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ABSTRACT
The opening of the unlicensed radio spectrum creates new oppor-
tunities and new challenges for communication technology that
can be faced by Machine Learning techniques. In this work, we
discuss the potential bene�ts and the challenges with reference
to the recent research developments in this area. Applications go
from channel estimation to Signal quality control, and from signal
classi�cation to action control. We survey Machine learning and
Deep Learning algorithms with possible radio applications, and
highlight the corresponding challenges.

CCS CONCEPTS
•Networks→Wireless access networks; •Computingmethod-
ologies→Machine learning.
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1 INTRODUCTION
The adoption of intelligent techniques in the management of spec-
trum sharing can support the coexistence of heterogeneous radio-
access technologies and the signi�cantly improve capacity and spec-
trum utilization. However it has to face several key challenges:
the e�ectiveness of the algorithms is required to generalize across
radio-access scenarios; furthermore, the adopted solutions must be
easily applicable across multiple radio standards.

Machine learning (ML) methods, and, more speci�cally, a set of
recently developed techniques, known as Deep Learning (DL) [1],
bear the potential of advancing the intelligence of radio devices,
providing data-driven �exible solutions, without relying heavily
on expert knowledge. Among the problems that the ML can target
are protocol detection, and classi�cation, and signal denoising; fur-
ther applications might include device or user pro�ling and classi-
�cation, and source counting.

The present paper is structured as follows: Section II recalls the
de�nitions of ML, DL, and the related work of ML applications
to radio signal processing. In section III, the state of art of ML in
radio signals is detailed. The related work of applied ML models in
Wireless Local Area Network (WLAN) and Fifth Generation (5G)
are discussed are discussed in Section IV. Section V detailed the DL
models which are applied for radio signals. Conclusions are drawn
and in Section VI.

2 MACHINE LEARNING FOR RADIO
SIGNALS

ML is developed to create an algorithm which can �nd regulari-
ties in a dataset. ML has to execute task T where the goal is to
train the network to achieve task T while maintaining a particular
performance metric P . The system will improve P while training
the ML network towards task T . ML models are classi�ed to su-
pervised machine learning or unsupervised machine learning. In
supervised machine learning, a labeled dataset is required to gen-
erate a general hypothesis about the distribution of class labels to
be used as predictor/classi�er. The resulting classi�er aims to as-
sign a class label to a testing dataset where the value of the data is
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known, but the value of the class label is not [33]. The K-nearest
neighbor (KNN) [72], support vector machine(SVM), and Bayesian
learning [44] are supervised ML models [26].

For unsupervised ML, the classes of training dataset are not la-
beled and there are no correct answers to guide the training pro-
cess. Unsupervised algorithms include clustering where the algo-
rithm will group the trained data into sub-clusters. The group of
the dataset within the same sub-clusters are assumed to have the
same measure of regularities. Another application is unsupervised
ML for dimensionality reduction where a new representation is
learned for the trained dataset [31]. Then, the new representation
can be used as a threshold to detect or eliminate irrelevant informa-
tion in the testing dataset. Moreover, it is a useful tool for anomaly
detection. Unsupervised ML models are k-means clustering [25],
independent component analysis (ICA) [28], and principal compo-
nent analysis (PCA) [39]. Reinforcement learning (RL) [62] , Deep
Neural Networks(DNN), and deep learning (DL) [23] are machine
learning models that are applied also for radio signals.

There is a growing interest in ML for radio networks domain
which diverse across di�erent research areas to build an intelli-
gent radio receiver system. This intelligent radio receiver will be
capable of accessing the radio spectrum, learn the features, opti-
mize the performance, and take action if required [30]. Figure 1
indicates the possible research areas and the existing ML models
that are explored towards radio intelligence. ML models are imple-
mented for channel estimation, signal quality improvement, signal
classi�cation, and action/control for a radio signal.

3 STATE OF ART OF MACHINE LEARNING IN
RADIO SIGNALS

ML models are applied and examined in radio signals �eld for sig-
nal classi�cation, device classi�cation, spectrum detection, noise
estimation, radio optimization, and anomaly detection. Table 1 be-
low detailed the applied ML models for radio signals, the targeted
communication problem, the type of radio network, the end com-
munication area either for communication devices, protocols, or
users. It also includes the cited papers for ML in this type of radio
communication problem.

4 STATE OF ART OF MACHINE LEARNING
MODELS FORWLAN AND 5G

ML models have been applied and studied in the radio signals �eld.
The following contains literature review on the ML models applied
for Wireless Local Area Network (WLAN) and Fifth Generation
(5G).

4.1 ML models for WLAN
ML models have been explored for radio signals. In [9], Passive Ra-
diometric Device Identi�cation System (PARADIS) is developed to
identify di�erent source network interface cards (NICs) of an IEEE
802.11 frames. The radiometric identi�cation is based on modula-
tion analysis and utilizing SVM and KNN as a classi�er. This tech-
nique is trained for over 130 identical IEEE 802.11 wireless NICs
and shows 99% accuracy. However, this approach requires PAR-
ADIS sensors to be integrated with wireless access points.

ML algorithms have been investigated for source localization
using time-of-arrival(TOA) information of received signals in ur-
ban environments [8]. The Random Forest algorithm is used to ex-
amine the ML classi�cation and regression schemes for source lo-
calization. Also, Ray tracing program is used to simulate the urban
environment and generate the required data for the experiment.
Twenty-�ve thousands of data are used for training, and �ve thou-
sand are used for testing. Results show that regression performs
better than ML classi�cation methods. The source localization us-
ing ML regression methods shows that 99.2% of the test locations
have a margin of 12.5m accuracy from its actual position [8].

In [36], a software architecture called RFDump is developed for
monitoring packets on heterogeneous wireless networks and de-
tecting di�erent protocols such as Zigbee and IEEE 802.11. GNU
software [57] is used to generate the packets while Universal soft-
ware radio peripheral(USRP) device [15] is gathering the streams
of packets. RFDump depends on the physical features of the pro-
tocol (e.g., time, phase, and frequency) to detect the protocol. This
approach claims that it will ease the online computational for sig-
nal classi�cation using a neural network.

DOF prototype is a detector built by [27] to extract features or
signatures, estimate the type of the radio signal, their spectrum,
and spatial parameters such as angle of arrival (AOA). DOF is eval-
uated for an indoor o�ce environment, and the datasets are gen-
erated using the �tw [20, 21] library and GnuRadio software [57]
in 100 MHz bandwidth for ISM band and four multiple inputs and
multiple outputs (MIMO) antennas. SVM decision tree is used in
DOF system to classify a di�erent type of signals coming from Zig-
bee, WiFi, and Microwave devices. DOF achieves 85% accuracy for
0dB SNR which outperform RFdump detector [36].

A semi-supervised ML model is applied in [53] to recognize the
radio signal modulation types. The modulation class for a radio
signal is generated using GNU to produce RadioML16.04 data [52].
Convolutional Neural Network (CNN) is adapted with non-labeled
classes to allow learning new features from the sparse representa-
tions of raw sampled radio signal time series examples. The results
primes a new way to di�erentiate or recall new and unknown ra-
dio signals without the need for expert guidance. However, there
is much work left to have the more robust semi-supervised method
for radio modulation. More data should be generated, features should
be generalized to unknown modulation classes, and well-de�ned
metrics for a semi-supervised model which may consist of full class
confusion matrices and the classi�cation accuracy measures.

4.2 ML Models for 5G
Machine learning algorithms and tools are investigated also for
possible applications to 5G networks. The supervised, un-supervised,
and reinforcement learning were explored for 5G applications in-
cluding cognitive radios, large-scale MIMOs, device-to- device (D2D)
networks, energy harvesting, heterogeneous networks constituted
by femto-cells and small-cells, and for smart grid. In [30], the au-
thor surveyed ML paradigms for next generation wireless networks.
The survey showed that they are supervised learning, un-supervised
learning, and reinforcement learning algorithms that are investi-
gated for 5G applications.
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Figure 1: ML models in various radio receiver areas.

Supervised learning consist of regression models, KNN algo-
rithm, Bayesian learning, and SVM which require known labels
and models. These known models and parameters are necessary
to estimate radio parameters and massive MIMO channel, predict
user’s pattern, and detect white space spectrum for adaptive �lter-
ing detection in cognitive radio from physical and network layer.
Moreover, the supervised learning methods are applied for appli-
cation layer to estimate user behaviors and the current user’s lo-
cation to improve quality of service (QoS) in the network.

The unsupervised learning relies on input data without labelling
or identify the class of the input data. Unsupervised learning algo-
rithms which were explored for 5G are PCA, ICA, and K-means
clustering. They were deployed for cell clustering, heterogeneous
base station clustering in heterogeneous networks (HetNets), and
for the dimensionality reduction for the signal in physical layer of
massive MIMO systems. In addition, unsupervised learning can be
utilized for fault detection, anomaly detection, intrusion detection

problems -based on tra�c monitoring in wireless networks, and
user’s behaviors classi�cation in cognitive radio networks.

The third part of ML algorithms for wireless communication
is reinforcement learning [3] which relies on a dynamic iterative
learning and decision making process. It is mainly studied in wire-
less communication using Markov decision processes (MDPs) and
partially observable Markov decision process (POMDP) which can
be seen as a generalization of MDP. It was deployed for network
selection of heterogeneous networks (HetNets), for energy har-
vesting sensors to �nd optimal outage power, and for distributed
resource allocation under unknown system transition model in
femto and small-cell networks. Also, reinforcement learning can
improve the mobile users’ decision making without any informa-
tion related to the network conditions and the channel status. It
also been utilized for resource allocation in the downlink of femto-
cells. Table 2 illustrates machine learning models that were inves-
tigated for 5G networks; it shows that applying ML is important
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Table 1: ML models applied for radio signals

ML models Communication problem Network ML Area Communication Appli-
cation

Author

H-SVM Channel noise estimation MIMO Classi�cation Mobile nodes/users [17]
H-SVM Location estimation mobile ad hoc net-

works nodes
Classi�cation Mobile nodes/users [17]

SVM, KNN Usage pattern pattern recogni-
tion

HetNets Classi�cation users [13]

SVM Channel selection Cognitive radio Classi�cation Users [63]
SVM Spectrum detection MIMO Classi�cation protocols [27]
KNN Radio resource recon�gura-

tion/ Tra�c detection
Cognitive radio Optimization Cells [18]

KNN Anomaly detection HetNets Management Cells [46]
KNN Modulation classi�cation Cognitive radio Classi�cation Users [6]
SVM Anomaly detection Sensor networks Classi�cation Protocols [37]
Bayesian learning Spectrum sensing Cognitive radio Optimization Spectrum [68]
Bayesian learning Users detection Cellular network Optimization Users [4]
Bayesian learning signal detection ,noise estima-

tion
Cognitive radio Detection Users [7]

Bayesian learning Channel parameter estimation MIMO
Q-learning Channel selection Cognitive radio Optimization Spectrum [58]
CNN Identi�cation IEEE 802.15.4 devices Identi�cation Devices [41]
RNN Image reconstruction Synthetic aperture

radar (SAR)
Reconstruction Spectrum [69]

CNN Spectrum sensing, Modulation
classi�cation

Cognitive radio Classi�cation Spectrum [54]

DNN Modulation classi�cation Cognitive radio Classi�cation Users [32]
DNN Modulation classi�cation Cognitive radio Classi�cation Users [55]
DNN Indoor localization Wi-Fi signals Classi�cation Antennas [64]

research challenge for wireless communication and solving it will
optimize the future applications in 5G networks.

5 DEEP LEARNING FOR RADIO SIGNALS
DL is introduced by [23] as an answer to the massive need of intelli-
gent technologies to automate routine operations, make diagnoses
in medicine, and understand speech. Deep learning concept allows
computers to learn the hierarchy of concepts and understand the
dataset without the need for human expertise. DL has an expres-
sive capacity and convenient optimization capability that leads to
increased interest to apply it for computer vision and natural lan-
guage processing. In the following section, the potential bene�ts
of applying DL to radio signal communication are discussed. The
challenges of complex communication scenario, unknown channel
models, and high speed of processing requirements with sharing
complex processing unit develop a need to apply DL for radio sig-
nals for secure and e�cient radio access.

5.1 Why Deep Learning in Physical Layer for
Radio Signals

DL is a promising technique to apply in formal mathematical mod-
els to a computer and natural language processing to character-
ize or di�erentiate real languages or world images. Nowadays, DL
models outperform human levels of accuracy of detection algo-
rithms for objects in images or handwritten digits [47]. There are
known detection algorithms used in the communication �eld that
capture information from transmitted signals to detect/distinguish
between the variety of systems and channel models such as detec-
tion the type of constellation in AWGN. However, we agree that

implementing DL algorithms in such straight-forward scenarios
will not yield signi�cant improvements to the physical layer of
communication systems. Rather, we expect DL to improve the per-
formance in complex communication scenarios that are still un-
der research in communication �led to �nd robust and general-
ized mathematical models [47] (e.g., detection signals in a harsh
environment with low SNR and severe multipath e�ect). Poten-
tial bene�ts of applying DL models to existing techniques for the
physical layer can be summarized as follows:

• Most existing signal processing algorithms for the physical
layer in wireless communication systems have well de�ned
statistical information which is of Gaussian, linear, and sta-
tionary nature. However, having reliable wireless commu-
nication systems in practice su�ers from nonlinearities and
imperfections due to time-varying and frequency selective
[60]. Existing signal processing models can approximately
capture the tractable practical problems with certain limita-
tions and of research from wireless communication commu-
nity is still ongoing to improve them. Thus, having DL as a
processing block will allow optimizing the wireless network
at least for a speci�c application or imperfection without the
need of formal mathematical models.
• An end-to-end communication system is divided into mul-

tiple signal processing blocks, where each one performing a
speci�c task such as coding, modulation, equalization, etc.
The overall performance needs to be optimized; however,
each block’s performance is known to be sub-optimal. For
example, the separation between the source and the channel
coding in a practical channel (e.g., Rayleigh channel [71])
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Table 2: Summary of applied machine learning algorithms in 5G.

Paper Type of ML ML model Target Application

[17] Supervised SVM location estimation MIMO systems

[13] Supervised Regression models and
KNN

pattern prediction Energy learning

[65] Supervised Bayesian learning Channel estimation Massive MIMO

[12] Supervised Bayesian learning User detection Cognitive Radio

[70] Supervised Bayesian learning Spectrum detection Cognitive Radio

[7] Supervised Bayesian learning Channel estimation Cognitive Radio

[67] Un-supervised K-means clustering Network optimization Heterogeneous net-
works

[56] Un-supervised PCA and ICA Data recovery Smart grid cognitive
networks

[45] Un-supervised ICA User detection Spectrum learning in
cognitive radio

[5] Reinforcement learn-
ing

Markov decision pro-
cesses

energy harvesting Energy harvesting sen-
sors

[40] Reinforcement learn-
ing

Multi-armed bandit network optimization Device-to-device
(D2D) networks

[2] Reinforcement learn-
ing

Q-learning Spectrum allocation a Femto and small cells

[46] Reinforcement learn-
ing

Q-learning Resource allocation Dense small cells
in heterogeneous
network

and short block length [22]. In [66], factor graphs are pro-
posed to optimize each block, but the proposed approach
requires complex systems and increases the computational
cost. Using DL to learn end-to-end system model may opti-
mize the performance without the knowledge of optimal an
end-to-end mathematical model.
• Neural networks(NNs) are able to approximate any measur-

able function to any desired degree of accuracy [19]. Recent
studies show that Recurrent NNs (RNN) have a remarkable
capacity for learning algorithms with faster execution and
at lower energy than the manually programmed counter-
parts as it could perform with low precision data types and
highly parallel concurrent architectures [47].
• Higher level programming languages play an essential role

to utilize the massively parallel processing architectures and
distributed architectures e�ciently. Nowadays, the spread-
ing availability and the cheap cost of the Graphical Process-
ing Units (GPU) and the Field Programmable Gate Arrays
(FPGAs) enable training of DL models required for real-time
signal processing applications. Therefore, running parallel
ML algorithms in GPUs and specialized chips for ML in-
ference such as Eyeriss [11] demonstrates the capability of

utilizing NNs for high computational throughput with very
e�cient energy.

5.2 State of Art of Deep Learning in Radio
Signals

There is increasing interest in the last years to apply DL to various
radio communication disciplines.

5.2.1 DL as an Optimizer Block in Communication Systems . DL
is studied for belief propagation (BP). BP is a decoding method
which proceeds in iterations of message passing. In [43], DL is
implemented in BP for linear error correcting codes for channel
decodeing where the neural network decoder improves the Sig-
nal to Noise Ratio (SNR) up to 1.5dB on standard BP for cycle re-
duced parity check matrices. Also, a RNN architecture is proposed
to enhance the performance of parity check matrices. The network
performance improves up to 1.0dB with with lower densities and
fewer short cycles [42]. However, this approach su�ers from high
complex real time implementation due to the cost of the huge mul-
tiplication. In [38], they propose a new decoding algorithm based
on DL decoder for BP which provides feasible path for hardware
implementation with less than half the number of multiplication
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and less complexity compared to [42]. Moreover, DNN is proposed
for one-shot decoding of random and structured codes. Results
showed that neural network performance is similar to the network
performance for 16 bit length codes, and the neural network is able
to generalize decoding algorithms in the structured codes [24]. In
[10], NN sub-blocks for polar codes are applied for non-iterative
decoding algorithm which improves BER for DB decoding stages.
Also, DL based NN is applied for decoding a stabilizer quantum
error correcting code [34]. The NN decoding algorithm developed
in [34] outperforms the traditional decoders (e.g. Minimal-Weight
Perfect Matching (MWPM) decoder) and shows that it can be em-
ployed to any stabilizer code.

5.2.2 DL as End-to-End Communication Systems. A DL based au-
toencoder has been proposed over an Additive White Gaussian
Noise (AWGN) channel to optimize end-to-end communication sys-
tem performance for small block code [47]. Also, an end-to-end
unsupervised radio transformer model is presented as an end-to-
end communication system [51]. Convolutional Neural Networks
(CNN) is applied to the complex-valued temporal radio signal for
modulation recognition. Results show that the CNN model deliv-
ers the same results as traditional modulation classi�cation [48].
CNN is applied for spectrum identi�cation based on modulation
recognition using IQ samples. The accuracy was 79% for high SNR
18dB [35]. Moreover, convolutional autoencoder has been imple-
mented for compression of raw radio communication [49]. Super-
vised learning for MIMO detection is applied in [29]. Also, au-
toencoder is applied to perform as MIMO channel autoencoder re-
ceiver [50] and is proposed as new physical layer design for com-
munication system by NN with AWGN channel [14]. DL based
detection models have been investigated for learning of encryp-
tion/decryption schemes for an unknown channel model [1]. Fi-
nally, DL detection algorithms have been studied for molecular
communication where the mathematical channel model is unknown,
and the knowledge of the channel is not used [16]. DNNs are trained
for wireless resource management to solve complex optimization
tasks for real-time wireless resource allocation [61]. Long short
term memory (LSTM) is used as deep learning model for signal
classi�cation based on automatic modulation recognition using Elec-
trosense sensors[59].

6 CONCLUSION
Radio spectrum is increasingly becoming a complex environment
driven by devices with nondeterministic spatiotemporal accesses
as well as variable transmission powers and frequencies of opera-
tion. The need for higher data rates under spectrum scarcity will
drive further access-pattern complexity,since devices will be re-
quired to dynamically share spectrum resources to increase uti-
lization while ensuring minimal disruption to other users. This
paper provides an extensive related work and the state of art of
ML and DL models that have been explored for radio signals. It
also highlights the various applications that has been addressed in
communication by using ML and DL approaches.

REFERENCES
[1] Martín Abadi and David G Andersen. 2016. Learning to protect communications

with adversarial neural cryptography. arXiv preprint arXiv:1610.06918 (2016).

[2] Ghassan Alnwaimi, Seiamak Vahid, and Klaus Moessner. 2015. Dynamic hetero-
geneous learning games for opportunistic access in lte-based macro/femtocell
deployments. IEEE Transactions on Wireless Communications 14, 4 (2015), 2294–
2308.

[3] Ethem Alpaydin. 2014. Introduction to machine learning. MIT press.
[4] Rafhael Amorim, Jeroen Wigard, Huan Nguyen, Istvan Z Kovacs, and Preben

Mogensen. 2017. Machine-Learning Identi�cation of Airborne UAV-UEs Based
on LTE Radio Measurements. In Globecom Workshops (GC Wkshps), 2017 IEEE.
IEEE, 1–6.

[5] Anup Aprem, Chandra R Murthy, and Neelesh B Mehta. 2013. Transmit power
control policies for energy harvesting sensors with retransmissions. IEEE Jour-
nal of Selected Topics in Signal Processing 7, 5 (2013), 895–906.

[6] Muhammad Waqar Aslam, Zhechen Zhu, and Asoke Kumar Nandi. 2012. Auto-
matic modulation classi�cation using combination of genetic programming and
KNN. IEEE Transactions on wireless communications 11, 8 (2012), 2742–2750.

[7] Ayman Assra, Jiaxin Yang, and Benoit Champagne. 2016. An EM Approach for
cooperative spectrum sensing in multiantenna CR networks. IEEE Transactions
on Vehicular Technology 65, 3 (2016), 1229–1243.

[8] Darcy A Bibb, Zhengqing Yun, and Magdy F Iskander. 2016. Machine learn-
ing for source localization in urban environments. In Military Communications
Conference, MILCOM 2016-2016 IEEE. IEEE, 401–405.

[9] Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh. 2008. Wireless
device identi�cation with radiometric signatures. In Proceedings of the 14th ACM
international conference on Mobile computing and networking. ACM, 116–127.

[10] Sebastian Cammerer, Tobias Gruber, Jakob Hoydis, and Stephan ten Brink. 2017.
Scaling deep learning-based decoding of polar codes via partitioning. In GLOBE-
COM 2017-2017 IEEE Global Communications Conference. IEEE, 1–6.

[11] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss: An
energy-e�cient recon�gurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[12] Kae Won Choi and Ekram Hossain. 2013. Estimation of primary user parameters
in cognitive radio systems via hidden Markov model. IEEE transactions on signal
processing 61, 3 (2013), 782–795.

[13] Brad K Donohoo, Chris Ohlsen, Sudeep Pasricha, Yi Xiang, and Charles Ander-
son. 2014. Context-aware energy enhancements for smart mobile devices. IEEE
Transactions on Mobile Computing 13, 8 (2014), 1720–1732.

[14] Sebastian Dörner, Sebastian Cammerer, Jakob Hoydis, and Stephan ten Brink.
2018. Deep learning based communication over the air. IEEE Journal of Selected
Topics in Signal Processing 12, 1 (2018), 132–143.

[15] M Ettus. 2012. Universal software radio peripheral, Ettus Research, Mountain
View, CA.

[16] Nariman Farsad and Andrea Goldsmith. 2017. Detection algorithms for commu-
nication systems using deep learning. arXiv preprint arXiv:1705.08044 (2017).

[17] Vin-sen Feng and Shih Yu Chang. 2012. Determination of wireless networks
parameters through parallel hierarchical support vector machines. IEEE Trans-
actions on Parallel and Distributed Systems 23, 3 (2012), 505–512.

[18] Zhiyong Feng, Xi Li, Qixun Zhang, and Wei Li. 2017. Proactive Radio Resource
Optimization With Margin Prediction: A Data Mining Approach. IEEE Transac-
tions on Vehicular Technology 66, 10 (2017), 9050–9060.

[19] R Fierro and FL Lewis. 1999. Multilayer feedforward networks are universal
approximators. IEEE Trans. Syst., Man, Cybern 29, 6 (1999), 649–654.

[20] Matteo Frigo and Steven G Johnson. 1999. FFTW user’s manual. Massachusetts
Institute of Technology (1999).

[21] Matteo Frigo and Steven G Johnson. 2004. The FFTW web page. URL: http://www.
�tw. org (2004).

[22] Andrea Goldsmith. 1995. Joint source/channel coding for wireless channels. In
Vehicular Technology Conference, 1995 IEEE 45th, Vol. 2. IEEE, 614–618.

[23] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[24] Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan ten Brink. 2017.
On deep learning-based channel decoding. In Information Sciences and Systems
(CISS), 2017 51st Annual Conference on. IEEE, 1–6.

[25] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979), 100–108.

[26] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their
applications 13, 4 (1998), 18–28.

[27] Steven Siying Hong and Sachin Rajsekhar Katti. 2011. DOF: a local wireless
information plane. In ACM SIGCOMMComputer Communication Review, Vol. 41.
ACM, 230–241.

[28] Aapo Hyvärinen and Erkki Oja. 2000. Independent component analysis: algo-
rithms and applications. Neural networks 13, 4-5 (2000), 411–430.

[29] Yo-Seb Jeon, Song-Nam Hong, and Namyoon Lee. 2016. Blind detection for
MIMO systems with low-resolution ADCs using supervised learning. arXiv
preprint (2016).

[30] Chunxiao Jiang, Haijun Zhang, Yong Ren, Zhu Han, Kwang-Cheng Chen, and
Lajos Hanzo. 2017. Machine learning paradigms for next-generation wireless

Session 1: Radio Communication Q2SWinet '20, November 16–20, 2020, Alicante, Spain

20



What can Machine Learning do for Radio Spectrum Management? Q2SWinet’20, November 16–20, 2020, Alicante, Spain

networks. IEEE Wireless Communications 24, 2 (2017), 98–105.
[31] Hanna Kamyshanska and Roland Memisevic. 2013. On autoencoder scoring. In

International Conference on Machine Learning. 720–728.
[32] Byeoungdo Kim, Jaekyum Kim, Hyunmin Chae, Dongweon Yoon, and Jun Won

Choi. 2016. Deep neural network-based automatic modulation classi�cation
technique. In Information and Communication Technology Convergence (ICTC),
2016 International Conference on. IEEE, 579–582.

[33] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. 2007. Supervised machine learn-
ing: A review of classi�cation techniques. Emerging arti�cial intelligence appli-
cations in computer engineering 160 (2007), 3–24.

[34] Stefan Krastanov and Liang Jiang. 2017. Deep neural network probabilistic de-
coder for stabilizer codes. Scienti�c reports 7, 1 (2017), 11003.

[35] Merima Kulin, Tarik Kazaz, Ingrid Moerman, and Eli De Poorter. 2018. End-to-
end learning from spectrum data: A deep learning approach for wireless signal
identi�cation in spectrum monitoring applications. IEEE Access 6 (2018), 18484–
18501.

[36] Kaushik Lakshminarayanan, Samir Sapra, Srinivasan Seshan, and Peter
Steenkiste. 2009. RFDump: an architecture for monitoring the wireless ether.
In Proceedings of the 5th international conference on Emerging networking exper-
iments and technologies. ACM, 253–264.

[37] Zhida Li, Qingye Ding, Soroush Haeri, and Ljiljana Trajković. 2018. Applica-
tion of machine learning techniques to detecting anomalies in communication
networks: Classi�cation algorithms. Cyber Threat Intelligence (2018), 71–92.

[38] Loren Lugosch and Warren J Gross. 2017. Neural o�set min-sum decoding. In
Information Theory (ISIT), 2017 IEEE International Symposium on. IEEE, 1361–
1365.

[39] Andrzej Mackiewicz and Waldemar Ratajczak. 1993. Principal components anal-
ysis (PCA). Computers and Geosciences 19 (1993), 303–342.

[40] Setareh Maghsudi and Sławomir Stańczak. 2015. Channel selection for network-
assisted D2D communication via no-regret bandit learning with calibrated fore-
casting. IEEE Transactions on Wireless Communications 14, 3 (2015), 1309–1322.

[41] Kevin Merchant, Shauna Revay, George Stantchev, and Bryan Nousain. 2018.
Deep learning for RF device �ngerprinting in cognitive communication net-
works. IEEE Journal of Selected Topics in Signal Processing 12, 1 (2018), 160–167.

[42] Eliya Nachmani, Elad Marciano, David Burshtein, and Yair Be’ery. 2017. RNN
decoding of linear block codes. arXiv preprint arXiv:1702.07560 (2017).

[43] Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J Gross, David Bur-
shtein, and Yair Be’ery. 2018. Deep learning methods for improved decoding
of linear codes. IEEE Journal of Selected Topics in Signal Processing 12, 1 (2018),
119–131.

[44] Radford M Neal. 2012. Bayesian learning for neural networks. Vol. 118. Springer
Science & Business Media.

[45] Huy Nguyen, Guanbo Zheng, Rong Zheng, and Zhu Han. 2013. Binary inference
for primary user separation in cognitive radio networks. IEEE Transactions on
Wireless Communications 12, 4 (2013), 1532–1542.

[46] Oluwakayode Onireti, Ahmed Zoha, Jessica Moysen, Ali Imran, Lorenza Giup-
poni, Muhammad Ali Imran, and Adnan Abu-Dayya. 2016. A cell outage man-
agement framework for dense heterogeneous networks. IEEE Transactions on
Vehicular Technology 65, 4 (2016), 2097–2113.

[47] Timothy O’Shea and Jakob Hoydis. 2017. An introduction to deep learning for
the physical layer. IEEE Transactions on Cognitive Communications and Network-
ing 3, 4 (2017), 563–575.

[48] Timothy J O’Shea, Johnathan Corgan, and T Charles Clancy. 2016. Convolu-
tional radio modulation recognition networks. In International conference on en-
gineering applications of neural networks. Springer, 213–226.

[49] Timothy J O’Shea, Johnathan Corgan, and T Charles Clancy. 2016. Unsupervised
representation learning of structured radio communication signals. In Sensing,
Processing and Learning for Intelligent Machines (SPLINE), 2016 First International
Workshop on. IEEE, 1–5.

[50] Timothy J O’Shea, Tugba Erpek, and T Charles Clancy. 2017. Deep learning
based MIMO communications. arXiv preprint arXiv:1707.07980 (2017).

[51] Timothy J O’Shea, Kiran Karra, and T Charles Clancy. 2016. Learning to com-
municate: Channel auto-encoders, domain speci�c regularizers, and attention.
In Signal Processing and Information Technology (ISSPIT), 2016 IEEE International
Symposium on. IEEE, 223–228.

[52] Timothy J O’Shea and Nathan West. 2016. Radio machine learning dataset gen-
eration with gnu radio. In Proceedings of the GNU Radio Conference, Vol. 1.

[53] Timothy J O’Shea, Nathan West, Matthew Vondal, and T Charles Clancy. 2017.
Semi-supervised radio signal identi�cation. In Advanced Communication Tech-
nology (ICACT), 2017 19th International Conference on. IEEE, 33–38.

[54] Timothy James OâĂŹShea, Tamoghna Roy, and T Charles Clancy. 2018. Over-
the-air deep learning based radio signal classi�cation. IEEE Journal of Selected
Topics in Signal Processing 12, 1 (2018), 168–179.

[55] Shengliang Peng, Hanyu Jiang, Huaxia Wang, Hathal Alwageed, Yu Zhou, Mar-
jan Mazrouei Sebdani, and Yu-Dong Yao. 2018. Modulation Classi�cation Based
on Signal Constellation Diagrams and Deep Learning. IEEE transactions on neu-
ral networks and learning systems 99 (2018), 1–10.

[56] Robert C Qiu, Zhen Hu, Zhe Chen, Nan Guo, Raghuram Ranganathan, Shujie
Hou, and Gang Zheng. 2011. Cognitive radio network for the smart grid: Exper-
imental system architecture, control algorithms, security, and microgrid testbed.
IEEE Trans. Smart Grid 2, 4 (2011), 724–740.

[57] GNU Radio. 2007. The gnu software radio. Available from World Wide Web:
https://gnuradio. org (2007).

[58] Vishnu Raj, Irene Dias, Thulasi Tholeti, and Sheetal Kalyani. 2018. Spectrum
access in cognitive radio using a two-stage reinforcement learning approach.
IEEE Journal of Selected Topics in Signal Processing 12, 1 (2018), 20–34.

[59] Sreeraj Rajendran, Wannes Meert, Domenico Giustiniano, Vincent Lenders, and
So�e Pollin. 2018. Deep Learning Models for Wireless Signal Classi�cation with
Distributed Low-Cost Spectrum Sensors. IEEE Transactions on Cognitive Com-
munications and Networking (2018).

[60] Tim Schenk. 2008. RF imperfections in high-rate wireless systems: impact and
digital compensation. Springer Science & Business Media.

[61] Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, and Nikos D
Sidiropoulos. 2017. Learning to optimize: Training deep neural networks for
wireless resource management. In Signal Processing Advances in Wireless Com-
munications (SPAWC), 2017 IEEE 18th International Workshop on. IEEE, 1–6.

[62] Richard S Sutton and Andrew G Barto. 1998. Introduction to reinforcement learn-
ing. Vol. 135. MIT press Cambridge.

[63] Karaputugala G Madushan Thilina, Ekram Hossain, and Dong In Kim. 2016.
DCCC-MAC: A dynamic common-control-channel-based MAC protocol for cel-
lular cognitive radio networks. IEEE Transactions on Vehicular Technology 65, 5
(2016), 3597–3613.

[64] Xuyu Wang, Lingjun Gao, Shiwen Mao, and Santosh Pandey. 2015. DeepFi: Deep
learning for indoor �ngerprinting using channel state information. In Wireless
Communications and Networking Conference (WCNC), 2015 IEEE. IEEE, 1666–
1671.

[65] Chao-Kai Wen, Shi Jin, Kai-Kit Wong, Jung-Chieh Chen, and Pangan Ting. 2015.
Channel estimation for massive MIMO using Gaussian-mixture Bayesian learn-
ing. IEEE Transactions on Wireless Communications 14, 3 (2015), 1356–1368.

[66] Henk Wymeersch. 2007. Iterative receiver design. Cambridge Univ. Press.
[67] Ming Xia, Yasunori Owada, Masugi Inoue, and Hiroaki Harai. 2012. Optical and

wireless hybrid access networks: Design and optimization. Journal of Optical
Communications and Networking 4, 10 (2012), 749–759.

[68] Yizhen Xu, Peng Cheng, Zhuo Chen, Yonghui Li, and Branka Vucetic. 2018. Mo-
bile Collaborative Spectrum Sensing for Heterogeneous Networks: A Bayesian
Machine Learning Approach. IEEE Transactions on Signal Processing (2018).

[69] Bariscan Yonel, Eric Mason, and Birsen Yazıcı. 2018. Deep learning for passive
synthetic aperture radar. IEEE Journal of Selected Topics in Signal Processing 12,
1 (2018), 90–103.

[70] Chung-Kai Yu, Kwang-Cheng Chen, and Shin-Ming Cheng. 2010. Cognitive ra-
dio network tomography. IEEE Transactions on Vehicular Technology 59, 4 (2010),
1980–1997.

[71] Ephraim Zehavi. 1992. 8-PSK trellis codes for a Rayleigh channel. IEEE Trans-
actions on Communications 40, 5 (1992), 873–884.

[72] Min-Ling Zhang and Zhi-Hua Zhou. 2007. ML-KNN: A lazy learning approach
to multi-label learning. Pattern recognition 40, 7 (2007), 2038–2048.

Session 1: Radio Communication Q2SWinet '20, November 16–20, 2020, Alicante, Spain

21


	Abstract
	1 Introduction
	2  Machine Learning for Radio Signals
	3 State of Art of Machine Learning in Radio Signals
	4  State of art of Machine Learning Models for WLAN and 5G
	4.1 ML models for WLAN
	4.2 ML Models for 5G

	5 Deep Learning for Radio Signals 
	5.1 Why Deep Learning in Physical Layer for Radio Signals
	5.2 State of Art of Deep Learning in Radio Signals

	6 Conclusion
	References



