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Elliptic fibrations on K3 surfaces with a
non-symplectic involution fixing rational curves

and a curve of positive genus

Alice Garbagnati and Cećılia Salgado

Abstract. In this paper we complete the classification of the elliptic fi-
brations on K3 surfaces which admit a non-symplectic involution acting
trivially on the Néron–Severi group. We use the geometric method in-
troduced by Oguiso and moreover we provide a geometric construction of
the fibrations classified. If the non-symplectic involution fixes at least one
curve of genus 1, we relate all the elliptic fibrations on the K3 surface with
either elliptic fibrations or generalized conic bundles on rational elliptic
surfaces. This description allows us to write the Weierstrass equations
of the elliptic fibrations on the K3 surfaces explicitly and to study their
specializations.

1. Introduction

The purpose of this paper is the classification of elliptic fibrations (with section)
on several families of K3 surfaces. These families are characterized by the presence
of a non–symplectic involution on their general member.

The families we are interested in were classified by Nikulin, in [15]: let X
be a K3 surface over C and ι an involution on X which does not preserve the
symplectic structure. The fixed locus of ι can be one of the following:

a) Fix(ι) = ∅.
b) Fix(ι) = C or Fix(ι) = C

∐
C1 · · ·

∐
Ck, where C is a curve of genus g ≥ 0

and Ci are rational curves, 1 ≤ i ≤ k and k ≤ 9.

c) Fix(ι) = C
∐

D, where C and D are both curves of genus 1.

The condition that X is generic among the K3 surfaces admitting a non–symplectic
involution with a prescribed fixed locus is equivalent to the condition that ι acts
trivially on its Néron–Severi group.
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We classify all elliptic fibrations on X in terms of their trivial lattices. In
particular one obtains that if Fix(ι) = ∅, then X does not admit elliptic fibrations
with section and if Fix(ι) = C

∐
D as in c) thenX admits a unique elliptic fibration

with section. Hence we concentrate ourselves on K3 surfaces with a non-symplectic
involution whose fixed locus is as in b). The case g = 0 was already considered
in [6]. Here we principally focus on the ones with g = 1, i.e., the non-symplectic
involution ι fixes one curve of genus 1 and 1 ≤ k ≤ 9 rational curves, but in
Section 7 we also discuss all the other cases, completing the classification.

Several papers are devoted to the classifications of elliptic fibrations on K3
surfaces. The most classical are [16], where a lattice theoretic method is ap-
plied, and [17] where a more geometric technique is considered. More recently,
the method used in [16] is applied, for example, in [4] and [5] and the one pro-
posed in [17] is considered in [11], [6], [2]. A very deep recent result was obtained
in [12], where the author classified the elliptic fibrations on the Kummer surface
of a principally polarized Abelian surface without applying the previous method,
which do not apply well in this situation.

In order to classify the elliptic fibrations on K3 surfaces, we first produce a
list of the possible elliptic fibrations, applying the techniques developed by Oguiso
in [17]. These techniques are based on the presence of a non-symplectic involution
acting trivially on the Néron–Severi group and here we obtain the classifications
on all the families for which this method applies. If g = 1, we construct explicitly
the elliptic fibrations listed by means of the geometric constructions presented in
our previous paper [8]. These constructions can be considered if the K3 surface is
a 2-cover of a rational elliptic surface.

Once one has a classification of the elliptic fibrations on a K3 surface, it is
natural to ask for the Weierstrass equations of such fibrations, see e.g. [25], [13],
[14], [4]. The geometric realization that we provide for the elliptic fibrations al-
lows us to obtain immediately the Weierstrass equations by applying an algorithm
presented in [2]. Moreover, the knowledge of the equations of the classified ellip-
tic fibrations allows one to consider specializations of the elliptic fibrations and
thus of the underlying K3 surfaces. Hence we are able to find some values of the
parameters of the considered families of K3 surfaces for which the transcendental
lattice shrinks, i.e., its rank decreases, and to compute the new transcendental lat-
tice for these values. In certain cases the elliptic fibrations specialize because the
Mordell–Weil rank increases and our methods allow us to identify the new sections
of the fibration.

This paper is organized as follows. In Section 2, we state the main theorem
(Theorem 2.6) and give a list of all possible configurations of the trivial lattice of
genus 1 fibrations on the K3 surfaces described above. Then we concentrate, in
Sections 3, 4, 5 and 6 on the case g = 1. Section 3 is devoted to outlining which
rational elliptic surfaces can arise as the quotient X/ι mentioned above. Section 4
contains a realization of the classification of the elliptic fibrations on X in terms of
(generalized) conic bundles on X/ι. This allows one to compute, in Section 5, the
Weierstrass equations of all the elliptic fibrations classified. In Section 6, we use the
equations computed in order to describe several interesting specializations of the
considered K3 surfaces and of their elliptic fibrations. Section 7 and the Appendix
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contain the classifications of elliptic fibrations on K3 surfaces which admit a non-
symplectic involution acting trivially on the Néron–Severi group and fixing one
curve of genus greater than 1 and complete the proof of our main theorem.

Basic definitions

In what follows we present the basic key definitions to this text.

Definition 1.1. Let X be a smooth projective algebraic surface and B a smooth
projective algebraic curve. An elliptic fibration with base B onX is a flat morphism
ε : X → B such that:

i) ε−1(t) is a smooth curve of genus one for all but finitely many t ∈ B.

ii) there is a section σ : B → X, i.e., a map such that ε ◦ σ : B → B is the
identity map.

iii) ε−1(t) is singular for at least one t ∈ B.

iv) ε is relatively minimal, i.e., the fibers of ε do not admit (−1)-curves as
components.

Condition ii) above assures that all but finitely many fibers of ε are elliptic
curves with σ(t) as its neutral element. In particular, this fibers admit an involution
which we denote by [−1] from now on. Condition iii) rules out surfaces of product
type, i.e., X � C × B, where C is a curve. Finally, note that iv) above means
that the surface is relatively minimal with respect to the fibration, but it does not
imply that X is a minimal surface as (−1)-curves are allowed outside of the fibers
of ε. If ε satisfies i), ii) and iii) but does not satisfy iv), then it is be called a
non-relatively minimal elliptic fibration.

We will denote the Mordell–Weil group of ε, i.e., the group of the sections of
the fibration, by MW(ε).

Definition 1.2. A K3 surface is a smooth projective algebraic surface, say X,
such that

i) q := h1(X,OX) = 0, i.e., X is regular,

ii) KX � 0, i.e., the canonical divisor of X is trivial.

If ε : X → B is an elliptic fibration and X is either a K3 surface or a rational
surface, then B � P

1.

Definition 1.3. Let X be a K3 surface, then H2,0(X) � C · ωX , where ωX is a
nowhere vanishing symplectic form. An involution ι on X is called non-symplectic
if it does not preserve the symplectic structure on X, i.e., ι(ωX) = −ωX .

2. The non-symplectic involution and admissible fibrations

The aim of this section is to classify the elliptic fibrations which appear on sur-
faces X as in the following assumption.

Assumption 2.1. Let X be a K3 surface and ι a non–symplectic involution of X
which acts trivially on the Néron–Severi group.
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This assumption is very natural, since this means that the K3 surface is generic
in the family of the K3 surfaces with a non-symplectic involution with a prescribed
fixed locus. Nice and easy examples of these K3 surfaces are provided by double
covers of P2 branched along a (possible singular or reducible) sextic, and by double
covers of a rational elliptic surface such that all the reducible fibers are reduced
and contained in the branch locus.

Given a non–symplectic involution ι we call special for ι the curves which are
fixed by it. Throughout this note, we simply call these curves special since the
dependence on the involution is clear.

Proposition 2.2. Let (X, ι) be as in Assumption 2.1. Let C be a smooth rational
curve in X. Then either C is special, or it meets the fixed locus of ι in exactly
two points.

Let C1 and C2 be two smooth rational curves which are not special. Then
C1 · C2 ≡ 0 mod 2.

Proof. This follows immediately from results of Oguiso [17] and Kloosterman [11].
It is due to the fact that the class of each rational curve is mapped to itself by ι. �

Proposition 2.3. Let (X, ι) be as in Assumption 2.1 and E : X → P1 an elliptic
fibration on X. Then

(1) either ι maps each fiber of E to itself,

(2) or ι maps at least one fiber of E to another fiber of E .
If ι is as in (1), then it acts as the identity on the basis of E and as [−1] on

the fibers.
If ι is as in (2), then it acts as an involution on the basis of E and it preserves

two fibers.
The involution ι is as in (1) if and only if there is a section of E which is a

special curve.

Proof. Since ι acts as the identity on the Néron–Severi group, it maps the class of
the fiber of E to itself. So it maps each fiber either to itself or to another fiber of
the same fibration. In the first case, the automorphism induced by ι on the basis
is the identity, but since it is not the identity on X, it acts on the fibers. Since ι is
non-symplectic, it is not a translation on each fiber. Hence it is the elliptic involu-
tion [−1] on the fibers, possibly composed with a translation by a torsion point.
The class of the zero section is the class of an irreducible rational curve on a K3
surface. So ι preserves the zero section. Since it preserves each fiber and the zero
section, the latter is a special curve for ι, and ι is [−1] on the fibers.

If ι does not preserves all fibers, then it does not give the identity on the basis,
and thus it gives an involution on the basis, with two fixed points p1 and p2. Its
fixed locus is necessarily contained in the two fibers over the points p1 and p2, and
so there are no sections among the special curves. �

Definition 2.4. An elliptic fibration is of type 1 (resp. of type 2) with respect to ι
if it is as in case (1) of Proposition 2.3 (resp. as in case (2) of Proposition 2.3).
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Proposition 2.5. Let (X, ι) be as in Assumption 2.1, and let E : X → P1 be an
elliptic fibration on X. Then the following hold :

(1) If E is of type 1 with respect to ι, then MW(E) ⊂ (Z/2Z)2.

(2) If E is of type 1 with respect to ι, and there is at least one non-rational special
curve, then MW(E) ⊂ Z/2Z.

(3) If there is at least one special curve C of genus greater than 1, then MW(E) ⊂
Z/2Z, and in this case if MW(E) = Z/2Z, then C is hyperelliptic.

(4) If there is at least one special curve of genus greater than 3, then MW(E) is
trivial.

Proof. The sections of an elliptic fibration are rational curves, hence ι maps each
section to itself. Indeed, as rational curves are rigid on a K3 surface, each rational
curve is alone in its divisor class. By Assumption 2.1, ι acts trivially on the
Néron–Severi group and therefore fixes each divisor class, fixing, in particular, each
rational curve. If ι is the identity on the basis, then each section of the fibration is a
fixed curve. In particular each section of an elliptic fibration of type 1 is fixed by ι.
If E is of type 1 with respect to ι, then ι is the elliptic involution and in particular
it fixes the zero section, the (possibly reducible) trisection passing through the
2-torsion points and no other sections. We conclude that if E is of type 1 with
respect to ι, then MW(E) ⊂ (Z/2Z)2. If moreover there is a non-rational curve
fixed by ι, then it is a component of the trisection passing through the 2-torsion
points and thus this trisection is either irreducible (and so MW(E) = {0}) or it is
a bisection (and so MW(E) = Z/2Z).

We recall that if E is of type 2 with respect to ι, then the special curves are
contained in two fibers, so there are no special curves with genus higher than 1.
Hence, if there is at least one special curve C of genus greater than 1, then E is
of type 1 with respect to ι, and we conclude that either C is the trisection of the
2-torsion points, or the trisection splits into a section and a bisection. In the latter
case C is the bisection and by definition it is hyperelliptic.

Given a lattice L, its length is the minimal number of generators of the discrim-
inant group L∨/L. If ι fixes one curve of genus higher than 3, then, denote by r
the rank of the Néron–Severi group and by a the length of the Néron–Severi group,
it follows by [15] that (22− r − a)/2 > 3. This implies that r + a < 16. By [9], if
r + a < 16, then X cannot admit a symplectic involution. On the other hand, if
a K3 surface admits an elliptic fibration with a 2-torsion section, the translation
by this section is a symplectic involution on the K3 surface. We conclude that if
r + a > 16, there are no elliptic fibrations on X with a 2-torsion section. �

Theorem 2.6. Let X be a K3 surface which admits at least one elliptic fibration
and let (X, ι) be as in Assumption 2.1. The following hold :

(i) Fixι(X) �= ∅.
(ii) If Fixι(X) = C

∐
D with g(C) = g(D) = 1, then there is a unique elliptic

fibration on X, which is ϕ|C| : X → P1 and it is of type 2.
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(iii) If Fix(ι) = C
∐

C1 · · ·
∐

Ck, i = 1, . . . , k, g(Ci) = 0, and g(C) > 1, then all
the fibrations on X are of type 1 and they are given in Proposition 7.1.

(iv) If Fix(ι) = C
∐

C1 · · ·
∐

Ck, i = 1, . . . , k, g(Ci) = 0, and g(C) = 1, then
there exists one fibration of type 2, ϕ|C| : X → P1, and all the other fibrations
are of type 1. All the fibrations on X are given in Proposition 2.9.

(v) If Fix(ι) = C
∐

C1 · · ·
∐

Ck, i = 1, . . . , k and g(Ci) = g(C) = 0 then there
exists both fibrations of type 2 and of type 1. All the fibrations on X are given
in [6].

Proof. If E is an elliptic fibration of type 1 with respect to ι, then the zero section
is a special curve E . If E is an elliptic fibration of type 2, then it preserves two
fibers of the fibration and the zero section. So ι cannot be a translation on these
fibers and thus Fixι(X) �= ∅.

Let us assume that ι fixes at least one genus 1 curve E. Then ϕ|E| : X → P
1

is a genus 1 fibration and ι fixes at least one of the fibers. If ι would act as the
identity on the base of the fibration it cannot act as the identity also on the fibers
of the fibration (otherwise it is the identity). So, if ι is the identity on the fiber E
of ϕ|E| : X → P

1, it is not the identity on the base, i.e., ϕ|E| is of type 2 with
respect to ι. In particular it is an involution of the basis, which fixes two points on
the basis, and thus it preserves two fibers of ϕ|E| : X → P1. The special curve E
is one of these fibers.

Assume that X admits other genus 1 fibrations, which are not ϕ|E|. Denote
by E : X → P

1 one of these. The special curve E cannot be a fiber of E as
otherwise E would coincide with ϕ|E|. So E is a horizontal curve and E is of type 1
with respect to ι. Since E is not a rational curve, it is neither a section nor an
irreducible component of a reducible fiber. Thus it is a multisection meeting the
fibers of E in 2-torsion points, i.e., it is either a trisection or a bisection. In both
the cases there can not be another genus 1 curve in the fixed locus.

If there is a special curve of genus bigger than 1, then it is not contained in a
fiber and thus there are no fibrations of type 2 with respect to ι.

Thanks to the results in [17], [11] and [6], to conclude the proof it remains to
classify the elliptic fibrations which appear in the cases Fix(ι) = C

∐
C1 · · ·

∐
Ck

with g(C) ≥ 1. This is done in Propositions 2.9 and 7.1. �

We observe that most of the elliptic fibrations that we are looking for are of
type 1. For these fibrations the Mordell–Weil group is extremely simple, so that
one has to classify principally the reducible fibers which can appear. This is the
purpose of the following proposition, where we reformulate the results by Oguiso,
see [17], to deal with surfaces in our setting.

Proposition 2.7. Let (X, ι) be as in Assumption 2.1 and let E : X → P1 be an
elliptic fibration on X of type 1 with respect to ι. Then the reducible fibers which
appear in E are among the ones contained in the following table, where the number s
of special rational curves that they contain and the number c of components not
meeting the zero section are given.
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fiber s c Dynkin

I2 0 1 A1

I∗2n n+ 1 2n+ 4 D2n+4

III∗ 3 7 E7

II∗ 4 8 E8

Proof. This is a consequence of Propositions 2.2 and 2.5. In particular, by the
assumptions, ι fixes the zero section of the fibration.

To illustrate the kind of arguments, we show why fibers of type IV ∗ are not
allowed. The arguments for the other cases are analogous and somewhat simpler.
Suppose that there exists such a fiber. We denote by Θi its components: Θ0 is
the components meeting the zero section. If i, j ∈ {0, 1, . . . , 4}, then Θi · Θj = 1
if and only if |i − j| = 1 and Θi · Θj = 0 otherwise. The component Θ5 meets
only the component Θ2 in one point and the component Θ6 in another point.
The component Θ6 meets only the component Θ5. Since ι acts trivially on the
Néron–Severi group, each component Θi is sent to itself by ι. In particular the
intersection points between Θ2 and Θi, for i = 1, 3, 5 are fixed points. But then Θ2

is a fixed curve (the involution ι acts on the rational curve Θ2 with 3 fixed points).
The fixed locus of ι is smooth, so Θ1, Θ3 and Θ5 are not fixed. The intersection
point between Θ1 and Θ0 is a fixed point and it is a singular point of the fiber IV ∗.
Neither a section nor the trisection of the 2-torsion points pass through this singular
point of IV ∗. A non-symplectic involution on a K3 surface cannot admit an isolated
fixed point, so there is a curve passing through the intersection point between Θ1

and Θ0. So Θ0 is a fixed curve. Analogously Θ4 and Θ6 are fixed. But these curves
are the unique simple components of the fiber of type IV ∗ and we know that ι
fixes at least one section. This means that there exist two special curves which
intersect, namely a section of the fibration and a component of a fiber, which is
impossible by the smoothness of the fixed locus of ι. �

Proposition 2.8 (See [15]). Let (X, ι) be as in Assumption 2.1. Let us assume
that ι fixes a curve of genus 1 and precisely k rational curves. Then :

i) the Néron–Severi group of X has rank r = 10 + k and its discriminant is
(Z/2Z)a, where a = 20− r(= 10− k).

ii) The pair (r, a) determines NS(X) if r �= 14 and r �= 18. If r = 14 or r = 18,
there are two different possibilities for NS(X), which depend on the values of
δ ∈ {0, 1}. If the discriminant form of NS(X) takes values in Z, then δ = 0,
otherwise δ = 1.

iii) The triple (r, a, δ) uniquely determines NS(X).

Proposition 2.9. Let (X, ι) be as in Proposition 2.8 and let E : X → P1 be an
elliptic fibration on X. Then there are two possibilities :

i) E is the unique fibration of type 2 and the configuration for the reducible fibers
appears among the first lines in Table 1.

ii) E is of type 1. The admissible configurations of the reducible fibers are listed
in Table 1, in all the other lines.
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Table 1.

k = 9, r = 19, a = 1

no trivial lattice 17 =
∑

ci + rank(MW) 9 = k =
∑

si +#sections MW(E)
9.1 U ⊕A17 17 + 0 9 + 0 Z/3Z

9.2 U ⊕ E8 ⊕ E8 ⊕A1 8 + 8 + 1 + 0 4 + 4 + 0 + 1 {1}
9.3 U ⊕ E7 ⊕D10 7 + 10 + 0 3 + 4 + 2 Z/2Z

9.4 U ⊕D16 ⊕A1 16 + 1 + 0 7 + 0 + 2 Z/2Z

k = 8, r = 18, a = 2, δ = 0

no trivial lattice 16 =
∑

ci + rank(MW) 8 = k =
∑

si +#sections MW(E)
8.1 U ⊕A15 15 + 1 8 + 0 Z× Z/2Z

8.2 U ⊕ E8 ⊕D8 8 + 8 + 0 4 + 3 + 1 {1}
8.3 U ⊕ E⊕2

7 ⊕A⊕2
1 7 + 7 + 1 + 1 + 0 3 + 3 + 0 + 0 + 2 Z/2Z

8.4 U ⊕D16 16 + 0 7 + 1 {1}
8.5 U ⊕D12 ⊕D4 12 + 4 + 0 5 + 1 + 2 Z/2Z

8.6 U ⊕D8 ⊕D8 8 + 8 + 0 3 + 3 + 2 Z/2Z

k = 8, r = 18, a = 2, δ = 1

no trivial lattice 16 =
∑

ci + rank(MW) 8 = k =
∑

si +#sections MW(E)
8.1 U ⊕A15 15 + 1 8 + 0 Z

8.2 U ⊕ E8 ⊕ E7 ⊕A1 8 + 7 + 1 + 0 4 + 3 + 0 + 1 {1}
8.3 U ⊕ E7 ⊕D8 ⊕A1 7 + 8 + 1 + 0 3 + 3 + 0 + 2 Z/2Z

8.4 U ⊕D14 ⊕A⊕2
1 14 + 1 + 1 + 0 6 + 0 + 0 + 2 Z/2Z

8.5 U ⊕D10 ⊕D6 10 + 6 + 0 4 + 2 + 2 Z/2Z

k = 7, r = 17, a = 3

no trivial lattice 15 =
∑

ci + rank(MW) 7 = k =
∑

si +#sections MW(E)
7.1 U ⊕A13 13 + 2 7 + 0 (Z)2

7.2 U ⊕ E8 ⊕D6 ⊕A1 8 + 6 + 1 + 0 4 + 2 + 0 + 1 {1}
7.3 U ⊕E7⊕D6⊕A⊕2

1 7 + 6 + 1 + 1 + 0 3 + 2 + 0 + 0 + 2 Z/2Z

7.4 U ⊕ E7 ⊕D8 7 + 8 + 0 3 + 3 + 1 {1}
7.5 U ⊕ E⊕2

7 ⊕A1 7 + 7 + 1 + 0 3 + 3 + 0 + 1 {1}
7.6 U ⊕D14 ⊕A1 14 + 1 + 0 6 + 0 + 1 {1}
7.7 U ⊕D12 ⊕A⊕3

1 12 + 1 + 1 + 1 + 0 5 + 0 + 0 + 0 + 2 Z/2Z

7.8 U ⊕D10 ⊕D4 ⊕A1 10 + 4 + 1 + 0 4 + 1 + 0 + 2 Z/2Z

7.9 U ⊕D8 ⊕D6 ⊕A1 8 + 6 + 1 + 0 3 + 2 + 0 + 2 Z/2Z

k = 6, r = 16, a = 4

no trivial lattice 14 =
∑

ci + rank(MW) 6 = k =
∑

si +#sections MW(E)
6.1 U ⊕A11 11 + 3 6 + 0 (Z)3

6.2 U⊕E8⊕D4⊕A⊕2
1 8 + 4 + 1 + 1 + 0 4 + 1 + 0 + 0 + 1 {1}

6.3 U ⊕E7 ⊕D6 ⊕A1 7 + 6 + 1 + 0 3 + 2 + 0 + 1 {1}
6.4 U⊕E7⊕D4⊕A⊕3

1 7 + 4 + 1 + 1 + 1 + 0 3 + 1 + 0 + 0 + 0 + 2 Z/2Z

6.5 U ⊕D12 ⊕A⊕2
1 12 + 1 + 1 + 0 5 + 0 + 0 + 1 {1}

6.6 U ⊕D10 ⊕D4 10 + 4 + 0 4 + 1 + 1 {1}
6.7 U ⊕D10 ⊕A⊕4

1 10 + 1 + 1 + 1 + 1 + 0 4 + 0 + 0 + 0 + 0 + 2 Z/2Z

6.8 U ⊕D8 ⊕D6 8 + 6 + 0 3 + 2 + 0 + 0 + 1 {1}
6.9 U⊕D8⊕D4⊕A⊕2

1 8 + 4 + 1 + 1 + 0 3 + 1 + 0 + 0 + 2 Z/2Z

6.10 U ⊕D⊕2
6 ⊕A⊕2

1 6 + 6 + 1 + 1 + 0 2 + 2 + 0 + 0 + 2 Z/2Z
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k = 5, r = 15, a = 5

no trivial lattice 13=
∑

ci+rank(MW) 5=k=
∑

si+#sections MW(E)
5.1 U ⊕A9 9 + 4 5 + 0 (Z)4

5.2 U ⊕ E8 ⊕A⊕5
1 8+1+1+1+1+1+0 4 + 0 + 0 + 0 + 0 + 1 {1}

5.3 U ⊕ E7 ⊕D4 ⊕A⊕2
1 7 + 4 + 1 + 1 + 0 3 + 1 + 0 + 0 + 1 {1}

5.4 U ⊕ E7 ⊕A⊕6
1 7+1+1+1+1+1+1+0 3+0+0+0+0+0+0+2 Z/2Z

5.5 U ⊕D10 ⊕A⊕3
1 10 + 1 + 1 + 1 + 0 4 + 0 + 0 + 0 + 1 {1}

5.6 U ⊕D8 ⊕D4 ⊕ A1 8 + 4 + 1 + 0 3 + 1 + 0 + 1 {1}
5.7 U ⊕D8 ⊕A⊕5

1 8+1+1+1+1+1+0 3 + 0 + 0 + 0 + 0 + 0 + 2 Z/2Z

5.8 U ⊕D⊕2
6 ⊕A1 6 + 6 + 1 + 0 2 + 2 + 0 + 1 {1}

5.9 U ⊕D6 ⊕D4 ⊕ A⊕3
1 6 + 4 + 1 + 1 + 1 + 0 2 + 1 + 0 + 0 + 0 + 2 Z/2Z

k = 4, r = 14, a = 6, δ = 0

no trivial lattice 12=
∑

ci+rank(MW) 4=k=
∑

si+#sections MW(E)
4.1 U ⊕ E6 6 + 6 4 + 0 (Z)6

4.2 U ⊕D6 ⊕A⊕6
1 6+1+1+1+1+1+1+0 2+0+0+0+0+0+0+2 Z/2Z

4.3 U ⊕D⊕3
4 4 + 4 + 4 + 0 1 + 1 + 1 + 1 {1}

k = 4, r = 14, a = 6, δ = 1

no trivial lattice 12=
∑

ci+rank(MW) 4=k=
∑

si+#sections MW(E)
4.1 U ⊕A7 7 + 5 4 + 0 (Z)5

4.2 U ⊕ E7 ⊕A⊕5
1 7+1+1+1+1+1+0 3 + 0 + 0 + 0 + 0 + 0 + 1 {1}

4.3 U ⊕D8 ⊕A⊕4
1 8 + 1 + 1 + 1 + 1 + 0 3 + 0 + 0 + 0 + 0 + 1 {1}

4.4 U ⊕D6 ⊕D4 ⊕ A⊕2
1 6 + 4 + 1 + 1 + 0 2 + 1 + 0 + 0 + 1 {1}

4.5 U ⊕D6 ⊕A⊕6
1 6+1+1+1+1+1+1+0 2+0+0+0+0+0+0+2 Z/2Z

4.6 U ⊕D⊕2
4 ⊕A⊕4

1 4+4+1+1+1+1+0 1 + 1 + 0 + 0 + 0 + 0 + 2 Z/2Z

k = 3, r = 13, a = 7

no trivial lattice 11=
∑

ci+rank(MW) 3=k=
∑

si+#sections MW(E)
3.1 U ⊕A5 5 + 6 3 + 0 (Z)6

3.2 U ⊕D6 ⊕A⊕5
1 6 + 1 + 1 + 1 + 1 + 1 + 0 2 + 0 + 0 + 0 + 0 + 0 + 1 {1}

3.3 U ⊕D⊕2
4 ⊕A⊕3

1 4 + 4 + 1 + 1 + 1 + 0 1 + 1 + 0 + 0 + 0 + 1 {1}
3.4 U ⊕D4 ⊕A⊕7

1 4 + 1 + 1 + 1 + 1 + 1 +
1 + 1 + 0

1+0+0+0+0+0+0+0+2 Z/2Z

k = 2, r = 12, a = 8

no trivial lattice 10=
∑

ci+rank(MW) 2=k=
∑

si+#sections MW(E)
2.1 U ⊕A3 3 + 7 2 + 0 (Z)7

2.2 U ⊕D4 ⊕A⊕6
1 4+1+1+1+1+1+1+0 1+0+0+0+0+0+0+1 {1}

2.3 U ⊕A⊕10
1 10 + 0 0 + . . .+ 0 + 2 Z/2Z

k = 1, r = 11, a = 9

no trivial lattice 9 =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
1.1 U ⊕A1 1 + 8 1 + 0 (Z)8

1.2 U ⊕A⊕9
1 9 + 0 0 + 1 {1}
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Proof. Assume first that none of the special curves are sections for E . Then E is
of type 2 and the quotient X/ι is a rational elliptic surface R equipped with the
elliptic fibration ER. The elliptic fibration E is induced by ER by a base change of
order 2, as proved in Theorem 4.2 of [8], see also [27]. Moreover, if ι acts trivially on
the Néron–Severi group, then the elliptic fibration on R has exactly one reducible
fiber which is contained in the branch locus of the cover X → R. The reducible
fiber is determined by k and δ, and it is always Ik, except for k = 4, when it can
be also IV . This last statement is proved in the beginning of Section 3.

If there is a special curve which is a section of E , then E is of type 1 and in
order to produce the list one makes the following observations:

• By Proposition 2.5, MW(E) ⊂ Z/2Z.

• Since MW(E) ⊂ Z/2Z, the trivial lattice of the fibration has rank r =
rank(NS(X)). So the sum of the non-trivial components of the reducible
fibers has to be r − 2.

• If MW(E) = 0, then the discriminant of the trivial lattice coincides with the
discriminant of NS(X), so it is (Z/2Z)a. In this case there is a unique section
(the zero section), and it is a special curve. So the sum of the special curves
contained in the reducible fibers has to be k − 1.

• If MW(E) = Z/2Z, then the trivial lattice is a sublattice with index 2 in
NS(X), so its discriminant is (Z/2Z)a+2. In this case there are two sections,
and they are both special curves. So the sum of the special curves contained
in the reducible fibers has to be k − 2.

The list given in the proposition is the list of all the trivial lattices which satisfy
these conditions. In order to conclude that every elliptic fibration in the list really
occurs we explicitly construct all of them in the next sections. Alternatively, one
can observe that the fibrations of type 1 have Mordell–Weil group with rank 0, so
they exist if and only if they appear in the list given in [22]. The existence of the
ones of type 2 follows by the existence of the associated rational elliptic surface as
in Section 3. �

Remark 2.10. A different way to obtain Table 1 is to apply the so called Nishi-
yama method, [16]. In order to apply the method one has to consider a negative
definite lattice T with the same discriminant group and form of the transcendental
lattice ofX, TX , and such that rank(T ) = rank(TX)+4. For the surfaces considered
in Proposition 2.9, if δ = 1, T � E7 ⊕ A9−k

1 ; if δ = 0 and k = 8, T � D8; if δ = 0
and k = 4, T � D4 ⊕D4 ⊕D4.

3. Classification of the admissible rational elliptic surfaces

We study the rational elliptic surface R which appears when taking the quo-
tient X/ι, giving a realization of the first line of the tables in Proposition 2.9.

Given (X, ι) as in Proposition 2.9 let E be the fibration of type 2 on X. We
denote by R the surface obtained after blowing down (−1)-curves that are compo-
nents of the fibers on the non-relatively minimal fibration induced on X/ι by E .
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Vice versa, given a rational elliptic surface ER : R → P1, let f : P1 → P1 be
a 2:1 map branched over 0 and ∞. We consider the associated base change.
This produces another elliptic fibration EX : X → P1, where X is the eventual
desingularization of the fiber product R ×P1 P

1. The surface X naturally comes
with an involution ι, such thatX/ι is birational to R. We now require the following:

a) X is a K3 surface;

b) ι fixes one curve of genus 1 and 1 ≤ k ≤ 9 rational curves;

c) ι acts trivially on NS(X).

Condition a) implies that the fibers over 0 and ∞ of ER are reduced, so they
can be In, n ≥ 0, or II, or III, or IV (see [23]).

Condition b) implies that exactly one among the fibers over 0 and ∞ of ER is
of type I0 (see [8]). Just to fix the notation, we assume that the fiber over 0 is of
type I0.

Condition c) implies that ER has no reducible fibers except possibly the fiber
over 0 and the fiber over ∞ (see [8]). Moreover, condition c) implies that ER has
no fibers of type II and III over 0 and ∞. Indeed let us assume that the fiber
over ∞ is a fiber of type II, i.e., a cuspidal curve. Then the fiber over ∞ of EX
is a fiber of type IV which has 3 components: one of them is the double cover of
the strict transform of the fiber of type II and it is fixed by ι. The others are two
curves switched by ι (which in fact are mapped to the same curve on the blow up
of R in the singular point of the cuspidal fiber). But if ι switches the components
of a reducible fiber, it can not be the identity on NS(X). Similarly, if the fiber
of ER over ∞ is of type III, the corresponding fiber over EX is of type I∗0 . Two
of the simple components of the fiber I∗0 are fixed by ι, the multiple component is
preserved, but not fixed by ι, an so the other two simple components are switched
by ι. Therefore we can exclude also this case.

The admissible rational elliptic surfaces are described in Table 2 where we
give information both on R and on (X, ι), namely the reducible fibers of R; the
Mordell–Weil group of ER; (r, a, δ), which determines NS(X); k, the number of
rational curves fixed by ι.

Table 2.

Surface R Surface X

Branch fibers Other singular fibers MW

I0 + In, 1 ≤ n ≤ 8 irreducible Z
9−n

I0 + I9 irreducible Z/3Z

I0 + I8 irreducible Z× Z/2Z

I0 + IV irreducible Z
6

(r, a, δ) k

(10 + n, 10− n, 1) n

(19, 1, 1) 9

(18, 2, 0) 8

(14, 6, 0) 4

Notice that, by the list presented in [19], the rational elliptic surfaces with a
unique reducible fiber which is of type In have no torsion sections with only two
exceptions, n = 8, 9. If n = 8 there exist two different families of rational elliptic
surfaces, the Mordell–Weil group of one of them is torsion free while the other
has a 2-torsion section. If n = 9, then there is a unique rational surface with a
reducible fiber I9, it is extremal and the Mordell–Weil group is necessarily Z/3Z.
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3.1. Equations of the pencil of cubics

The rational elliptic surface associated to the involution which fixes 9 rational
curves and one curve of genus 1 is the unique extremal rational surface with a
fiber of type I9 and three fibers of type I1. Rational elliptic surfaces having exactly
four semi-stable singular fibers, the latter configuration included, were discussed
by Beauville in [3]. The paper [24] by Top and Yui also contains, in Section 2.3.,
this (and similar) examples, as well as some K3 surfaces that are double covers of
them. The rational elliptic surfaces with configuration (I9, 3I1) is associated to a
known pencil of cubics which is generated, for example, by the reducible cubics
xyz and by the smooth cubic C9 := {x2y + y2z + z2x = 0}. In the following we
will call l1 the line x = 0, l2 the line y = 0 and l3 the line z = 0. Moreover we
will denote by Pij the point li ∩ lj . The cubic C9 passes through the points Pij

and in P12 it is tangent to l1, in P13 it is tangent to l3 and in P23 it is tangent
to l2. Hence in each point Pij the cubic C9 intersects the cubic l1 ∪ l2 ∪ l3 with
multiplicity 3 and all the base points of the pencil x2y+ y2z + z2x+ μxyz are Pij

and points infinitely near to Pij . After blowing up the base points one obtains a
reducible fiber of type I9 over μ = ∞ and no other reducible fiber.

The rational elliptic surface with one fiber of type I8 and no torsion is obtained
by deforming the previous example. Indeed, we can obtain a fiber of type I8
over μ = ∞ if we separate one of the base points infinitely near to Pij . This is
equivalent to require that in one point Pij the cubic C9 deforms to cubics that still
pass through Pij , but are not tangent to a line between li and lj . We can assume
that in P13 = (0 : 1 : 0) the deformation of C9 is not tangent to l3. This gives the
pencil C8 := {x2y + y2z + z2x+ a9xy

2 = 0}.
Proceeding by iterations of the above, we obtain that the pencil

P1 := {x2y + y2z + z2x+ a9xy
2 + a8x

2z + a7yz
2(3.1)

+ a6z
3 + a5y

3 + a4x
3 + μ(xyz + a3z

3 + a2y
3)}.

corresponds to a rational elliptic surface with one fiber of type I1 in μ = ∞ and
no reducible fibers.

Proposition 3.1. Let Pk be the pencil of cubics obtained by choosing a2 = · · · =
ak = 0 for 2 ≤ k ≤ 9 in (3.1). For a generic choice of the ai’s, Pk corresponds
to an elliptic fibration with a fiber of type Ik over μ = ∞ and no other reducible
fibers.

For a generic choice of b, the pencil of cubics x2z + y2z + y2x+ bxz2 + μ(xyz)
corresponds to an elliptic fibration with a fiber of type I8 over μ = ∞, no other
reducible fibers and a 2-torsion section.

For a generic choice of the ci’s, the pencil of cubics z3+c1xy
2+c2x

2z+c3xyz+
c4y

2z + c5xz
2 + (−1 − c1 − c2 − c3 − c4 − c5)yz

2 + μxy(x − y) corresponds to an
elliptic fibration with a fiber of type IV over μ = ∞ and no other reducible fibers.

Proof. This is straightforward once one considers the base points of each pencil Pk.
Alternatively, one can compute the Weierstrass equation of the elliptic fibration

induced by each of the pencils in the statement and consider the discriminant. �
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4. Geometric construction of type 1 elliptic fibrations

The aim of this section is to provide geometric realizations of the elliptic fibrations
of type 1 on X which are listed in Proposition 2.9.

This is done by considering linear systems on the quotient surface X/ι, which

is a rational surface, denoted from now on by R̃.

Definition 4.1. (See Definition 3.3 in [8]) A generalized conic bundle on R̃ is a

nef class D in NS(R̃) such that i) D · (−K
˜R) = 2; ii) D2 = 0.

We observe that R̃ is a blow up of the rational elliptic surface R and the
previous definition generalizes the standard definition of conic bundles on R. Note
that R̃ is endowed with a non-relatively minimal elliptic fibration induced by the
elliptic fibration on R. Since R is a rational elliptic surface it comes with a map
R → P2 given by the blow up of the base points of the pencil of cubics described
in Proposition 3.1. The map R̃ → R contracts (−1)-curves contained in fibers.

Hence we have a contraction map R̃ → P
2. Some of the generalized conic bundles

remain base point free systems on R, and define standard conic bundles on R.
All the generalized conic bundles are mapped by R̃ → P2 to pencils of rational
plane curves.

Proposition 4.2. (See Proposition 3.8 in [8]) Let B be a generalized conic bundle

over R̃. Let C be a section of B. The pencil B induces a genus 1 fibration EB on
the K3 surface X which is the double cover of R̃. The pull back of the curve C is
a section of the fibration EB if and only if C is a branch curve of the double cover
X → R̃. Moreover, all the elliptic fibrations on X of type 1 are of this form.

In the following subsections, for each value of k, we describe the pencil of
cubics used to construct the rational surface R and then we summarize in tables
the relations between the generalized conic bundles on R and the elliptic fibrations
on X. More precisely, by Proposition 2.6, each elliptic fibration on X listed in
Table 1 with only one exception for each k is induced by a generalized conic
bundle on R̃. In the following tables, we associate to each of these fibrations a
generalized conic bundle inducing the elliptic fibration. The elliptic fibration is
described in the first and in the last column: the first column shows the number of
the fibration as given in the table of Proposition 2.9, whereas, in the last column,
the reducible fibers of the fibration and its Mordell–Weil group are described. In
the other columns, we provide a generalized conic bundle associated to each elliptic
fibration. The description of the generalized conic bundle consists in giving the
degree of the planes curves and the list of the base points, since a generalized conic
bundle is a pencil of rational plane curves with some base points. We distinguish
between conic bundles (cb) and generalized conic bundles which are not conic
bundles (Gcb).

In order to associate to each generalized conic bundle an elliptic fibration, it
suffices to find the reducible fibers of the generalized conic bundle and to apply
Theorem 5.3 in [8] which allows one to find the singular fibers of the elliptic fibration
associated to a conic bundle.
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If some of the base points, say p1 and p′1, of the pencil of cubic curves that
induces the rational elliptic surface are infinitely near, we say that a curve passes
through p1 and p′1 to express that it shares the same tangent direction as the cubics
in the rational elliptic pencil. This will be used in what follows.

From the following tables one obtains that it suffices to consider generalized
conic bundles which map to pencils of plane curves of degree at most 3 in order to
recover all the elliptic fibrations listed in Proposition 2.9.

4.1. The case k = 9

The rational elliptic surface E is isomorphic to the blow-up of P2 in 9 points
p1, p

′
1, p

′′
1 , p2, p

′
2, p

′′′
2 , p3, p

′
3, p

′′′
3 , where pi, p

′
i, p

′′
i are infinitely near points. Moreover

the points p1, p2, p3 are not collinear. We call l1 the line through p1 and p2, the line
joining p1 and p3 will be called l3, while l2 will be the line connecting p2 and p3.
We assume that li is tangent at pi to the cubics of the pencil that induces the
elliptic fibration in E .

no deg base points type elliptic fibrations

9.3 1 p1 cb (III∗, I∗6 ),MW = Z/2Z

9.4 2 p1, p
′
1, p

′′
1 , p3 cb (I∗12, I2), MW = Z/2Z

9.2 2 p2, tg to l1, p3 tg to l3 Gcb (2II∗, I2), MW = {1}

4.2. The case k = 8, δ = 1

The rational elliptic surface E is isomorphic to the blow up of P
2 in 9 points

p1, p
′
1, p

′′
1 , p2, p

′
2, p

′′
2 , p3, p

′
3, p4, such that pi and p′i and p′′i , for i = 1, 2, 3, are in-

finitely near points. These points are such that there is one triple of collinear
points l3 := {p2, p3, p4}. The line l2 through p1, p3 is tangent at the point p1, and
the line l1 through p1 and p2 is tangent at p2 to all cubics of the pencil that gives
the elliptic fibration on E , and there is no other collinearity relation.

no deg base points type elliptic fibrations

8.3 1 p1 cb (III∗, I∗4 , I2),MW = Z/2Z

8.5 1 p2 cb (I∗6 , I
∗
2 ), MW = Z/2Z

8.4 2 p1, p3, p′3, p4 cb (I∗10, 2I2), MW = Z/2Z

8.2 2 p1, tg to l1, p3, p′3 Gcb (II∗, III∗, I2), MW = {1}

4.3. The case k = 8, δ = 0

The rational elliptic surface E is isomorphic to the blow up of P
2 in 9 points

p1, p
′
1, p

′′
1 , p2, p

′
2, p

′′
2 , p3, p

′
3, p4, such that pi and p′i and p′′i , for i = 1, 2 are infinitely

near points, and so are p3 and p′3. These points are such that there is one triple
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of collinear points l1 := {p1, p2, p4}. The line l2 through p1, p3 is tangent at the
point p1, and the line l3 through p2 and p3 is tangent at p2 to all cubics of the pencil
that gives the elliptic fibration on E , and there is no other collinearity relation.

no deg base points type elliptic fibrations

8.6 1 p1 cb (2I∗4 ), MW = Z/2Z

8.3 1 p3 cb (2III∗, 2I2), MW = Z/2Z

8.5 1 p4 cb (I∗8 , I
∗
0 ), MW = Z/2Z

8.2 2 p3, tg to l3, p1, p4 Gcb (II∗, I∗4 ), MW = {1}
8.4 3

p1, p′1, p′′1 , p3 tg to l3,

with a node in p4
Gcb (I∗12), MW = {1}

4.4. The case k = 7

The rational elliptic surface E is isomorphic to the blow-up of P
2 in 9 points

p1, p
′
1, p

′′
1 , p2, p

′
2, p3, p

′
3, p4 and p5, where p1, p

′
1, p

′′
1 are infinitely near points, and

the same holds for the pairs p2, p
′
2 and p3, p

′
3. These points are such that there are

two triples of collinear points l2 := {p1, p4, p3} and l3 := {p2, p3, p5} and no other
collinearity relation. We call l1 the line through p1 and p2, and we assume that it
is tangent to the cubics at p1.

no deg base points type elliptic fibrations

7.9 1 p1 cb (I∗4 , I
∗
2 , I2), MW = Z/2Z

7.3 1 p2 cb (III∗, I∗2 , 2I2), MW = Z/2Z

7.8 1 p4 cb (I∗6 , I
∗
0 , I2), MW = Z/2Z

7.7 2 p2, p′2, p1, p5 cb (I∗8 , 3I2), MW = Z/2Z

7.5 2 p1, p′1, p3 tg to l3 Gcb (2III∗, I2), MW = {1}
7.2 2 p2 tg to l1, p3, p4 Gcb (II∗, I∗2 , I2), MW = {1}
7.4 2 p2 tg to l1, p4, p5 Gcb (III∗, I∗4 ), MW = {1}
7.6 3

p2 tg to l1, p3, p′3, p5,

with a node in p4
Gcb (I∗10, I2), MW = {1}

4.5. The case k = 6

The rational elliptic surface E is isomorphic to the blow up of P2 in 9 points
p1, p

′
1, p2, p

′
2, p3, p

′
3, p4, p5, p6, such that pi and p′i, for i = 1, 2, 3, are infinitely near

points. These points are such that there are three triples of collinear points l1 :=
{p1, p2, p4}, l2 := {p1, p5, p3}, l3 := {p2, p3, p6}, and no other collinearity relation
(see [18]).
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no deg base points type elliptic fibrations

6.10 1 p1 cb (2I∗2 , 2I2), MW = Z/2Z

6.9 1 p4 cb (I∗4 , I
∗
0 , 2I2), MW = Z/2Z

6.4 2 p1, p2, p5, p6 cb (III∗, I∗0 , 3I2), MW = Z/2Z

6.7 2 p1, p′1, p2, p5 cb (I∗6 , 4I2), MW = Z/2Z

6.8 2 p1, p′1, p5, p6 cb (I∗4 , I
∗
2 ), MW = {1}

6.2 3
p1, p′1, p3 tg to l3, p6,

with a node in p4
Gcb (II∗, I∗0 , 2I2), MW = {1}

6.6 3
p1, p′1, p3 tg to l2, p6,

with a node in p4
Gcb (I∗6 , I

∗
0 ), MW = {1}

6.5 3
p1, p′1, p3 tg to l3, p5,

with a node in p4
Gcb (I∗8 , 2I2), MW = {1}

6.3 3
p1, p3 tg to l3, p5, p6
with a node in p4

Gcb (III∗, I∗2 , I2), MW = {1}

4.6. The case k = 5

The rational elliptic surface E is isomorphic to the blow up of P2 in 9 points
p1, p

′
1, p2, p

′
2, p3, p4, p5, p6, p7, such that p1 and p′1 are infinitely near points, as are

p2 and p′2. These points are such that there are three triples of collinear points
l1 := {p1, p2, p3}, l2 := {p1, p4, p5}, l3 := {p2, p6, p7}, and no other collinearity
relation (see [21]). We call q the intersection l2 ∩ l3.

no deg base points type elliptic fibrations

5.9 1 p1 cb (I∗2 , I
∗
0 , 3I2), MW = Z/2Z

5.7 1 p3 cb (I∗4 , 5I2), MW = Z/2Z

5.8 1 q Gcb (2I∗2 , I2), MW = {1}
5.4 2 p2, p3, p4, p5 cb (III∗, 6I2), MW = Z/2Z

5.3 2 p1, p3, p6, q Gcb (III∗, I∗0 , 2I2), MW = {1}
5.6 2 p1, p′1, p2, q Gcb (I∗4 , I

∗
0 , I2), MW = {1}

5.5 2 p1, p′1, p3, q Gcb (I∗6 , 3I2), MW = {1}
5.2 3

p1, p′1, p6, p7, q

with a node in p3
Gcb (II∗, 5I2), MW = {1}

4.7. The case k = 4, δ = 0

The rational elliptic surface E is isomorphic to the blow up of P
2 in 9 points

p1, . . . , p9. These points are such that there are three triples of collinear points
l1 := {p1, p2, p3}, l2 := {p4, p5, p6}, l3 := {p7, p8, p9}, and no other collinearity
relation (see [7]). The lines l1, l2 and l3 meet in a unique point q.

no deg base points type elliptic fibrations

4.2 1 p1 cb (I∗2 , 6I2), MW = Z/2Z

4.3 1 q Gcb (3I∗0 ), MW = {1}
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4.8. The case k = 4, δ = 1

The rational elliptic surface E is isomorphic to the blow up of P2 in 9 points
p1, . . . , p8, p

′
8, such that p8 and p′8 are infinitely near points. These points are such

that there are three triples of collinear points l1 := {p1, p2, p3}, l2 := {p4, p5, p8},
l3 := {p6, p7, p8}, and no other collinearity relation (see [7]). We call q1, resp. q2,
the intersection point of the first line l1 with the line l2, resp. l3.

no deg base points type elliptic fibrations

4.6 1 p1 cb (2I∗0 , 4I2), MW = Z/2Z

4.5 1 p4 cb (I∗2 , 6I2), MW = Z/2Z

4.4 1 q1 Gcb (I∗2 , I
∗
0 , 2I2), MW = {1}

4.3 2 q1, p1, p4, p5 Gcb (I∗4 , 4I2), MW = {1}
4.2 2 q1, p4, p6, p7 Gcb (III∗, 5I2), MW = {1}

4.9. The case k = 3

The rational elliptic surface E is isomorphic to the blow up of P2 in 9 distinct points
p1, . . . , p9, such that there are three triples of collinear points l1 := {p1, p2, p3},
l2 := {p4, p5, p6}, l3 := {p7, p8, p9}, and no other collinearity relation (see [7]). We
call q1, q2 and q3 the three intersection points of the three pairs of these lines, with
the assumption that q3 = l2 ∩ l3.

no deg base points type elliptic fibrations

3.4 1 p1 cb (I∗0 , 7I2), MW = Z/2Z

3.3 1 q1 Gcb (2I∗0 , 3I2), MW = {1}
3.2 2 p1, p2, p4, q3 Gcb (I∗2 , 5I2), MW = {1}

4.10. The case k = 2

The rational elliptic surface E is isomorphic to the blow up of P2 in 9 points, such
that 3 of them lie on a line l, say p1, p2, p3, and the remaining 6, namely, p4, . . . , p9,
lie on a conic Q (see [7]). We denote by qi, for i = 1, 2, the two intersection points
Q ∩ l.

no deg base points type elliptic fibrations

2.3 1 p4 cb (10I2), MW = Z/2Z

2.2 1 q1 Gcb (I∗0 , 6I2), MW = {1}

4.11. The case k = 1

The rational elliptic surface R is isomorphic to the blow up of P2 in 9 points
p1, . . . , p9 in general position. There are twelve nodal cubics in the pencil of cubics
through p1, . . . , p9. We choose one of them as branching fiber of the double cover
and we denote by q its singular point.

no deg base points type elliptic fibrations

1.2 1 q Gcb (9I2), MW = {1}
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5. Equations

In the paper [2], the authors give an algorithm to compute the Weierstrass equa-
tions of certain elliptic fibrations on K3 surfaces which are double covers of rational
elliptic surfaces. The aim of this section is to recall such an algorithm, and to com-
pute explicitly some of these equations. We observe that for each elliptic fibration
described in the previous section one can apply the algorithm and therefore find
explicitly the Weierstrass equations.

5.1. An example

Let us consider the rational elliptic surface Rk, for k = 1, . . . , 9, associated to the
pencil of cubics Pk as in Proposition 3.1. Let X be the K3 surface branched on
two fibers of the rational elliptic surface Rk. We chose as branch fibers the one
over ∞ and another one, say over μ = μ1. So the K3 surface is obtained as double
cover of P2 branched on the sextic Sk

(xyz + a3z
3 + a2y

3)(x2y + y2z + z2x+ a9xy
2 + a8x

2z + a7yz
2 + a6z

3 + a5y
3

+ a4x
3 + μ1(xyz + a3z

3 + a2y
3)),

with a2 = · · · = ak = 0.
If k ≤ 3, the point (1 : 0 : 0) is the singular point of the fiber over ∞ and it is

not a base point of the pencil Pk. If k > 3, then (1 : 0 : 0) is a base point of the
pencil Pk. For every k, the pencil of lines through (1 : 0 : 0) induces a generalized

conic bundle on R̃, which is also a conic bundle on R if k > 3.
In order to find the Weierstrass equation of the elliptic fibration induced by this

generalized conic bundle, one has to consider the pencil of lines through (1 : 0 : 0),
y = mz. Then one intersects it with the branch sextic Sk obtaining the following
equation for the elliptic fibration on the K3 surface X:

Y 2 = z2
(
m+ z(a3 + a2m

3)
)
(a4 + z(m+ a8)

+ z2(1 + a9m
2 + μ1m) + z3

(
m3(a5 + μ1a2) +m2 + a7m+ a6 + μ1a3

))
.

By the change of coordinates Y �→ Y z, one obtains Y 2 equals to a polynomial
of degree 4 in z with a section: if a2 = a3 = 0 the section is at infinity otherwise it
is (z(m), Y (m)) = (−m/(a3 + a2m

3), 0). So we obtain the equation of an elliptic
fibration. If a2 = a3 = 0, after the change of coordinates

Y �→ Y/
(
m(m3(a5 + μ1a2) +m2 + a7m+ a6 + μ1a3)

2
)
,

z �→ z/
(
m

(
m3(a5 + μ1a2) +m2 + a7m+ a6 + μ1a3

))
,

one obtains the Weierstrass form. If k > 3, putting a2 = · · · = ak = 0 one
obtains a Weierstrass equation for the fibrations no (k.h) in Proposition 2.9, for
the following pairs of values (k, h) ∈ {(4, 6), (5, 9), (6, 10), (7, 9), (8, 3), (9, 3)}. For
k = 1 (resp. k = 2, k = 3) this is an equation for the fibration 1.2 (resp. 2.2, 3.3)
in Proposition 2.9.
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5.2. The algorithm

The aim of this algorithm is to generalize the previous computation in order to
be able to obtain Weierstrass equations for all the elliptic fibrations classified in
Proposition 2.9.

Setup. Let V be a K3 surface obtained by a base change of order 2 from a rational
elliptic surface R. Therefore, V can be described as double cover of P2 branched on
the union of two (possibly reducible) plane cubics from the pencil determining R.
It has an equation of the form

w2 = f3(x0 : x1 : x2)g3(x0 : x1 : x2).

Let B be a (generalized) conic bundle on R̃ whose curves are parametrized by τ .
Pushing forward to P2, B is given by a pencil of plane rational curves with equation
h(x0 : x1 : x2, τ ). The polynomial h(x0 : x1 : x2, τ ) is homogeneous in x0, x1, x2,
say of degree e ≥ 1 and linear in τ .

The adjunction formula implies that every curve with equation h(x0 : x1 : x2, τ )

meets both of the branch curves (the proper transforms on R̃ of) f3 = 0 and g3 = 0

in two additional points not blown up by R̃ → P
2. It therefore meets (the proper

transform of) their union f3g3 = 0 in four points not blown up by R̃ → P
2. So

the preimage in V is the double cover of a rational curve branched over 4 points,
i.e., the standard presentation of an elliptic curve. For general τ , we must find an
isomorphism of the curve h(x0 : x1 : x2, τ ) = 0 with P

1, and extract the images of
the four intersection points with f3g3 = 0.

When all curves in the conic bundle have a basepoint of degree e − 1, the
projection away from this point provides the required isomorphism of the curve
h(x0 : x1 : x2, τ ) = 0 with P

1. Up to acting by PGL3(C), we may assume that this
point is (0 : 1 : 0).

Algorithm.

(1) Compute the resultant of the polynomials f3(x0 : x1 : x2)g3(x0 : x1 : x2) and
h(x0 : x1 : x2, τ ) with respect to the variable x1. The result is a polynomial
r(x0 : x2, τ ) which is homogeneous in x0 and x2, corresponding to the images
of all of the intersection points {f3g3 = 0} ∩ {hτ = 0} after projection from
(0 : 1 : 0).

(2) Since B is a conic bundle, r(x0 : x2, τ ) will be of the form a(x0 : x2, τ )
2b(x0 :

x2, τ )c(τ ), where a and b are homogeneous in x0 and x2, the degree of a
depends upon e and the degree of b in x0 and x2 is 4.

(3) The equation of V is now given by w2 = r(x0 : x2, τ ), which is birationally
equivalent to

(5.1) w2 = c(τ )b(x0 : x2, τ ),

by the change of coordinates w �→ wa(x0 : x2, τ ). Since for almost every τ , (5.1)
is the equation of a 2 : 1 cover of P1

(x0:x2)
branched in 4 points, (5.1) is the

equation of the genus 1 fibration on the K3 surface V induced by the conic
bundle B.
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(4) If there is a section of fibration (5.1), then it is possible to obtain the Weier-
strass form by standard transformations.

Remark 5.1. There are several conic bundles whose general member cannot be
parametrized by lines. An algorithm for some of them is described in [2], but here
we do not need it, since all the conic bundles listed in Section 4 are of degree at
most 3.

6. Specializations

6.1. Specialization of a 1-dimensional family of K3 surfaces

Among the rational elliptic surfaces listed in Section 3 the one with the smallest
Mordell–Weil group is the extremal rational elliptic surface with a fiber of type I9,
three fibers of type I1 and MW = Z/3Z.

As already noticed, it is induced by a pencil of cubics P9 on P
2. By stan-

dard transformations one obtains the Weierstrass equation of the rational elliptic
surface:

(6.1) Y 2 = X3 +X
(
− μ4

243
− μ

2

)
+

μ6

2533
+

μ3

23 3
+

1

22
.

The discriminant is 1
16 (3 + μ)

(
μ2 − 3μ+ 9

)
.

Now let us consider the K3 surface Xμ1
obtained by a base change of order 2

of this rational elliptic surface branched over the fiber of type I9 (corresponding
to μ = ∞) and a generic smooth fiber, say the fiber corresponding to μ1.

Its Weierstrass equation is obtained by (6.1) by substituting μ with τ2 + μ1.
For a generic choice of μ1 this corresponds to an elliptic fibration with I18+6I1 as
reducible fibers and Mordell Weil group given by Z/3Z. The transcendental lattice
of K3 surfaces in this family is U ⊕ 〈2〉, indeed they are the K3 surfaces with one
involution acting trivially on the Néron–Severi group and fixing 9 rational curves
and 1 curve of genus 1.

These K3 surfaces specialize to several K3 surfaces whose transcendental lattice
has rank 2 (i.e., whose Picard number is 20). For example, since 〈2d〉 is primitively
embedded in U , the K3 surfaces whose transcendental lattice is 〈2d〉 ⊕ 〈2〉, d > 0,
are special members of the same family.

Let us consider one of these specializations in detail. Consider the plane conic
C := {xz+y2}. It intersects the cubic of the pencil corresponding to μ in (0 : 0 : 1)
with multiplicity 3, in (1 : 0 : 0) with multiplicity 1 and in (−μ : ±√

μ : 1) with
multiplicity 1. This conic is a bisection of the rational elliptic fibration. Indeed,
it intersects the generic cubic of the pencil in exactly 2 points which are not base
points. If μ = 0, then the points (0 : 0 : 1) and (−μ : ±√

μ : 1) collapse to the
same point, thus the conic C intersects the cubic of the pencil corresponding to
μ = 0 in (0 : 0 : 1) with multiplicity 5 and (1 : 0 : 0) with multiplicity 1.

If now one considers the K3 surfaces Xμ1
obtained by the base change branched

on μ = ∞ and μ1, generically the bisection of the rational elliptic surface induced
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by C induces a bisection of the elliptic fibration on the K3 surface. This does not
happen if μ1 is 0. Indeed, in this case, the bisection of the rational surface splits
in the double cover so that it induces, on the elliptic fibration on X0, two distinct
sections. This is due to the fact that X0 is the double cover of P2 branched on
the sextic xyz(x2y + y2z + z2x) which intersects the conic C in (0 : 0 : 1) with
multiplicity 8 and (0 : 0 : 1) with multiplicity 4, in particular always with an even
multiplicity, so it splits in the double cover.

From the above discussion, we have that if the base change from the rational
surface to the K3 surface is branched on μ = 0 and μ = ∞, then the Picard number
of the K3 surface X0 is not 19, but 20. So all the fibrations on the K3 surface X0

specialize. This suggests a method to determine some specializations: we have
many elliptic fibrations on the same K3 surface. By requiring that the discriminant
of one of these fibrations has zeros with higher multiplicity, one obtains values
of μ1 for which the K3 surface specializes to one for which the rank of the Néron–
Severi group is larger than the one of a general member of the given family of K3
surfaces. One is now able to find different specializations considering different
elliptic fibrations. In the following we apply this idea to different families of K3
surfaces.

6.1.1. The elliptic fibrations on Xµ1
and their specializations. For a

generic choice of μ1, there are four types of elliptic fibrations on Xμ1
: one comes

from the rational elliptic surface, the other from generalized conics bundles on R̃.

(1) The elliptic fibration E1 coming from the rational elliptic surface has I18 +6I1
as singular fibers and MW = Z/3Z. Its equation is

Y 2 = X3 +
(
− 1

48
(τ2 + μ1)(τ

6 + 3τ4μ1 + 3τ2μ2
1 + μ3

1 + 24)
)
X

+
1

864
(τ2 + μ1)

6 +
1

24
(τ2 + μ1)

3 +
1

4
,

and the discriminant is

Δ1 :=
1

16

(
τ2 + μ1 + 3

) (
μ2
1 + 2τ2μ1 − 3μ1 + τ4 − 3τ2 + 9

)
;

(2) The elliptic fibration E2 is associated to the conic bundle y = mx (lines through
(0 : 0 : 1)), its singular fibres are III∗ + I∗6 + 3I1, MW = Z/2Z and its
equation is

Y 2 = X3 − 1

3
m3(m3 + 2m2μ1 + μ2

1m− 3)X

− 1

27
m5(m+ μ1)(2m

3 + 4m2μ1 + 2μ2
1m− 9)

Δ2 := −m9(−4 +m3 + 2m2μ1 + μ2
1m).

(3) The elliptic fibration E3 is associated to the conic bundle y2 + bxy + xz, its
singular fibres are I∗12 + I2 + 4I1, MW = Z/2Z and its equation is

Y 2 = X3 +A3X +B3,



1188 A. Garbagnati and C. Salgado

with

A3 := −(1/3)b6 + (4/3)b3 + (2/3)b5μ1 − 1/3− (4/3)μ1 b
2 − (1/3)μ2

1 b
4,

B3 := (1/27)(−μ1 b
2 − 2 + b3)(2b6 − 4b5μ1 + 2μ2

1 b
4 − 8b3 + 8μ1 b

2 − 1),

and
Δ3 := −b2(−μ1b

2 − 4 + b3)(−μ1 + b).

(4) The elliptic fibration E4 is associated to the generalized conic bundle ax2+yz,
its singular fibres are 2II∗ + I2 + 2I1, MW = {1} and its equation is

Y 2 = X3 − 1

3
μ2
1a

4X +
a5

27
(27a2 − 54a− 2μ3

1a+ 27),

Δ4 := a10(−1 + a)2 (27a2 − 4μ3
1a− 54a+ 27).

A very natural specialization for elliptic fibrations is obtained by requiring that
certain singular fibers collapse to a unique one.

By considering the discriminant Δ1 of E1 one obtains that possible specializa-
tions, under which the Picard number jumps to 20 are obtained by requiring

μ1 ∈
{
− 3,

3− 3
√
3i

2
,
3 + 3

√
3i

2

}

(in this case the second branch fiber is a fiber of type I1 on the rational elliptic
surface and thus gives a fiber of type I2 on the K3 surface).

By considering the discriminant Δ2 of E2 one obtains that the Picard numbers
jump for same values of μ1.

By considering the discriminants Δ3 and Δ4 of E3 and E4, respectively, one
obtains that the Picard numbers jump for μ1 = 0 and the same values found
for E1.

6.1.2. Considering explicitly the specializations. If

μ1 ∈
{
− 3,

3− 3
√
3i

2
,
3 + 3

√
3i

2

}
,

one obtains that E1 has a new reducible fiber of type I2 (obtained by gluing together
two fibers of type I1). Thus the trivial lattice of the specialized elliptic fibration
is U ⊕ A17 ⊕ A1. The 3-torsion section generating the Mordell–Weil group does
not change, and there cannot be other torsion sections (by [22] the torsion part of
the Mordell–Weil group of an elliptic fibration with trivial lattice U ⊕A17 ⊕A1 is
either {1} or Z/3Z). Moreover, by the Shioda–Tate formula, there is no section of
infinite order, since the rank of the trivial lattice is the maximum admitted. Hence
we have a set of generators for the Néron–Severi of the specialized surface, and
thus we can also compute the transcendental lattice: it is 〈2〉 ⊕ 〈2〉.

Let us consider the specialization of the elliptic fibrations E2, E3, E4 if μ1 ∈
{−3, (3−3

√
3i)/2, (3+3

√
3i)/2}. In all the cases an extra reducible fiber appears.



Elliptic fibrations on K3 with non-symplectic involution 1189

Indeed, the singular fibers of the fibration E2 become III∗ + I∗6 + I2 + I1, the ones
of E3 become I∗12 + 2I2 + 2I1 and E4 become 2II∗ + 2I2.

The unique other interesting value of μ1 found before is μ1 = 0. Let us denote
by X0 the K3 surface obtained for μ1 = 0.

The elliptic fibration E4 has a new reducible fiber if μ1 = 0. The reducible fibers
are 2II∗+IV and thus the trivial lattice is U⊕E8⊕E8⊕A2. The Mordell–Weil is
trivial and so NS(X0) � U ⊕E8 ⊕E8 ⊕A2 and TX0

� A2. If μ1 = 0, the equation
of E4 is

Y 2 = X3 +
a5

27
(27a2 − 54a+ 27),

which is clearly an isotrivial fibration whose generic fiber is isomorphic to the
elliptic curve with complex multiplication of order 3. Let us denote by α the
order 3 automorphism induced on X0 by the complex multiplication on the fibers;
it acts trivially on the basis of the fibration and with order 3 on each fiber.

We observe that if μ1 = 0, the elliptic fibration E2 has the equation

Y 2 = X3 − 1

3
m3(m3 − 3)X − 1

27
m6(2m3 − 9),

which admits the new automorphism of order 3, (x, y,m) �→ (x, y, ζ3m). It coin-
cides with α. The singular fibers of this fibration are unchanged, but now one can
view this fibration as 3 : 1 cover of the rational elliptic fibration whose equation is

Y 2 = X3 − 1

3
n(n− 3)X − 1

27
n2(2n− 9)

and whose singular fibers are I∗2 + III + I1 and MW = Z/2Z × Z. The branch
fiber of the triple cover are I∗2 and III. The fibration E2 over X0, admits an extra
section of infinite order, induced by the one of the rational elliptic surface .

The action of α on the fibration E3 is similar to the previous one, α acts on
the basis of the fibration. But, moreover, one observes that the discriminant Δ3

changes if μ1 = 0, and indeed it is −b3(−4 + b3). So the trivial lattice of E3
specialized to X0 is U ⊕D16 ⊕ A2. The Mordell–Weil group remains unchanged.

The elliptic fibration E1 witnesses no changes in its singular fibers. It admits
the following Weierstrass equation:

Y 2 = X3 − 1

48
(u2(u6 + 24))X +

1

864
u12 +

1

24
u6 +

1

4
·

The elliptic fibration E1 acquires a new non-torsion section in X0. It is induced by
a bisection of the rational elliptic surface (6.1), which splits in the double cover.
To find explicitly this new section, we observe that in the plane P2

(x:y:z) which

contains the pencil P9, the bisection of the rational elliptic fibration (6.1) which
splits in the double cover corresponds to the conic C := {xz + y2}; indeed we
already observed that this is conic tangent to the branch fibers if μ1 = 0. This
gives the new non-torsion section of X0, which is

(X(u), Y (u)) =
( 1

4
u6 +

1

4
u3 +

1

4
,
1

2
(u+ 1)(u2 − u+ 1)

)
.

The fibration E1 has also the three 3-torsion sections inherited from the rational
elliptic fibration.
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The results obtained are summarized in the following table.

μ1 TXµ1
fibrations

{−3, (3−3
√
3 i)/2, (3+3

√
3 i)/2} 〈2〉2

Ei fibers MW

E1 I18 + I2 + 4I1 Z/3Z

E2 III∗ + I∗6 + I2 + I1 Z/2Z

E3 I∗12 + 2I2 + 2I1 Z/2Z

E4 2II∗ + 2I2 {1}

0 A2(−1)

Ei fibers MW

E1 I18 + 6I1 Z/3Z× Z

E2 III∗ + I∗6 + 3I1 Z/2Z× Z

E3 I∗12 + I3 + 3I1 Z/2Z

E4 2II∗ + IV {1}

In particular we obtained the“two most algebraic K3 surfaces” by Vinberg,
see [26], as specializations of our K3 surface. These appeared already in other
papers as for example in [10], where it occurs in the way presented in this note.
We recall that the elliptic fibrations on a rigid K3 surface whose transcendental
lattice is either 〈2〉 ⊕ 〈2〉 or A2(−1) were classified by Nishiyama, see [16].

6.2. Specializations of 2-dimensional families

6.2.1. δ = 1. We consider the 1-dimensional family of rational elliptic surfaces,
parametrized by a, associated to the pencil of cubics:

x2y + y2 z + z2x+ axy2 + μxyz.

The Weierstrass equation of the rational elliptic fibration ER : Ra → P1
μ is

Y 2 = X3 +
(
− 1

48
μ4 +

1

6
μ2a− 1

3
a2 − 1

2
μ
)
X

− 1

864
μ6 +

1

72
μ4a− 1

24
μ3 − 1

18
μ2a2 +

1

6
μa+

2

27
a3 − 1

4

(6.2)

and the discriminant is

Δ := − 1

16
μ4a+

1

16
μ3 +

1

2
μ2a2 − 9

4
μa− a3 +

27

16
.

To obtain the K3 surface Xa,μ1
with the elliptic fibration EX : Xa,μ1

→ P1
τ we

apply the base change μ = τ2 + μ1 which is branched at infinity and at μ = μ1.
On Xa,μ1

we have 5 elliptic fibrations: one of them is induced by ER after
the base change and its Weierstrass equation is obtained directly by (6.2), the
others are associated to generalized conic bundles and their equations can be found
applying the method described in Section 5.2. Since in the following we are mainly
interested in the discriminant of these fibrations, we only write the equations of
the conic bundles and the discriminant of the associated elliptic fibrations.

The 5 elliptic fibrations are:
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(1) E1 induced by the elliptic fibration ER on Ra, whose discriminant is

Δ1 := − 1
16 (τ

2 + μ1)
4a+ 1

16 (τ
2 + μ1)

3 + 1
2 (τ

2 + μ1)
2a2 − 9

4 (τ
2 + μ1)a− a3 + 27

16 .

The singular fibers are I16 + 8I1 and MW = Z;

(2) E2 induced by the conic bundle x−my, whose discriminant is

Δ2 := m10(a+m)2
(
4m2a− 1 + 4m3 −m2μ2

1 − 2mμ1

)
.

The singular fibers are III∗ + I∗4 + I2 + 3I1 and MW = Z/2Z;

(3) E3 induced by the conic bundle y −mz, whose discriminant is

Δ3 = −m12
(
2m3μ1a+m2μ2

1 +m4a2 + 2mμ1 + 1 + 2m2a− 4m3
)
.

The singular fibers are I∗6 + I∗2 + 4I1 and MW = Z/2Z;

(4) E4 induced by the conic bundle x2 + axy+ dxz + yz, whose discriminant is

Δ4 := −d2 (−1 + da)
2 (

d4 − 2d3μ1 + μ2
1d

2 + 2d2a− 4d− 2aμ1d+ 4μ1 + a2
)
.

The singular fibers are I∗10 + 2I2 + 4I1 and MW = Z/2Z;

(5) E5 induced by the conic bundle bx2 + axy + yz, whose discriminant is

Δ5 := b9(−1 + b)2
(
4ba3 − 4a3 − a2bμ2

1 − 18bμ1a

+ 18b2μ1a− 4b2μ3
1 − 54b2 + 27b3 + 27b

)
.

The singular fibers are II∗ + III∗ + I2 + 3I1 and MW = {1}.

Specializations of the rational elliptic surface. If a = 0, the rational elliptic
surface Ra becomes the rigid rational elliptic surface with reducible fibers I9+3I1,
so we go back to our previous case.

From now on we assume that a �= 0. If

a ∈
{
− 3

8
3
√
2,

3
(

3
√
2− i

√
3 3
√
2
)

16
,
3
(

3
√
2 + i

√
3 3
√
2
)

16

}
,

then the discriminant Δ has a multiple zero and in particular if a = − 3
8

3
√
2 (resp.

a = 3
(

3
√
2± i

√
3 3
√
2
)
/16), then the fibration has a fiber of type II in μ1 = − 3

2
3
√
4

(resp. μ1 = ∓3i 3
√
4
√
3 + 3

√
4/4). The other fibers are unchanged and they are

I8 + 2I1.

Specialization of the surface Xa,μ1
. Let us assume that a �= 0 and that

a �∈ {− 3
8

3
√
2, 3

(
3
√
2± i

√
3 3
√
2
)
/16}. If μ1 is chosen to be one of the solutions of

Δ1 = − 1

16
μ4a+

1

16
μ3 +

1

2
μ2a2 − 9

4
μa− a3 +

27

16
= 0,

then the K3 surface Xa,μ1
is constructed as a double cover of Ra, branched over

a fiber of type I8 and a fiber of type I1. So E1 is an elliptic fibration with fibers
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I16 + I2 +6I1 and MW = Z and the K3 surface Xa,μ1
admits an involution acting

trivially on the Néron–Severi group whose fixed locus consists of 9 rational curves.
For this specialization TXa,µ1

� U(2) ⊕ 〈2〉 (because of the presence of such an
automorphism). Since the degree of Δ is 4, this happens for 4 values of μ1.

If μ1 = 1/a one observes that the discriminant of the elliptic fibration E2 be-
comes m10(a+m)3(4m2a2 − a−m). This has a zero of multiplicity 3 at m = −a
(whereas this multiplicity equals 2 for general values of μ1). Moreover now m = −a
is also a zero of the coefficients c4(m) and c6(m) in the short Weierstrass equa-
tion of E2 with multiplicities 1 and 2 respectively. This implies that the elliptic
fibration E2 has now a fiber of type III and the singular fibers of this fibration are
III∗ + I∗4 + III + 3I1. This has no effect on the rank of the Néron–Severi group.

One can consider the discriminant of the other elliptic fibrations, obtaining five
values of μ1 for which the Picard number of Xa,μ1

increases, four are solutions of
Δ = 0 and one is −a2/4. If μ1 = −a2/4, then the discriminant of E5 has a zero
with multiplicity three (which is of multiplicity 2 if μ1 �= −a2/4), so the trivial
lattice of E5 becomes U ⊕E8 ⊕E7 ⊕A2 and since there can not be torsion section
we conclude that this is also the Néron–Severi group. So the transcendental lattice
is TXa,µ1

� A2(−1)⊕ 〈−2〉.
We put in a table the information about the specializations due to μ1 which

changes the Néron–Severi of the surface:

μ1 TXa,µ1
fibrations

solutions Δ = 0 〈2〉2 ⊕ 〈−2〉

Ei fibers MW

E1 I16 + I2 + 6I1 Z

E2 III∗ + I∗4 + 2I2 + I1 Z/2Z

E3 I∗6 + I∗2 + I2 + 2I1 Z/2Z

E4 I∗10 + 3I2 + 2I1 Z/2Z

E5 II∗ + III∗ + 2I2 + I1 {1}

−a2/4 A2(−1)⊕ 〈2〉

Ei fibers MW

E1 I16 + 8I1 Z× Z

E2 III∗ + I∗4 + I2 + 3I1 Z× Z/2Z

E3 I∗6 + I∗2 + 4I1 Z× Z/2Z

E4 I∗10 + I3 + I2 + 3I1 Z/2Z

E5 II∗ + III∗ + I3 + 2I1 {1}

From the previous table it is clear that for a = 0 one obtains the previous
specializations to K3 surfaces with transcendental lattice either 〈2〉2 or A2(−1).

Let us now assume that a = − 3
8

3
√
2 (the cases a = 3

(
3
√
2± i

√
3 3
√
2
)
/16 are

analogous). In this case the rational elliptic fibration has fibers of types I8+II+2I1.
If the fiber over μ1 is smooth nothing changes in the Néron–Severi of the K3 surface
with respect to the general case. If the fiber over μ1 is I1 nothing changes in the
Néron–Severi of the K3 surface with respect to the choice of a different value of a,
and μ1 to be a solution of Δ = 0. But if the fiber over μ1 is of type II, then
something changes. In particular we have the following table.
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a = − 3
8

3
√
2

μ1 TXµ1
fibrations

− 3
2

3
√
4 〈2〉 ⊕ 〈6〉

Ei fibers MW

E1 I16 + IV + 4I1 Z

E2 III∗ + I∗4 + I3 + I2 Z/2Z

E3 I∗6 + I∗2 + I3 + I1 Z/2Z

E4 I∗10 + I3 + 2I2 + I1 Z/2Z

E5 II∗ + III∗ + I2 + I3 {1}

Remark 6.1. In [5], the authors classify all the elliptic fibrations on the unique K3
surface with transcendental lattice 〈2〉 ⊕ 〈6〉. Here we recover some of the elliptic
fibrations on the mentioned K3 surface, in particular the ones numbered as 17,
12, 10, 5 and 2 in the aforementioned article. Their equations are easily obtained
here, just specializing the ones of Ei on X. One observes that in the case of the
fibration 17, which corresponds here to E1, the lattice A2 in the trivial lattice
corresponds not to a fiber of type I3 (as in general happens) but to a fiber of
type IV .

6.2.2. δ = 0. We consider the 1-dimensional family of rational elliptic surfaces,
parametrized by a, associated to the pencil of cubics:

x2y + z2x+ xy2 + az2 y + μxyz.

The Weierstrass equation of the rational elliptic fibration ER : Ra → P1
μ is

Y 2 = X3 +
(
− 1

48
μ4 +

1

6
μ2a+

1

6
μ2 − 1

3
a2 +

1

3
a− 1

3

)
X

+
1

864

(
4a+ 4− μ2

) (
16a2 − 8μ2a− 40a+ 16 + μ4 − 8μ2

)
and the discriminant is

Δ := − 1

16
a2

(
4a− 4− μ2 + 4μ

) (
4a− 4− μ2 − 4μ

)
.

To obtain the K3 surface Xa,μ1
with the elliptic fibration EX : Xa,μ1

→ P
1
τ we

apply the base change μ = τ2 + μ1 which is branched at infinity and μ = μ1.
On Xa,μ1

there are 6 elliptic fibrations. They are:

(1) E1 induced by the elliptic fibration ER on Ra whose discriminant is

Δ1 := − 1

16
a2 (4a−4−(τ2+μ1)

2+4(τ2+μ1)) (4a−4−(τ2+μ1)
2−4(τ2+μ1)).

The singular fibers are I16 + 8I1 and MW = Z× Z/2Z;

(2) E2 induced by the conic bundle x−my, whose discriminant is

Δ2 := m9 (1 +m)2 (a+m)2(4ma+ 4a+ 4m2 + 4m−mμ2
1).

The singular fibers are 2III∗ + 2I2 + 2I1 and MW = Z/2Z.
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(3) E3 induced by the conic bundle y −mz, whose discriminant is

Δ3 := a2m10(−m4 − 2m3μ1 −m2μ2
1 − 2m2 + 4am2 − 2mμ1 − 1).

The singular fibers are 2I∗4 + 4I1 and MW = Z/2Z;

(4) E4 induced by the conic bundle x+ y +mz, whose discriminant is

Δ4 := −a2m6 (m4−2m3μ1+m2μ2
1+2am2+2m2−2mμ1−2mμ1a+1−2a+a2).

The singular fibers are I∗8 + I∗0 + 4I1 and MW = Z/2Z;

(5) E5 induced by the conic bundle xy + y2 + dxz, whose discriminant is

Δ5 := d10
(
4d2 − 8daμ1 − d2μ2

1 + 2a+ 2dμ1 − 6d2a2 + 4a3d2 + 18d3aμ1

+10d2aμ2
1 − d2a2μ2

1 + 2a2dμ1 − 4d3aμ3
1 − 6d2a− 1 + 18d3a2μ1 + 27d4a2 − a2

)
.

The singular fibers are II∗ + I∗4 + 4I1 and MW = {1};
(6) E6 induced by the conic bundle x2y+ 2xy2 + y3 + z2x+ hyz(x+ y), whose

discriminant is

Δ6 := −4096(4a+ a2h6 + 2a3h4 + a4h2 + 8h5μ1a+ 12a2 − 2μ1h
3 + 12a3

+ 4a4 − 27μ2
1a

2 − 2h6a+ h4μ2
1 − 2h5μ1 + h6 + 2h4 + 6a2h3μ1 − 6a3hμ1

+ 6ah3μ1 − 9a2h2 + 42a2hμ1 + 10a3h2 + 10h2a+ h2 + a2h4μ2
1 − 2a2h5μ1

− 2a3h3μ1 − 6ah2μ2
1 − 6a2h2μ2

1 + 4ah3μ3
1 − 10ah4μ2

1 − 6ahμ1)a
2.

The singular fibers are I∗12+6I1 and MW = {1}. In order to compute the Weier-
strass equation as in the algorithm we perform a change of coordinates sending the
point (1 : −1 : 0) to (0 : 1 : 0).

We observe that a �= 0, otherwise the pencil of cubics defining the rational
elliptic surface does not contain smooth fibers.

If μ1 = 2(±1±√
a), then the branch fibers of the cover X → R are I8 and I1.

If μ1 = 0 the elliptic fibration E1 becomes Y 2 = X3+ 1
3m

3(1+m)(a+m)X which
is an isotrivial fibration whose general fiber is isometric to the elliptic curve with
complex multiplications of order 4. In this case there is an extra automorphism
of order 4, but the Néron–Severi does not change. The order 4 automorphism
is purely non–symplectic and the presence of such an automorphism reduces the
dimension of the family of K3 surface from 2 to 1, see [1]. The specializations of
the elliptic fibrations Ei on Xa,μ1

for specific values of a and μ1 are summarized in
the following table.
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specialization TXa,µ1
fibrations

μ1 = 2(±1±√
a) 〈2〉2 ⊕ 〈−2〉

Ei fibers MW

E1 I16 + I2 + 6I1 Z× Z/2Z

E2 2III∗ + 3I2 Z/2Z

E3 2I∗4 + I2 + 2I1 Z/2Z

E4 I∗8 + I∗0 + I2 + 2I1 Z/2Z

E5 II∗ + I∗4 + I2 + 2I1 {1}
E6 I∗12 + I2 + 4I1 {1}

a = 1 U ⊕ 〈4〉

Ei fibers MW

E1 I16 + 8I1 Z× Z× Z/2Z

E2 2III∗ + I4 + 2I1 Z/2Z

E3 2I∗4 + 4I1 Z/2Z× Z

E4 I∗8 + I∗1 + 3I1 Z/2Z

E5 II∗ + I∗5 + 3I1 {1}
E6 I∗12 + 6I1 Z

a = 1, μ1 = 0 〈2〉2

Ei fibers MW

E1 I16 + I4 + 4I1 Z/4Z

E2 2III∗ + I∗0 Z/2Z

E3 2I∗4 + 2I2 (Z/2Z)2

E4 I∗8 + I∗2 + 2I1 Z/2Z

E5 II∗ + I∗6 + 2I1 {1}
E6 I∗14 + 4I1 Z

a = 1, μ1 = ±4 〈2〉 ⊕ 〈4〉

Ei fibers MW

E1 I16 + 3I2 + 2I1 Z/4Z

E2 2III∗ + I2 + I4 Z/2Z

E3 2I∗4 + I2 + 2I1 Z× Z/2Z

E4 I∗8 + I∗1 + I2 + I1 Z/2Z

E5 II∗ + I∗5 + I2 + I1 {1}
E6 I∗13 + I2 + 3I1 {1}

Remark 6.2. The elliptic fibrations on the K3 surface with transcendental lattice
〈2〉⊕ 〈4〉 are classified in [4], where their Weierstrass equations are also given. The
fibrations Ei i = 1, . . . , 6 corresponds to the fibrations described lines 18, 12, 14,
22, 25, 23 of the last table in [4] respectively. In our context the equations are just
obtained by the application of the algorithm with the assumption a = 1, μ1 = ±4.

7. Higher genus curve in the fixed locus of ι

In what follows, we assume that X is a K3 surface and ι is a non-symplectic
involution on X whose fixed locus contains a curve C of genus higher than 1 and k
rational curves. We assume that ι∗ acts as the identity on the Néron–Severi group.

Proposition 7.1. Let (X, ι) be as in Assumption 2.1 and let E : X → P1 be an
elliptic fibration on X. Let C be a genus g > 1 curve fixed by ι.
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Then the elliptic fibrations on X, necessarily of type 1 with respect to ι, are
given in the Appendix.

Moreover each elliptic fibration induces a rational fibration on X/ι (and thus a
pencil of rational curves on any birational model of X/ι).

Proof. By Theorem 2.6, each elliptic fibration on X is of type 1, so by Proposi-
tion 2.7 one has the list of the reducible fibers which can appear on elliptic fibrations
on X. Moreover, by Proposition 2.5, the Mordell–Weil group of any fibration on X
is contained in Z/2Z and it is trivial if g > 3. This allows us to produce the list of
elliptic fibrations exactly as in Proposition 2.9. Since the involution ι is the cover
involution, it induces a fibration on X/ι whose fibers are the quotient of the fibers
of the fibration on X by the involution in fibers obtained from ι. Since ι is the
involution [−1] on a fiber, the fibration on X/ι has rational fibers.

All the fibrations listed have Mordell–Weil rank 0, and they exist since they
appear in the list in [22]. �

Remark 7.2. The classifications of the elliptic fibrations given in Section 8 can
be also obtained by Nishiyama’s method, considering the following lattices:

g, k T g, k, δ T

g = 2, k = 1, . . . , 9 E8 ⊕ A9−k
1 g = 2, k = 5, δ = 0 D8 ⊕D4

g = 3, k = 1, . . . , 6 E8 ⊕D4 ⊕A6−k
1 g = 3, k = 2, δ = 0 D8 ⊕D2

4

g = 4, k = 1, . . . , 5 E8 ⊕D6 ⊕A5−k
1 g = 4, k = 3, δ = 0 E8 ⊕D4 ⊕D4

g = 5, k = 1, . . . 5 E8 ⊕ E7 ⊕A5−k
1 g = 5, k = 4, δ = 0 D16

g = 6, k = 1, . . . 5 E8 ⊕ E8 ⊕A5−k
1 g = 7, k = 1, 2 E8 ⊕ E8 ⊕D4 ⊕A2−k

1

g = 8, k = 1 E8 ⊕ E8 ⊕D6 g = 9, k = 1 E8 ⊕ E8 ⊕ E7

g = 10, k = 1 E8 ⊕ E8 ⊕E8

The K3 surfaces X as in Proposition 7.1 admit two different very natural ge-
ometric descriptions: one is as double cover of a minimal model of X/ι (which is
rational and in some cases P2), the other is ϕ|C|(X) ⊂ Pg, if g > 2.

7.1. The K3 surfaces X as double covers of P2

Let us consider the double cover of P2 branched on a possibly reducible sextic.
The minimal model of this double cover is a K3 surface X, admitting a non-
symplectic involution ι (the cover involution) and for sufficiently generic choices of
the sextic, ι acts trivially on the Néron–Severi group of X. Hence the Néron–Severi
group of X can be deduced by the Nikulin classification of the non-symplectic
involutions and depends on the number and the genus of the components of the
branch sextic (whose normalization is isomorphic to the fixed locus of ι). On the
other hand the choice of the Néron–Severi group of a K3 surface which admits a
non-symplectic involution acting trivially on the Néron–Severi group, determines
a K3 surface which satisfies the hypothesis of Proposition 7.1, if the fixed curve
with highest genus has genus at least 2.

By Proposition 7.1, one obtains that the elliptic fibrations on X are induced
by “generalized conic bundles”, i.e., by pencils of rational curves passing through
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a certain numbers of singular points of the branch sextic. This allows to reproduce
all the computations done in the case g = 1, also in these highest genus cases, if
one is able to describe explicitly the branch sextic.

If g = 6 and k = 1, then the K3 surface X is generic in the unique family of K3
surfaces admitting an involution ι fixing one rational curve and a curve of genus 6.
It can be realized as minimal model of the double cover of P2 branched on a line l
and an smooth quintic q.

Similarly, different values of g and k can be obtained modifying the branch
curve. So some of the surfaces in Proposition 7.1 can be realized as minimal
models of double covers of P2 branched on a sextic s as in the table:

sextic s g k

line l+quintic q, q has 0 ≤ α ≤ 4 nodes 6− α 1

line l+quintic q, q has α = 1, 2 nodes, l through the node of q 6− α 2

line l+line m+quartic q, q has α = 0, 1 node 3− α 2

line l+line m+quartic q, q has α = 0, 1 node, l ∩m ∩ q �= ∅ 3− α 3

line l+line m+quartic q, q has 1 node, l ∩m ∩ q �= ∅,
m through the node of q

2 4

We observe that if the curve q has a node, then the pencil of lines through this
node induces an elliptic fibration on the K3 surface X, double cover of P2 branched
on the sextic s. This provides a geometric description, for example, of the elliptic
fibrations obtained listed in the Appendix for g = 2, . . . 6, k = 1.

7.2. The model associated to |C|, g = 2, 3

The curve C fixed by ι is a smooth irreducible curve on X, so its linear system
defines a map to a projective space, in particular to Pg. For low values of g, this
model is quite clear and sometime also provide an equation for X. Here we collect
some results on this.

Proposition 7.3. Let (X, ι) be as in Assumption 2.1, let E : X → P
1 be an elliptic

fibration on X, and let C ∈ Fixι be a curve of genus 2. Then, up to a choice of the
coordinates of P2, ϕ|C| : X → P2 is a double cover of P2 branched over the sextic

x4
0 f2(x1 : x2) + x2

0 f4(x1 : x2) + f6(x1 : x2),

where fi ∈ Ci[x1 : x2], and ι is induced on X by ι|P2 : (x0, x1, x2) → (−x0, x1, x2).
Denote by α the cover involution. The following hold :

i) If C is a trisection of E , the fibers of the elliptic fibration E are mapped to
curves of degree 3 in P

2 which pass through (1 : 0 : 0) and intersect the branch
sextic in every intersection point with even multiplicity, and α is an involution
of the basis of E .

ii) If C is a bisection of E , the fibers of the elliptic fibration E are mapped to lines
in P2 which pass through (1 : 0 : 0). Let σ be the symplectic involution which
is the translation by the 2-torsion section of E . Then α = ι ◦ σ.
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Proof. Since the curve C is a genus 2 curve, the map ϕ|C| : X → P2 is a double
cover. The cover involution α is not ι, since α fixes the branch locus of the cover
X → P2 and ι fixes the pullback of a generic the hyperplane section, i.e., C.
The automorphism ι preserves the map X → P

2, and fixes the pull-back of a
line, so it descends to an automorphism ιP2 of P2 which fixes the branch locus
of the cover X → P2. Up to a choice of coordinates we can assume that ιP2 is
(x0 : x1 : x2) �→ (−x0 : x1 : x2). This fixes the line x0 = 0 and the point (1 : 0 : 0).
The sextics invariant for ιP2 are given by

ax6
0 + x4

0 f2(x1 : x2) + x2
0 f4(x1 : x2) + f6(x1 : x2).

Since X admits an elliptic fibration, ι fixes not only C but at least on rational
section, i.e., a rational curve R1 orthogonal to C. So ϕ|C| contracts at least one
rational curve, fixed by ι. The branch sextic of ϕ|C| : X → P2 has a singularity in
the fixed point of ιP2 . Hence a = 0 and the branch sextic is

x4
0 f2(x1 : x2) + x2

0 f4(x1 : x2) + f6(x1 : x2),

the inverse image of x0 = 0 on X is exactly the smooth genus 2 curve C, the
curve(s) resolving the singularity of the branch sextic in (1 : 0 : 0) are rational
curve(s) possibly fixed by ι.

If C is a trisection, and F denotes the class of the fiber of E , then C · F = 3,
hence the image of each curve in F has degree 3 in P

2 and the curves in |ϕ|C|(F )|
split in the double cover (otherwise C · F should be an even number). Hence α is
the involution which switches the two disjoint curves in the inverse image of the
curves in |ϕ|C|(F )|. So it is an involution which preserves the class of the fiber but
switches pairs of fibers of E , and it is an involution of the basis of E . Moreover,
F ·R1 = 1, so the curves in |ϕ|C|(F )| pass through ϕ|C|(R1) = (1 : 0 : 0).

If C is a bisection, C · F = 2, and there are two possibilities: either ϕ|C|(F ) is
a curve of degree 2 in P

2 and it splits in the double cover, or ϕ|C|(F ) is a curve
of degree 1 in P2 which does not split. If a conic splits in the double cover, its
inverse image consists of two copies of a rational curve. This can not be the case,
since |F | is a 1-dimensional system of genus 1 curves. So ϕ|C|(F ) is a line (which
does not split in the double cover). The lines in |ϕ|C|(F )| pass through the node,
because F ·R1 = 1.

Since C is a bisection of E passing through some of the 2-torsion points, there
exists also a 2-torsion section T in E , which is fixed by ι and contracted by ϕ|C|
since C · T = 0. In particular the singularity (1 : 0 : 0) in the branch sextic is
worst than a simple node. Due to the symmetry (x0 : x1 : x2) → (−x0 : x1 : x2),
the inverse image on X of point (1 : 0 : 0) is not simply an A2 configuration
of rational curves but it is at least an A3 configuration of rational curves. The
two rational curves at the extreme of the trees of rational curves of these A3 are
switched by α and they are sections of the elliptic fibration E . These two curves
correspond to the zero section and the 2-torsion section of E , both are fixed by ι.
The involutions α and ι preserve each fiber of the fibration, so the same holds for
their composition α ◦ ι = σ, which is then a symplectic involution on E , preserving
each fiber and mapping the zero section to the 2-torsion section. This implies
that σ is a translation by the 2-torsion section. �
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Remark 7.4. By Proposition 7.3, it follows that the K3 surface X as in the
hypothesis admits not only a non-symplectic involution ι, but also a symplectic
involution σ. These K3 surfaces were studied in [9], where numeric conditions on g
and k which imply that K3 surfaces with a non-symplectic involution necessar-
ily admit also a symplectic one are established. The conditions in Proposition 3.1
of [9] imply (with just one exception) that the fixed curves have genus at most 2.
Hence, Proposition 7.3 gives a geometric interpretation of the involutions consid-
ered in [9].

Let us now briefly discuss the case g = 3, naturally associated to a map to P3.
We observe that there is just one case in which this map is 2 : 1 onto the image,
and not 1 : 1. This is exactly the case mentioned in the previous remark, where
one has a curve of genus 3 in the fixed locus of an involution ι acting trivially on
the Néron–Severi group, but it is still true that every K3 surface with this property
also admits a symplectic involution.

Proposition 7.5. Let (X, ι) be as in Assumption 2.1, let E : X → P1 be an elliptic
fibration on X, and let C ∈ Fixι be a curve of genus 3.

If C is a trisection, then ϕ|C| : X → P
3 is a generically 1 : 1 map to a singular

quartic with equation

x2
0 f2(x1 : x2 : x3) + f4(x1 : x2 : x4).

The eight lines connecting the singular point (1 : 0 : 0 : 0) to the eight points
f2 ∩ f4 ⊂ P

2
(x1:x2:x3)

are contained in ϕ|C|(X).

If C is a bisection, then ϕ|C| : X → P
3 is a generically 2 : 1 map to a quadric.

Proof. We assume that X admits an elliptic fibration E and that C is a trisection
of this fibration. Then C in not hyperelliptic and by [20] the map ϕ|C| : X → P3

exhibits ϕ|C|(X) as quartic hypersurface in P3. Denote by F and O respectively
the fiber and the zero section of E . We have C ·O = 0, so the curve O is contracted
by ϕ|C| and thus the quartic has a node. Moreover, the involution ι descends
to an involution of P3, fixing the node. Up to a choice of coordinates, one can
assume that the node is (1 : 0 : 0 : 0) and the involution induced by ι on P3 is
(x0 : x1 : x2 : x3) �→ (−x0 : x1 : x2 : x3). Since F · C = 3, the fibers of E are
mapped to curves of degree 3 in E , passing through the node (since F · O = 1).
By the equation of the quartic one immediately checks that there are eight lines
contained in ϕ|C|(X) passing through O. Let l be one of these lines and L be the
class in NS(X) corresponding to the strict transform of l after blowing up the node.
We have L2 = −2, L ·C = 1, L ·O = 1. The pencil of hyperplanes through l cuts on
ϕ|C|(X) a pencil of genus 1 curves, passing through the node, so it induces on X
an elliptic fibration, whose class is C − L. Generically this pencil has 7 reducible
fibers, corresponding to the hyperplane through l which contains another line of
ϕ|C|(X). Indeed generically the reducible fibers of E are 7 fibers of type I2 (see
Table 4, k = 1).

If C is a bisection, it is a hyperelliptic curve and by [20] the map ϕ|C| : X → P3

is 2 : 1 to a quadric. �
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8. Appendix

In this section we list the elliptic fibrations on a K3 surface admitting an involu-
tion ι which acts trivially on the Néron–Severi group and such that the highest
genus g of a fixed curve is greater than 1. The lists are obtained according to the
results of Theorem 2.6 and Propositions 2.5 and 2.7 similarly to what is done in
the proof of Proposition 2.9. Also the notation is the same as in Proposition 2.9.

• The fibrations on K3 surfaces admitting an involution as ι such that g = 2
are given in Table 3;

• the ones such that g = 3 in Table 4;

• the ones such that g = 4 in Table 5;

• the ones such that g = 5 in Table 6;

• the ones such that g = 6 in Table 7;

• the ones such that g = 7 in Table 8;

• the ones such that g = 8 in Table 9, b = 0;

• the ones such that g = 9 in Table 9, b = 1;

• the ones such that g = 10 in Table 9, b = 2.

Table 3. Case g = 2.

g = 2, k = 9, r = 18, a = 0, (δ = 0)

trivial lattice 16=
∑

ci+rank(MW) 9=k=
∑

si+#sections MW(E)
U ⊕ E8 ⊕ E8 8 + 8 4 + 4 + 1 {1}
U ⊕D16 16 7 + 2 Z/2Z

g = 2, k = 8, r = 17, a = 1, (δ = 1)

trivial lattice 15=
∑

ci+rank(MW) 8=k=
∑

si+#sections MW(E)
U ⊕ E8 ⊕ E7 8 + 7 4 + 3 + 1 {1}
U ⊕D14 ⊕ A1 14 + 1 6 + 0 + 2 Z/2Z

g = 2, k = 7, r = 16, a = 2, (δ = 1)

trivial lattice 14 =
∑

ci+rank(MW) 7=k=
∑

si+#sections MW(E)
U ⊕ E7 ⊕ E7 7 + 7 3 + 3 + 1 {1}
U ⊕E8 ⊕D6 8 + 6 4 + 2 + 1 {1}

U ⊕D14 14 6 + 1 {1}
U ⊕D12 ⊕ A2

1 12 + 1 + 1 5 + 0 + 0 + 2 Z/2Z

g = 2, k = 6, r = 15, a = 3, (δ = 1)

trivial lattice 13=
∑

ci+rank(MW) 6=k=
∑

si+#sections MW(E)
U ⊕E7 ⊕D6 7 + 6 3 + 2 + 1 {1}

U⊕E8⊕D4⊕A1 8 + 4 + 1 4 + 1 + 0 + 1 {1}
U ⊕D12 ⊕ A1 12 + 1 5 + 0 + 1 {1}
U ⊕D10 ⊕ A3

1 10 + 1 + 1 + 1 4 + 0 + 0 + 2 Z/2Z
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g = 2, k = 5, r = 14, a = 4, δ = 0 or 1

trivial lattice 12 =
∑

ci+rank(MW) 5 = k =
∑

si +#sections MW(E) δ

U ⊕D6 ⊕D6 6 + 6 2 + 2 + 1 {1} 1

U⊕E7⊕D4⊕A1 7 + 4 + 1 3 + 1 + 0 + 1 {1} 1

U ⊕D10 ⊕ A2
1 10 + 1 + 1 4 + 0 + 0 + 1 {1} 1

U ⊕ E8 ⊕ A4
1 8 + 1 + 1 + 1 + 1 4 + 0 + 0 + 0 + 0 + 1 {1} 1

U ⊕D8 ⊕ A4
1 8 + 1 + 1 + 1 + 1 3 + 0 + 0 + 0 + 0 + 2 Z/2Z 1

U ⊕D8 ⊕D4 8 + 4 3 + 1 + 1 {1} 0

U ⊕ E7 ⊕ A5
1 7 + 1 + 1 + 1 + 1 + 1 3 + 0 + 0 + 0 + 0 + 0 + 2 Z/2Z 0

g = 2, k = 4, r = 13, a = 5 (δ = 1)

trivial lattice 11 =
∑

ci+rank(MW) 4 = k =
∑

si +#sections MW(E)
U ⊕D6 ⊕D4 ⊕

A1

6 + 4 + 1 2 + 1 + 0 + 1 {1}

U ⊕D8 ⊕ A3
1 8 + 1 + 1 + 1 3 + 0 + 0 + 1 {1}

U ⊕ E7 ⊕ A4
1 7 + 1 + 1 + 1 + 1 3 + 0 + 0 + 0 + 0 + 1 {1}

U ⊕D6 ⊕ A5
1 6 + 1 + 1 + 1 + 1 + 1 2 + 0 + 0 + 0 + 0 + 0 + 2 Z/2Z

g = 2, k = 3, r = 12, a = 6 (δ = 1)

trivial lattice 10 =
∑

ci+rank(MW) 3 = k =
∑

si +#sections MW(E)
U ⊕D4 ⊕D4 ⊕

A2
1

4 + 4 + 1 + 1 1 + 1 + 0 + 0 + 1 {1}

U ⊕D6 ⊕ A4
1 6 + 1 + 1 + 1 + 1 2 + 0 + 0 + 0 + 0 + 1 {1}

U ⊕D4 ⊕ A6
1 4+1+1+1+1+1+1 1+0+0+0+0+0+0+2 Z/2Z

g = 2, k = 2, r = 11, a = 7 (δ = 1)

trivial lattice 9 =
∑

ci + rank(MW) 2 = k =
∑

si +#sections MW(E)
U ⊕D4 ⊕ A5

1 4 + 1 + 1 + 1 + 1 + 1 1 + 0 + 0 + 0 + 0 + 0 + 1 {1}
U ⊕ A9

1 1 + 1 + 1 + 1+ 1+ 1+
1 + 1 + 1

0+ 0+ 0+ 0+ 0+ 0+ 0+
0 + 0 + 2

Z/2Z

g = 2, k = 1, r = 10, a = 8 (δ = 1)

trivial lattice 8 =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
U ⊕ A8

1 1+1+1+1+1+1+1+1 0+0+0+0+0+0+0+0+1 {1}

Table 4. Case g = 3

g = 3, k = 6, r = 14, a = 2 (δ = 0)

trivial lattice 12 =
∑

ci+rank(MW) 6 = k =
∑

si +#sections MW(E)
U ⊕D12 12 5 + 1 {1}

U ⊕E8 ⊕D4 8 + 4 4 + 1 + 1 {1}
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g = 3, k = 5, r = 13, a = 3, (δ = 1)

trivial lattice 11 =
∑

ci+rank(MW) 5 = k =
∑

si +#sections MW(E)
U ⊕E7 ⊕D4 7 + 4 3 + 1 + 1 {1}
U ⊕D10 ⊕ A1 10 + 1 4 + 0 + 1 {1}
U ⊕ E8 ⊕ A3

1 8 + 1 + 1 + 1 4 + 0 + 0 + 0 + 1 {1}

g = 3, k = 4, r = 12, a = 4, (δ = 1)

trivial lattice 10 =
∑

ci+rank(MW) 4 = k =
∑

si +#sections MW(E)
U ⊕D6 ⊕D4 6 + 4 2 + 1 + 0 + 1 {1}
U ⊕D8 ⊕ A2

1 8 + 1 + 1 3 + 0 + 0 + 1 {1}
U ⊕ E7 ⊕ A3

1 7 + 1 + 1 + 1 3 + 0 + 0 + 0 + 1 {1}

g = 3, k = 3, r = 11, a = 5, (δ = 1)

trivial lattice 9 =
∑

ci + rank(MW) 3 = k =
∑

si +#sections MW(E)
U ⊕D4 ⊕D4 ⊕

A1

4 + 4 + 1 1 + 1 + 0 + 1 {1}

U ⊕D6 ⊕ A3
1 6 + 1 + 1 + 1 2 + 0 + 0 + 0 + 1 {1}

g = 3, k = 2, r = 10, a = 6, δ = 0 or 1

trivial lattice 8 =
∑

ci + rank(MW) 2 = k =
∑

si +#sections MW(E) δ

U ⊕D4 ⊕ A4
1 4 + 1 + 1 + 1 + 1 1 + 0 + 0 + 0 + 1 {1} 1

U ⊕ A8
1 1+1+1+1+1+1+1 0+0+0+0+0+0+0+0+2 Z/2Z 0

g = 3, k = 1, r = 9, a = 7, (δ = 1)

trivial lattice 8 =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
U ⊕ A7

1 1+1+1+1+1+1+1 0+0+0+0+0+0+0+1 {1}

Table 5. Case g = 4

g = 4, k = 5, r = 12, a = 2, (δ = 1)

trivial lattice 10 =
∑

ci+rank(MW) 5 = k =
∑

si +#sections MW(E)
U ⊕D10 10 4 + 1 {1}

U ⊕ E8 ⊕ A2
1 8 + 1 + 1 4 + 0 + 0 + 1 {1}

g = 4, k = 4, r = 11, a = 3, (δ = 1)

trivial lattice 9 =
∑

ci + rank(MW) 4 = k =
∑

si +#sections MW(E)
U ⊕ E7 ⊕ A2

1 7 + 1 + 1 3 + 0 + 0 + 1 {1}
U ⊕D8 ⊕ A1 8 + 1 3 + 0 + 1 {1}

g = 4, k = 3, r = 10, a = 4, δ = 0 or 1

trivial lattice 8 =
∑

ci + rank(MW) 3 = k =
∑

si +#sections MW(E) δ

U ⊕D6 ⊕ A2
1 6 + 1 + 1 2 + 0 + 0 + 1 {1} 1

U ⊕D4 ⊕D4 4 + 4 1 + 1 + 0 + 1 {1} 0
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g = 4, k = 2, r = 9, a = 5, (δ = 1)

trivial lattice 7 =
∑

ci + rank(MW) 2 = k =
∑

si +#sections MW(E)
U ⊕D4 ⊕ A3

1 4 + 1 + 1 + 1 1 + 0 + 0 + 0 + 1 {1}
g = 4, k = 1, r = 8, a = 6, (δ = 1)

trivial lattice 6 =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
U ⊕ A6

1 1 + 1 + 1 + 1 + 1 + 1 0 + 0 + 0 + 0 + 0 + 0 + 1 {1}

Table 6. Case g = 5.

g = 5, k = 5, r = 11, a = 1, (δ = 1)

trivial lattice 9 =
∑

ci + rank(MW) 5 = k =
∑

si +#sections MW(E)
U ⊕ E8 ⊕ A1 8 + 1 4 + 0 + 1 {1}

g = 5, k = 4, r = 10, a = 2, δ = 0 or 1

trivial lattice 8 =
∑

ci + rank(MW) 4 = k =
∑

si +#sections MW(E) δ

U ⊕ E7 ⊕ A1 7 + 1 3 + 0 + 1 {1} 1

U ⊕D8 8 3 + 1 {1} 0

g = 5, k = 3, r = 9, a = 3, (δ = 1)

trivial lattice 7 =
∑

ci + rank(MW) 3 = k =
∑

si +#sections MW(E)
U ⊕D6 ⊕ A1 6 + 1 2 + 0 + 1 {1}

g = 5, k = 2, r = 8, a = 4, (δ = 1)

trivial lattice 6 =
∑

ci + rank(MW) 2 = k =
∑

si +#sections MW(E)
U ⊕D4 ⊕ A2

1 4 + 1 + 1 1 + 0 + 0 + 1 {1}
g = 5, k = 1, r = 7, a = 5

trivial lattice 5 =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
U ⊕ A5

1 1 + 1 + 1 + 1 + 1 0 + 0 + 0 + 0 + 0 + 1 {1}

Table 7. Case g = 6.

g = 6, k = 5, r = 10, a = 0, (δ = 0)

trivial lattice 8 =
∑

ci + rank(MW) 5 = k =
∑

si +#sections MW(E)
U ⊕ E8 8 4 + 1 {1}

g = 6, k = 4, r = 9, a = 1, (δ = 1)

trivial lattice 7 =
∑

ci + rank(MW) 4 = k =
∑

si +#sections MW(E)
U ⊕ E7 7 3 + 1 {1}

g = 6, k = 3, r = 8, a = 2, (δ = 1)

trivial lattice 6 =
∑

ci + rank(MW) 3 = k =
∑

si +#sections MW(E)
U ⊕D6 6 2 + 1 {1}
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g = 6, k = 2, r = 7, a = 3, (δ = 1)

trivial lattice 5 =
∑

ci + rank(MW) 2 = k =
∑

si +#sections MW(E)
U ⊕D4 ⊕ A1 4 + 1 1 + 0 + 1 {1}

g = 6, k = 1, r = 6, a = 4, (δ = 1)

trivial lattice 4 =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
U ⊕ A4

1 1 + 1 + 1 + 1 0 + 0 + 0 + 0 + 1 {1}

Table 8. Case g = 7.

g = 7, k = 2, r = 6, a = 2, (δ = 1)

trivial lattice 4 =
∑

ci + rank(MW) 2 = k =
∑

si +#sections MW(E)
U ⊕D4 4 1 + 1 {1}

g = 7, k = 1, r = 5, a = 3, (δ = 1)

trivial lattice 4 =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
U ⊕ A3

1 1 + 1 + 1 0 + 0 + 0 + 1 {1}

Table 9. Case g = 8, 9, 10.

g = 8+ b, k= 1, r= 4−b, a= 2− b, with 0≤ b≤ 2 (δ = 1 if b≤ 1, δ = 0 if b= 2)

trivial lattice 2− b =
∑

ci + rank(MW) 1 = k =
∑

si +#sections MW(E)
U ⊕ A2−b

1 2− b 0 + 1 {1}
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