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Tight bound on finite-resolution quantum thermometry at low temperatures
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Precise thermometry is of wide importance in science and technology in general and in quantum systems
in particular. Here, we investigate fundamental precision limits for thermometry on cold quantum systems,
taking into account constraints due to finite measurement resolution. We derive a tight bound on the optimal
precision scaling with temperature, as the temperature approaches zero. The bound demonstrates that under
finite resolution, the variance in any temperature estimate must decrease slower than linearly. This scaling
can be saturated by monitoring the nonequilibrium dynamics of a single-qubit probe. We support this finding
by numerical simulations of a spin-boson model. In particular, this shows that thermometry with a vanishing
absolute error at low temperature is possible with finite resolution, answering an interesting question left open
by previous work. Our results are relevant both fundamentally, as they illuminate the ultimate limits to quantum
thermometry, and practically, in guiding the development of sensitive thermometric techniques applicable at
ultracold temperatures.
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I. INTRODUCTION

Sensitive measurements of temperature are essential
throughout natural science and modern technology. Increas-
ingly detailed studies of biological, chemical, and physical
processes, the miniaturization of electronics, and emerging
quantum technology drive a need for new thermometry tech-
niques applicable at the nanoscale and in regimes where
quantum effects become important. Many new approaches
are being developed [1–12], however, the fundamental limits
to precision thermometry are not yet fully understood. Here,
we determine a tight bound on the best possible precision
with which temperature can be estimated in cold quantum
systems, which accounts for limitations due to imperfect mea-
surements.

The classical picture of thermometry is that of a ther-
mometer which is brought into thermal contact with a sample.
Observing the state of the thermometer after some time con-
veys information about the sample temperature. A similar
picture can be applied in the quantum regime, where an in-
dividual quantum probe, e.g. a two-level system, may interact
with a sample system in a thermal state, and subsequently be
measured to estimate the temperature. If the probe reaches
thermal equilibrium with the sample, or a nonequilibrium
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steady state, optimal designs of the probe and of the probe-
system interaction can be determined [13–18]. Outside of the
steady state regime, it was found that access to the transient
probe dynamics may outperform the steady-state protocols
[19–21], that dynamical control acts as a resource [22–24],
and that thermometry can in some cases be mapped to a phase
estimation problem [25,26]. These findings have spurred fur-
ther investigations into nonequilibrium thermometry [27–29].

Any thermometric technique will be subject to constraints
due to finite measurement resolution. In the probe-sample pic-
ture, the size of the probe will limit the amount of information
which can be extracted about the sample. More generally, any
measurement on the sample, implemented using a finite-sized
apparatus, comes with a lower bound on the attainable reso-
lution of, e.g., the system energy spectrum [30–32]. Similar
restrictions apply in situations where measurements can be
made on only part of a large sample [33–35], and clearly such
finite-resolution constraints must play an important role in for-
mulating fundamental bounds on the attainable thermometric
sensitivity.

Here, we derive a bound on the precision scaling with
temperature, as the temperature approaches zero, for ther-
mometers with finite energy resolution. Our bound applies to
any thermometric technique based on measurements which do
not resolve the individual energy levels of the sample energy
spectrum. We furthermore demonstrate that this scaling can
be attained using a single-qubit probe, showing that the bound
is tight. To derive our bound, we build upon the framework for
finite-resolution quantum thermometry introduced by Potts,
Brask, and Brunner in [31].

Our results also demonstrate that thermometry with a van-
ishing absolute error at low temperature is possible with finite
resolution, answering an interesting question left open by
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previous work [31,34,36]. For systems with a heat capacity
that vanishes at low temperatures, a property often included
in the third law of thermodynamics, the relative error must
diverge, regardless of the available resolution [31]. The abso-
lute error may either also diverge, stay constant, or vanish,
with the latter thus being the best behavior one can hope
for. However, for gapped systems, even the absolute error
in any unbiased temperature estimate must diverge when the
temperature becomes comparable to the gap [37]. A constant
or vanishing absolute error, on the other hand, has been seen
in gapless systems, when employing a measurement with a
continuous outcome implying an infinite resolution [34]. Our
results show that a vanishing absolute error may be obtained
with a finite-resolution measurement having as little as two
outcomes.

This paper is organized as follows. In Sec. II, we introduce
a general temperature estimation procedure, following [31]
and discuss the fundamental precision bounds imposed by
the third law of thermodynamics. In Sec. III, we propose a
finite-resolution criterion, and show how this criterion leads
to a tight bound on the attainable precision. In Sec. IV, we
generalize the framework to include noisy measurements, and
finally in Sec. V, we investigate a single-qubit thermometer
coupled to a bosonic bath, showing that our bound can be
saturated in a physical scenario. Our analytical results are sup-
ported by numerical simulations of the temperature estimation
procedure.

II. TEMPERATURE ESTIMATION

We consider a quantum system described by the canonical
thermal state ρβ = exp [−βH]/Zβ , with H the Hamiltonian
operator of the system, and Zβ ≡ tr{exp [−βH]} the canon-
ical partition function. The thermal state is parameterized by
an inverse temperature β = 1/kBT , where kB is the Boltzmann
constant. For convenience, we adopt units in which kB = 1,
such that temperature has the units of energy. The task we con-
sider is how to estimate the temperature T of the system. We
remark that throughout we consider thermal states where the
temperature does not itself fluctuate. However, since tempera-
ture is not directly measurable (it is not a quantum mechanical
observable), there are fluctuations in any temperature estimate
based on indirect measurements.

A. Quantifying the estimation precision

A general temperature estimation procedure consists of
first performing a measurement on the system. The most
general N-outcome measurement is represented by a positive-
operator valued measure (POVM) with N elements #m. Such
POVMs capture any possible measurement in quantum me-
chanics, including scenarios in which information is obtained
through a probe interacting with the system, as well as those
exploiting quantum coherence [7,19,20]. Each POVM ele-
ment #m corresponds to a measurement outcome m, which
is observed with probability

pm;β = tr{#mρβ}, (1)

and the resulting probability distribution encodes the system
temperature as a statistical parameter. The second step in

estimating the temperature is to construct an estimator Test.
A general prescription for doing this does not exist [38].
However, it can be shown that for any unbiased estimator the
variance is lower bounded through the Cramer-Rao inequality
δT 2

est ! 1/νFT [39], where ν is the number of independent
measurement rounds and

FT ≡
N∑

m=1

pm;β [∂T ln pm;β ]2, (2)

is the Fisher information. We note that the Cramer-Rao in-
equality is asymptotically tight for Bayesian or maximum
likelihood estimators [38]. Throughout, motivated by the
Cramer-Rao inequality, we adopt the Fisher information as the
quantifier of precision.

Identifying measurement strategies for which the temper-
ature estimate can achieve minimal variance corresponds to
maximizing the Fisher information over all possible measure-
ments (POVMs). This results in a measurement-independent
quantity, the quantum Fisher information FQ

T [40]. Within
the canonical ensemble, it can be shown that a projective
measurement of the system energy is optimal [31,37]. The
quantum Fisher information is then related to the variance of
the system energy

T 4FQ
T = ⟨H2⟩ − ⟨H⟩2, (3)

where ⟨O⟩ = tr{Oρβ}. This expression provides a funda-
mental upper bound on the attainable value of the Fisher
information for any measurement at any temperature. As a
consequence of the third law of thermodynamics, or more
explicitly the assumption that the heat capacity vanishes at
zero temperature, the variance of the system energy must
vanish at least quadratically in temperature as absolute zero
is approached [31]. Hence it follows that T 2FQ

T must van-
ish in the low-temperature limit, and that the relative error
δT 2

est/T 2 must diverge by virtue of the Cramer-Rao inequality.
This relation constitutes the ultimate bound on the optimal
low-temperature scaling behavior of the Fisher information,
applicable for any system and for any measurement strategy.

B. Accounting for measurement limitations

In many settings of interest, it is not realistic to implement
a projective measurement of the system energy. For instance,
whenever the gaps in the energy spectrum are below the
energy resolution of the available measurement [34], which
happens, e.g., when the system is large enough to appear con-
tinuous while the measurement apparatus has a finite size, or
whenever only a finite part of the full system can be interacted
with within a finite time (see Fig. 1). Under such conditions of
constrained experimental access, it is useful to introduce the
POVM energies [31]

Em;β ≡ 1
pm;β

tr{#mHρβ}, (4)

where Em;β may be interpreted as the best guess of the system
energy before the measurement, given that outcome m was
observed [31]. In the case of projective energy measurements
on the system, the POVM energies coincide with the system
energy eigenvalues. In general, however, the POVM energies
are temperature dependent.
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FIG. 1. Finite measurement resolution is interpreted as an in-
ability to sharply distinguish between consecutive system energy
eigenstates and results in a nontrivial constraint on the attainable
thermometric precision. For a macroscopic system with an effec-
tively continuous energy spectrum, any measurement is subject to
finite resolution and thus limited by the bound in Eq. (26).

For convenience we may identify a specific POVM en-
ergy E0;β , defined as the smallest POVM energy in the
low-temperature limit. We can then introduce the POVM
energy gaps 'm;β ≡ Em;β − E0;β , which by definition are non-
negative at low temperatures. In terms of these gaps, the Fisher
information for a general measurement is given by

FT =
∑

m pm;β'2
m;β −

(∑
m pm;β'm;β

)2

T 4
. (5)

Similarly to the quantum Fisher information, the above ex-
pression takes the form of an energy variance. However for
general measurements the energy spectrum of the system is re-
placed by the spectrum of POVM energies, and the Boltzmann
probabilities associated with projective energy measurements
are replaced by the POVM probabilities. These changes in-
corporate restrictions due to limitations of the measurement
on top of those imposed by the system itself.

In investigating the scaling behavior, we are implicitly as-
suming that the Fisher information is a continuous function
of temperature, which implies that the POVM energy gaps
'm;β must also be continuous functions. Following Ref. [31],
we are going to study the scaling behavior of the Fisher
information when the POVM energy gaps have a well-defined
power-series expansion in temperature around absolute zero

'm;β = 'm,0 +
∞∑

k=1

'm,kβ
−k . (6)

By virtue of Weierstrass’ approximation theorem, any contin-
uous function can be approximated arbitrarily well by such a
power series [41]. Note that this formulation does not exclude
the case of projective energy measurements as this would be
described by a series with only the constant term. For more
general measurements, however, the expansion might contain
nonzero higher-order coefficients.

Following Potts et al. [31] we can make use of the relation
between the POVM energies and the associated probabilities
[Eq. (4)] to write 'm;β = −∂β ln pm;β/p0;β . Given the power-
series expansion of the POVM energy gaps, we can integrate
this equation and express the ratio of the probabilities for
outcomes m and 0 as

pm;β

p0;β
= gme−β'm,0β−'m,1

∞∏

k=1

e'm,k+1β
−k/k, (7)

where gm is a temperature-independent integration constant.
We stress that as a consequence of how we defined E0;β , the
probability p0;β is the largest probability at zero temperature
and must be nonvanishing in this limit. We thus obtain an
expression for the probability of obtaining outcome m given
fully in terms of the expansion coefficients of the correspond-
ing POVM energy gap (note that the explicit dependence on
p0;β could be avoided by using the fact that the full distribution
must be normalized).

C. Low-temperature scaling behaviour

The above model of limited measurements allows us to
obtain, by substituting Eqs. (6) and (7) into Eq. (5), an ex-
pression for the Fisher information given fully in terms of
the POVM energy gaps. Based on this, we can analyze the
possible scaling behavior of the Fisher information, as the
system approaches zero temperature. First of all, we note that
Eq. (5) can be rewritten as

FT = 1
2T 2

∑

m,n

pm;β pn;β (β'm;β − β'n;β )2. (8)

Notice that all terms on the right-hand side are positive, and
because of this the scaling behavior of the Fisher information
is determined by the term in the sum (or the set of terms),
which vanishes least rapidly as the temperature goes to zero.
We now consider the scaling that arises from different terms
in Eq. (8). We focus on terms that result in subexponential
scalings, referring the reader to Ref. [31] for a discussion of
the remaining terms.

For convenience, we define the ground-state set of mea-
surement outcomes, as those for which the probability of
obtaining that outcome remains finite at zero temperature
(note that the outcome m = 0 is in the ground-state set by
definition). From Eq. (7), we see that formally this set can be
defined as ( = {m | 'm,0 = 'm,1 = 0}. Now consider those
terms in the Fisher information above where both outcomes
belong to the ground-state set. To leading order in tempera-
ture, the contribution from these terms takes the form

1
2T 2

∑

m,n∈(

pm;β pn;β ('m, j − 'n, j )2T 2( j−1), (9)

where j labels the lowest order for which the expansion coeffi-
cient of any element in the ground-state set is nonzero ( j ! 2).
These terms in the sum thus vanish at least quadratically,
giving at best a constant contribution to the Fisher informa-
tion. Notice that if the ground-state set contains only a single
outcome (m = 0), then the contribution is identically zero.

Next we consider the terms in the Fisher information where
one of the outcomes belong to the ground-state set but the
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other one does not. To this end, we define the set of outcomes
(̃ = {m | 'm,0 = 0 and 'm,1 ̸= 0}, for which the associated
probability vanish subexponentially as the temperature goes to
zero. The set of outcomes (̃ has an associated POVM energy
coinciding with that of the ground-state set at zero temperature
but exhibits a linear degeneracy splitting at finite temperature.
To leading order in temperature, the contribution from the
corresponding terms is

1
T 2

∑

m∈(̃

gm'2
m,1T 'm,1 , (10)

which vanishes at a rate determined by the first-order ex-
pansion coefficients 'm,1. It is straightforward to show
that all other contributions vanish exponentially in the low-
temperature limit.

The (subexponential) low-temperature behavior of the
right-hand side of the Fisher information (8), is generally
given by the sum of Eqs. (9) and (10). Which of these two
dominate depends on the smallest first-order expansion co-
efficient. If the set (̃ is not empty, and at least one element
in the set has a value 'm,1 < 2( j − 1), where j denotes the
lowest order with nonvanishing expansion coefficient within
the ground-state set, then the low-temperature behavior of the
Fisher information is captured by

FT =
∑

m∈(̃

gm'2
m,1T 'm,1−2. (11)

In principle, the first-order coefficient can take any positive
value without violating the scaling bound imposed by the third
law of thermodynamics (ensuring divergence of the relative
error). Notice that even a divergent low-temperature behavior
of the Fisher information can in principle be realized, if 'm,1
can take a value smaller than 2.

III. SCALING BOUND FOR LARGE SYSTEMS

In this section, we propose a finite-resolution criterion
characterizing realistic measurements. We aim to capture any
situation in which the available measurements cannot resolve
the individual gaps in the system energy spectrum, which
therefore appears continuous. Below, we make this statement
precise. We then go on to show how this criterion leads to a
lower bound on the first-order coefficient 'm,1, constraining
the low-temperature scaling of the error in any temperature
estimation scheme. Furthermore we present an example of a
measurement saturating the finite-resolution bound, showing
that the bound is tight.

A. Finite-resolution criterion

In the regime where the system has an effectively con-
tinuous energy spectrum (as the measurement only resolves
energy differences much larger than the gaps in the spec-
trum, it is convenient to work with the system density of
states D(ϵ) ≡

∑
k dkδ(ϵ − ϵk ), where the sum is over distinct

system energy eigenvalues and dk is the corresponding degen-
eracy. Throughout, we adopt the convention that the smallest
system energy eigenvalue is set to zero (ϵ0 = 0).

Now, we introduce a filtered density of states Dm for each
measurement outcome m, as the system density of states fil-
tered through the corresponding POVM element

Dm(ϵ) ≡
∑

k

dkδ(ϵ − ϵk )tr
[
#m

1ϵk

dk

]
, (12)

where 1ϵk is the projection operator onto the eigenspace with
energy ϵk . Notice that the sum of all the filtered densities
of states adds up to the total density of states. Furthermore,
we introduce the continuous filter function fm(ϵ), formally
defined by the values fm(ϵk ) = tr[#m1ϵk /dk] and the straight-
line segments connecting these values. In addition we note
that the density of states can be expressed as the rate of
change of the number of states with energy below ϵσ (ϵ) =∑

k dkθ (ϵ − ϵk ), where θ denotes the Heaviside step function.
Given these, the filtered density of states decompose into the
product

Dm(ϵ) = fm(ϵ)
dσ (ϵ)

dϵ
, (13)

where the filter function fully characterizes the implemented
measurement. Importantly we notice that the function σ (ϵ)
is nondecreasing for all energies. If we compute the Laplace
transform in β of the filtered density of states, the result
takes the form of a Stieltjes integral over a measure given by
σ (ϵ) [42]

D̂m(β ) ≡
∫ ∞

0
dσ (ϵ) fm(ϵ)e−βϵ = Zβ pm;β . (14)

The last equality can be obtained directly from Eq. (1) and
relates the Laplace transformed filtered density of states to the
product of the probability and the canonical partition function.
Notice that the measure σ (ϵ) is a discontinuous function of
energy.

For macroscopic systems, the measure can often be ap-
proximated by an effective continuous measure, when σ (ϵ)
and fm(ϵ) vary on widely separated energy scales. To see this,
we first define the averaged measure with respect to an energy
window ω by

σω(ϵ) = θ (ϵ)
1
ω

∫ ϵ+ω/2

ϵ−ω/2
dsσ (s), (15)

which for nonzero ω is a continuous function of energy except
at ϵ = 0 and which tends to a differentiable function of energy
as ω is increased. The inclusion of the step function at zero
energy is important if we are to capture the zero tempera-
ture limit correctly, since it ensures that the ground-state of
the averaged model coincides with that of the exact model.
For the purposes of low-temperature thermometry, only the
low-energy behavior is of importance, and to leading order in
energy we adopt an effective measure given by

dσω(ϵ) = [d0;ωδ(ϵ) + αωγωϵγω−1 + O(ϵγω )]dϵ, (16)

where d0;ω is an effective ground-state degeneracy and αω, γω

are positive, real-valued constants. The coefficient γω > 0
characterizes the low-energy growth in the total number of
states with energy less than ϵ.

If we compute the Laplace transform with respect to this
averaged measure (which now takes the form of a standard
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Riemann integral) we obtain to leading order in energy

D̂m;ω(β ) = d0;ω fm(0)

+ αωγω

∫ ∞

0
dϵϵγω−1 fm(ϵ)e−βϵ .

(17)

The averaged measure tends to overestimate the number of
low-energy states as ω is increased, however this effect be-
comes negligible in the limit ω ≪ T . Now if we assume that
fm(ϵ) does not vary significantly across an energy range ω,
then D̂m(β ) is well approximated by the averaged function
D̂m;ω(β ). More quantitatively we can state this condition in
the form of an inequality

| fm(ϵ + ω) − fm(ϵ) |
ω

≪ 1
ω

, (18)

which bounds the rate of change of the filter function with
energy. For macroscopic systems, we can take the limit ω →
0, and in this case, we are going to adopt the following finite-
resolution criterion (FRC).

FRC. In the limit of a macroscopic system, the filter func-
tion fm(ϵ) tends to a continuous, right-differentiable function
of the system energy.

This is nothing more than a restatement of equation (18)
for vanishing ω, which restricts the rate of change of the filter
function to a finite value. We note that at ϵ = 0, the filter
function may be discontinuous and Eq. (18) tends to the right
derivative for ω → 0.

B. Finite-resolution bound

Having characterized what we mean by a finite-resolution
measurement, we ask what the consequences of our finite-
resolution criterion are for the behavior of the POVM energy
gaps in the macroscopic limit. By making use of Eq. (7), we
obtain the relation (we now drop the dependence on the energy
window ω and write simply d0, α, and γ )

D̂m(β ) = Ĝm(β )D̂0(β ), (19)

where for convenience we have defined the transfer function

Ĝm(β ) ≡ gme−β'm,0β−'m,1

∞∏

k=1

e'm,k+1β
−k/k . (20)

Now this is a relation at the level of the Laplace-transformed,
filtered densities of states. We can obtain a relationship di-
rectly between the filtered densities of states by taking the
inverse Laplace transform of both sides of Eq. (19). By apply-
ing the Laplace convolution theorem [43,44], we derive the
relation

Dm(ϵ) =
∫ ϵ

0
ds Gm(ϵ − s)D0(s). (21)

We now focus on the specific case of m ∈ (̃. For these
outcomes, the inverse Laplace transform can be computed
straightforwardly, and to leading order in energy, we obtain

Gm(ϵ) = gm

/('m,1)
ϵ'm,1−1 + O(ϵ'm,1 ), (22)

where /('m,1) denotes the Gamma function [43]. As we saw
in the preceding section, the outcomes within (̃ are exactly

the ones with potential to provide optimal low-temperature
scaling of the Fisher information.

Recall, that the reference outcome m = 0, was chosen such
that the associated probability approaches a constant value at
zero temperature. This implies that the overlap of the POVM
element #0 with the system ground state is nonzero, and
therefore f0(0) is nonzero. On the other hand for outcomes
m ∈ (̃, the probability vanishes in the low-temperature limit,
implying a vanishing overlap fm(0) = 0. Hence in this case,
we find from Eqs. (17) and (21) that to leading order in energy

fm(ϵ) = gmd0 f0(0)
αγ/('m,1)

ϵ'm,1−γ + O(ϵ'm,1+1−γ ). (23)

Based on this expression, we can infer constraints on the linear
coefficient. First, the requirement that fm(0) = 0 gives the
weakest constraint 'm,1 > γ . This simply expresses the fact
that the Fisher information is upper bounded by the quantum
Fisher information, which scales as T γ−2 for a density of
states scaling as ϵγ−1. Further, the finite-resolution criterion
restricts the rate of change to be bounded, d

dϵ
fm(ϵ) < ∞. This

implies a tightened scaling bound

'm,1 ! 1 + γ , for m ∈ (̃. (24)

Since γ > 0 by definition, this implies that the Fisher infor-
mation must grow slower than 1/T , i.e.,

lim
T →0

T FT = 0. (25)

Further note that a diverging Fisher information in the low-
temperature limit can only be realized through a σ (ϵ) that
grows sublinearly with energy, i.e., γ < 1. As an example
of a system exhibiting such a sublinear growth we mention
systems of massive noninteracting particles at zero chemical
potential [31]. For such systems γ = 1/2 for one-dimensional
geometries.

By virtue of the Cramer-Rao bound, Eq. (25) implies that
the absolute error (squared) must vanish more slowly than T

lim
T →0

δT 2
est

T
= ∞. (26)

The equivalent Eqs. (25) and (26) constitute the main result
of our paper. They imply that for an effectively continuous
spectrum, the low-temperature scaling of the precision is not
only bounded by the third law, which demands a diverging
relative error, but by a tighter bound. Interestingly, our bound
still allows for a vanishing absolute error, a scenario that can
be physically realized as illustrated below.

C. Proving tightness of bound

We now illustrate that the proposed finite-resolution bound
is tight. Consider a binary measurement which resolves the
system ground state exponentially well in the sense that it has
POVM elements

#0 = e−κH , #1 = 1 − e−κH , (27)

where κ > 0. Note that the overlap of #0 with the system
energy eigenstates decays exponentially away from zero. This
feature makes is straightforward to write down the filtered
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density of states. Focusing on m = 1, we find

D1(ϵ) = [1 − e−κϵ]D(ϵ), (28)

where nothing has been assumed about the form of the system
density of states. We thus see that the corresponding filter
function takes the form f1(ϵ) = κϵ + O(ϵ2) to leading order
in energy. If we adopt the density of states introduced in the
preceding section, that is D(ϵ) = d0δ(ϵ) + αγ ϵγ−1 + O(ϵγ ),
then upon comparison with equation (23) we find '1,1 =
1 + γ . Hence the binary exponential resolution measurement
saturates the finite-resolution bound.

For good measure, we now show how the same conclusion
can be derived directly from the probabilities. The probability
of obtaining outcome m = 0 can be written in terms of the
system partition function as

p0;β = Zκ+βZ−1
β . (29)

Substituting the probabilities p0;β and p1;β = 1 − p0;β into the
general form of the Fisher information (2), one finds that

T 4FT = Zκ+β

Zβ − Zκ+β

(⟨H⟩β − ⟨H⟩κ+β )2. (30)

The partition function is given by the Laplace trans-
form of the density of states, hence we find Zβ =
d0 exp (αγ/(γ )β−γ /d0) (in Appendix A, we show how this
form of the partition function describes a system of non-
interacting bosonic modes). From this form of the partition
function, we can derive the low-temperature behavior of the
average energy

⟨H⟩β = αγ 2/(γ )
d0

β−(1+γ ). (31)

If we substitute these into the above Fisher information,
we find that to leading order in temperature (assuming that
κ/β ≪ 1)

FT = ακγ 2/(γ )(1 + γ )2T γ−1 + O(T 2γ ), (32)

which takes the form of Eq. (11) with '1,1 = 1 + γ and
g1 = ακγ 2/(γ ). Since γ can in principle take any positive
value, the exponential-resolution measurement saturates the
finite-resolution bound and asymptotically attains a Fisher
information scaling as 1/T in the limit γ → 0.

IV. GENERALIZATION TO NOISY MEASUREMENTS

In this section, we extend the thermometry framework
above to include noisy measurements. As the framework is
general, one might ask if noise effects are not already ac-
counted for. The answer is that in principle noise effects
are described. However, for some noisy measurements, the
POVM energy gap does not have a Taylor expansion. While
one may still approximate the energy gap by a polynomial,
a physically appealing extension of the formalism allows for
circumventing this approximation. We find that our bound
given in Eq. (26) also holds for noisy measurements.

A. Noisy temperature measurements

To model noisy measurements, we consider the case where
the observed outcomes m correspond to coarse graining over

a fine-grained POVM with elements #mµ. The probability of
observing m is then

pm;β =
∑

µ

pmµ;β =
∑

µ

tr{#mµρβ}. (33)

Physically this could correspond to a measurement imple-
mented using a sensor, where only a subset of the sensor
degrees of freedom (or a subspace of the full sensor Hilbert
space) is experimentally accessible. If we were to compute
the Fisher information directly using the fine-grained distri-
bution pmµ, we recover the noiseless results, and obtain an
upper bound on the Fisher information computed from the
coarse-grained distribution. This fact follows directly from
the relation between the relative entropy of two probability
distributions differing by an infinitesimal temperature δT and
the Fisher information

D(pT ||pT +δT ) = FT δT 2 as δT → 0. (34)

Since the relative entropy is monotonically decreasing under
coarse-graining [45], we conclude that noise always reduces
the Fisher information.

The question we now address is, how it impacts the at-
tainable scaling with temperature. Following the approach
developed above, we introduce the fine-grained POVM ener-
gies

Emµ;β ≡ 1
pmµ;β

tr{#mµρβ}, (35)

which may be interpreted as the best guess of the system en-
ergy before the measurement, given the outcome (m, µ) [31].
For convenience we identify the smallest POVM energy in the
low-temperature limit with the outcome E00;β , and then define
the fine-grained POVM energy gap 'mµ;β ≡ Emµ;β − E00;β ,
which by definition is non-negative at low temperatures. Mod-
elling the fine-grained POVM energy gaps by a power-series
expansion around zero temperature as in Eq. (6), we are led to
a probability distribution identical to (7), but with m replaced
by the compound index mµ.

Since the Fisher information is not defined with respect
to the fine-grained probabilities, but rather with respect to
the coarse-grained probabilities, the relevant energies are the
coarse-grained POVM energy gaps defined by

'(c)
m;β ≡

∑

µ

pmµ;β

pm;β
'mµ;β . (36)

In terms of these, the Fisher information can be written in the
same form as the fine-grained Fisher information of Eq. (8),
but with the fine-grained probability and the fine-grained
POVM energy gaps replaced by their coarse-grained versions

FT = 1
2T 2

∑

m,n

pm;β pn;β
(
β'(c)

m;β − β'(c)
n;β

)2
. (37)

Notice that all terms in the sum are positive. Hence, the
scaling behavior of the Fisher information is determined by
the term (or set of terms) which vanishes least rapidly as the
temperature approaches zero.

From Eq. (36), we can anticipate that fine-grained energy
gaps that have a Taylor expansion may result in coarse-grained
gaps that do not. This may result in qualitatively different
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behavior of the fine- and coarse-grained Fisher information.
In particular, noise may render the scaling of the Fisher in-
formation worse. In Appendix B, we discuss in general terms
how noise impacts the attainable Fisher information scaling.
In particular, we show that the noise can never result in a better
scaling for the Fisher information, implying that the bound
given in Eq. (26) also holds for noisy measurements. Here we
illustrate the effect of noise with an example.

B. Illustration of noisy measurement

A simple example illustrating noise is obtained by adding
white noise to the binary, exponential-resolution measurement
of Sec. III C. That is, we study a binary POVM defined
by #0 = η exp (−κH ) + (1 − η)1/2. To understand how this
noise model arises from coarse graining a fine-grained mea-
surement, we consider the fine-grained POVM

#00 = 1 + η

2
e−κH , #01 = 1 − η

2
(1 − e−κH ),

#10 = 1 + η

2
(1 − e−κH ), #11 = 1 − η

2
e−κH ,

(38)

such that #0 = #00 + #01 and #1 = #10 + #11. As in the
noiseless case, we suppose that the average energy exhibits
a power-law behavior ⟨H⟩β = αβ−(1+γ ) at low temperatures
in the macroscopic limit, with α and γ both positive. The
corresponding partition function (at low temperatures) is then
Zβ = exp (αβ−γ /γ ). For the fine-grained measurement out-
comes, we find that to leading order in temperature (assuming
that κ/β ≪ 1 and η < 1), the POVM energy gaps with respect
to the reference E00;β , take the form

'00;β = '11;β = 0,

'10;β = '01;β = (1 + γ )T + O(T 2+γ ). (39)

We see that the fine-grained measurement outcomes have
an associated set of POVM energy gaps that have a Taylor
series in the low-temperature limit. Furthermore, they exhibit
a linear degeneracy splitting. It then follows from Eq. (11) that
the Fisher information takes the form

FT = ακ (1 + γ )2T γ−1 + O(T 2γ ), (40)

which is equivalent to the noiseless form found above [cf.
Eq. (32)]. Notice that when having access to the fine-grained
distribution, both the POVM energies and the resulting Fisher
information is independent of the parameter η quantifying the
amount of white noise.

The picture changes when considering the coarse-grained
energy gap [Eq. (36)]. To leading order in temperature this is
given by

'(c)
1;β = 1 + η

1 − η
ακ (1 + γ )T 2+γ + O(T 3+2γ ). (41)

Notice that in contrast to the fine-grained energy gaps, this
coarse-grained gap does not have a Taylor expansion. Com-
puting the Fisher information over the coarse-grained gaps
and probabilities [making use of Eq. (37)] gives

FT = 4η2

1 − η2
(ακ (1 + γ ))2T 2γ + O(T 1+3γ ). (42)

FIG. 2. Illustration of filtered density of state for a noisy binary
exponential resolution measurement using D(ϵ) = L−1[exp (αβ−1)]
(dotted red line) with α = 0.2. (a) The white noise measurement
corresponds to swapping the observed measurement outcomes with
some probability, such that each coarse-grained outcome has con-
tributions both from elements within and elements not within the
ground-state set. The dashed green lines gives D00 and D01 (their
sum is shown with the solid green line), and the blue dashed-dotted
lines correspond to elements D10 and D11 (with their sum given by
the solid blue line). (b) In Appendix B, we show that an alternative
noise model consists of a mixing of several similar measurement out-
comes. In the specific case depicted here, the fine-grained outcomes
to be summed are almost identical except for projecting onto slightly
different energy distributions.

This example thus illustrates how noise can result in a coarse-
grained gap that has no Taylor expansion and how this may
result in a different (worse) scaling for the Fisher information
at low-temperatures. Qualitatively we can understand the al-
tered scaling by studying the coarse-grained filtered density of
states. For the example considered here, we have

D00(ϵ) = f00(ϵ)D(ϵ) = 1 + η

2
e−κϵD(ϵ),

D01(ϵ) = f01(ϵ)D(ϵ) = 1 − η

2
(1 − e−κϵ )D(ϵ),

(43)

and under coarse-graining these are added together. Notice
that whereas the filter function f01(ϵ) goes to zero as ϵ → 0,
this is not true of f00(ϵ) + f01(ϵ) (the same feature is found
for the m = 1 outcomes). Hence in this case the noise removes
outcomes from the set (̃, resulting in the worse scaling [note
that a vanishing filter function at ϵ = 0 implies a vanishing
probability at T = 0 and vice versa, cf. Eq. (14)]. This effect is
illustrated in Fig. 2(a). In Appendix B, we study an alternative
noise model. In this model each coarse-grained outcome can
be seen as the sum of several similar (in the sense of preparing
similar energy distributions) fine-grained outcomes. This is
illustrated in Fig. 2(b).

The noisy framework put forward here shows that our
finite-resolution bound, as well as the results of Ref. [31]
apply for any POVM that can be written as a coarse graining
over a fine-grained POVM which has a spectrum with a well
defined Taylor series. As the coarse-grained POVM itself may
not have a spectrum with a well defined Taylor series, this
extends the applicability of the results of Ref. [31] (as long
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as we do not want to rely on approximate Taylor series in the
spirit of the Weierstrass theorem).

V. SINGLE-QUBIT PROBE

A. Measurement protocol

We now illustrate our results by considering temperature
estimation of a system of noninteracting bosons using a single
qubit as a probe. The system is described by a spectrum of
single-particle energies ωk (we take h̄ = 1). Consider the fol-
lowing measurement strategy: (i) first we initialize the probe
qubit in its ground state |0⟩, (ii) then an interaction is turned
on between the probe and the system for a short time t , and
(iii) we perform a projective measurement of the qubit energy.
Given this protocol, the probability of finding the qubit in the
excited state |1⟩ is

p1;β = tr{⟨0|U †
t |1⟩⟨1|Ut |0⟩ρβ}. (44)

We take the time-evolution operator Ut to be generated by a
time-independent Hamiltonian

H =
∑

k

ωka†
kak + (

2
σz + Hint, (45)

where a†
k, ak denotes the bosonic creation and annihilation

operators. The probe qubit is characterized by the three Pauli
operators {σx, σy, σz}, and we take the probe energy to be
proportional to the σz operator.

Computing the outcome probabilities requires specifying
an interaction Hamiltonian and determining the resulting
dynamics. This task is complicated by the fact that the low-
temperature and short-time regime is generally not accessible
via standard Markovian master equations [15,46]. However, if
the interaction time is sufficiently short we can make analyt-
ical progress by approximating the probability up to second
order in t . In this case we find that

p1;β = t2tr{⟨0|Hint|1⟩⟨1|Hint|0⟩ρβ} + O(t4). (46)

We consider a linear interaction Hamiltonian consisting of
an excitation-preserving part and a non-excitation-preserving
part. Introducing the raising and lowering operators σ± =
1
2 (σx ± iσy) for the probe qubit, the interaction Hamiltonian
takes the form

Hint =
∑

k

gk[σ+ak + σ−a†
k]

+
∑

k

λk[σ−ak + σ+a†
k],

(47)

where {gk, λk} are real-valued coupling coefficients. In the
limit of a macroscopic system, these coupling coefficients are
taken to approach continuous functions. Physically this means
that the interaction cannot selectively probe an individual
system mode (ensuring that the finite resolution criterion is
satisfied).

Given Hint, it becomes straightforward to show from
Eq. (46) that the excited-state probability at short times takes
the form

p1;β = t2
∑

k

(
g2

k + λ2
k

)
nβ (ωk ) + t2

∑

k

λ2
k, (48)

where nβ (ωk ) denotes the Bose-Einstein distribution. We
see that the probability consists of two contributions: a
temperature-dependent term, in which the probability is
directly related to the occupation of the bath modes,
and a temperature-independent term. The presence of the
temperature-independent term means that the probability of
finding the probe qubit in the excited state is generally
nonzero even at arbitrarily low temperatures. As in the exam-
ple in Sec. IV B, this prevents a scaling of the form of Eq. (11)
and can be captured by our framework for noisy thermometry.

B. Excitation-preserving interaction

We now focus on the excitation-preserving case (λk = 0),
and consider an interaction characterized by a continuous
spectral density of the form

ρ(ω) =
∑

k

g2
kδ(ω − ωk ) = 2αω1−s

c ωse−ω/ωc , (49)

where α is the dissipation strength, s is the ohmicity and ωc
is the cutoff energy [46–49]. The sum in the excited-state
probability (48) is then replaced by an integral, which can be
solved analytically. In the low-temperature limit, we find

p1;β = 2α(ωct )2/(1 + s)
(

T
ωc

)1+s

+ O(T 2+s). (50)

We see that this protocol gives a probability vanishing subex-
ponentially as the temperature goes to zero, and comparing
with the general expression (7), we see that to lowest order,
the POVM gap scales as '1 = (1 + s)T . The case of an
excitation-preserving interaction can thus (for short time at
least) be described within our noiseless thermometry frame-
work.

From the value of the linear expansion coefficient, '1,1 =
1 + s, it follows that for ohmicity approaching zero, the finite-
resolution bound '1,1 ! 1 is approached. The corresponding
Fisher information scales as FT ∝ T s−1 and thus diverges for
sub-Ohmic baths in the low-temperature limit. This serves as
an illustration that the finite-resolution bound is in principle
attainable via an excitation-preserving interaction in the short-
time limit, and thus the bound is tight. Realising such an
excitation-preserving interaction may however be challeng-
ing.

C. Excitation-non-preserving interaction

We now turn to the arguably more realistic excitation
nonpreserving case. The case λk = gk corresponds to the well-
known spin-boson model [47–50]. Adopting the same spectral
density as above, the excited-state probability in this case
takes the form

p1;β = 4α(ωct )2/(1 + s)
(

T
ωc

)1+s

+ 2α(ωct )2/(1 + s) + O(T 2+s).

(51)

In contrast to the excitation-preserving case, this probability
does not in general correspond to the noiseless version of
Eq. (7) since the POVM energy gap '1 ∝ T s+2, does not have
a Taylor expansion for arbitrary s at low temperatures. How-
ever, as shown in Appendix C, this scenario can be described
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FIG. 3. Numerically computed Fisher information for (a) the
sub-Ohmic (s = 1/2) and (b) the Ohmic (s = 1) spin-boson model,
with δt = 0.1/(, α = 0.1 and ωc = 10(. The solid black lines dis-
play the short-time analytical results at time (t = 0.2, showing good
agreement with the numerical simulations. In case (b), the simula-
tions exhibit a quadratic temperature scaling at low temperatures,
while in case (a) a linear scaling is obtained. The solid grey line gives
the Fisher information obtained from the steady state of a secular
Born-Markov master equation, which scales exponentially at low
temperatures [31].

using a fine-grained POVM with energy gaps that do have a
Taylor expansion. Therefore the scenario is captured by the
noisy framework.

Given the probability (51), a short calculation shows that
the Fisher information has a low-temperature scaling given
by FT ∝ T 2s. Again, this is in full agreement with the gen-
eral noisy theory developed above. Within the spin-boson
model, the Fisher information thus vanishes quadratically for
an Ohmic spectral density with s = 1, and linearly for a sub-
Ohmic spectral density with s = 1/2.

To corroborate the analytical results based on the short-
time approximation, we turn to a numerical simulation of the
Fisher information for the spin-boson model. To perform the
simulations we made use of the recently developed tensor-
network TEMPO algorithm and its extension to multi-time
measurement scenarios [51,52]. Details of the simulations are
provided in Appendix D. Making use of this algorithm has the
benefit that the temperature derivative of the excited state can
itself be expressed as a tensor network and computed to the
same level of accuracy as the probability itself.

Results for the Ohmic and the sub-Ohmic cases are shown
in Fig. 3. Generally we find that the short-time approximation
provides a good description of the observed scaling behavior
at sufficiently short times. Even more interesting we note

that the scaling behavior predicted within the short-time ap-
proximation is valid even at times well beyond the regime
in which the short-time approximation is expected to hold
(αδt2/(1 + s)ω2

c ≪ 1). This indicates that the predicted pre-
cision scaling is experimentally relevant, even without the
requirement of being able to probe the nonequilibrium qubit
dynamics at very short-times. Notice that the low-temperature
Fisher information tends to initially increase with time as
information about the environment state is extracted by the
qubit. After some time the low-temperature Fisher informa-
tion starts to decrease. This can be understood as the qubit
reaching a stationary state, such that a one-time measurement
performed on the qubit can no longer probe the relaxation
dynamics induced by the coupling with the thermal bath (see
also Refs. [2,13]).

Finally, we note that at sufficiently low temperatures the
simulated Fisher information differs from the Markovian
result, even for the rather weak coupling and long times con-
sidered here. A similar effect was observed in the context of
temperature estimation via the Kubo-Martin-Schwinger-like
relations obeyed by emission and absorption spectra of mul-
tichromophoric systems [53]. There it was pointed out that
faithfully recovering the temperature from observed spectra
requires taking into account system-environment correlations.
This is true even at very low coupling strengths, where these
correlations are generally weak.

VI. CONCLUSION

In this paper, we have discussed precision scaling for ther-
mometry in cold quantum systems. In particular, we have
investigated how finite measurement resolution, meaning that
states that are close in energy cannot be perfectly distin-
guished, impacts the precision scaling. We have proposed a
finite-resolution criterion characterising such measurements.
Based on this, we derived a tightened bound on the scaling
of the Fisher information. Furthermore, we showed that this
bound is tight as it can be saturated via both an exponential
resolution measurement as well as an excitation-preserving,
single-qubit measurement on a sample of noninteracting
bosons. We validated the approximations involved in demon-
strating tightness for the single-qubit measurement by per-
forming a numerical simulation of the sub-Ohmic spin-boson
model. Here, we provided an illustration of a Fisher informa-
tion scaling linearly with temperature. Interestingly, as far as
we are aware, this is the best scaling which has been found
in any concrete physical model subject to finite-resolution
constraints.
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APPENDIX A: DENSITY OF STATES FOR A
BOSONIC BATH

Consider a collection of noninteracting bosonic modes
with Hamiltonian H =

∑
k ωkb†

kbk . The partition function of
this system takes the form

ln Zβ = −
∑

k

ln[1 − e−βωk ]. (A1)

In the continuum limit, the sum over modes can be approxi-
mated by the integral over a continuous density of modes g(ω)

ln Zβ = −
∫ ∞

0
dωg(ω) ln[1 − e−βω]. (A2)

Expanding the logarithm in powers of e−βω and rescaling each
term in the resulting series, we can write the above as

ln Zβ =
∫ ∞

0
dω

[
g(ω) + g(ω/2)

2
+ ...

]
e−βω (A3)

In the low-temperature limit, this integral is dominated by the
low-energy part of the density of modes. If we assume that
at low-energies the density of modes takes the form g(ω) =
αωγ , where α and γ are positive constants, then the integral
takes the form

ln Zβ = α

( ∞∑

n=1

1
n1+γ

) ∫ ∞

0
dωωγ e−βω

= αζ (γ + 1)/(γ + 1)β−(1+γ ),

(A4)

where ζ denotes the Riemann zeta function and / the gamma
function. Thus

Zβ = exp(αζ (γ + 1)/(γ + 1)β−(1+γ ) ). (A5)

This expression has the general form used in the main text if
we make the identification 1 + γ → γ .

APPENDIX B: SCALING BEHAVIOR FOR THE
NOISY MODEL

In the low-temperature limit, the dominant fine-grained
probabilities are those with a vanishing zeroth-order co-
efficient in the POVM energy-gap expansion, and only
coarse-grained probabilities containing contributions from
such terms are relevant. For convenience we introduce
two sets of fine-grained outcomes. First, (m = {µ | 'mµ,0 =
'mµ,1 = 0}, which is the set of fine-grained outcomes giving
a nonvanishing contribution to the coarse-grained probability
of obtaining outcome m. Second, (̃m = {µ | 'mµ,0 = 0 and
'mµ,1 ̸= 0}, which is the set of fine-grained outcomes for
which the contribution to the coarse-grained probability for m
vanishes subexponentially. Lastly, to simplify the later discus-
sion, we denote the specific outcome within (̃m which realizes
the smallest value of the first-order coefficient by µ̃m.

We now note that if there exists some coarse-grained out-
come m such that (m is empty while (̃m is nonempty, then
the arguments presented for the noiseless case also apply to
the noisy case, and the same optimal scaling behavior of the
Fisher information can be attained. Thus, in this case, the
noise is not detrimental for the scaling. On the other hand,

if no such m exists, then we refer to detrimental noise (as-
suming that (̃m is nonempty for at least one outcome). For
detrimental noise, we are then left with outcomes for which
(m is nonempty, while (̃m may or may not be nonempty. We
now show that detrimental noise results in a worse scaling
compared to the noise-free scenario. This implies that our
finite-resolution bound is also applicable to noisy measure-
ments.

Consider the right-hand side of Eq. (37) for the case of
detrimental noise. For terms where both (̃m and (̃n are empty,
the scaling behavior is identical with that of the corresponding
noiseless terms [Eq. (9)], except that the noiseless coefficients
of the POVM energy gap must be replaced by the coarse-
grained version

'(c)
m, j ≡

∑

µ∈(m

pmµ;β

pm;β
'mµ, j . (B1)

If a coarse-grained second-order POVM energy gap exists
(that is '(c)

m,2 − '(c)
n,2 ̸= 0 for some m and n), then the same

scaling behavior of the Fisher information as given by Eq. (9)
is attainable and this scaling is optimal (note that the prob-
abilities considered here tend to nonzero constants at zero
temperature). If a second-order gap does not exist, then the
optimal scaling is instead provided by terms for which (̃m is
nonempty for some m. A straightforward calculation shows
that the contribution from such terms takes the form

[
gmµ̃m'mµ̃m,1

]2

∑
µ∈(m

gmµ

T 2'mµ̃m ,1−2, (B2)

which should be summed over all outcomes m for which both
(m and (̃m are nonempty. Assuming that the finite-resolution
criterion applies ('mµ̃m,1 ! 1), this contribution is at best
constant. Hence under the conditions of finite resolution and
detrimental noise, a diverging Fisher information is impossi-
ble.

As a second example of a noisy measurement, we can
consider the coarse-graining of a fine-grained measurement
of the form

#00 = 1
2

e−κH , #01 = 1 − η

2
e−κH ,

#10 = 1
2

(1 − e−κH ), #11 = 1
2
1 − 1 − η

2
e−κH .

(B3)

This fine-grained model is illustrated in Fig. 2(b). For this
measurement, we find '00;β = '01;β = 0 and

'10;β ≈ (1 + γ )T + (1 + γ )ακT 2+γ

'11;β ≈ (1 + γ )
ακ

η
T 2+γ .

(B4)

Hence, as in the previous example, the fine-grained measure-
ment gives a Fisher information scaling as T γ−1 to leading
order, and the coarse-grained measurement gives a T 2γ scal-
ing,

FT = (2 − η)(ακ )2

η
(1 + γ )2T 2γ + O(T 1+3γ ). (B5)

Thus the same scaling behavior of the Fisher information is
observed for this alternative example of a noisy model. Note
that both models exhibit detrimental noise which results in

033394-10



TIGHT BOUND ON FINITE-RESOLUTION QUANTUM … PHYSICAL REVIEW RESEARCH 2, 033394 (2020)

the different scalings for the fine- and coarse-grained Fisher
information.

APPENDIX C: THE NON-EXCITATION-PRESERVING
INTERACTION AS A NOISY POVM

From Eq. (46), we find that the POVM elements can be
written as

#1 = t2⟨0|Hint|1⟩⟨1|Hint|0⟩, (C1)

and #0 = 1 − #1. In the thermal state under consideration,
there are no coherences between different bosonic modes and
there is no squeezing. Therefore, many terms in Eq. (C1) do
not contribute to the probabilities. Dropping these terms, we
can write a slightly simpler POVM that results in the exact
same probabilities, capturing the full effect of the measure-
ment

#̃1 = t2
∑

k

(
g2

k + λ2
k

)
a†

kak + t2
∑

k

λ2
k, (C2)

and #̃0 = 1 − #̃1. This POVM has an energy gap that has no
Taylor expansion, scaling as T 2+s in the low temperature limit
for gk = λk and the spectral density given in Eq. (49). We can
however write the POVM in Eq. (C2) as a coarse graining over
the fine-grained POVM [note the similarity to Eq. (38)]

#̃11 = 1 + η

2
X, #̃10 = 1 − η

2
(1 − X ),

#̃00 = 1 + η

2
(1 − X ), #̃10 = 1 − η

2
X,

(C3)

such that #̃1 = #̃11 + #̃10 and #̃0 = #̃00 + #̃01. Here we
introduced

η = 1 − 2t2
∑

k

λ2
k (C4)

and

X =
t2 ∑

k

(
g2

k + λ2
k

)
a†

kak

1 − 2t2
∑

k λ2
k

. (C5)

The fine-grained POVM elements are of the same form as the
POVM elements for the excitation-preserving case. Indeed,
setting λk = 0, only #̃00 and #̃11 remain finite but do not
change their form. We therefore find the same POVM gaps
as for the excitation-preserving case

'00 = '10 = 0, '11 = '01 = (1 + s)T . (C6)

The Fisher information for the fine-grained POVM thus scales
as T s−1. The coarse grained POVM gap is determined by
Eq. (36) and reads

'1 = p11

p11 + p10
(1 + s)T, (C7)

which scales as T s+2 for the scenario considered in the main
text.

APPENDIX D: TENSOR NETWORK SIMULATION

Here we provide details of the numerical methods behind
the result shown in Fig. 3. We consider the ground state

probability

p(k)
0;β = tr

{
P̂0 U k

δt [P̂0 ⊗ ρβ]
}
, (D1)

where P̂0 is a projection operator onto the qubit ground state
|0⟩, and we have decomposed the unitary evolution into k-
steps of duration δt . Furthermore we consider the spin-boson
model

Ĥ =
∑

k

ωkâ†
k âk + 1

2
(σ̂z + 1

2
σ̂x

∑

k

gk (ak + a†
k ). (D2)

The spin-boson model can be numerically simulated using
recently developed tensor network methods [51,52]. Taking
each unitary step to be of a short duration we can make the
approximation (Trotter-Suzuki decomposition)

Uδt = Wδt/2VδtWδt/2 + O(δt3), (D3)

where Wδt = exp (−iδt (Ĥ − (σ̂z/2)) describes the influence
of the sample on the probe qubit, and Vδt = exp (−iδt(σ̂z/2)
describes the free evolution of the probe qubit. As the inter-
action term is diagonal in the eigenstates of the operator σ̂x,
we can expand the ground state probability in terms of these
eigenstates. This gives rise to a discrete Feynman-Vernon
Influence functional, which can be summed analytically. The
ground state probability then takes the form

p(k)
0;β =

∑

{α}
P̂α2k+1

0 Vα2kα2k+1
δt · · · Vα2α1

δt P̂α0
0

×
[
#2k

i=1#
i
j=1A

αiα j

β

][
#k

l=0δα2l+1,α2l

]
. (D4)

where we have introduced a compound index α = (s, r)
of spin-x eigenvalues, δαi,α j denotes the Kronecker delta
function, P̂α

0 = ⟨s|P̂0|r⟩, and V are the Liouville operators
representing the free dynamics of the ancilla qubit

Vαα′

δt = ⟨s|Vδt |s′⟩⟨r′|V †
δt |r⟩. (D5)

The influence tensors, Aαiα j

β , describe the influence of the
sample on the state of the qubit and contain all the temperature
dependence of the probability. For linearly coupled models,
the individual tensors depend only on the time separation
(i − j)δt/2. The influence tensors are given by

Aαiα j

β = e−(si−ri )(ηi− j s j−η∗
i− j r j ), (D6)

expressed in terms of the memory kernel elements

ηi− j =
{∫ ti

ti−1

∫ t j

t j−1
dt ′dt ′′C(t ′ − t ′′) , i ̸= j

∫ ti
ti−1

∫ t ′

ti−1
dt ′dt ′′C(t ′ − t ′′) , i = j

, (D7)

which are themselves defined in terms of the bath auto-
correlation function

C(t ) = 1
π

∫ ∞

0
dωρ(ω)

cosh [ω(β − it )]
sinh (βω/2)

. (D8)

The bath autocorrelation function is given in terms of the
spectral density ρ(ω) introduced in the main text.

The attainable temperature estimation precision depends
not only on the ground state probability, but also on the
derivative of this probability. Computing the derivative of the
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distribution with respect to the inverse temperature gives

∂β p(k)
0β =

2k∑

i=1

i∑

j=1

µi j

∑

{α}

[
#k

l=0δα2l+1,α2l

]

× P̂α2k+1
0 Vα2kα2k+1

δt ...Vα2α1
δt P̂α0

0

×
[
#2k

i=1#
i
j=1A

αiα j

β

]
α−

i α−
j ,

(D9)

where we have defined α− = s − r. It turns out that the same
tensor network methods used to compute the probability can
be used to compute the derivative of the probability. Further-
more we have defined µi j = −∂βηi− j , the square of which
gives the Fisher information scaling at low-temperatures.

At low temperatures, all the temperature dependence of the
ground-state probability comes from these coefficients. We
can approximate them by the series

µi j = αδt2

4βγ+2
×

[
/(γ + 2) − δt2

8β2
(i − j)2/(γ + 4)

+ δt4

376β4
(i − j)4/(γ + 6) − . . .

]
(D10)

This shows that, to leading order, the exact expressions repro-
duce the low-temperature Fisher-information scaling obtained
within the short-time approximation.
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