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The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 
the high fatality rate of coronavirus disease 2019 (COVID-19) have been putting a strain 
on the world since December 2019. Infected individuals exhibit unpredictable symptoms 
that tend to worsen if age is advanced, a state of malnutrition persists, or if cardiovascular 
comorbidities are present. Once transmitted, the virus affects the lungs and in predisposed 
individuals can elicit a sequela of fatal cardiovascular consequences. We aim to present 
the pathophysiology of COVID-19, emphasizing the major cellular and clinical manifestations 
from a cardiological perspective. As a roaming viral particle or more likely via the Trojan 
horse route, SARS-CoV-2 can access different parts of the body. Cardiovascular features 
of COVID-19 can count myocardial injuries, vasculitis-like syndromes, and atherothrombotic 
manifestations. Deviations in the normal electrocardiogram pattern could hide pericardial 
effusion or cardiac inflammation, and dispersed microthrombi can cause ischemic 
damages, stroke, or even medullary reflex dysfunctions. Tailored treatment for reduced 
ejection fraction, arrhythmias, coronary syndromes, macrothrombosis and microthrombosis, 
and autonomic dysfunctions is mandatory. Confidently, evidence-based therapies for this 
multifaceted nevertheless purely cardiological COVID-19 will emerge after the global 
assessment of different approaches.

Keywords: cardiovascular system, coronavirus, SARS-CoV-2, COVID-19, infections, virulence, host-pathogen 
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THE JOURNEY OF SARS-CoV-2

The little understanding of the natural diversity of the severe acute respiratory syndrome-
related coronaviruses (SARS-CoVs) restricts the opportunities to control their zoonotic 
spillovers (Coronaviridae Study Group of the International Committee on Taxonomy of 
Viruses, 2020). Humans are therefore increasingly affected by outbreaks that put millions 
of people at risk. After the plagues of severe acute respiratory syndrome coronavirus 1 
(SARS-CoV-1) in 2003 and of Middle East respiratory syndrome-related coronavirus 
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(MERS-CoV) in 2012, a familial coronavirus (SARS-CoV-2) 
was discovered after the first documented virus-related 
pneumonia in China at the end of December 2019. This new 
strain is primarily transmitted through respiratory droplets 
and is able to survive in the airway mucosa despite the 
presence of cleaning epithelial cells, protective lymphoid tissues, 
and immunocompetent nerve endings (Briguglio et al., 2020a). 
The optimized genomic feature to bind to the angiotensin-
converting enzyme 2 (ACE2), which derives from either 
millions of random natural mutations during unnoticed 
human-to-human transmission (Xu et  al., 2020a) or artificial 
laboratory manipulations (Andersen et al., 2020), is the major 
determinant for the highest viral replication (Hoffmann et al., 
2020) and for the consequent respiratory (Harapan et  al., 
2020) and cardiovascular implications (Wu et  al., 2020b). 
After acquiring a sufficiently high viral load in the upper 
cavity (Zou et  al., 2020), SARS-CoV-2 infects the goblet and 
ciliated cells in charge of sputum expectoration (Sungnak 
et  al., 2020). The diffusion through the mucous layer allows 
the ease of infection of alveolar epithelial type II cells and 
systemic organs that express ACE2 (Briguglio et  al., 2020a). 
The resulting illness, named coronavirus disease 2019 (COVID-19), 
is multifaceted and unpredictable and can manifest with early 
smell disorders in over 80% of cases or result in the most 
severe conditions like sepsis-like shock or respiratory failure 
in 14% of cases (Remy et  al., 2020; Wu and McGoogan, 
2020). Globally, it has been observed that 1  in 16 patients 
has encountered fatal consequences (WHO situation report 
132, May–June 2020), and several infected patients were old 
and malnourished (Briguglio et al., 2020d; Sattar et al., 2020). 
Importantly, epidemiological data have been shown that 
preexisting cardiovascular conditions could be another central 
virulence factor for disease progression. In addition, clinical 
findings showed that not a few numbers of COVID-19 patients 
encounter cardiac symptoms (Mehra et  al., 2020). Since each 
structure and function of the cardiovascular system shows 
severe implications, it is crucial to discuss from a cardiological 
perspective the relationship between SARS-CoV-2 infection 
and the cardiovascular system in order to shed some light 
on the mechanisms that can lead to cardiac symptoms or 
fatal consequences in COVID-19 patients.

VIRUS-ASSOCIATED DAMAGE, PHASES 
OF DISEASE, AND PATIENT 
CLASSIFICATION

It is necessary to differentiate the types of SARS-CoV-2-associated 
damages, the various stages of the disease, and the classification 
of infected patients. The virus-associated damage is of two types:

 • Type I  damage (i.e., cytotoxicity), which is directly 
associated with the infiltration of the virus in those cells 
expressing ACE2 (pneumocytes, endothelial cells, 
cardiomyocytes, neuronal cells). This may lead to acute 
injuries in the lungs, the vasculature, the myocardium, 
and the brain (Kabbani and Olds, 2020; Mason, 2020).

 • Type II damage, which occurs during the disease progression. 
It derives from hypoxemia, inflammation, and microthrombosis. 
In particular, pneumonia and acute respiratory distress 
syndrome are likely to lead to a mismatch between oxygen 
supply and demand (hypoxic damage). Moreover, the late 
increase in circulating cytokines is known to cause nonischemic 
multiple organ injuries (e.g., stress-cardiomyopathy, myocarditis, 
vasculitis-like syndromes), and the systemic inflammation 
or catecholamine rush are associated with plaque rupture 
or blood hypercoagulability (i.e., thrombi-derived ischemic 
damage; Basu-Ray et  al., 2020; Matsushita et  al., 2020; 
Xiong et al., 2020; Zheng et al., 2020).

Considering the disease progression, three distinct phases 
have been recognized, covering the early infection mechanisms, 
the body’s response to the viral proliferation, and the late 
systemic phase of the illness.

 • The incubation/proliferative phase: mild-to-moderate 
symptoms with fever, dry cough, headache, pharyngodynia, 
asthenia. This phase is biochemically characterized by mild 
lymphopenia and variations in some coagulation parameters, 
such as the D-dimer, thrombocytes, and international 
normalized ratio (INR). Lactate dehydrogenase as well as 
inflammatory markers like C-reactive protein and 
interleukin-6 may increase (Shi et  al., 2020). Therapies to 
boost the immune response are certainly worth considering 
since early B lymphocyte reduction affects antibody 
production (Siddiqi and Mehra, 2020). This phase usually 
lasts a few days (Briguglio et al., 2020a).

 • The respiratory phase: moderate-to-severe respiratory symptoms 
like shortness of breath and measurable hypoxemia. If a 
dysfunctional immune system was present, SARS-CoV-2 could 
proliferate quickly and lead to massive impairments of infiltrated 
tissues. This phase is characterized by increasing circulating 
levels of cytokines and chemokines, such as tumor necrosis 
factor-α, interleukins, interferon-γ, and chemoattractant 
proteins (Rokni et al., 2020). As long as the disease worsens, 
structural consequences include multiple patchy shadows in the 
lungs in mildly affected individuals or pleural fluid in the most 
severe cases (Yang et al., 2020). This phase normally starts to 
aggravate around 7–14 days after onset (Briguglio et al., 2020a).

 • The systemic phase: moderate-to-severe systemic implications 
comprising acute distress respiratory syndrome, heart failure, 
and multisystem organ dysfunction. Troponin I and brain 
natriuretic peptide may be elevated in infected patients with 
cardiac involvement. The coagulopathy manifests with 
increased D-dimer and other fibrin degradation products, 
low platelet counts, and increased INR and prothrombin time 
(Lippi et al., 2020; Thachil et al., 2020). Severe lymphopenia, 
kidney injury, as well as elevated liver enzymes and cytokines 
may be  found (Shi et  al., 2020). Of note, lymphocyte 
attachment to the activated endothelium, together with their 
systemic redistribution and apoptosis, is supposed to be at 
the basis of low lymphocyte counts (Rokni et al., 2020). This 
phase might be conversely replaced by a recovery phase if the 
virus is effectively suppressed (Lin et al., 2020).
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On the clinical bases, patients can be  classified according 
to respiratory autonomy (Briguglio et  al., 2020a):

 • Level 0: asymptomatic, mostly home living.
 • Level 1: mild symptoms, pharyngodynia, dry cough, mild 

fever; these individuals should not be hospitalized.
 • Level 2: moderate symptoms, high fever, persistent cough, 

asthenia, dyspnea; these patients might require noninvasive 
oxygen therapy.

 • Level 3: severe symptoms; these patients require invasive 
oxygen therapy and intensive care support. These patients 
were reported to meet the diagnostic criteria for sepsis, with 
the impaired liver, kidney, and lung functions presenting 
concomitantly with cold extremities, weak peripheral pulses, 
shock, and severe metabolic acidosis (Li et al., 2020b).

FROM LUNGS TO MYOCARDIUM 
INJURIES

The cardiovascular sequelae start with the viral binding to 
ACE2 in the lower airways, causing type I damage in pneumocytes 
(Leung et  al., 2020). The altered diffusion of oxygen across 
the injured alveolar membrane is likely to ground hypoxic 
conditions that prevent proper tissue oxygenation. Locally, 
SARS-CoV-2 particles activate alveolar macrophages and T cells 
(Shi et  al., 2020). The subsequent inflammation is known to 
stimulate hyaline membrane formation, wall thickening, and 
infiltration of circulating monocytes that differentiate into 
macrophages or fibroblast-like cells called fibrocytes that 
eventually favor fibrotic processes in the parenchyma (Pilling 
and Gomer, 2012). During the worsening of the respiratory 
phase, the overactive immunological response in the lungs 
alters the integrity of epithelial-endothelial barriers, with plasma 
components exuding in the alveolar cavity together with 
chemotactic monocytes and neutrophils (Li et  al., 2013). In 
level 2 and level 3 patients, a cytokine storm might arise, 
being the main root for growing a worsening life-threatening 
systemic phase (Xu et  al., 2020b). The recruitment of different 
leukocyte populations in the lungs could expose these cells 
to viral infiltration, ending up becoming Trojan horses (i.e., 
vectors for SARS-CoV-2, recall of the mythical subterfuge to 
enter the city of Troy). This mechanism was in fact shown 
for the familial predecessor SARS-COV-1 (Chen and Hsiao, 
2004; Gu et al., 2005) and supposed for SARS-CoV-2 (Li et al., 
2020b; Park, 2020), whose viral particles were found in blood 
samples and in the myocardium (Tavazzi et  al., 2020; Wang 
et  al., 2020b). If SARS-CoV-2 was able to infiltrate into the 
heart, it would be  likely to elicit the secretion of cytokines 
from cardiac fibroblasts to subsequently increase the inflammatory 
milieu (van Nieuwenhoven and Turner, 2013) and to cause 
the recruitment of transendothelial monocytes (Lindner et  al., 
2014), neutrophils, and dendritic cells (Van der Borght and 
Lambrecht, 2018). Activated dendritic cells are known to trigger 
T cells (Eriksson et al., 2003), further promoting tissue damage. 
A plethora of immune cells, comprising macrophages and 
fibrocytes, may therefore populate these early myocardium 

lesions (Oudit et  al., 2009; Pilling et  al., 2009), each likely to 
have its own role in COVID-19-associated myocarditis and 
stress-cardiomyopathy (Xiong et  al., 2020). Consequently, it 
would seem fair to assume that the myocardium of infected 
patients might be  subjected not only to type I  damage, as a 
consequence of direct myocardial cell injury, but also to type 
II damage mainly comprising the inflammation-derived grievance. 
Remarkably, even patients with mild respiratory symptoms can 
manifest early cardiovascular implications, such as acute 
myopericarditis (Inciardi et  al., 2020), Takotsubo syndrome 
(Meyer et  al., 2020), or acute myocardial infarction (Stefanini 
et  al., 2020). Fulminant myocarditis was reported in level 2 
patients (Hu et al., 2020; Zeng et al., 2020), and supraventricular 
tachycardia, decompensated heart failure, and cardiogenic shock 
were observed in aggravating level 3 patients (Fried et al., 2020). 
It is generally agreed that the lymphocytic count mirrors the 
nutritional status of the host (Briguglio et  al., 2019), and it 
may be  useful in predicting the patient’s reservoirs against the 
infection since these cells decline as long as COVID-19 worsens 
(Peteranderl and Herold, 2017; Chan et al., 2020). This attenuated 
immune potential of the host increases the susceptibility to 
disease complications, and the coupling of severe pneumonia 
with myocardial injury is likely to lead to progressive 
cardiorespiratory deterioration. Severe patients were in fact 
reported to be  13-fold more exposed to cardiovascular 
complications than non-severe, with an increased troponin 
I  and low-density epicardial adipose tissue possibly reflecting 
the extent of the damage to the myocardium (Hui Hui et  al., 
2020; Li et  al., 2020a), ultimately known to be  associated with 
a worse prognosis (Clerkin et  al., 2020).

ENDOTHELIAL DYSFUNCTION AND 
ATHEROTHROMBOTIC MANIFESTATION

Endothelial dysfunction is a feature of COVID-19 that lingers 
from the proliferative to the systemic phase. If the viral load 
is high, probably boosted by an intense viral shedding in 
the blood flow (Chang et  al., 2020), it is very likely that 
some particles directly affect the endothelium (Escher et  al., 
2020; Sardu et  al., 2020). High levels of pro-inflammatory 
cytokines are associated with endothelial engrossment (Finkel 
et  al., 1992; Cheng et  al., 1999) that could progress to 
vasculitis-like syndromes in the vessels of the brain, the 
kidneys, or the gastrointestinal tract (Varga et  al., 2020). In 
severe COVID-19 patients, the Kawasaki disease has been 
observed (Jones et  al., 2020) together with cutaneous signs, 
such as the “COVID-19 toes” (Mazzotta et  al., 2020) or the 
chilblain-like lesions (Papa et  al., 2020). We  can therefore 
assume that the endothelial dysfunctions in COVID-19 arise 
from both type I damage and the nonischemic type II damage. 
The dysfunctional endothelium elicits two events that are 
part of the “two-activation theory of the endothelium” 
(Chang, 2019): the release of inflammatory cytokines triggers 
the activation of inflammatory pathways, whereas the 
activation of the platelet and exocytosis of aberrant coagulation 
factors trigger the activation of microthrombotic pathways. 
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Viruses are known to directly affect hemostasis with their 
ability to agglutinate platelets, cause hemolysis, and lead to 
the formation of procoagulant complexes with antibodies 
(McKay and Margaretten, 1967; van Gorp et  al., 1999). This 
latter mechanism may be advocated for SARS-CoV-2 by recent 
computational modeling that showed the possibility of the 
virus to cause hemoglobin derangements (Liu and Li, 2020). 
If this were the case, then the incorporation of the virus 
into Trojan horses would be  plausible since white cells are 
known to commonly engulf hemoglobin in various tissues 
(Briguglio et al., 2020c). Aberrant coagulation is the underlying 
mechanism for ischemic heart disease, stroke, and venous 
thromboembolism, but it has been observed also in severe 
influenza pneumonia and SARS-CoV-1 (Chong et  al., 2004; 
Yang and Tang, 2016). Similarly, the development of 
coagulopathy appears to be  a noxious complication in severe 
level 2 and level 3 patients (Tang et  al., 2020b). Clots can 
be  found in kidney dialysis catheters, cause strokes, or leave 
portions of lungs bloodless. Spleen atrophy, hilar lymph node 
necrosis, and hepatomegaly were also observed (Li et  al., 
2020b). Thrombus formation was associated with increased 
mortality (Zhou et  al., 2020), with most of level 3 patients 
meeting the criteria for the disseminated intravascular 
coagulation (i.e., consumptive of both platelets and clotting 
factors; Lillicrap, 2020). Once thrombi formed in capillary 
beds, the remodeling processes would be  associated with 
leukocyte polarization and late recruitment of macrophages 
that are in charge of cell clearance and blood flow restoration 
through fibrinolytic processes (Pober and Sessa, 2014). This 
cascade of events (Virchow’s triad) is nevertheless necessary 
for endothelial wall restoration (Mukhopadhyay et  al., 2019). 
However, the immune derangements in COVID-19 are likely 
to alter the activation of both immune cells and the fibrinolytic 
system. For instance, neutrophil extracellular traps (NETs) 
are useful to entrap viruses in weblike structures, thus facilitating 
cleavage by macrophages. If neutrophils are abnormally 
activated, aggregated NETs and their associated antimicrobial 
factors may be  key determinants in capillary destruction 
(Cicco et  al., 2020), vessel obstruction (Leppkes et  al., 2020), 
and lung injury (Wang et  al., 2020a). Similarly, impaired 
activation of the fibrinolytic system activation can recirculate 
the material and thus increase the risk of distant thrombi-
derived ischemic damages (i.e., disseminated intravascular 
microthrombosis). Although it is not known if a plaque 
rupture is as dangerous as the plaque before rupture 
(Schoenhagen et  al., 2002), if circulating thrombi halt in the 
small coronary vessels, they can certainly contribute to 
myocardial injury (Hendren et  al., 2020). Thromboembolic 
events can occur in the lungs of infected patients (Ai et  al., 
2020; Danzi et  al., 2020), further impairing gas exchange. 
The pulmonary damage leads to poor perfusion in the coronary 
vessels, misbalance of oxygen supply/demand, reduced activity 
of the mitochondrial electron transport chain, acidosis, and 
oxidative damage from reactive oxygen species (ROS; Wu 
et al., 2020b), whose accumulation is also known to be elicited 
by the cytokine storm (Bhaskar et  al., 2020). Importantly, 
tissue hypoxia is known to induce metabolic reprogramming 

in cardiomyocytes, thus being critical for the progression of 
numerous cardiovascular diseases (Abe et  al., 2017, 2019).

ELECTRICAL DYSREGULATION, 
MEDULLARY REFLEX ALTERATION, AND 
AUTONOMIC DYSFUNCTION

Alike myocardial injuries, not all COVID-19 patients who 
manifest alterations in the cardiac electrophysiology, such as 
ST-segment or ST-T wave abnormalities, show concomitant 
chest tomographic opacities (Bangalore et al., 2020). It is therefore 
possible that in predisposed individuals, the cardiovascular 
system is affected before the respiratory system, with electrical 
dysregulations being caused by circulating levels of 
pro-inflammatory cytokines, stress hormones, electrolytic 
imbalances, or drug cardiotoxicity (Chung et al., 1990; Yokoyama 
et al., 1993; Hasan, 2013; Driggin et al., 2020), but SARS-CoV-2 
might directly damage nerve fibers. The myocardium is innervated 
by sympathetic and vagal parasympathetic nerve fibers that 
intersect in  local plexuses, ganglia, and pacemaker regions. 
The wide expression of ACE2  in nerve tissues and the 
neurotrophic nature of SARS-CoV-2 might render the cardiac 
nerve fibers a favorite prey (Briguglio et  al., 2020a). Severe 
arrhythmias are nevertheless life-threatening conditions that 
may occur in over 30% of level 2 patients (Ferrari, 2020) and 
in higher rates in patients of level 3 (Huang et  al., 2020). The 
prevalence and severity of electrocardiographic changes could 
reflect the progression of myocardial damage (Guo et al., 2020), 
but it is very likely that it is associated with disease progression. 
Defects of electrical impulses from the sinoatrial node to the 
ventricles might arise as drug-induced disorders, thereby 
requiring careful assessments before defining the pharmacological 
treatment of COVID-19 (Yogasundaram et  al., 2014; Borba 
et  al., 2020). Pulmonary stretch receptors, C-fibers in the 
alveolar wall, baroreceptors in the carotid sinuses, extra-carotid 
cardiopulmonary baroreceptors together with widespread 
metaboreceptors are critical for integrating breathing cycle, 
heart rate, and vascular resistance during ventilatory and arterial 
pressure changes (Sant’Ambrogio, 1982; Schelegle, 2003; Timmers 
et  al., 2003; Kougias et  al., 2010; Anand et  al., 2014). Type 
II damages are likely to disrupt these nervous components, 
in turn compromising the responsiveness to local stimuli, the 
impulse activity in afferent glossopharyngeal and vagal fibers, 
and the reflexive outflow (Burki and Lee, 2010; van Gestel 
and Steier, 2010). The central processing would therefore receive 
vitiated information from the periphery, which grounds the 
lack of adaptation of intrapulmonary vessels of COVID-19 
patients (Chu et  al., 2020), with the outputs being equally 
artificial. For instance, it has been suggested that the state of 
“silent hypoxemia” (i.e., depressed dyspnea response) that was 
observed in a large number of COVID-19 patients could 
be associated with defects in the carotid body, which is known 
to express ACE2 (Tobin et  al., 2020). The consequent poor 
regulation of blood displacement in the microcirculation to 
the lungs and the brain may therefore mirror a vitiated 
baroreceptor reflex and hemodynamics, as was indeed observed 
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in a COVID-19 patient (Ribas et al., 2020). Importantly, countless 
cardiovascular implications have been associated with the 
frequent renal involvement that was observed in level 2 and 
level 3 patients (Ronco et  al., 2020). It is reasonable to believe 
that kidneys are subjected to both viral infiltration and several 
types of type II damages (Larsen et  al., 2020; Su et  al., 2020). 
Local polarization and subsequent activation of white blood 
cells easily disrupt the renin-angiotensin-aldosterone system 
(RAAS; Strutz and Zeisberg, 2006; Chen et  al., 2016; Granot 
et  al., 2017), in turn affecting the sympathetic noradrenergic 
and parasympathetic cholinergic neurotransmission (Miller and 
Arnold, 2019). Nevertheless, this intense extended autonomic 
system (EAS) activation was suggested to account for the 
multiple organ involvement of COVID-19 (Goldstein, 2020). 
Other than arrhythmias, level 3 patients were reported to 
be subjected to more frequent vasopressor support (Goyal et al., 
2020). Some of these patients showed clinical involvement of 
the brainstem, especially of the respiratory center (Manganelli 
et  al., 2020), which can imply a type I  damage of SARS-Cov-2 
via cerebrospinal fluid diffusion (Sun and Guan, 2020) or vagus 
nerve retrograde transport (Tassorelli et al., 2020). The autonomic 
center at the level of the lower medulla expresses ACE2 (Xia 
and Lazartigues, 2008), and it was shown to be highly infected 
by familial predecessors (Netland et  al., 2008; Li et  al., 2016). 
Non-epileptic seizures due to autonomic dysfunction were 
indeed reported in a COVID-19 patient (Logmin et  al., 2020). 
The systemic inflammation, ischemic thrombotic/cardio-embolic 
injuries, or vasculitis at the level of capillary beds beneath the 
ependyma of the ventricle may similarly affect brainstem 
functions (Benghanem et  al., 2020; Mirza and Das, 2020), 
being all hallmarks of the systemic phase of COVID-19. 
Endothelial damages in these critical areas are likely to affect 
afferent inputs from peripheral nerves, with subsequent lack 
of proper buffering of blood pressure fluctuations from the 
nucleus of the solitary tract (Cutsforth-Gregory and Benarroch, 
2017). Clinically, the involvement of this medullary nucleus 
or of the dorsal motor nucleus of the vagus nerve might evoke 
nausea and vomiting frequently observed in COVID-19 patients 
(Goldstein, 2020). Electrical evaluation of both heart and brain 
activities, echocardiography, invasive hemodynamic monitoring, 
and serum brain natriuretic peptide can help clarify the 
cardiogenic component (Yufu et  al., 2006; Mazeraud et  al., 
2016). Notably, any infection of central nervous tissues is 
accompanied by massive infiltration of leukocytes, such as 
dendritic cells from the perivascular region (Ludewig et  al., 
2016), that could serve as Trojan horses, further contributing 
to local affections.

PREEXISTING CARDIOVASCULAR 
CONDITIONS AS VIRULENCE FACTOR: 
IMPLICATIONS FOR DISEASE ONSET 
AND PROGRESSION

Although it is not possible to state whether the cardiovascular 
implications observed in COVID-19 derive from previous 

conditions or depend solely on the coronavirus-associated 
damages, it is reasonable to assume a causal link. From a 
molecular point of view, the upregulation of ACE2  in some 
cardiovascular diseases, such as ischemic heart disease or 
diabetes mellitus (Zisman et al., 2003), may certainly expose 
the sick individuals who contract the coronavirus to poorer 
prognosis (Wu et  al., 2020b). The subsequent binding and 
downregulation of ACE2 expression by SARS-CoV-2 further 
prevent the conversion of angiotensin II, thus worsening 
pulmonary and cardiovascular outcomes (Datta et al., 2020). 
Accordingly, a higher ACE/ACE2 ratio might be  a 
predisposing cause of worse outcomes in COVID-19, having 
angiotensin II dire vasoconstriction and pro-oxidant and 
pro-inflammatory effects in contrast to angiotensin (1–7) 
that is a vasodilator, antioxidant, and anti-inflammatory 
(Pagliaro and Penna, 2020). Clinically, it has been proposed 
that the more disturbed was the hemodynamic homeostasis 
prior to SARS-CoV-2 infection, the more severe could be the 
symptoms during COVID-19 and the higher would be  the 
risk of long-term cardiovascular consequences (Zheng et al., 
2020). Concerning the Italian cohort of patients, 1  in 3 
had preexisting ischemic cardiomyopathy or diabetes mellitus, 
1  in 4 already suffered from atrial fibrillation, and 1  in 
10 had a history of stroke (Onder et al., 2020). The preexisting 
myocardial metabolic imbalances or atherosclerotic lesion 
might have played a major role in myocardial oxygen 
imbalances and plaque instabilities upon the advent of the 
systemic phase of COVID-19 (Bonow et al., 2020). Numerous 
mechanical (e.g., repetitive deformations derived from the 
cardiac cycle) and biological forces (e.g., inflammation) are 
known to undermine the stability of subclinical plaques 
(Arroyo and Lee, 1999; Yao et  al., 2019), and they all 
occur during infections (Madjid et  al., 2007; Campbell and 
Rosenfeld, 2015). In addition, a preexisting poor cardiac 
functional reserve is more likely to lead to a sudden cardiac 
insufficiency in patients with COVID-19, giving also the 
drug-related heart damage deriving from COVID-19 treatment 
(Wu et  al., 2020a; Zheng et  al., 2020). In the past, patients 
with comorbid cardiovascular diseases, such as coronary 
artery disease or heart failure, have been already recognized 
to be  at higher risk of contagion and exacerbation of 
symptoms during viral respiratory infections (Nguyen et al., 
2016). Furthermore, long-term damage to the cardiovascular 
system has been documented in hospitalized patients 
recovering from pneumonia (Corrales-Medina et  al., 2015), 
thus highlighting the cardiorespiratory deteriorations of 
COVID-19. It is therefore reasonable to say that any previous 
hypoxic/vascular condition, cardiac inflammation, or 
autonomic dysfunction has to be recognized as a risk factor 
for COVID-19 onset and cardiovascular disease progression 
in any individual infected with SARS-CoV-2. Notably, the 
highest case/fatality ratio in older adults might be  due to 
the increasing prevalence of frailty and comorbid 
cardiovascular diseases in advanced age (Briguglio et  al., 
2020b; Moccia et al., 2020), which is known to be associated 
with increased ACE/ACE2 ratio (Wang et  al., 2016). While 
it is still controversial whether RAAS inhibitors are to 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Briguglio et al. SARS-CoV-2 Aiming for the Heart

Frontiers in Physiology | www.frontiersin.org 6 November 2020 | Volume 11 | Article 571367

FIGURE 1 | Representation of the cardiovascular derangements of coronavirus disease 2019 (COVID-19) that are due to either direct cellular damage of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or indirect consequences of the exaggerated host’s response. The severe acute respiratory syndrome 
coronavirus of 2019 (SARS-CoV-2) is a single-strand positive-sense RNA virus that spreads between humans mainly through the inhalation of respiratory droplets. 
Upon the collapse of the alveoli in the lungs, the virus can enter the bloodstream and distribute to systemic districts by cardiac pumping. It is likely that the transport 
in the blood is not as such, but carried by different types of white blood cells, such as T cells, granulocytes, and macrophages, which can therefore serve as 
vehicles. This Trojan route can guarantee the infiltration of the virus into normally inaccessible body districts. The systemic spread of the coronavirus elicits an 
exaggerated immune response in the most severe cases that strokes with hypoxic conditions. (A) In the myocardium, the excessive activation of the endothelial 
system upon viral damage and the enhanced inflammatory cell infiltration alter the coronary perfusion and the cardiac rhythm. Circulating monocytes and neutrophils 
infiltrate in the heart wall and parenchyma, with resident dendritic cells contributing to cytokine production and inflammatory/pro-fibrotic environment. (B) In the 
blood, the hyperactivation of both inflammatory and microthrombotic pathways leads to endothelium engrossment and coagulopathy. The activated vascular 
endothelium is targeted by neutrophils and monocytes, with thrombosis or bleedings being likely to occur because of the inflammation-derived imbalance between 
platelets, hypercoagulability, and altered fibrinolysis (fibrin in green). Thrombus-associated white blood cells produce inflammatory cytokines and proteases that 
contribute to local remodeling and fibroblast activation. Atherothombotic manifestations may also be promoted by dysregulation of neutrophil extracellular traps 
(NETs). (C) The heart is innervated by vagal postganglionic fibers from the cardio-inhibitory center and by the cardiac postganglionic fibers from the spinal cord 
arising from the cardio-acceleratory center of the medulla. Sympatho-inhibitory and cardio-inhibitory baroreflexes together with arterial metaboreflexes encompass 
inputs to neurons located in the dorsolateral nucleus of the solitary tract that integrate the vasomotor tone and the automatism of the sinus node. Damages to these 
reflexes disturb these central pathways and ultimately disrupt the heart beat nuclei, eventually leading to irrepressible dysautonomia.

be administered to COVID-19 patients (Shibata et al., 2020), 
it is certain that the therapy with ACE inhibitors and 
angiotensin receptor blockers (ARBs) should definitely not 
be  discontinued in patients with preexisting cardiovascular 
diseases (de Abajo et  al., 2020; Vaduganathan et  al., 2020).

CONCLUSIVE REMARKS

COVID-19 is a multifaceted illness that comprises several 
implications of cardiological nature, including hypoxemia, 
sustained activation of the endothelium, nonischemic injuries, 

leukocyte polarization, thrombi-derived ischemic damages, 
dysrhythmias, and autonomic dysfunctions (Figure 1). Given 
these considerations, it is reasonable to conclude that the 
more severe autonomic dysfunctions of critically ill patients, 
the more complex would be the preservation of hemodynamic 
balances, thereby increasing the likelihood of fatal 
cardiovascular consequences in COVID-19 or chronic 
cardiovascular damages in those who survive. In these 
patients, long-term remote electrophysiological monitoring 
might be  useful to provide care as necessary after discharge 
(Lakkireddy et al., 2020). Understanding these pathophysiological 
mechanisms in COVID-19 is crucial to promptly triage early 
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risk factors, tailor treatment according to the patient’s severity 
and risk-benefit balance, and integrate evidence-based therapies 
depending on the disease phase (Carter et  al., 2020; 
Mycroft-West et  al., 2020). Drugs for COVID-19 have not 
been available yet (Kalil, 2020), but immunotherapies, 
extracorporeal membrane oxygenation, and low-molecular-weight 
heparin are being tested for effectiveness (Paranjpe et al., 2020; 
Perazzo et  al., 2020; Ramanathan et  al., 2020; Spyropoulos 
et al., 2020; Tang et al., 2020a; Thachil, 2020). In the meantime, 
cardiologists should stay up-to-date on recent and ongoing 
discoveries regarding COVID-19 and take a prominent role 
in the research studies or multidisciplinary teams.
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