
STAR-FINITE COVERINGS OF BANACH SPACES

CARLO ALBERTO DE BERNARDI, JACOPO SOMAGLIA, AND LIBOR VESELÝ
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Abstract. We study star-finite coverings of infinite-dimensional normed
spaces. A family of sets is called star-finite if each of its members intersects
only finitely many other members of the family. It follows from our results
that an LUR or a uniformly Fréchet smooth infinite-dimensional Banach
space does not admit star-finite coverings by closed balls. On the other
hand, we present a quite involved construction of a star-finite covering of
c0(Γ) by Fréchet smooth centrally symmetric bounded convex bodies. A
similar but simpler construction shows that every normed space of countable
dimension (and hence incomplete) has a star-finite covering by closed balls.

1. Introduction

A family of subsets of a real normed space X is called a covering if the union
of all its members coincides with X. One of the earliest results concerning
coverings of infinite-dimensional spaces is Corson’s theorem [4], stating that if
X is a reflexive infinite-dimensional Banach space and F is a covering of X by
bounded convex sets then F is not locally finite (see Definition 2.1). V.P. Fonf
and C. Zanco [12] improved this result by proving that if a Banach space
X contains an infinite-dimensional closed subspace non containing c0 then X
does not admit any locally finite covering by bounded closed convex bodies. The
same authors proved in [15] that if X contains a separable infinite-dimensional
dual space and if τ is a covering by bounded closed convex sets then there exists
a finite-dimensional compact set C that meets infinitely many members of τ .
Moreover, they proved in [14] that, in the above result, if the members of τ
are rotund or smooth then C can be taken 1-dimensional. Let us recall that
the prototype of a locally finite covering of an infinite-dimensional Banach
space by closed convex bounded sets is the covering (actually a tiling) of c0
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by translates of its unit ball, see [22] for the details. (Recall that a tiling is a
covering by bodies whose nonempty interiors are pairwise disjoint.)

The existing theory of point-finite coverings (see Definition 2.1) of infinite-
dimensional normed spaces is less developed and mainly concerns coverings
by balls. A surprising construction discovered in 1981 by V. Klee [18] shows
existence of a simple (that is, disjoint, and hence point-finite) covering of `1(Γ)
by closed balls of radius 1, whenever Γ is a suitable uncountable set. Though
the question of existence of point-finite coverings by balls of `p(Γ) spaces was
already considered by V. Klee in the same paper, this problem was partially
solved only recently for `2 by V.P. Fonf and C. Zanco in [13], where they proved
that the infinite-dimensional separable Hilbert space does not admit point-finite
coverings by closed balls of positive radius (see also [6] for an alternative proof of
this result). Then V.P. Fonf, M. Levin and C. Zanco [10] extended this result
to separable Banach spaces that are both uniformly smooth and uniformly
rotund. We point out that Klee’s problem about coverings by closed balls
seems to be open in the non-separable case, even for Hilbert spaces.

In the present paper, we consider a particular class of coverings of infinite-
dimensional normed spaces, given by the property that each member intersects
at most finitely many other members. Such coverings are known in the litera-
ture as star-finite coverings (see [8, p. 317]), and singular points of star-finite
(not necessarily convex) tilings of topological vector spaces were first studied
in [3], then generalized in [25]. It is clear that each simple covering is star-finite
and each star-finite covering is point-finite. Moreover, the above-mentioned
coverings by balls of c0 and `1(Γ) easily show that there are no implications
between star-finiteness and local finiteness of a covering.

Roughly speaking, all mentioned results concerning non-existence of point-
finite or locally finite coverings are in some sense inspired by the following
general principle.

Coverings in “good” (separable, reflexive, . . . ) infinite-dimensional Banach
spaces whose members enjoy “nice properties” (smoothness, rotundity, . . . )
cannot satisfy “finiteness properties” (local finiteness, point finiteness, . . . ).

Hence, the first step in our study is to determine to what extent we can apply
the same principle to star-finite coverings. A careful reading of the proof of
a result by A. Marchese and C. Zanco [23], stating that each Banach space
has a 2-finite (see Definition 2.1) covering (actually a tiling) by closed convex
bounded bodies, reveals that the same argument actually proves that each
Banach space admits a covering by closed convex bounded bodies such that each
of its member intersects at most two other its members. However, as noted
by the authors, the elements of such a covering are far from being balls. This
fact together with Klee’s construction in `1(Γ) suggest that, in order to obtain
non-existence results, we should restrict at first our attention to star-finite
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coverings by closed balls satisfying some rotundity or smoothness property.
After some preliminaries and some general facts (Section 2), we prove the
main results in this direction in Section 3: our Corollary 3.11 implies that an
infinite-dimensional Banach space X does not admit any star-finite covering by
closed balls whenever X is uniformly Fréchet smooth or LUR. The techniques
used in some of these proofs are inspired by the paper [5]. We also prove
non existence of countable star-finite coverings by closed balls for a class of
(subspaces of) spaces of continuous functions, which include, e.g., all infinite-
dimensional `∞(Γ) spaces. In the particular case of c0(Γ) (Γ infinite), we show
that it admits no (countable or not) star-finite covering by closed balls.

In Section 4, we obtain a result in the opposite direction: we present a
quite involved construction of a star-finite covering of every c0(Γ) space by
Fréchet smooth centrally symmetric bounded bodies. The starting point of
our construction is existence of an equivalent Fréchet smooth norm on c0(Γ)
whose unit sphere contains many “flat faces” (see Proposition 4.1). We point
out that a similar but simpler construction contained in Section 2 shows that
every normed (necessarily incomplete) space of countable dimension has a
star-finite covering by closed balls. Proofs of some needed auxiliary facts are
contained in the Appendix (Section 5).

2. Preliminaries and some general facts

Throughout the paper, N denotes the set of strictly positive integers, while
N0 := N ∪ {0} is the set of nonnegative integers. Given a set Γ and n ∈ N0,
by [Γ]n we mean the set of all n-element subsets of Γ, and by [Γ]<∞ the set of
all finite subsets of Γ. Thus [Γ]<∞ =

⋃
n≥0[Γ]n.

We consider only nontrivial real normed spaces. If X is a normed space
then X∗ is its dual Banach space, and BX and SX are the closed unit ball
and the unit sphere of X. Moreover, we denote by B(x, ε) and U(x, ε) the
closed and the open ball with radius ε and center x, respectively. By a ball in
X we mean a closed or open ball of positive radius in X. If B ⊂ X is a ball
then c(B) and r(B) denote its center and radius, respectively. Other notation
is standard, and various topological notions refer to the norm topology of
X, unless specified otherwise. A set B ⊂ X will be called a body if it is
closed, convex and has nonempty interior. For x, y ∈ X, [x, y] denotes the
closed segment in X with endpoints x and y, and (x, y) = [x, y] \ {x, y} is the
corresponding “open” segment.

Let F be a family of nonempty sets in a normed space X. By
⋃
F we mean

the union of all members of F . A point x ∈ X is a regular point for F if it has
a neighborhood that meets at most finitely many members of F . Points that
are not regular are called singular. Notice that the set of regular points is an
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open set. For any x ∈ X we denote

F(x) := {F ∈ F : x ∈ F}.
Thus F is a covering of X if and only if F(x) 6= ∅ for each x ∈ X.

Definition 2.1. The family F is called:

(a) star-finite if each of its members intersects only finitely many other mem-
bers of F (cf. [8, p. 317]);

(b) simple if its members are pairwise disjoint;
(c) point-finite (point-countable) [n-finite (n ∈ N)] if each x ∈ X is contained

in at most finitely many (countably many) [n] members of F ;
(d) locally finite if each x ∈ X is a regular point for F .

It is evident that simple families are star-finite, and star-finite families are
point-finite (and hence point-countable).

A minimal covering is a covering whose no proper subfamily is a covering.
Notice that a covering need not contain any minimal subcovering (consider
e.g. the covering consisting of nBX , n ∈ N). However, it is easy to see that
the intersection of a chain of point-finite coverings is again a covering. Thus
by Zorn’s lemma every point-finite (hence every star-finite) covering contains
a minimal subcovering.

2.1. Cardinality properties. The next results describe relations between
the cardinality of certain coverings of a topological space T and its density
character dens(T ) (i.e., the smallest cardinality of a dense subset of T ). Similar
results, in a slightly different setting, are contained in [11, Section 1].

Lemma 2.2. Let T be an infinite Hausdorff topological space, and F a point-
countable family of nonempty open subsets of T . Then |F| ≤ dens(T ).

Proof. Fix a dense (necessarily infinite) set D ⊂ T . For each A ∈ F choose
some f(A) ∈ D ∩ A, obtaining in this way a function f : F → D such that
the subfamilies f−1(d) ⊂ F , d ∈ D, are all at most countable. It is clear that
these subfamilies are pairwise disjoint. Now we obtain

|F| = |
⋃
d∈D

f−1(d) | ≤ |D × N| = |D|,

which completes the proof. �

Observation 2.3. The above cardinality estimate applies whenever F is a
point-finite family of sets with nonempty interior (and T as above). Indeed, it
suffices to consider the family F ′ = {intF : F ∈ F}.

Since we are interested in star-finite coverings of normed spaces by bodies,
we will always have that the cardinality of such a covering is not greater than
the density character of the space.
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Lemma 2.4. Let X be an infinite-dimensional normed space, r > 0, and B a
covering of X by balls of radius at most r. Then |B| ≥ dens(X).

Proof. Let E ⊂ X be a maximal 3r-dispersed set, that is: ‖y−z‖ ≥ 3r for any
distinct y, z ∈ E, and for each x ∈ X there is y ∈ E such that ‖x − y‖ < 3r.
Then the set D :=

⋃
n∈N(1/n)E is dense and |E| = |D| ≥ dens(X). Since

E ⊂
⋃
B and each member of B contains at most one element of E, we

conclude that |B| ≥ |E| ≥ dens(X). �

Let X be a normed space. Recall that a set A ⊂ X∗ is total if ⊥A :=⋂
x∗∈A Ker(x∗) = {0}. Thus if A is total then spanw

∗
A = (⊥A)⊥ = X∗. It

follows that if A is total and infinite then

w∗-dens(X∗) := dens(X∗, w∗) ≤ |spanQA| = |A| ,
where spanQA is the “rational span” of A.

Proposition 2.5. Let X be an infinite-dimensional normed space. Suppose
that X admits a covering B by closed bounded convex sets such that some
x0 ∈ X belongs to only finitely many elements of B. Then w∗-dens(X∗) ≤ |B|.

Proof. By translation we may assume that x0 = 0. Define B′ := B \ B(0).
Since

⋃
B(0) is bounded, by homogeneity we may assume that SX ⊂

⋃
B′.

Set B′′ := {B ∈ B′ : B ∩ SX 6= ∅}. By the Hahn-Banach theorem, for each
B ∈ B′′ there exists x∗B ∈ SX∗ such that 0 = x∗B(0) < inf x∗B(B). Since
SX ⊂

⋃
B′′, the family {x∗B}B∈B′′ is total and hence infinite. Consequently,

w∗-dens(X∗) ≤ |B′′| ≤ |B|. �

From the previous result we deduce the exact size of a point-finite (star-
finite) covering for a wide class of Banach spaces, more precisely the class of
weakly Lindelöf determined Banach spaces (WLD). The class of WLD Banach
spaces, that generalizes the class of WCG Banach spaces, has been studied
first in [1] (see also [16] for more details).

Corollary 2.6. Let X be a WLD Banach space. Suppose that B is a point-
finite covering by bounded bodies of X. Then dens(X) = |B|.

Proof. By Observation 2.3 we have |B| ≤ dens(X). The other inequality fol-
lows combining Proposition 2.5 with the fact that dens(X) = w∗-dens(X∗)
(see [16, Proposition 5.40]). �

2.2. Structure properties. Let us state some simple properties of star-finite
coverings, which will be used in the sequel.

Observation 2.7. Let F be a star-finite covering by closed sets of a normed
space X. Then it has the following properties.

(a) The set D :=
⋃
F∈F ∂F is closed.
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(b) A point x ∈ X is regular for F if and only if x ∈ int [
⋃
F(x)].

(c) If x is a singular point of F then x ∈
⋂
F∈F(x) ∂F .

(d) If F is countable then H := {x ∈ D : |F(x)| = 1} is a Gδ set.

Proof. (a) If x /∈ D then x ∈ U :=
⋂
F∈F(x) intF . Since F(x) contains only

finitely many sets each of which intersects only finitely many members of
F \ F(x), it follows that the set U \

⋃
[F \ F(x)] is an open neighborhood of

x which is disjoint from D. This proves that X \D is open.
(b) The implication “⇐” follows in a similar way to (a), now starting from

the set U := int [
⋃
F(x)]. To show the other implication, assume that x is

a regular point for F , that is, there exists an open neighborhood V of x for
which the subfamily {F ∈ F : F ∩ V 6= ∅} is finite. Now star-finiteness of
F easily implies that there exists a neighborhood U ⊂ V of x such that U is
contained in

⋃
F(x).

(c) If x is singular then x /∈ int[
⋃
F(x)] by (b), and hence x /∈

⋃
F∈F(x)(intF ).

Thus x ∈
⋂
F∈F(x) ∂F .

(d) Write F = {Fn}n∈N. Then D \H = D ∩
⋃
m6=n(Fm ∩ Fn) is an Fσ set in

D, hence H is Gδ in D. Since D is Gδ in X, it follows that H is Gδ in X. �

Lemma 2.8. Let C1, . . . , Cn and B be closed convex sets in an infinite-dimen-
sional normed space X. If B is bounded and {Ci}n1 does not cover B then
∂B \

⋃n
i=1Ci is weakly dense in B \

⋃n
i=1Ci. In particular, {Ci}n1 does not

cover ∂B.

Proof. Let B have interior points (otherwise there is nothing to prove). Pro-
ceeding by contradiction, assume there exists x ∈ B \

⋃n
i=1 Ci which does not

belong to ∂B \
⋃n
i=1Ci

w
. We have

∂B ⊂ ∂B \
⋃n
i=1Ci

w
∪
⋃n
i=1 Ci =: E,

where E is a weakly closed set that does not contain x. Let W be a weak
neighborhood of x which is disjoint from E. But then W ∩ ∂B = ∅, which is
impossible sinceW contains a line. This contradiction completes the proof. �

Corollary 2.9. Let B be a minimal star-finite covering by bounded closed
convex sets of an infinite-dimensional normed space X. Then the boundary of
each B ∈ B contains a nonempty relatively open set which does not meet other
members of B.

Proof. Given B, let C1, . . . , Cn be the members of B \ {B} that intersect B.
By minimality, {Ci}n1 does not cover B. By Lemma 2.8, ∂B \

⋃n
i=1Ci 6= ∅. �
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2.3. Covering normed spaces of countable dimension. In the rest of
this section we will show that each normed space of countable dimension can
be covered by a star-finite family of closed balls. This result is achieved by
covering inductively a nested sequence of finite-dimensional subspaces.
Let A be a set in a metric space (X, d), and let δ > 0. Recall that a set E ⊂ X
is a δ-net for A if dist(a,E) < δ for each a ∈ A.

In what follows, we shall use several times the following simple fact.

Observation 2.10. Let Z be a convex subset of a normed space X. Let B1

and B2 be two closed balls in X, such that c(B1), c(B2) ∈ Z, then B1 ∩B2 = ∅
if and only if Z ∩B1 ∩B2 = ∅.

Proof. The proof is done observing that two balls intersect if and only if the
distance of their centers is not greater than the sum of their radii if and only
if the balls intersect in the segment connecting the centers. �

The key step in the proof of Theorem 2.12 is the next lemma, which proves
that each open subset A of a finite-dimensional normed space admits a star-
finite covering by closed balls whose singular points accumulate on the bound-
ary of A.

Lemma 2.11. Let X be a normed space, and Y ⊂ X a finite-dimensional
subspace. Let C ⊂ Y be a closed set such that Y \ C 6= ∅. Then there exists a
star-finite family B of closed balls of X such that:

(a) c(B) ∈ Y and B ∩ C = ∅ for each B ∈ B;
(b) Y \ C ⊂

⋃
B;

(c) the singular points of B are contained in C.

Proof. Let us define

Ah,k := {y ∈ Y \ C : 1
k+1

< dist(y, C) ≤ 1
k
, h ≤ ‖y‖ < h+ 1} (h ∈ N0, k ∈ N),

Ah,0 := {y ∈ Y \ C : 1 < dist(y, C), h ≤ ‖y‖ < h+ 1} (h ∈ N0),

where for C = ∅ we put dist(y, C) :=∞. For each h, k ∈ N0, the bounded set
Ah,k ⊂ Y admits a finite 1

2(k+1)
-net Eh,k ⊂ Ah,k. Consider the family

B :=
{
z + 1

2(k+1)
BX : z ∈ Eh,k, k, h ∈ N0

}
which clearly satisfies (a). Since Y \C ⊂

⋃
h,k∈N0

Ah,k , the condition (b) easily
follows by the choice of the sets Eh,k.

Now let us show (c). Let x ∈ X be a singular point of B. Then B contains
a sequence {Bn} of pairwise distinct closed balls such that dist(x,Bn) → 0.
For each n ∈ N there are hn, kn ∈ N0 such that

c(Bn) ∈ Ehn,kn and r(Bn) = 1
2(kn+1)

≤ 1
2
.
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It is easy to see that {hn} is necessarily bounded and {kn} is unbounded. So
we may assume that kn →∞. But then we obtain

dist(x,C) ≤ ‖x− c(Bn)‖+ dist(c(Bn), C)

≤ dist(x,Bn) + r(Bn) + 1
kn
→ 0 ,

and hence x ∈ C.
Finally, proceeding by contradiction, let us show that B is star-finite. So

assume that B is not star-finite. There exists an infinite subfamily {Bn}n∈N ⊂
B such that B1∩Bn 6= ∅ for each n ≥ 2. By Observation 2.10, B1∩Bn∩Y 6= ∅,
n ≥ 2. Fix arbitrarily yn ∈ B1∩Bn∩Y . Since B1∩Y is compact, there exists
a subsequence {ynk

} that converges to some y ∈ B1. But then y is a singular
point of B which, by (a), does not belong to C. This contradicts (c), and we
are done. �

Finally let us prove the main result of the present section.

Theorem 2.12. Let X be a normed space such that dimX = ℵ0. Then X
has a star-finite covering B by closed balls.

Proof. Let {en}n∈N be a Hamel basis of X. We set Y0 := {0}, and Yn :=
span{e1, ..., en} for n ∈ N. We will inductively define families Bn (n ∈ N0) of
closed balls, satisfying for each n ∈ N0 the following conditions:

(P1
n) Bn is star-finite;

(P2
n) Yn ⊂ Cn :=

⋃
(B0 ∪ · · · ∪ Bn);

(P3
n) Cn is closed;

(P4
n)
⋃
Bn is disjoint from

⋃
(
⋃
k<n Bk).

To start, put B0 := {BX} and notice that the conditions (P1
0)-(P4

0) are trivially
satisfied. Now, take n ∈ N and assume we have already defined Bk for k ≤
n− 1. Since C := Cn−1∩Yn is closed, by Lemma 2.11 there exists a star-finite
family Bn of closed balls of X, all centered in Yn, such that Yn∩Cn−1∩

⋃
Bn =

C ∩
⋃
Bn = ∅, Yn \ C ⊂

⋃
Bn, and all singular points of Bn belong to C.

Since both Cn−1 and
⋃
Bn are unions of closed balls centered in Yn, we can

apply Observation 2.10 to obtain that Cn−1 ∩
⋃
Bn = ∅, which shows (P4

n).
Moreover, Yn = C ∪ (Yn \ C) ⊂ Cn−1 ∪

⋃
Bn, which is (P2

n). It remains to

verify (P3
n). To this end, consider x ∈

⋃
Bn \

⋃
Bn and notice that x is

a singular point of Bn, which implies that x ∈ C ⊂ Cn−1. Consequently,
Cn = Cn−1 ∪

⋃
Bn ⊂ Cn−1 ∪

⋃
Bn = Cn which means that Cn is closed.

Finally, let B =
⋃
n∈N0
Bn. By property (P2

n), we easily get that B is a covering.
Since the sets

⋃
Bn (n ∈ N0) are pairwise disjoint, we immediately obtain star-

finiteness of B. The proof is complete. �
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3. Prohibitive conditions for coverings by closed balls

In the present section, we provide results on non-existence of star-finite or
simple coverings of some Banach spaces. Main of these results are contained
in Corollary 3.11, Corollary 3.15, Theorem 3.16, and Corollary 3.20.

3.1. Rotundity and differentiability conditions.

Definition 3.1. Let X be a normed space, and α a cardinal.

(i) Given ε > 0, we say that a point x ∈ SX has property (Iα,ε) if,
whenever B is a family of pairwise disjoint closed balls of radius 1 not
intersecting BX and such that |B| = α, we have

supB∈B dist(x,B) > ε.

(ii) We say that X has property (Iα) if, for each x ∈ SX there exists ε > 0
such that x has property (Iα,ε).

(iii) We say that X has property (UIα) if there exists ε > 0 such that each
x ∈ SX has property (Iα,ε).

(iv) We denote

K(X,α) := sup
{

sepA : A ⊂ SX , |A| = α
}
,

where sepA := inf{‖a− b‖ : a, b ∈ A, a 6= b}.

Remark 3.2. Let α, β be cardinals such that α < β, x ∈ SX , and ε > 0.

(a) If x has property (Iα,ε) then x has property (Iβ,ε).
(b) If X has property (UIα) then X has property (Iα).
(c) It is clear that if B is a closed ball in X and u ∈ ∂B, then for each

r ∈ (0, r(B)) there exists a closed ball B′ ⊂ B such that r(B′) = r and
u ∈ ∂B′. This simple observation easily implies that: the point x has
property (Iα,ε) if and only if, whenever B is a family of pairwise disjoint
closed balls not intersecting BX such that |B| = α and infB∈B r(B) ≥ ρ >
0, we have supB∈B dist(x,B) > ρε.

(d) Notice also that if α is an infinite cardinal then: X has property (UIα)
if and only if there exists ε > 0 such that if B is a disjoint family of
closed balls of radius 1 with |B| = α, and xB ∈ ∂B (B ∈ B), then
diam{xB}B∈B > ε.

(e) We clearly always have K(X,α) ≤ 2. Moreover, K(X,ℵ0) coincides with
K(X), the Kottman’s (separation) constant of a Banach space X; see [20].

The next lemma provides a characterization of property (UIα) in terms of
K(X,α).

Lemma 3.3. Let X be an infinite-dimensional normed space and let α be an
infinite cardinal. Then K(X,α) < 2 if and only if X has (UIα).
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Proof. First assume that K(X,α) = 2, and fix an arbitrary ε ∈ (0, 2). There
exists a set A ⊂ SX with sepA > 2 − ε and |A| = α. Then the balls Ba :=
B(a, 1 − ε/2), a ∈ A, are pairwise disjoint, and moreover ya := (ε/2)a ∈ Ba.
Clearly, diam{ya}a∈A ≤ ε. By multiplying everything by r := (1 − ε/2)−1 we
obtain pairwise disjoint balls rBa (a ∈ A) of radius 1, and points za := rya ∈
rBa such that diam{za}a∈A ≤ rε = 2ε/(2 − ε). Since ε can be arbitrarily
small, X fails (UIα) by Remark 3.2(d).

Now, assume that X fails (UIα), and fix an arbitrary ε ∈ (0, 1). By Re-
mark 3.2(d), there exist pairwise disjoint balls Bγ := B(cγ, 1) (γ < α) and
points yγ ∈ Bγ with diam{yγ}γ<α ≤ ε/2. By translation, we may assume
that {yγ}γ<α ⊂ εBX . Since the origin belongs to at most one of the balls
Bγ, by excluding such a ball we may assume that 0 /∈ Bγ (γ < α). Then
1 < ‖cγ‖ ≤ ‖cγ − yγ‖ + ‖yγ‖ ≤ 1 + ε for each γ < α, and ‖cγ − cβ‖ > 2
whenever γ 6= β. Consider the set A of all the points xγ := cγ/‖cγ‖ (γ < α).
Then ‖xγ − cγ‖ = ‖cγ‖ − 1 ≤ ε and hence for γ 6= β we have ‖xγ − xβ‖ ≥
‖cγ − cβ‖ − ‖xγ − cγ‖ − ‖xβ − cβ‖ > 2 − 2ε. Since sepA ≥ 2 − 2ε and ε can
be arbitrarily small, we conclude that K(X,α) = 2. �

The next theorem shows that Banach spaces satisfying condition (Iℵ0) do
not admit any star-finite covering by closed balls. In order to prove this result
we need a simple lemma.

Lemma 3.4. Let X be a normed space, and Y its separable subspace. Suppose
that B is a star-finite covering of X by closed balls such that uncountably many
elements of B intersect Y . Then X fails property (Iℵ1).

Proof. Let us consider the uncountable family B′ := {B ∈ B : B ∩ Y 6= ∅}
and, for each C ∈ B′, let us consider yC ∈ Y ∩ C. By Zorn’s lemma, there
exists a maximal simple subfamily C ′ of B′. Notice that, since the family B′ is
uncountable and star-finite, C ′ must be uncountable. If we denote C ′m := {C ∈
C ′ : r(C) ≥ 1

m
} (m ∈ N), it is clear that there exists n ∈ N such that C ′n is

uncountable. Since Y is separable, there exists a condensation point y ∈ Y for

the set U := {yC : C ∈ C ′n}. Moreover, there exists B̃ ∈ B′ such that y ∈ B̃;

since B′ is star-finite, we have y ∈ ∂B̃, moreover, only finitely many elements

of C ′n intersect B̃. It easily follows that X fails property (Iℵ1). �

Theorem 3.5. Let X be an infinite-dimensional Banach space satisfying prop-
erty (Iℵ0). Then X does not admit star-finite coverings by closed balls.

Proof. Proceeding by contradiction, assume that such a covering B exists. Let
us consider Y , a separable infinite-dimensional subspace of X. By Lemma 3.4
and since X has property (Iℵ0) (and hence property (Iℵ1)), the family B′ :=
{B ∩ Y : B ∈ B, B ∩ Y 6= ∅} must be countable. Moreover, we may assume
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that B′ is a minimal covering of Y , and denote

D :=
⋃
B∈B′ ∂B , H := {x ∈ D : |B′(x)| = 1}.

Observe that since Y is infinite-dimensional and B′ is minimal, H is nonempty
by Corollary 2.9. By Observation 2.7(d), H =

⋃
B∈B′(∂B∩H) is a Baire space.

Therefore there exists B0 ∈ B′ such that ∂B0 ∩H is not nowhere dense in H.
Using the fact that ∂B0∩H is a relatively open set in ∂B0 (see Corollary 2.9),
it easily follows that there exist x0 ∈ ∂B0 and ε > 0 so that

(1) U(x0, ε) ∩H ⊂ ∂B0 ∩H.
Clearly, x0 is a singular point for B′. Since B′ is star-finite, there exists a
sequence {yn} ⊂ Y such that yn → x0, yn ∈ Cn ∈ B′ and the sets Cn (n ∈ N)
are pairwise distinct. Now, for each n ∈ N, there exists Bn ∈ B such that
Cn = Bn ∩ Y . Let r(Bn) be the radii of the balls Bn (n ∈ N) and consider the
following two cases.

(i) r(Bn) 6→ 0. Let D0 ∈ B be such that B0 = D0 ∩ Y . By considering
a suitable subsequence we can suppose without any loss of generality
that: (a) there exists α > 0 such that r(Bn) > α, whenever n ∈ N,
and such that r(D0) > α; (b) the sets Bn (n ∈ N) and D0 are pairwise
disjoint.

(ii) r(Bn) → 0. Since Y is infinite-dimensional and B′ is minimal, by
Corollary 2.9, for each n ∈ N there exists zn ∈ H ∩ Cn. In particular,
zn → x0 and hence, since (x0 + εBY ) ∩ H ⊂ ∂B0, we have that
eventually zn ∈ ∂B0. Hence, eventually Cn ∩B0 6= ∅.

We have a contradiction, in the first case since X has property (Iℵ0), and in
the latter case since B′ is star-finite. This concludes the proof. �

The rest of the present subsection is devoted to finding sufficient conditions
for a Banach space to satisfy property (Iℵ0). For this purpose let us recall the
following definition from [5].

Definition 3.6 (see [5, Definition 4.6]). We shall say that x ∈ SX is a locally
non-D2 (or LND2) point of BX if there exists δ > 0 such that

diam
{
y ∈ SX : ‖x+y

2
‖ ≥ 1− δ

}
< 2 .

The following lemma immediately follows by [5, Lemma 4.5].

Lemma 3.7. Let X be a normed space, ε ≥ 0, and B0, B1, B2 ⊂ X three
closed balls of radius one whose interiors are pairwise disjoint. Consider three
points yi ∈ ∂Bi, i = 0, 1, 2, and denote x0 = y0 − d0 where d0 is the center of
B0. If diam{y0, y1, y2} ≤ ε then

(2) diam
{
y ∈ SX : ‖x0 + y‖ ≥ 2− ε

}
≥ 2− 2ε .
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For f ∈ SX∗ and α ∈ [0, 1), we consider the closed convex cone

C(α, f) = {x ∈ X : f(x) ≥ α‖x‖}.

The following observation is an analogue of [5, Observation 2.1] for uniformly
Fréchet smooth norms.

Observation 3.8. Suppose that X is a Banach space with uniformly Fréchet
smooth norm. Then for each α ∈ (0, 1) there exists ε > 0 such that for each
x ∈ SX there exists fx ∈ SX∗ with the following property:

(3) [x− C(α, fx)] ∩ [x+ εBX ] ⊂ BX .

Proof. For each x ∈ SX , let fx ∈ SX∗ be the Fréchet derivative of ‖ · ‖ at x.
Since the norm of X is uniformly Fréchet smooth, for each α ∈ (0, 1) there
exists ε > 0 such that, for each x ∈ SX , we have

∣∣‖x+h‖−1−fx(h)
∣∣ ≤ α‖h‖,

whenever h ∈ εBX . Thus, for h ∈ [−C(α, fx)] ∩ εBX , we obtain ‖x + h‖ ≤
1 + fx(h) + α‖h‖ ≤ 1, and hence x+ h ∈ BX . This completes the proof. �

Definition 3.9 (see [5, Definition 2.2]). Let x ∈ SX and ε > 0. We say that
x is an ε-cone smooth point of BX if there exists fx ∈ SX∗ such that

[x− C(1
7
, fx)] ∩ [x+ εBX ] ⊂ BX ,

that is, (3) holds for α = 1/7.

Observe that, if the norm of X is uniformly Fréchet smooth, then, by Ob-
servation 3.8, there exists ε > 0 such that each x ∈ SX is an ε-cone smooth
point of BX .

Proposition 3.10. Let X be a Banach space and x ∈ SX . Let us consider
the following conditions:

(i) X is uniformly Fréchet smooth;
(ii) there exists ε > 0 such that the set of all ε-cone smooth points of BX is

dense in SX ;
(iii) K(X) ≡ K(X,ℵ0), the Kottman’s constant of X, satisfies K(X) < 2;
(iv) x is an LUR point;
(v) x is an LND2 point;

(vi) x is a Fréchet smooth and strongly exposed point of BX ;
(vii) x is a Fréchet smooth point and the unique norm-one functional fx ∈ X∗

that supports BX at x determines a slice Σ of BX such that diam(Σ) < 2.

Then the following implications hold.

(a) If (i) or (ii) is satisfied then X has property (UI2).
(b) If (iii) is satisfied then X has property (UIℵ0).
(c) If at least one of the conditions (iv)–(vii) is satisfied then the point x has

property (I2,ε) for some ε > 0.
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Proof. (a) By the observation immediately after Definition 3.9, (i) implies (ii).
Moreover, if (ii) is satisfied, [5, Lemma 4.1] easily implies that X has property
(UI2).

(b) It follows immediately by Lemma 3.3.

(c) It is clear that (iv) implies (v). Moreover, if (v) is satisfied it follows by
Lemma 3.7 that x has property (I2,ε) for some ε > 0. Finally, it is clear that
(vi) implies (vii). Let us prove that if (vii) is satisfied then x has property (I2,ε)
for some ε > 0. We proceed as in the last part of the proof of [5, Theorem 4.9].
Suppose on the contrary that, for each ε > 0, x fails property (I2,ε). Then
there exist sequences {wn}, {un} in X such that

• for each n ∈ N, there exist Bn, Cn, closed balls of radius 1, such that
BX , Bn, Cn are pairwise disjoint and wn ∈ ∂Bn, un ∈ ∂Cn;
• diam{x,wn, un} → 0.

By Lemma 3.7, for each δ > 0, we have that diam{y ∈ SX : ‖x+y
2
‖ ≥ 1−δ} = 2.

This easily implies existence of a sequence {yn} ⊂ SX such that ‖x+yn
2
‖ → 1,

and diam({yn}n≥n0) = 2 for each n0 ∈ N. By convexity of the norm, for each
n ∈ N there exists zn ∈ (x, yn) such that ‖zn‖ = min{‖z‖ : z ∈ [x, yn]}. It is
not difficult to see that

‖zn‖ ≥ ‖x+ yn‖ − 1

(indeed, if z′n ∈ (x, yn) is such that zn+z′n
2

= x+yn
2

, then ‖x+ yn‖ = ‖zn + z′n‖ ≤
‖zn‖+1). For each n ∈ N, let fn ∈ X∗ be a norm-one functional that separates
‖zn‖BX and [x, yn]; clearly,

fn(zn) = ‖zn‖ = fn(x) = fn(yn).

Notice that ‖zn‖ → 1, that is, fn(x)→ 1. Since x is a Fréchet smooth point of
BX , we have that fn → fx in the norm topology (see, e.g., [9, Corollary 7.22]).
It follows that fx(yn)→ 1. In particular, yn belongs to Σ for each sufficiently
large n, and hence diam(Σ) ≥ 2. This contradiction concludes the proof. �

By Proposition 3.10 and Theorem 3.5, we obtain the following corollary.

Corollary 3.11. Let X be a Banach space satisfying at least one of the fol-
lowing conditions:

(i) X is uniformly Fréchet smooth;
(ii) there exists ε > 0 such that the set of all ε-cone smooth points of BX

is dense in SX ;
(iii) K(X), the Kottman’s constant of X, satisfies K(X) < 2;
(iv) for each x ∈ SX , at least one of the following conditions is satisfied:

• x is an LUR point;
• x is an LND2 point;
• x is a Fréchet smooth and strongly exposed point of BX ;
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• x is a Fréchet smooth point and the unique norm-one functional
fx ∈ X∗ that supports BX at x determines a slice Σ of BX with
diam(Σ) < 2.

Then X does not admit star-finite coverings by closed balls.

3.2. Prohibitive conditions in spaces of continuous functions. We shall
use the following standard notation. Given a Hausdorff topological space T ,
by Cb(T ) we mean the Banach space of all bounded continuous real-valued
functions on T , equipped with the supremum norm ‖x‖∞ := supt∈T |x(t)|. In
the case T is compact, we simply write C(T ) instead of Cb(T ). If T is a locally
compact Hausdorff space, we denote by C0(T ) the Banach space of all elements
of Cb(T ) that vanish at infinity.

Definition 3.12. Let X be a normed space. We shall say that:

(a) a direction v ∈ SX is important if there exists αv > 0 such that for each
straight line L ⊂ X which is parallel to v and intersects BX , one has
diam(L ∩BX) ≥ αv;

(b) a point x ∈ SX is “good” if there exists an important direction v ∈ SX
such that ‖x+ tv‖ > 1 for each t > 0.

Theorem 3.13. Let X be an infinite-dimensional Banach space such that its
“good” points are dense in SX . Then X has no countable star-finite covering
by closed balls.

Proof. Proceeding by contradiction, let B = {Bn}n∈N be a countable star-finite
covering of X by closed balls. We may assume that B is minimal, and denote

D :=
⋃
n∈N ∂Bn , H := {x ∈ D : |B(x)| = 1}.

By Observation 2.7(d), H =
⋃
n∈N(∂Bn∩H) is a Baire space. Therefore there

exists m ∈ N such that ∂Bm ∩ H is not nowhere dense in H. Using the fact
that ∂Bm ∩ H is a relatively open set in ∂Bm (see Corollary 2.9), it easily
follows that there exist x0 ∈ ∂Bm and ε > 0 so that

(4) U(x0, ε) ∩H ⊂ ∂Bm ∩H.
We may clearly assume that Bm = BX and x0 is a “good” point. Let v ∈ SX
be an important direction such that the half-line

L := {x0 + tv : t > 0}
is disjoint from BX . Notice that the subfamily B′ := {B ∈ B : B ∩ L 6= ∅}
covers L, and x0 /∈

⋃
B′ is necessarily a singular point for B′. By star-finiteness,

there exists an infinite disjoint subfamily B′′ ⊂ B′ whose elements are disjoint
from BX , and such that

inf
B′′∈B′′

d(x0, B
′′) = 0.
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Write B′′ = {B′′k}k∈N and notice that we can assume that d(x0, B
′′
k ∩ L) → 0.

Then diam(B′′k ∩ L)→ 0. Since the direction v is important, we obtain that

r(B′′k) ≤ (1/αv) diam(B′′k ∩ L)→ 0.

For each sufficiently large k, B′′k ⊂ U(x0, ε), and since B′′k is disjoint from
BX = Bm we obtain from (4) that B′′k ∩H = ∅ for such k. But this contradicts
Corollary 2.9. We are done. �

Theorem 3.14. Let T be an infinite Hausdorff topological space whose isolated
points form a dense subset. Let X be a closed subspace of Cb(T ) such that X
contains the characteristic function 1{t} for each isolated point t ∈ T . Then
the Banach space X has no countable star-finite covering by closed balls.

Proof. By Theorem 3.13 it suffices to show that “good” points of X are dense
in SX . Fix arbitrary x ∈ SX and ε > 0. At least one of the open sets
{t ∈ T : x(t) > 1− ε} and {t ∈ T : x(t) < −1 + ε} is nonempty, say it is the
first one (the other case is done in a similar way). So there exists an isolated
point t0 ∈ T such that x(t0) > 1− ε.

We claim that v := 1{t0} ∈ SX is an important direction for X. To this end,
consider the line L := {z + λv : λ ∈ R} where z ∈ X, ‖z‖∞ ≤ 1, and denote

β := min{λ ∈ R : ‖z + λv‖∞ ≤ 1} and γ := max{λ ∈ R : ‖z + λv‖∞ ≤ 1}.

For each η > 0 we have

1 < ‖z + (β − η)v‖∞ = max

{
sup
t6=t0
|z(t)| , |z(t0) + β − η|

}
= |z(t0) + β − η|,

which implies that z(t0)+β = −1. Analogously, we obtain that |z(t0)+γ+η| >
1 (η > 0), and hence z(t0) + γ = 1. It follows that diam(L∩BX) = γ−β = 2,
and our claim is proved.

Now, by the choice of t0, for each λ ≥ ε we have (x+λv)(t0) > (1−ε)+ε = 1
and hence ‖x+ λv‖∞ > 1. Put λ0 := max{λ ≥ 0 : ‖x+ λv‖∞ ≤ 1} and notice
that λ0 < ε and ‖x+λ0v‖∞ = 1. The point y := x+λ0v ∈ SX is “good” since
v is an important direction and ‖y + ηv‖∞ = ‖x + (λ0 + η)v‖∞ > 1 (η > 0).
Moreover, ‖y − x‖∞ = λ0 < ε. This completes the proof. �

Corollary 3.15. Let T be an infinite Hausdorff topological space whose iso-
lated points are dense, and Γ a nonempty infinite set. Let X be one of the
following spaces:

(a) C(T ) where T is compact;
(b) C0(T ) where T is locally compact;
(c) `∞(Γ) or c0(Γ).

Then X has no countable star-finite covering by closed balls.
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The following result shows that c0(Γ) (Γ infinite) has no (not necessarily
countable) star-finite covering by closed balls, and that property (Iℵ0) is only
a sufficient condition for X to not admit star-finite coverings by closed balls.

Theorem 3.16. Let Γ be an infinite set. Then c0(Γ) does not admit any
star-finite covering by closed balls, and it fails (Iℵ0).

Proof. Proceeding by contradiction, assume that such a covering B exists.
Fix an infinite countable set Γ0 ⊂ Γ and consider the separable subspace
Y := {x ∈ X : x(γ) = 0 for each γ ∈ Γ \ Γ0}. The family B′ := {B ∩ Y :
B ∈ B, B ∩ Y 6= ∅} is a star-finite covering of Y . It is an easy exercise to
see that each member of B′ is in fact a closed ball in Y . By Observation 2.3,
B′ is countable, but this contradicts Corollary 3.15(c) since Y is isometric to
c0(Γ0). For the second part, let the sequence {un} ⊂ 2Sc0(Γ) be defined by

u1 = 2e1 − e2, un = 2e1 + e2 + . . .+ en − en+1 (n > 1).

We claim that the point x = e1 ∈ Sc0 fails property (Iℵ0,ε), whenever ε > 0.
Indeed, for each δ > 0, we can consider the family

D :=
{

(1 + δ)un +Bc0(Γ) : n ∈ N
}
,

and observe that D is a family of pairwise disjoint closed balls of radius 1 not
intersecting BX and such that |D| = ℵ0. Moreover, we have dist(x,B) = 2δ,
whenever B ∈ D. This clearly implies that c0(Γ) does not have property
(Iℵ0). �

3.3. Simple coverings by closed balls. Recall that a simple covering is a
covering by pairwise disjoint sets. It is a well-known fact that each simple
covering of R by at least two nonempty closed subsets of R is uncountable (see
e.g. [5, Fact 3.2]). Hence if a (nontrivial) normed space X admits a simple
covering by closed balls, then necessarily X is nonseparable and the covering
is uncountable. Moreover, from this result we can easily deduce that certain
non-separable C(K) spaces do not admit simple covering by closed balls.

Proposition 3.17. Let K be a compact space. Suppose that K contains an
isolated point, then C(K) does not admit simple coverings by closed balls.

Proof. Let k ∈ K be an isolated point, then the characteristic function 1{k}
is a continuous function on K. Let B = B(f, r) be a closed ball in C(K)
intersecting the straight line l = {t1{k} : t ∈ R}. We claim that B ∩ l is a
non-degenerate closed interval. Indeed, since B ∩ l 6= ∅, we have |f(x)| ≤ r
for each x ∈ K \ {k}. It follows that t1{k} ∈ B if and only if |t − f(x)| ≤ r,
proving our claim. Now it is clear that C(K) can not be covered by a simple
family of closed balls since otherwise we would get a simple covering of R by
non-degenerate closed intervals, which is impossible. �
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The next theorem shows the relation between separated families of vectors
and simple coverings by closed balls. For convenience of the reader we state
the following known lemma.

Lemma 3.18. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed spaces and θ ∈ [1, 2].
Let A ⊂ SX be such that sepA ≥ θ. Let M ∈ [1, θ] and let T : X → Y be an
isomorphic embedding such that ‖T‖ ·‖T−1‖ ≤M . Then the set B := { Tx

‖Tx‖Y
:

x ∈ A} ⊂ SY satisfies
sepB ≥ θ

M
.

Proof. See the proof of [17, Lemma 2.2]. �

Theorem 3.19. Let Y be a Banach space such that K := K(Y,ℵ1) < 2. Let
T : X → Y be an isomorphic embedding satisfying ‖T‖ · ‖T−1‖ < 2

K
. Then X

does not admit any simple covering by closed balls.

Proof. Denote M := ‖T‖ · ‖T−1‖. Proceeding by contradiction, suppose that
X admits a simple covering B by closed balls. Let ` be a line in X, and
observe that uncountably many elements of B intersect `. By Lemma 3.4, X
fails property (Iℵ1) (and hence it fails property (UIℵ1)). By Lemma 3.3, we
have K(X,ℵ1) = 2 and hence there exists A ⊂ SX such that sepA > MK
and |A| = ℵ1. Lemma 3.18 implies existence of a set B ⊂ SY satisfying
sepB > MK

M
= K and |B| = ℵ1. But this contradicts the definition of K. �

A famous result of Elton and Odell [7] states that if Γ is an uncountable set
then c0(Γ) contains no (1 + ε)-separated uncountable family of unit vectors,
for any ε > 0. That is, K(c0(Γ),ℵ1) ≤ 1 (observe that this inequality trivially
holds even if Γ is countable). Hence, we get the following corollary.

Corollary 3.20. Let Γ be a nonempty set, and X a Banach space. If there
exists an isomorphic embedding T : X → c0(Γ) such that ‖T‖·‖T−1‖ < 2, then
X does not admit simple coverings by closed balls.

Finally we observe that P. Koszmider in [19] defined, under an additional
set-theoretic assumption consistent with the usual axioms of ZFC, a connected
compact space K for which the Banach space C(K) has no uncountable (1+ε)-
separated set in the unit ball for any ε > 0, hence K(C(K),ℵ1) < 2. Therefore,
by Theorem 3.19, C(K) does not admit any simple covering by closed balls.

3.4. Some open problems. We have already mentioned that separable nor-
med spaces do not admit a simple covering, however Theorem 2.12 shows
that normed spaces with countable dimension admit a star-finite covering by
closed balls. On the other hand, in the present section we have provided
various conditions for a Banach space not to have a star-finite covering by
closed balls. Among them there is c0 which admits a point-finite covering by
closed balls. The following question naturally arises from these facts.
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Problem 3.21. Does there exist a separable Banach space admitting a star-
finite covering by closed balls?

The following two problems should be compared with Corollary 3.11 and
Corollary 3.15, respectively.

Problem 3.22. Does there exist an infinite-dimensional Fréchet smooth Ba-
nach space admitting a star-finite covering by closed balls?

Problem 3.23. Does there exist an infinite compact space K for which C(K)
admits a star-finite (or even simple) covering by closed balls?

4. A star-finite covering by Fréchet smooth bodies of c0(Γ)

The purpose of this section is to show that, for any nonempty set Γ, the
Banach space c0(Γ) admits a star-finite covering by Fréchet smooth bounded
bodies. This is clearly trivial for any finite Γ; therefore, from now on Γ will
be an infinite set.

In order to define the desired bodies, we are going to define suitable Fréchet
renormings of c0(Γ), whose balls, roughly speaking, have many flat faces.
GivenM > 2, let us consider the equivalent norm on c0(Γ) defined for x ∈ c0(Γ)
by

‖x‖2
M = inf{‖x1‖2

∞ +M‖x2‖2
2 : x1 ∈ c0(Γ), x2 ∈ `2(Γ), x1 + x2 = x}.

Thanks to Proposition 5.2, we have:

(i) ‖x‖M ≤ ‖x‖∞ ≤
√

1 + 1
M
‖x‖M ;

(ii) the dual norm of ‖ · ‖M is given by:

‖f‖∗M =
√
‖f‖2

1 + 1
M
‖f‖2

2 (f ∈ `1(Γ)).

(iii) ‖ · ‖M is Fréchet smooth (since its dual norm is LUR; this is quite
standard);

(iv) ‖ · ‖M is a lattice norm.

We will use BM to denote the closed unit ball of (c0(Γ), ‖ · ‖M), and Bc0(Γ) to
denote the one of (c0(Γ), ‖ · ‖∞). Observe that (i) is equivalent to

Bc0(Γ) ⊂ BM ⊂
√

1 + 1
M
Bc0(Γ).

Let {eγ}γ∈Γ be the canonical basis of c0(Γ) and, for each finite set Γ0 ⊂ Γ, let
us define

YΓ0 = span{eγ : γ ∈ Γ0} and ZΓ0 = span{eγ : γ ∈ Γ \ Γ0}.
We denote by PΓ0 the canonical projection of c0(Γ) onto YΓ0 . Moreover, for
x ∈ c0(Γ), we denote by supp(x) the support of x.

Let us start by quantifying how much flat is the norm ‖ · ‖M .
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Proposition 4.1. Suppose that x ∈ c0(Γ) is such that ‖x‖M = 1 and let
y ∈ c0(Γ) be such that:

(a) ‖y‖∞ ≤ 1−
√

2
M

;

(b) supp(x) ∩ supp(y) = ∅.
Then ‖x+ y‖M = 1.

Proof. Let ε ∈ (0, 1) and let x1 ∈ c0(Γ) and x2 ∈ `2(Γ) be such that x1+x2 = x,
supp(x1) ⊂ supp(x) and ‖x1‖2

∞+M‖x2‖2
2 ≤ 1+ε. Observe that ‖x2‖2

2 ≤ 1+ε
M
≤

2
M

and hence that ‖x2‖∞ ≤ ‖x2‖2 <
√

2
M

. Hence

‖x1‖∞ = ‖x− x2‖∞ ≥ ‖x‖∞ − ‖x2‖∞ ≥ 1−
√

2
M
.

By (a) and (b), it follows that ‖x1 +y‖∞ = ‖x1‖∞. Since x+y = (x1 +y)+x2,
we have that

‖x+ y‖2
M ≤ ‖x1 + y‖2

∞ +M‖x2‖2
2 = ‖x1‖2

∞ +M‖x2‖2
2 ≤ 1 + ε.

By arbitrariness of ε ∈ (0, 1), we have that ‖x + y‖M ≤ 1. Moreover, by (b)
and since ‖ · ‖M is a lattice norm, we clearly have ‖x+ y‖M = 1. �

Let M > 2, q ∈ (0,∞) and Γ0 ∈ [Γ]<∞. Let us consider the continuous
linear operator TΓ0,q : c0(Γ)→ c0(Γ) given by

(TΓ0,qx)(γ) =

{
x(γ)
q

if γ ∈ Γ0;

x(γ) if γ ∈ Γ \ Γ0.

Let us consider the equivalent norm ‖ · ‖M,Γ0,q on c0(Γ) given by ‖x‖M,Γ0,q =
‖TΓ0,qx‖M (x ∈ c0(Γ)). We observe that the mapping TΓ0,q defines an isometry
from (c0(Γ), ‖ · ‖M,Γ0,q) onto (c0(Γ), ‖ · ‖M). The following lemma easily follows
by the definition of the norm ‖x‖M,Γ0,q and by Proposition 4.1.

Lemma 4.2. Let ‖ · ‖M,Γ0,q be defined as above, and let BM,Γ0,q be the corre-
sponding unit ball. Then:

(i) BM,Γ0,q is a Fréchet smooth body;
(ii) qBM ∩ YΓ0 = BM,Γ0,q ∩ YΓ0;

(iii) if Γ0 ⊂ Γ1 ⊂ Γ, x ∈ BM,Γ0,q ∩ YΓ1, and y ∈ (1 −
√

2
M

)Bc0(Γ) ∩ ZΓ1,

then x+ y ∈ BM,Γ0,q;
(iv) ‖ · ‖M,Γ0,q is a lattice norm;

(v) BM,Γ0,q ⊂ qBM ∩ YΓ0 +
√

1 + 1
M
Bc0(Γ) ∩ ZΓ0.

Proof. (i) It follows from the fact that the bijection TΓ0,q is an isometry.
(ii) If x ∈ YΓ0 then TΓ0,q(x) = x

q
. Therefore we have ‖TΓ0,q(x)‖M = ‖x

q
‖M ≤ 1
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if and only if ‖x‖M ≤ q.
(iii) We start by proving the following assertion:

if Γ0 ⊂ Γ1 ⊂ Γ, x ∈ BM ∩ YΓ1 , and y ∈ (1−
√

2
M

)Bc0(Γ) ∩ ZΓ1 ,

then x+ y ∈ BM .
(5)

If x = 0, then (5) follows by the inclusion Bc0(Γ) ⊂ BM . Let x ∈ (BM∩YΓ1)\{0}
and y ∈ (1−

√
2
M

)Bc0(Γ) ∩ ZΓ1 . We have supp( x
‖x‖M

) ∩ supp(y) = ∅, hence by

Proposition 4.1, we obtain ‖ x
‖x‖M

+ y‖M = 1. Since ‖ · ‖M is a lattice norm

and |x + y| ≤ | x
‖x‖M

+ y|, we have ‖x + y‖M ≤ ‖ x
‖x‖M

+ y‖M = 1, hence (5) is

proved.

Let x ∈ BM,Γ0,q ∩ YΓ1 and y ∈ (1−
√

2
M

)Bc0 ∩ ZΓ1 . Since TΓ0,q is an isometry

and x ∈ BM,Γ0,q ∩ YΓ1 , we have TΓ0,q(x) ∈ BM ∩ YΓ1 . Furthermore, since
y ∈ ZΓ1 , we have TΓ0,q(y) = y. Hence applying (5) to TΓ0,q(x) and y, we have
‖x+ y‖M,Γ0,q = ‖TΓ0,q(x) + TΓ0,q(y)‖M = ‖TΓ0,q(x) + y‖M ≤ 1.
(iv) It holds since TΓ0,q is a positive operator, ‖ · ‖M is a lattice norm, and
‖ · ‖M,Γ0,q = ‖ · ‖M ◦ TΓ0,q.
(v) Let x ∈ BM,Γ0,q. We set x1 := PΓ0(x) and x2 := (I −PΓ0)(x). Let us prove

that x1 ∈ qBM∩YΓ0 and x2 ∈
√

1 + 1
M
Bc0(Γ)∩ZΓ0 . Since x ∈ BM,Γ0,q, the norm

‖ · ‖M,Γ0,q is a lattice norm and |x1| ≤ |x|, we have x1 ∈ BM,Γ0,q. Therefore by
(ii), we have x1 ∈ qBM ∩YΓ0 . Since x2 ∈ ZΓ0 , we have TΓ0,q(x2) = x2, therefore
we obtain ‖x2‖M = ‖TΓ0,q(x2)‖M = ‖x2‖M,Γ0,q ≤ 1. Finally, since ‖x‖∞ ≤√

1 + 1
M
‖x‖M holds for any x ∈ c0(Γ), we have x2 ∈

√
1 + 1

M
Bc0(Γ) ∩ ZΓ0 .

This completes the proof. �

Theorem 4.3. For every infinite set Γ, the space c0(Γ) admits a star-finite
covering B by Fréchet smooth centrally symmetric bounded bodies.

Proof. Let us consider sequences {Mn}∞n=0 ⊂ (2,∞) and {αn}∞n=0 ⊂ (0, 1) such
that

θ :=
∏∞

i=0(1−
√

2
Mi

) αi√
1+M−1

i

> 0.

Put θ0 = 1 and for each n ∈ N define

θn :=
∏n−1

i=0 (1−
√

2
Mi

)
∏n

j=1
αj√

1+M−1
j

.

We shall inductively construct families Bn (n ∈ N0) of bodies such that:

(P1
n) if B ∈ Bn and C ∈

⋃
k<n Bk, then B ∩ C = ∅;

(P2
n) Bn is star-finite;

(P3
n) Cn :=

⋃
B∈B0∪...∪Bn B is closed;
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(P4
n) for each Γ1 ⊂ Γ such that |Γ1| ≥ n, we have

YΓ1 ∩ Cn + θn(1−
√

2
Mn

)Bc0(Γ) ∩ ZΓ1 ⊂ Cn ⊂ YΓ1 ∩ Cn + ZΓ1 ;

(P5
n) for each Γ0 ⊂ Γ, with |Γ0| = n, we have

YΓ0 + θn

(
1−

√
2
Mn

)
Bc0(Γ) ⊂ Cn.

Let us show that this is possible. We put B0 = {BM0} and claim that the
above conditions hold for n = 0. Indeed, conditions (P1

0) and (P2
0) are trivially

true, while observing that Bc0(Γ) ⊂ BM0 = C0, we obtain (P3
0) and (P5

0). In
order to prove condition (P4

0), we verify both inclusions. By (iii) in Lemma

4.2, we have YΓ1 ∩ BM0 + (1−
√

2
M0

)Bc0(Γ) ∩ ZΓ1 ⊂ BM0 for any Γ1 ⊂ Γ such

that |Γ1| ≥ 0. On the other hand, let x ∈ BM0 and Γ1 ⊂ Γ such that |Γ1| ≥ 0.
Since PΓ1(x) ∈ YΓ1 and |PΓ1(x)| ≤ |x|, we have ‖PΓ1(x)‖M0 ≤ ‖x‖M0 ≤ 1.
Therefore it follows that BM0 ⊂ YΓ1 ∩BM0 + ZΓ1 . Hence (P4

0) is established.
Let n ∈ N and suppose we have already defined B0, . . . ,Bn−1 such that

conditions (P3
n−1), (P4

n−1) and (P5
n−1) hold. Let Γ0 ∈ [Γ]n. We have that the

set Cn−1∩YΓ0 is a closed subset of YΓ0 . By Lemma 2.11, there exist sequences
{xk}k ⊂ YΓ0 , and {q̃k}k ⊂ (0,∞) such that:

(a) the family {xk + q̃kBMn ∩ YΓ0}k is star-finite;
(b)

⋃
k(xk + q̃kBMn ∩ YΓ0) = YΓ0 \ Cn−1;

(c) the singular points of {xk+ q̃kBMn∩YΓ0}k are contained in Cn−1∩YΓ0 .

Now, for each k ∈ N, define qk = q̃k
θn

and put BΓ0 = {Bk}k, where Bk :=
xk + θnBMn,Γ0,qk . Observe that, for each k ∈ N,

(6) Bk ∩ YΓ0 = xk + θnBMn,Γ0,qk ∩ YΓ0 = xk + q̃kBMn ∩ YΓ0

holds. Moreover, by (v) in Lemma 4.2, we have

(7) xk + θnBMn,Γ0,qk ⊂ xk + q̃kBMn ∩ YΓ0 + θn

√
1 + 1

Mn
Bc0(Γ) ∩ ZΓ0

for each k ∈ N. Now, we are going to prove that the family BΓ0 satisfies the
following conditions:

(a’) the family BΓ0 is star-finite;
(b’)

⋃
B∈BΓ0

B ∩ YΓ0 = YΓ0 \ Cn−1;

(c’) the singular points of BΓ0 are contained in

Cn−1 ∩ YΓ0 +
√

1 +M−1
n θnBc0(Γ) ∩ ZΓ0 .

If BΓ0 is not star-finite, then there exists a subfamily {Bkj}j∈N ⊂ BΓ0 such
that Bk1 ∩ Bkj 6= ∅, for each j ∈ N. Let yj ∈ Bk1 ∩ Bkj , for each j ∈ N. By
(7), for each j ∈ N, we have

PΓ0(yj) ∈ [xkj + q̃kjBMn ∩ YΓ0 ] ∩ [xk1 + q̃k1BMn ∩ YΓ0 ],
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which contradicts (a). Hence (a’) is proved.
(b’) follows combining (6) with (b).
Let x ∈ c0(Γ) be a singular point for BΓ0 . Then PΓ0(x) is a singular point

for the family {xk+ q̃kBMn ∩YΓ0}k, hence by (c), we have PΓ0(x) ∈ Cn−1∩YΓ0 .

Moreover we have ‖(I − PΓ0)(x)‖∞ ≤
√

1 +M−1
n θn since otherwise, by (7),

there would exist ε > 0 for which (x + εBc0(Γ)) ∩ B = ∅ for each B ∈ BΓ0 ,
contradicting the fact that x is singular. Therefore (c’) is established.

Now, let us denote

Bn :=
⋃

Γ0∈[Γ]n BΓ0 , Dn
Γ0

:=
⋃
B∈BΓ0

B and Dn :=
⋃

Γ0∈[Γ]n D
n
Γ0
.

Claim: there exists βn > 0 such that for every B0 ∈ B∆0 and B1 ∈ B∆1 with
∆0,∆1 ∈ [Γ]n, ∆0 6= ∆1, we have dist(B0, B1) ≥ βn, where the distance refers
to the supremum norm.

In order to prove the claim, let ∆0,∆1 ∈ [Γ]n be such that ∆0 6= ∆1 and
B0 ∈ B∆0 , B1 ∈ B∆1 . Since ∆0 and ∆1 are different and they have the same
cardinality, there exists γ0 ∈ ∆0 \∆1. We observe that

B0 ⊂ Y∆0 ∩B0 + Z∆0 ⊂ Y∆0 ∩B0 + Z{γ0}.

Hence we have:

dist(B0, Y∆1) ≥ dist(Y∆0 ∩B0 + Z{γ0}, Y∆1)

= inf{‖x0 + z0 − y‖∞ : x0 ∈ Y∆0 ∩B0, z0 ∈ Z{γ0}, y ∈ Y∆1}
= inf{‖x0 + z0‖∞ : x0 ∈ Y∆0 ∩B0, z0 ∈ Z{γ0}}
≥ inf{|(x0 + z0)(γ0)| : x0 ∈ Y∆0 ∩B0, z0 ∈ Z{γ0}}
= inf{|x0(γ0)| : x0 ∈ Y∆0 ∩B0}

≥ θn−1

(
1−

√
2

Mn−1

)
,

(8)

where in the last inequality we have used property (P5
n−1) with ∆0 \ {γ0}.

Moreover, by (7) we have

(9) B1 ⊂ Y∆1 + θn

√
1 + 1

Mn
Bc0(Γ) ∩ Z∆1

Hence, by combining (8) and (9) we obtain

dist(B0, B1) ≥ θn−1

(
1−

√
2

Mn−1

)
− θn

√
1 + 1

Mn

= θn−1

(
1−

√
2

Mn−1

)
(1− αn) > 0.

Letting βn = θn−1

(
1−

√
2

Mn−1

)
(1− αn) > 0 we obtain the claim.

Let us prove that conditions (P1
n)-(P5

n) hold.
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• In order to prove that condition (P1
n) holds, we can equivalently prove

that the sets Cn−1 and Dn
Γ0

are disjoint for each Γ0 ∈ [Γ]n. Let Γ0 ∈
[Γ]n, B ∈ BΓ0 and x ∈ B. By (P4

n−1) we have Cn−1 ⊂ YΓ0∩Cn−1+ZΓ0 .
Therefore, suppose by contradiction that x ∈ Cn−1, then we would
have PΓ0(x) ∈ YΓ0 ∩ Cn−1. Which is not possible, indeed, by (b’), we
have PΓ0(x) ∈ B ∩ YΓ0 ⊂ YΓ0 \ Cn−1.
• (P2

n) follows combining (a’) with our claim.
• Let {zk}k∈N ⊂ Dn be such that zk → z. If there exists B ∈ Bn such

that zk ∈ B for infinitely many k ∈ N, by closedness of B, we have
z ∈ B ⊂ Dn. If, on the other hand, each B ∈ Bn contains finitely
many elements of the sequence {zk}k∈N, by our claim, there exists
Γ0 ∈ [Γ]n such that z is a singular point of BΓ0 . By (c’), (P4

n−1) and
the definition of θn, we have

z ∈ Cn−1 ∩ YΓ0 + θn−1(1−
√

2
Mn−1

)Bc0(Γ) ∩ ZΓ0 ⊂ Cn−1.

In any case, the closure of the set Dn is contained in Cn = Cn−1∪Dn.
Since, by (P3

n−1), Cn−1 is closed, condition (P3
n) holds.

• Since θn(1 −
√

2
Mn

) < θn−1(1 −
√

2
Mn−1

) and since (P4
n−1) holds, in

order to prove condition (P4
n), it suffices to show that, for each Γ1 ⊂ Γ

such that |Γ1| ≥ n, we have that

(10) YΓ1 ∩Dn
Γ0

+ θn(1−
√

2
Mn

)Bc0(Γ) ∩ ZΓ1 ⊂ Dn
Γ0
⊂ YΓ1 ∩Dn

Γ0
+ ZΓ1

for each Γ0 ∈ [Γ]n. It is easy to see that (10) follows by the definition
of BΓ0 and Lemma 4.2, (iii) and (iv).
• By (b’) we have YΓ0 ⊂ Cn. Since (P4

n) holds we have

YΓ0 ∩ Cn + θn(1−
√

2
Mn

)Bc0(Γ) ∩ ZΓ0 ⊂ Cn.

Hence we obtain (P5
n).

To complete the proof, let us consider the family B :=
⋃
n∈N Bn. By (P1

n)
and (P2

n), B is clearly star-finite. Moreover, for each n ≥ 0 and each Γ0 ∈ [Γ]n,
by condition (P5

n) we have that:

YΓ0 + θBc0(Γ) ⊂ YΓ0 + θn

(
1−

√
2
Mn

)
Bc0(Γ) ⊂ Cn.

By arbitrariness of n ≥ 0 and Γ0 ∈ [Γ]n (and since θ > 0), B is a covering of
c0(Γ). The fact that the elements of B are Fréchet smooth centrally symmetric
bounded bodies follows by our construction and Lemma 4.2. �
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5. Appendix

In what follows, (X, ‖ · ‖) and (Y, | · |) are Banach spaces whose dual norms
will be denoted by ‖ · ‖∗ and | · |∗, respectively.

Given an arbitrary function f : X → (−∞,+∞] which is proper, that is,
finite in at least one point, one can define its Fenchel conjugate f ∗ : X∗ →
(−∞,+∞] by

f ∗(x∗) = sup
x∈X
{x∗(x)− f(x)}.

Let us collect some useful properties, which are more or less known.

Lemma 5.1. Let X, Y be as above, f : X → (−∞,+∞], g : Y → (−∞,+∞].
Let C denote the set of all convex, proper, lower semicontinuous functions on
X with values in (−∞,+∞], and C∗ the set of all convex, proper, weak∗-lower
semicontinuous functions on X∗ with values in (−∞,+∞].

(a) f ∗ is convex and weak∗-lower semicontinuous.
(b) f ∗ is proper if and only if f ≥ a for some continuous affine a : X → R.
(c) For any α > 0, (αf)∗(x∗) = α f ∗(x∗/α), x∗ ∈ X∗.
(d) (‖ · ‖2)∗ = (1/4)‖ · ‖2

∗.
(e) Let T : Y → X be a bounded linear operator, and assume that

h(x) := inf
{
f(u) + g(y) : u ∈ X, y ∈ Y, x = u+ Ty

}
> −∞, x ∈ X.

Then the function h is proper, and its Fenchel conjugate is h∗ = f ∗+g∗◦T ∗.
(f) The Fenchel conjugation ϕ 7→ ϕ∗ gives a bijection between C and C∗.

Sketch of proof. (a), (b) and (c) are easy exercises. Part (d) can be easily
proved via (b) from the known equality (1

2
‖ · ‖2)∗ = 1

2
‖ · ‖2

∗ (see [24, Exam-
ple 6.1.6] for a more general fact). Part (f) is a well-known result (sometimes
called the Fenchel-Moreau theorem); see e.g. [2, Proposition 4.4.2], [24, Theo-
rem 6.1.2] or [21, Theorem 5.2.8].

Let us show (e). In what follows, x, u ∈ X, y ∈ Y and x∗ ∈ X∗.

h∗(x∗) = sup
x

{
x∗(x)− inf

x=u+Ty
[f(u) + g(y)]

}
= sup

u,y

{
x∗(u+ Ty)− f(u)− g(y)

}
= sup

u
{x∗(u)− f(u)}+ sup

y
{(T ∗x∗)(y)− g(y)} = f ∗(x∗) + g∗(T ∗x∗).

�

Proposition 5.2. Let X, Y be as above, M > 0, and T : Y → X a bounded
linear operator. For x ∈ X define |||x||| ≥ 0 by the formula

|||x|||2 := inf
{
‖u‖2 +M |y|2 : u ∈ X, y ∈ Y, x = u+ Ty

}
.

Then:
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(a) ||| · ||| is an equivalent norm on X which satisfies the estimates

|||x||| ≤ ‖x‖ ≤
√

1 + ‖T‖2
M
|||x||| ;

(b) the corresponding dual norm is given by |||x∗|||2∗ = ‖x∗‖2
∗ + 1

M
|T ∗x∗|2∗ ;

(c) if moreover X, Y are Banach lattices and T is a positive operator then ||| · |||
is a lattice norm.

Proof. It is easy to see that ||| · ||| > 0 outside the origin, ||| · ||| ≤ ‖·‖, and |||λx||| =
|λ||||x||| whenever λ ∈ R, x ∈ X. Given x1, x2 ∈ X and ε > 0, for i = 1, 2 fix
ui ∈ X and yi ∈ Y so that xi = ui + Tyi and ‖ui‖2 + M |Tyi|2 ≤ |||xi|||2 + ε.
Then clearly |||x1 + x2|||2 ≤ ‖u1 + u2‖2 +M |Ty1 + Ty2|2, from which we obtain

|||x1 + x2||| ≤
√

(‖u1‖+ ‖u2‖)2 +
(√

M |Ty1|+
√
M |Ty2|

)2

≤
√
‖u1‖2 +M |Ty1|2 +

√
‖u2‖2 +M |Ty2|2

≤
√
|||x1|||2 + ε +

√
|||x2|||2 + ε .

By ε→ 0+ we obtain the triangle inequality for ||| · |||. Consequently, ||| · ||| is a
norm on X, which is equivalent to ‖ · ‖ by the Open Mapping Theorem. Using
Lemma 5.1(c,d,e), it is not difficult to calculate that its dual norm is given by

|||x∗|||2∗ = ‖x∗‖2
∗ + (1/M)|T ∗x∗|2∗. Thus ||| · |||∗ ≤

√
1 + ‖T‖2

M
‖ · ‖∗. It follows that

‖ · ‖ ≤
√

1 + ‖T‖2
M
||| · |||, which completes the proof of (a) and (b).

Now assume that X, Y are Banach lattices and T is positive. Then it is clear
from (b) that (X∗, ||| · |||∗) is a Banach lattice, and hence its dual (X∗∗, ||| · |||∗∗) is
a Banach lattice as well. Consequently ||| · |||, which is the restriction of ||| · |||∗∗
to X (considered as a subspace of X∗∗), is a lattice norm. �
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ics/Ouvrages de Mathématiques de la SMC, 22, Springer, New York, 2006.
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