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A B S T R A C T

The density matrix in the Lindblad form is used to describe the behavior of the Free-Electron Laser (FEL) operating in a quantum regime. The detrimental effects
of the spontaneous emission on coherent FEL operation are taken into account. It is shown that the density matrix formalism provides a simple method to describe
the dynamics of electrons and radiation field in the quantum FEL process. In this work, further insights on the key dynamic parameters (e.g., electron populations,
bunching factor, radiation power) are presented. We also derive a simple differential equation that describes the evolution of the radiated power in the linear regime.
It is confirmed that the essential results of this work agree with those predicted by a discrete Wigner approach at practical conditions for efficient operation of
quantum FELs.

1. Introduction

The Free-Electron Laser (FEL) operating in a quantum regime,
the so-called quantum FEL (QFEL), has been proposed as a potential
compact, tunable, near monochromatic, hard X-ray source [1,2]. The
characteristics of a QFEL are crucial for many demanding applications,
such as medical, commercial, and academic research applications. The
quantum regime of FEL is realized when the induced momentum spread
of the electron 𝛿𝑝𝑧 = 𝑚𝑐𝛾𝜌𝐹𝐸𝐿 is smaller than the photon momentum
ℏ𝑘 where 𝜌𝐹𝐸𝐿 is the FEL parameter and 𝛾 is the electron energy [3,4].
Then, in order to identify the regime of FEL operation, i.e., whether it
is classical or quantum, a dimensionless parameter 𝜌 = 𝛿𝑝𝑧∕ℏ𝑘 has been
introduced [3,4]. It has been noted that the quantum regime (i.e., when
𝜌 < 1) is more easily realizable at higher photon energies [1,2]. In
the quantum regime, an electron can be represented as a two-level
system, and each electron emits at most one photon when the saturation
takes place. The fundamental characteristic of the QFEL is an extremely
narrow spectrum due to the discreteness of momentum exchange. On the
other hand, in the classical regime of FEL (i.e., when 𝜌 ≫ 1), numerous
transitions between several momentum states occur and then a multi-
frequency spectrum is observed [5].

In the FEL operating in the quantum regime, the spontaneous
emission represents a loss mechanism and can significantly hinder the
coherent FEL emission. The frequency of the spontaneously radiated
photon depends on the angle of the emitted photon with respect to
the electron beam direction. Therefore, the spontaneous emission is
characterized by a broadband spectral range. In Refs. [6,7], a quantum-
mechanical model based on a continuous Wigner function has been
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developed for describing the QFEL operation including spontaneous
emission. In Ref. [7], the authors determine the condition at which
the effect of spontaneous emission is negligible. It has also been
demonstrated that the inclusion of the broadband frequency of the
spontaneous emission is insignificant. Then, the spontaneous emission
can be assumed monochromatic whereas it is almost emitted in the
forward direction of the electron beam. In Ref. [8], a model based on
discrete Wigner function has been developed for describing the coherent
radiation of QFEL, and recently extended in Ref. [9] to include the
spontaneous emission effect. In this model, the electron momentum is
assumed to be a discrete variable consistent with the quantum nature
of the emitted radiation. Then, the approach of the discrete Wigner
function used in Ref. [9] is more exact than that based on the continuous
Wigner function used in Ref. [7]. It is noticed that in the discrete Wigner
model [9], the spontaneous emission is also described as monochromatic
photons emitted randomly by electrons as assumed in Ref. [7].

In this paper, a simplified model based on the density matrix formal-
ism is presented for describing the QFEL interaction. In this model, the
dynamics of electrons undergoing spontaneous emission are described
using the Lindblad master equation for the density matrix [10,11]. We
confirm the validity of the density matrix model in the practical regime
of QFEL operation at low or even moderate spontaneous emission rates.
Approximately, the moderate spontaneous emission rate refers to that
which reduces the coherent intensity to about half of its maximum value.
Although the regime of high spontaneous emission rate is impractical,
we report on the invalidation of the density matrix approach in this
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regime. A quantitative criterion for applying the density matrix treat-
ment is presented. In this work, we show that the density matrix model
presents effective tools for further understanding of the dynamics of
electrons and radiation field in the QFEL.

This paper is organized as follows. In Section 2, the discrete Wigner
model of QFEL shown in [9], as a benchmark model, is reviewed. In
Section 3, we present a model based on the density matrix formalism
for the QFEL. Similar to the Wigner model, a system of coupled
equations for describing the evolution of the QFEL process including
the spontaneous emission is derived. Expressions for the density matrix
elements that describe the dynamics of electrons are obtained using a
master equation in the Lindblad form. In Section 4, numerical examples
are given providing a further understanding of the dynamics of electrons
in the QFEL under the influence of the spontaneous emission. By
comparing the results of the density matrix and the discrete Wigner
approaches, we address the question of the validity of the density matrix
model introduced in this work. Section 5 is devoted to conclusions.

2. Discrete Wigner model

In this section, we review the basic results of the discrete Wigner
function approach proposed for QFEL involving the spontaneous emis-
sion, as described in Ref. [9]. Then, a comparison with the results of
a density matrix-based model, newly introduced in this work, can be
made.

In the quantum theory of FELs [8], the ponderomotive electron phase
𝜃 =

(

𝑘 + 𝑘𝑤
)

𝑧−𝑘𝑐𝑡 is assumed to be a periodic variable in (0, 2𝜋] where 𝑘
and 𝑘𝑤 are the wave number of radiation and wiggler, respectively. This
hypothesis assures that the conjugate momentum variable 𝑝 is discrete.
A scaled momentum representing the relative electron momentum in
units of ℏ𝑘 is 𝑝 = 𝑚𝑐

(

𝛾 − 𝛾0
)

∕ℏ𝑘 where 𝛾 and 𝛾0 are the instantaneous
and initial electron energies in units of 𝑚𝑐2, respectively. Accordingly,
a 𝜃-periodic electron state |

|

𝛹 (𝑧, 𝜃)
⟩

is expanded in terms of momentum
eigenstates |𝑛⟩ as [8]

|

|

𝛹 (𝑧, 𝜃)
⟩

= 1
√

2𝜋

𝑛=∞
∑

𝑛=−∞
𝑐𝑛(𝑧) |𝑛⟩ , ⟨𝜃 |𝑛 ⟩ = 𝑒𝑖𝑛𝜃 . (1)

In Eq. (1), 𝑧 = 𝑧∕𝐿𝑔 is a normalized distance where 𝐿𝑔 = 𝜆𝑤∕4𝜋𝜌𝐹𝐸𝐿 is
the gain length and 𝜆𝑤 is the wiggler period. |

|

𝑐𝑛||
2 is the probability of

finding an electron in a momentum state 𝑛. The eigenstates |𝑛⟩ satisfy
the eigenvalue equation

�̂� |𝑛⟩ = 𝑛 |𝑛⟩ ,where �̂� = −𝑖 𝜕
𝜕𝜃

. (2)

The operators �̂� ≡ 𝜃 and �̂� satisfy the commutation relation
[

�̂�, �̂�
]

= 𝑖.
The electron dynamics is described by a Schrödinger-like equa-

tion [8]

𝑖
𝜕 |
|

𝛹 (𝑧, 𝜃)
⟩

𝜕𝑧
= �̂� |

|

𝛹 (𝑧, 𝜃)
⟩

, (3)

where �̂� is the single-electron Hamiltonian and is given as

�̂� = �̂�0 + �̂�int =
�̂�2

2𝜌
− 𝑖𝜌

(

𝐴𝑒𝑖𝜃 − 𝑐.𝑐.
)

. (4)

In Eq. (4), �̂�0 = �̂�2∕2𝜌 is the unperturbed Hamiltonian and �̂�int =
−𝑖𝜌

(

𝐴𝑒𝑖𝜃 − 𝑐.𝑐.
)

is the interaction Hamiltonian.
On the basis of the above discussion, an approach based on a Wigner

distribution function with periodic boundaries in 𝜃 has been developed
to formulate the quantum theory for FELs [9]. In this approach, the sys-
tem of coupled equations that describes the FEL including spontaneous
emission is written as [9]
𝜕𝑤𝑠(𝑧, 𝜃)

𝜕𝑧
+ 𝑠

𝜌
𝜕𝑤𝑠(𝑧, 𝜃)

𝜕𝜃
= 𝜌

(

𝐴𝑒𝑖𝜃 + 𝑐.𝑐.
) {

𝑤𝑠+1∕2(𝑧, 𝜃) −𝑤𝑠−1∕2(𝑧, 𝜃)
}

+
𝛽
𝜌
{

𝑤𝑠+1(𝑧, 𝜃) −𝑤𝑠(𝑧, 𝜃)
}

, (5)

𝑑𝐴
𝑑𝑧

=
∞
∑

𝑚=−∞∫

𝜋

−𝜋
𝑤𝑚+1∕2(𝑧, 𝜃)𝑒−𝑖𝜃𝑑𝜃 + 𝑖𝛿𝐴. (6)

In Eq. (5), 𝑤𝑠(𝑧, 𝜃) represents two types of Wigner functions where 𝑠 = 𝑚
or 𝑠 = 𝑚 + 1∕2. 𝛽 = 𝛼𝑎2𝑤𝑚𝑐𝛾𝑟∕6ℏ𝑘 is the scaled spontaneous emission
rate where 𝛼 is the fine structure constant and 𝑎𝑤 = 𝑒𝐵𝑤∕𝑘𝑤𝑚𝑐 is the
wiggler parameter. 𝐴 is a scaled complex amplitude of the radiation
field whereas the photon number emitted by each electron is 𝜌|𝐴|2 [3].
In Eq. (6), 𝛿 =

(

𝛾𝑟 − 𝛾0
)

∕𝜌𝐹𝐸𝐿𝛾0 is the detuning parameter and 𝛾𝑟 is the
resonant energy.

Since 𝑤𝑠(𝑧, 𝜃) is periodic in 𝜃, it can be represented as a Fourier series
in the form of [8,9]

𝑤𝑠(𝑧, 𝜃) =
1
2𝜋

∞
∑

𝑛=−∞
𝑤𝑛

𝑠 (𝑧)𝑒
𝑖𝑛𝜃 . (7)

The Fourier components 𝑤𝑛
𝑠 (𝑧) are associated to 𝑐𝑚(𝑧) of the wave

function 𝛹 where 𝑤2𝑛
𝑚 = 𝑐∗𝑚+𝑛𝑐𝑚−𝑛 and 𝑤2𝑛+1

𝑚+1∕2 = 𝑐∗𝑚+𝑛+1𝑐𝑚−𝑛 [8]. Then,
𝑤0

𝑚 = |

|

𝑐𝑚||
2 is the population of the 𝑚th momentum state and 𝑤1

𝑚+1∕2 =
𝑐∗𝑚+1𝑐𝑚 is the 𝑚th bunching component.

In the quantum regime, 𝜌 ≪ 1, a two level system is considered where
the electron transition occurs between two adjacent momentum states,
𝑚 = 0 and 𝑚 = −1.

Substituting Eq. (7) in Eq. (5), considering the terms with 𝑠 = 0,
𝑠 = −1, and 𝑠 = −1∕2, neglecting the higher components 𝑤2

0 and 𝑤2
−1,

and defining the populations parameters 𝑃0 = 𝑤0
0 and 𝑃−1 = 𝑤0

−1 and
the bunching parameter 𝐵 = 𝑤1

−1∕2 (i.e., 𝐵∗ = 𝑤−1
−1∕2), we finally can

write the coupled equations for the QFEL as [9]
𝑑𝑃0
𝑑�́�

= −
(

�́��́�∗ + 𝑐.𝑐.
)

−𝐷𝑃0, (8)
𝑑𝑃−1
𝑑�́�

=
(

�́��́�∗ + 𝑐.𝑐.
)

+𝐷
(

𝑃0 − 𝑃−1
)

, (9)

𝑑�́�
𝑑�́�

= −
(

𝑖�́� +𝐷
)

�́� + �́�
(

𝑃0 − 𝑃−1
)

, (10)

𝑑�́�
𝑑�́�

= �́�. (11)

In Eqs. (8)–(11), we define the new variables �́� =
√

𝜌𝑧, �́� =
√

𝜌𝐴𝑒−𝑖𝛿𝑧,
�́� = 𝐵𝑒−𝑖𝛿𝑧, �́� =

[

𝛿 −
(

1∕2𝜌
)]

∕
√

𝜌, and 𝐷 = 𝛽∕𝜌3∕2.
In Ref. [9], by solving Eqs. (8)–(11) numerically, many simulations

have been carried out to investigate the detrimental effect of sponta-
neous emission on the FEL operating in the quantum regime. It has
been shown that the effect of spontaneous emission is negligible when
𝐷 ≲ 0.07 in agreement with the results of Ref. [7].

3. Density matrix model

In this section, using the density matrix formulation, coupled dif-
ferential equations for describing the behavior of QFELs are presented.
Here, the dynamics of electrons is described by the master equation
in the Lindblad form [10,11]. From the master equation, expressions
for the elements of the density matrix operator 𝜌 are obtained. It
is instructive to recall that the diagonal elements 𝜌𝑛,𝑛 represent the
probability of finding an electron in a particular 𝑛th state, while the
off diagonal terms 𝜌𝑛,𝑚 represent the degree of coherence. In this work,
for convenience, the density matrix 𝜌 is designated by a subscript 𝑛, 𝑚
(not 𝑛𝑚). For a two-level system, one can realize the correspondences
between the density matrix elements and Wigner function components
where 𝜌0,0 ≡ 𝑃0 (i.e., 𝜌−1,−1 ≡ 𝑃−1) and 𝜌0,−1 ≡ 𝐵. These correspondences
allow a direct comparison between the results of the density matrix and
the discrete Wigner models.

For a two-level system, the elements of the density matrix 𝜌 are
obtained from the Lindblad master equation that takes the form [10]

𝑑𝜌(𝑧)
𝑑𝑧

= −𝑖
[

�̂�, 𝜌
]

−
𝛽
2𝜌

(

𝜎−𝜎+𝜌 + 𝜌𝜎−𝜎+ − 2𝜎+𝜌𝜎−
)

, (12)

where 𝜎+ and 𝜎− are the emission and absorption operators, respec-
tively. In the master equation, the spontaneous emission is expressed
by the second term on the right-hand side, termed the dissipative
term. Notice that the rate of spontaneous emission 𝛽∕𝜌 shown in the
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dissipative term is implied considering the correspondence between 𝑤𝑠
in Eq. (5) and 𝜌 in Eq. (12).

In a 2-dimensional Hilbert space, the momentum states |0⟩ and |−1⟩
can be written as

|0⟩ =
(

1
0

)

, |−1⟩ =
(

0
1

)

. (13)

Then, 𝜎+ and 𝜎− become

𝜎+ =
(

0 0
1 0

)

, 𝜎− =
(

0 1
0 0

)

, (14)

where the relations 𝜎+ |0⟩ = |−1⟩ and 𝜎− |−1⟩ = |0⟩ are satisfied. Using
Eq. (14), the dissipative term in Eq. (12) is

𝛽
2𝜌

(

𝜎−𝜎+𝜌 + 𝜌𝜎−𝜎+ − 2𝜎+𝜌𝜎−
)

=
𝛽
𝜌

(

𝜌0,0 𝜌0,−1∕2
𝜌−1,0∕2 −𝜌0,0

)

. (15)

Now, we treat the term −𝑖
[

�̂�, 𝜌
]

in Eq. (12). To simplify our
notations, we will first carry out our analysis for unknown momentum
states, 𝑛 and 𝑚. In a later step, we will replace 𝑛 and 𝑚 by 0 and −1,
respectively.

Since �̂� = �̂�0 + �̂�int , the term −𝑖
[

�̂�, 𝜌
]

can be rewritten as

− 𝑖
[

�̂�, 𝜌
]

= −𝑖
{(

�̂�0𝜌 − 𝜌�̂�0
)

+
(

�̂�int𝜌 − 𝜌�̂�int
)}

. (16)

In Eq. (16), the interchange term of the principal Hamiltonian �̂�0 =
�̂�2∕2𝜌 is

− 𝑖
⟨

𝑛|
(

𝐻0𝜌 − 𝜌𝐻0
)

|𝑚
⟩

= 𝑖
2𝜌

(

𝑚2 − 𝑛2
)

𝜌𝑛,𝑚, (17)

while the interchange term of the interaction Hamiltonian is

− 𝑖
⟨

𝑛|
(

�̂�int𝜌 − 𝜌�̂�int
)

|𝑚
⟩

= −𝑖
{⟨

𝑛|�̂�int𝜌|𝑚
⟩

−
⟨

𝑛|𝜌�̂�int |𝑚
⟩}

,

= −𝑖
∑

l

{⟨

𝑛|�̂�int |l
⟩ ⟨

l|𝜌|𝑚
⟩

−
⟨

𝑛|𝜌|l
⟩⟨

l|�̂�int |𝑚
⟩}

. (18)

Using the relation of �̂�int = −𝑖𝜌
(

𝐴𝑒𝑖𝜃 + 𝑐.𝑐.
)

, one can write

⟨

𝑛|�̂�int |𝑚
⟩

=
⟨

𝑛|−𝑖𝜌
(

𝐴𝑒𝑖𝜃 + 𝑐.𝑐.
)

|𝑚
⟩

= −𝑖𝜌
(

𝐴𝑛𝑚 + 𝐴∗
𝑛𝑚
)

(19)

where 𝐴𝑛𝑚 =
⟨

𝑛|𝐴𝑒𝑖𝜃|𝑚
⟩

and its complex conjugate is 𝐴∗
𝑛𝑚 =

⟨

𝑛|𝐴∗𝑒−𝑖𝜃|𝑚
⟩

. 𝐴𝑛𝑚 is an off-diagonal element that represents the cou-
pling efficiency between the radiation mode and the electron wave. We
can assume that the amplitude of the field 𝐴 is almost constant over
one ponderomotive period of an electron wave (i.e., equivalently, over
one radiation wavelength when 𝜃 ∈ (0, 2𝜋]). Hence, 𝐴𝑛𝑚 = 𝐴⟨𝑛|𝑒𝑖𝜃|𝑚⟩ =
𝐴𝛿𝑛,𝑚+1 and 𝐴∗

𝑛𝑚 = 𝐴∗ ⟨𝑛|𝑒−𝑖𝜃|𝑚
⟩

= 𝐴∗𝛿𝑛,𝑚−1.
Using Eqs. (16)–(19), we get

− 𝑖
⟨

𝑛|
[

�̂�, 𝜌
]

|𝑚
⟩

= 𝑖

(

𝑚2 − 𝑛2
)

2𝜌
𝜌𝑛,𝑚

+ 𝜌
[

𝐴
(

𝜌𝑛,𝑚+1 − 𝜌𝑛−1,𝑚
)

+ 𝐴∗ (𝜌𝑛+1,𝑚 − 𝜌𝑛,𝑚−1
)]

. (20)

Using Eqs. (15) and (20) with Eq. (12) and assuming the initial state
is 𝑛 = 0 and the final state is 𝑚 = −1, we get

𝑑𝜌0,0
𝑑𝑧

= −𝜌
(

𝐴∗𝜌0,−1 + 𝐴𝜌∗0,−1
)

−
𝛽
𝜌
𝜌0,0, (21)

𝑑𝜌−1,−1
𝑑𝑧

= 𝜌
(

𝐴∗𝜌0,−1 + 𝐴𝜌∗0,−1
)

+
𝛽
𝜌
𝜌0,0, (22)

𝑑𝜌0,−1(𝑧)
𝑑𝑧

=
(

𝑖
2𝜌

−
𝛽
2𝜌

)

𝜌0,−1
(

𝑧
)

+ 𝜌
[

𝜌0,0
(

𝑧
)

− 𝜌−1,−1
(

𝑧
)]

𝐴. (23)

Using the density matrix formulations, the expectation value of an
arbitrary operator R is

⟨R⟩ = Tr {𝜌R} =
∑

𝑛
⟨𝑛|𝜌R|𝑛⟩

=
∑

𝑛

∑

𝑚
⟨𝑛|𝜌|𝑚⟩ ⟨𝑚|R|𝑛⟩ . (24)

The normalized radiation amplitude 𝐴 is classically determined by the
bunching parameter 𝑏 = (1∕𝑁)

∑𝑁
𝑗=1𝑒

−𝑖𝜃𝑗 where 𝑑𝐴∕𝑑𝑧 = 𝑏 + 𝑖𝛿𝐴 [12].
Then, according to Eq. (24), 𝐴 is given quantum mechanically by

𝑑𝐴
(

𝑧
)

𝑑𝑧
=
⟨

𝑒−𝑖𝜃
⟩

+ 𝑖𝛿𝐴 =
∑

𝑛
𝜌𝑛,𝑛−1 + 𝑖𝛿𝐴. (25)

For a two-level system with two momentum states |0⟩ and |−1⟩, Eq. (25)
is reduced to
𝑑𝐴

(

𝑧
)

𝑑𝑧
= 𝜌0,−1 + 𝑖𝛿𝐴. (26)

Redefining the off-diagonal element of density matrix as �́�0,−1 =
𝜌0,−1𝑒−𝑖𝛿𝑧 ≡ �́� and using the relations 𝜌0,0 ≡ 𝑃0 and 𝜌−1,−1 ≡ 𝑃−1,
Eqs. (21)–(23) and (26) are respectively
𝑑𝑃0
𝑑�́�

= −
(

�́��́�∗ + 𝑐.𝑐.
)

−𝐷𝑃0, (27)
𝑑𝑃−1
𝑑�́�

=
(

�́��́�∗ + 𝑐.𝑐.
)

+𝐷𝑃0, (28)

𝑑�́�
𝑑�́�

= −
(

𝑖�́� + 𝐷
2

)

�́� + �́�
(

𝑃0 − 𝑃−1
)

, (29)

𝑑�́�
𝑑�́�

= �́�. (30)

In deriving Eqs. (27)–(30), we again use the variables �́� =
√

𝜌𝑧, �́� =
√

𝜌𝐴𝑒−𝑖𝛿𝑧, �́� =
[

𝛿 −
(

1∕2𝜌
)]

∕
√

𝜌, and 𝐷 = 𝛽∕𝜌3∕2. It is obvious that
Eqs. (27)–(30) obtained on the basis of the density matrix approach are
similar to Eqs. (8)–(11) based on the discrete Wigner model.

The difference between the both models is mainly due to the fact that
the Lindblad form of the master equation fulfills the trace-preserving
property of the density matrix. On the other hand, the trace of the
corresponding components of Wigner function to the diagonal elements
of density matrix, 𝑤0

0 and 𝑤0
−1, is not conserved. In the density matrix

model, from the second term of Eq. (28) representing the inclusion of
the spontaneous emission, the rate of the final state population 𝑑𝑃−1∕𝑑�́�
are only determined by the variation in the initial state population 𝑃0,
and vice versa as indicated by Eq. (27). In this case, the population can
only be exchanged between two momentum eigenstates and no other
transitions are allowed. Eqs. (27) and (28) satisfy the trace-preserving
condition (i.e., 𝑃0

(

𝑧
)

+𝑃1
(

𝑧
)

= 1) as will be demonstrated by numerical
examples in the next section. Note that the first terms of Eqs. (27)
and (28) correspond to the population change due to the stimulated
emission. The opposite sign of these terms ensures the conservation of
probabilities due to the stimulated emission.

In the Wigner model, due to the spontaneous emission, 𝑑𝑃−1∕𝑑�́�
is proportional to 𝑃0 − 𝑃−1 as expressed by the second term on the
right-hand side of Eq. (9). In this case, the probability of occupying the
final state increases by spontaneous emission from electrons occupying
the initial state but decreases by spontaneous emission from electrons
occupying the final state. Then, the Wigner model is more exact than the
density matrix because the spontaneous emission from the final state is
also taken into account. The drawback associated to the trace-preserving
property assumed in the density matrix treatment becomes pronounced
as the rate of the spontaneous emission increases. As will be shown in the
next section, in the practical regime of QFEL operation (𝐷 < 0.07), the
density matrix model is quite applicable where a very good agreement
with the discrete Wigner model is observed. It is also noticed that, by
comparing Eqs. (10) and (29), the lifetime of coherence in the Wigner
model is 1∕𝐷, twice as large as that appeared in the density matrix
model. In fact, this does not cause a significant difference between both
models since the spontaneous emission rate 𝐷 ≪ 1∕

(

2𝜌3∕2
)

in the
quantum regime where 𝜌 < 0.4.

4. Numerical results and discussion

In this section, using the density matrix approach, we firstly show
the fundamental properties of coherent QFEL emission when the spon-
taneous emission is negligible (i.e., 𝐷 ≪ 1). Next, considering the
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Fig. 1. In the linear regime and when 𝐷 = 0, imaginary part of the complex root
of the quadratic equation Eq. (33) vs. 𝛿 for different values of 𝜌 in the quantum
regime (𝜌 = 0.1, 0.2, 0.3, and 0.4).

spontaneous emission, we compare the dynamics of electrons and
radiation field predicted by the density matrix and Wigner models using
Eqs. (28)–(31) and (8)–(11), respectively. The condition for which both
models are equivalent is given.

4.1. Negligible spontaneous emission regime

Here, we not only address the validity of the density matrix treatment
when 𝐷 = 0, but present insights on the electron dynamics described by
the density matrix elements.

Assuming 𝐷 = 0, from Eqs. (27) and (28), we get the population
difference

𝑃0 (�́�) − 𝑃−1 (�́�) = 1 − 2||
|

�́�||
|

2
. (31)

Then, using Eq. (31) with Eqs. (29) and (30), the evolution of radiation
field is described by solving

𝑑2�́�(�́�)
𝑑�́�2

+ 𝑖�́�
𝑑�́�(�́�)
𝑑�́�

−
[

1 − 2||
|

�́�||
|

2
]

�́� = 0. (32)

In Eq. (32), the term 2||
|

�́�||
|

2
is responsible for the nonlinear characteristics

of QFEL radiation. The linear regime is dominant if 2||
|

�́�||
|

2
≪ 1 where

𝑃0 (�́�) − 𝑃−1 (�́�) = 1. In the linear regime, assuming |

|

|

�́�||
|

has a solution
in the form of |

|

|

�́�||
|

∝ 𝑒𝑖�́��́� in Eq. (32) and using the relation �́� =
[

𝛿 −
(

1∕2𝜌
)]

∕
√

𝜌, we get

�́�2 + 1
√

𝜌

[

𝛿 −
(

1∕2𝜌
)]

�́� + 1 = 0. (33)

In Fig. 1, using Eq. (33), we plot ||
|

Im(�́�)||
|

vs. 𝛿 at different values of 𝜌
in the quantum regime (i.e., 𝜌 = 0.1, 0.2, 0.3, and 0.4). Fig. 1 illustrates

the fundamental characteristics of the QFEL operating in the linear
regime [3] which are (i) the resonance of the gain occurs at 𝛿 = 1∕2𝜌,
(ii) the full width of the gain curve is 4𝜌, and (iii) the peak of the gain
is
√

𝜌.
Using Eq. (33), we show in Fig. 2(a) the evolution of the number of

photons per electron |

|

|

�́�||
|

2
with �́� in the linear and nonlinear regimes. In

these examples, it is assumed that 𝜌 = 0.3, 𝛿 = 1∕2𝜌, and �́� (0) = 0.01. In
Fig. 2(a), one can realize that the deviation in the results of the linear
and nonlinear regimes is small until the first peak. In Fig. 2(a), the
position of the first peak is �́�|peak ≈ 6.0 which agrees with the predicted
value from the relation �́�|peak = − ln

[

�́� (0) ∕4
]

reported in Ref. [8].
Also, in agreement with the results of Ref. [8], Fig. 2(a) shows that the
maximum bunching occurs at �́� = �́�|peak ± 0.88. In Fig. 2(a), it is seen
that the maximum number of photons is 1 in the nonlinear regime.

In Fig. 2(b), we plot ||
|

�́�||
|

2
, ||
|

�́�||
|

, and 𝑃0 −𝑃−1 vs. �́�. From Fig. 2(b), it is

shown that as ||
|

�́�||
|

2
varies periodically from 0 to 1, 𝑃0−𝑃−1 varies from 1

to −1. This behavior can be predicted from Eq. (31). The maximum and
minimum values of the population difference, 1 and −1, correspond to
the maximum probability of finding an electron in the initial state 𝑛 = 0
and the final state 𝑚 = −1, respectively. Consequently, it is expected that
the maximum of the bunching factor ||

|

�́�||
|

is 0.5 as shown in Fig. 2(b).

4.2. Non-negligible spontaneous emission regime

In this section, the QFEL operation is investigated taking into account
the inclusion of the spontaneous emission. We present comparisons
between the results of the density matrix and those of discrete Wigner
model. For this purpose, we solve numerically the set of equations for
both models, Eqs. (27)–(30) and (8)–(11), respectively.

A comparison between the average number of photons emitted per
electron, |

|

|

�́�||
|

2
, vs. �́� for different values of the spontaneous emission

rate 𝐷 is shown in Fig. 3. In these numerical examples, we assume
𝜌 = 0.2, �́� (0) = 0, �́� (0) = 0.01, 𝑃0 (0) = 1, and 𝑃−1 (0) = 0. In Fig. 3(a),
identical results for the density matrix and discrete Wigner models are
seen when the spontaneous emission is negligible, 𝐷 = 0. In Fig. 3(b),
for a moderate spontaneous emission rate 𝐷 = 0.05, the difference
between the results of the both models till the first peak of ||

|

�́�||
|

2
is very

small. From Fig. 3(c), for a large unfavorable spontaneous emission rate
𝐷 = 0.1, the results of density matrix deviate significantly from those
of the Wigner model. In this regime, the density matrix fails to predict
an accurate behavior for the QFEL operation. As discussed above, this is
because the trace of the density matrix is conserved by the Lindblad form
master equation (Tr(𝜌) = 1). Then, the population can only be exchanged
between two momentum eigenstates. On the other hand, in the Wigner
model, the fact that the electron can emit spontaneously after its first
spontaneous transition is taken into account. Therefore, the population
inversion in the density matrix model evolves faster than that in the
Wigner model. Consequently, the density matrix model predicts stronger

Fig. 2. (a) ||
|

�́�||
|

2
vs. �́� in the linear and nonlinear regimes. (b) ||

|

�́�||
|

2
, ||
|

�́�||
|

, and 𝑃0 − 𝑃−1 vs. �́�.
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Fig. 3. For the density matrix (DM) and Wigner models, scaled intensity |

|

|

�́�||
|

2
is plotted as a function of �́� in the quantum regime for different values of the spontaneous

emission rate (a) 𝐷 = 0.0 (b) 𝐷 = 0.05 (c) 𝐷 = 0.1.

Fig. 4. For the density matrix (DM) and Wigner models when 𝐷 = 0.05, (a) The trace of probabilities 𝑃0 + 𝑃−1 vs. �́�. (b) The population difference 𝑃0 − 𝑃−1 vs. �́�. (c)
The bunching factor �́� vs. �́�.

effects of spontaneous emission leading to smaller intensity of coherent
radiation than that predicted by the Wigner model. To illustrate the
latter behavior, in Fig. 4, we plot the trace of probabilities 𝑃0 +𝑃−1, the
population difference 𝑃0−𝑃−1, and the bunching �́� vs. �́� for 𝐷 = 0.07. In
Fig. 4, we assume all parameters as those used in Fig. 3. Fig. 4(a) shows
the trace-preserving property is satisfied in the density matrix model,
while it is not satisfied in the Wigner model. As seen in Fig. 4(b), in
the density matrix model, due to the spontaneous emission of electron,
a larger population difference |

|

𝑃0 − 𝑃−1
|

|

at shorter interaction distance
is observed. Then, the contribution of the coherent emission of electron
in the density matrix model is suppressed in a greater way, as shown
in Fig. 3(b). Fig. 4(c) shows the bunching factor in the density matrix
model is smaller than that in the Wigner model.

In Fig. 5, we plot the first maximum of |

|

|

�́�||
|

2
as a function of 𝐷. It

can be seen that, in the practical regime when 𝐷 ≲ 0.07, the results of
the density matrix approach are in well agreement with those of the
discrete Wigner model. When 𝐷 > 0.07 where the spontaneous emission
strongly quenches the coherent lasing process, the density matrix is
no longer valid to describe the QFEL interaction. We finally stress on
that the regime at which 𝐷 > 0.07 is not a useful operating regime
where the coherent radiation is greatly diminished by the spontaneous
emission. Therefore, we safely can confirm the density matrix approach
is applicable in the practical regime of QFEL operation.

5. Conclusion

The density matrix of the Lindblad-type master equation is a pow-
erful tool to describe the quantum FEL interaction. In the quantum
regime of the FEL, the diagonal elements of the density matrix fulfill
the trace-preserving property where the electron is considered as a
two-level system. Then, the exchange of electron populations due to
the spontaneous emission occurs only between the initial and final

Fig. 5. Comparison between the maximum peak |

|

|

�́�||
|

2
as predicted by the density

matrix (DM) and Wigner models where |

|

|

�́�||
|

2
is plotted against 𝐷.

momentum states. The density matrix model is compared with the exact
model of the discrete Wigner function in which the electron transition
from the final state to a lower momentum state is also considered. We
have shown that the results of the density matrix model are in excellent
agreement with those of the discrete Wigner model when the rate of
the spontaneous emission ensures efficient operation of quantum FELs
(when 𝐷 ≲ 0.07). Then, the approximate model of the density matrix is
proved to be rigorous in the practical operating regime of the quantum
FEL. It has been shown that the density matrix formalism provides
straightforward physical insights into the dynamics of the quantum FEL.
However, as the rate of the spontaneous emission increases to a level at
which the FEL coherent emission is significantly reduced (𝐷 > 0.07), the
density matrix model becomes invalid.
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