete and Conservative Factorizations in Fib(B)

Proof Let a : A → B be a fibration of categories, then the projections d0 and d1 of the
comma square in Fib(B)

(A, a)/(A, a)
d0

d1

(A, a)

(A, a)

μ(A,a)

(A, a)

are an internal fibration and opfibration respectively (see Theorem 14 in [10]). As a conse-
quence, by Lemma 3.15, the corresponding change of base 2-functors d∗

0 and d∗
1 preserve

coidentifiers and coinverters of identees. Now likewise in the proof of Lemma 3.10, the thesis
follows from the fact that R = (d0)!d∗

1 and (d0)! is a left adjoint (and similarly for L). ��
Proposition 3.17 Let p : (A, f ) → (C, g) be an internal fibration (resp. opfibration) in
Fib(B). Then the morphism s in the factorization of Proposition 3.8 (i) is an internal fibration
(resp. opfibration) in Fib(B).

Proof By Proposition 3.16, we can apply Corollary 3.9 to the fibration p in Fib(B). ��

4 Three Factorization Systems in Fib(B)

Let us recall that an (orthogonal) factorization system on a 1-category C is given by a pair
(E,M) of classes of morphisms in C such that:

(i) E and M are closed under composition and contain isomorphisms;
(ii) each morphism f in C admits a factorization f = m · e with m in M and e in E ;
(iii) for each commutative square

x

e m

y

d

with m in M and e in E , there exists a unique morphism d such that md = y and
de = x .

When C is a 2-category such factorization system (E,M) becomes a strict 2-categorical (or
a Cat-enriched) factorization system if the following additional property holds:

(iv) for each diagram

x

x ′
α

e m

y

y′
β

d
d ′

δ
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where mα = βe and d and d ′ are determined by (x, y) and (x ′, y′) respectively, there
exists a unique δ such that mδ = β and δe = α.

4.1 Three Factorization Systems in Cat

The comprehensive factorization system introduced in [15] and given by (initial functor,
discrete opfibration) is a well known example of factorization system inCat, which is actually
strict 2-categorical. We will call by the same name the dual factorization given by (final
functor, discrete fibration).

Another example of factorization system in Cat, which is 2-categorical as well, and has
conservative functors as right class, was introduced in [7, Theorem C.0.31] relying on the
notion of coinverter. Let us illustrate how this is obtained. For a functor f

W ω A

f

q
Q

s

B

the factorization s of f through the coinverter q of the invertee ω of f is not conservative
in general. One has to repeat this “invertee–coinverter” procedure possibly infinitely many
times in order to get a conservative comparison, and an actual factorization system. A similar
phenomenon occurs when taking the “identee-coidentifier” analogue of the previous proce-
dure, which allows to factor any functor as a (possibly infinite) sequence of coidentifiers
followed by a discrete functor, i.e. a functor whose fibres are discrete, yielding another (strict
2-categorical) factorization system in Cat.

We are going to show that if we restrict ourselves to fibrations, the latter two transfinite
procedures above reduce to a single step. We start with the second one and we show also that,
for fibrations, it coincides with the comprehensive factorization system. This actually holds
not only in Cat, but in any 2-category Cat(E) of internal categories where the construction of
the comprehensive factorization of any functor provided in [14] is still valid, as, for example,
when E is a finitely cocomplete locally cartesian closed category, like any topos E .

Theorem 4.1 Let f : A → B be a fibration in Cat(E) as above. The coidentifier of the
identee of f factorizes f into a final functor followed by a discrete fibration, giving then the
comprehensive factorization of f . Starting with f opfibration, the same procedure yields the
dual factorization of f given by an initial functor followed by a discrete opfibration.

Proof We consider just the case of fibrations. Following the approach of Section 3 in [14],
we perform the comprehensive factorization of f by taking the free R-algebra R f , which is
a split fibration, and then reflecting it into a discrete fibration p:
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K f

v̄




κ f

KR f

r̄

κR f

Q

A
v




q

f

B/ f

R f

r

d
π0B(B/ f )

t

p

B B B.

By construction of the above reflection, d is the coidentifier of the identee κR f of R f .
Considering the adjunction v 	 r provided by the fact that f is a fibration, we get dvκ f =
dκR f v̄ = 1, where κ f is the identee of f . Let now q be a functor such that qκ f = 1, and
consider the unit η : 1 → rv of the adjunction v 	 r in Cat(E)/B. Then f η = 1 and η

is contained in κ f , so that qη = 1 as well, and qrv = q . On the other hand, the counit
ε : vr → 1 is such that (R f )ε = 1, so it is contained in κR f and hence dε = 1 and dvr = d .

Now, qrκR f = qκ f r̄ = 1, so by the universal property of the coidentifier d there exists a
unique t such that td = qr . Hence q = qrv = tdv, and t is unique with this last property.
Indeed, if t ′dv = q for some t ′, then t ′d = t ′dvr = qr = td and hence t ′ = t since d is
epimorphic. This proves that dv is the coidentifier of κ f , and then it is final [14]. ��
Corollary 4.2 For a fibration (resp. opfibration) f , the factorization of f given by (sequence
of coidentifiers, discrete functor) reduces to a single coidentifier and coincides with the
comprehensive factorization.

In the special case of Cat, Theorem 4.1 can be proved directly by means of the pseudo-
functorial interpretation of fibrations. This indeed is what we are going to do in order to obtain
the analogous result, where coidentifiers are replaced by coinverters and discrete fibrations
are replaced by fibrations in groupoids (i.e. fibrations whose identee is an isomorphism).

Theorem 4.3 Each fibration (respectively opfibration) f : A → B in Cat admits a factoriza-
tion given by the coinverter of the identee of f followed by a fibration (resp. opfibration) in
groupoids. This factorization of f coincides with the one given by (sequence of coinverters,
conservative functor).

Proof Let us denote by

Cat
π

⊥ Gpd
i

the reflection of categories in groupoids, where the left adjoint π can be obtained by taking
as unit component, for each category A, the coinverter ηA of the 2-cell μA associated with
the comma category A/A:

A/A μA A
ηA

π(A) .

Consider now a fibration f : A → B and denote by [ f ] : Bop → Cat the corresponding
pseudo-functor. The composite π [ f ] : Bop → Gpd gives rise to a fibration in groupoids
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f : A → B. On the other hand, η[ f ] corresponds to a morphism q : (A, f ) → (A, f ) in
Fib(B):

A

f

q
A

f

B.

The component qb of η[ f ] at an object b of B is actually the coinverter ηAb of μAb :

Ab/Ab μAb Ab
ηAb

π(Ab).

It is not difficult to see that the pair (Ab/Ab, μAb ) coincides with the restriction (Kb, κb) of
the identee (K , κ) of f to the fibre over b. Hence, as explained in Proposition 3.14, q turns
out to be the coinverter of κ in Fib(B). Thanks to Corollary 3.3, f is conservative and we get
the desired factorization of f . ��

4.2 From Cat to Fib(B)

Weare going to use now the results of the previous sections to produce analogous factorization
systems in Fib(B). First, we need a preliminary result.

Lemma 4.4 For a morphism p : (A, f ) → (C, g) in Fib(B), the coinverter q of the invertee
of p in Fib(B) is also the coinverter of the invertee of p in Cat.

Proof The only non-trivial property to prove is that for an arrow α in A, qα is an isomorphism
as soon as pα is an isomorphism. But if pα is an isomorphism, then α factors as α = κ · ν

where κ is an f -cartesian lifting of f α, hence an isomorphism, and ν is f -vertical with pν
isomorphism. So ν, and hence α, is inverted by q . ��
Theorem 4.5 For each category B, Fib(B) inherits from Cat two factorization systems given
by

(i) (sequence of coidentifiers, discrete cartesian functors);
(ii) (sequence of coinverters, conservative cartesian functors).

Proof Identees in Fib(B) are computed in Cat by Lemma 3.7. Even if invertees in Fib(B)

may differ from the corresponding invertees computed in Cat, their coinverters coincide by
Lemma 4.4. As a consequence, thanks to Proposition 3.11, such factorization systems are
just performed in Cat. ��

Thanks to a result due to Bénabou, proving that a morphism in Fib(B) is an internal
fibration if and only if it is a fibration in Cat (see, for example, Theorem 4.16 in [5]), we
easily get the following result.

Proposition 4.6 Fib(B) inherits from Cat the comprehensive factorization system having
internal discrete fibrations as right class.

Proof Let p : (A, f ) → (C, g) be any morphism in Fib(B). Take its factorization (q, s) in
Cat, with q a final functor and s a discrete fibration. Then gs is a fibration and s is an internal
fibration. It is easy to see that, since p is cartesian and s is discrete, q is cartesian as well. ��
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Our next goal is to show that Fib(B) admits also a comprehensive factorization system
having internal discrete opfibrations as right class. We cannot repeat the above argument
because internal opfibrations in Fib(B) are not opfibrations in Cat. Let us recall from [2] the
following definition.

Definition 4.7 (see [2, Definition 2.1]) We say that a morphism p : (A, f ) → (C, g)
in Fib(B) is a fibrewise (discrete) opfibration if, for every object b of B, the restriction
pb : Ab → Cb of p to the b-fibres is a (discrete) opfibration.

From Theorem 2.8 in [2] it follows that every internal opfibration in Fib(B) is a fibrewise
opfibration, while the latter is exactly amorphism in Fib(B)which is an internal opfibration in
Cat/B (see Propositions 2.5 and 2.7 in [2]). By Corollary 2.9 in [2], the two notions coincide
in the discrete case. Recall also from [2] that Yoneda’s regular spans and two-sided fibrations
are instances, respectively, of fibrewise opfibrations and internal opfibrations in Fib(B).

Proposition 4.8 Let p : (A, f ) → (C, g) be a fibrewise (resp. internal) opfibration in
Fib(B). Then we get a factorization

A

p

f

q Q

gs

s C

g

B

of p in Fib(B) in either of the following ways:

(i) taking as q the coidentifier of the identee of p; then s is a discrete opfibration in Fib(B);
(ii) taking as q the coinverter of the identee of p; then s is a fibrewise (resp. internal)

opfibration in groupoids in Fib(B).

Proof Let us consider a fibrewise opfibration p : (A, f ) → (C, g) in Fib(B).
(i) Take the factorization (q, s) of p as in Proposition 3.8 (i), with q the coidentifier of

the identee of p. If we restrict to a single fibre over some b in B, we get a factorization

Ab

pb

qb
Qb

sb
Cb,

where, thanks to Proposition 3.14 (i i), qb is the coidentifier of the identee of pb. Since the
latter is an opfibration, by Theorem 4.1 sb is a discrete opfibration, hence s is an internal
discrete opfibration in Fib(B).

(ii) Take instead the factorization (q, s) of p as in Proposition 3.8 (i i). Likewise in (i),
for each b in B, thanks to Theorem 4.3, we get a factorization (qb, sb) of pb into a coinverter
followed by an opfibration in groupoids.

If moreover p is an internal opfibration, then s is also an internal opfibration by Corol-
lary 3.9 applied to Fib(B), thanks to Proposition 3.16. ��

The result in Proposition 4.8 (i) (with g a split fibration) was obtained in Section 3.3 of
[2], by providing an explicit construction of the discrete opfibration s together with an ad
hoc definition of q , which was later on proved to be the coidentifier of the identee of p.

As a consequence of Proposition 4.8 (i), we get an internal comprehensive factorization
system for Fib(B). In the next results, by initialwemean amorphismwhich is left orthogonal
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to internal discrete opfibrations. First we need the following lemma, whose dual version is
in Proposition 3.5 in [14], for a particular case. For completeness, we formulate it here in a
general finitely complete 2-category.

Lemma 4.9 In a finitely complete 2-category, left adjoints are initial.

Proof Consider the commutative square

A
f

l

B

m

C g D

where m is an internal discrete opfibration and l is left adjoint to some r , with unit η and
counit ε, so that εl · lη = 1l and rε · ηr = 1r .

Let γ : f r → d denote the opcartesian m-lifting of gε at f r , so that md = g. The 2-cell
dε being also an m-lifting of gε, it coincides with γ since m is a discrete opfibration. Then
m(dεl · f η) = gεl · m f η = g(εl · lη) = 1gl .

A

f

l

f η
C

mf r

g

gε

f r d
dε

D

K κ B

m

Hence dεl · f η factors through the identee κ ofm, which is discrete, so κ , and hence dεl · f η,
is an identity. Consequently, dl = f .

Suppose d ′ : C → B is another morphism such that md ′ = g and d ′l = f . Then d ′ε is
another m-lifting of gε, so d ′ε = dε and d = d ′. ��
Theorem 4.10 In Fib(B) there exists a comprehensive factorization system given by (initial
morphism, internal discrete opfibration).

Proof Consider a morphism p : (A, f ) → (C, g) in Fib(B), and the monad
L : Fib(B)/(C, g) → Fib(B)/(C, g). Lp is an internal opfibration, so we can factorize
it in Fib(B) as a coidentifier q followed by an internal discrete opfibration s, thanks to
Proposition 4.8. Now consider the factorization

(A, f )
u p

p

p/(C, g)
q

(Q, gs)
s

(C, g)

of p, where the unit component u p is initial by Lemma 4.9, since it is a left adjoint (see Corol-
lary 6 in [10]). The result follows from Proposition 4.8 as it is easy to see that coidentifiers
are initial. ��
Corollary 4.11 For each fibrewise opfibration, the factorization of Theorem 4.10 coincides
with the one given by (sequence of coidentifiers, discrete cartesian functor).
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As a consequence of Proposition 4.8 (i i), we get an extension of Theorem 4.3.

Theorem 4.12 For every fibrewise opfibration p : (A, f ) → (C, g) in Fib(B), the factor-
ization of Proposition 4.8 (ii) coincides with the one given by (sequence of coinverters,
conservative cartesian functor).

Proof By Corollary 3.3 applied to p, which is an opfibration, and then an isofibration, in
Cat/B, p is conservative inCat/B, hence in Fib(B). Then the thesis follows fromTheorem4.5
(i i). ��
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