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ABSTRACT 

The nigrostriatal dopaminergic system (NDS) controls motor activity and its impairment 

during type 2 diabetes (T2D) progression could increase Parkinson’s disease risk in diabetics. 

If so, whether glycemia regulation prevents this impairment needs to be addressed. We 

investigated whether T2D impairs the NDS and whether dipeptidyl peptidase-4 inhibition 

(DPP-4i; a clinical strategy against T2D but also neuroprotective in animal models) prevents 

this effect, in middle-aged mice. Neither T2D (induced by 12 months of high-fat diet) nor 

aging (14 months) changed striatal dopamine content assessed by HPLC. However, T2D 

reduced basal and amphetamine-stimulated striatal extracellular dopamine, assessed by 

microdialysis. Both the DPP-4i linagliptin and the sulfonylurea glimepiride (an antidiabetic 

comparator unrelated to DPP-4i) counteracted these effects. The functional T2D-induced 

effects did not correlate with NDS neuronal/glial alterations. However, aging itself affected 

striatal neurons/glia and the glia effects were counteracted mainly by DPP-4i. These findings 

show NDS functional pathophysiology in T2D and suggest the preventive use of two 

unrelated anti-T2D drugs. Moreover, DPP-4i counteracted striatal age-related glial alterations 

suggesting striatal rejuvenation properties. 

Keywords 
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1. Introduction 

Recent data suggest that type 2 diabetes (T2D) is implicated in the pathogenesis of motor 

system disorders, including Parkinson’s disease (PD) (Biosa et al., 2018; Cereda et al., 2011; 

Hu et al., 2007; Xu et al., 2011; Yue et al., 2016). Additionally, a recent study has shown 

that, when present in PD patients, T2D induces a more aggressive PD phenotype (Pagano et 

al., 2018). The close interplay between the nigrostriatal dopaminergic system (NDS) and 

metabolic control has also been recently shown in humans (Ter Horst et al., 2018). It must be 

underlined that the evidence in support of an association between PD and T2D is not 

conclusive, with studies also indicating no association (Cereda et al., 2011; Savica et al., 

2012; Simon et al., 2007) or even an inverse association (Miyake et al., 2010; Powers et al., 

2006). The pathophysiological mechanisms behind increased risk of PD in T2D patients are 

still largely undetermined. Possible causes include mitochondrial dysfunction, impaired 

insulin signaling, and metabolic inflammation (Santiago and Potashkin, 2014). Moreover, 

hyperglycemia induced by streptozotocin in rats (a model of T1D) preferentially induces 

degeneration of the NDS (Renaud et al., 2018).  

Obesity is the number one risk factor for developing T2D and, not surprisingly, animal 

studies have investigated the role of obesity and obesity-induced T2D on the NDS. These 

studies have shown that insulin resistance and prediabetes induced by only 3 months of high-

fat diet (HFD) in young rodents attenuate dopamine (DA) release and clearance (Morris et al., 

2011), and reduces DA content in striatum (Nguyen et al., 2017). Other studies in young 

rodents employing shorter HFD-feeding (sometimes even in absence of hyperglycemia) have 

confirmed the deleterious role of obesity on the nigrostriatal pathway (Barry et al., 2018; 

Cone et al., 2013; Fritz et al., 2018; Jang et al., 2017; Speed et al., 2011). However, like T2D 

(CDC, 2017), PD is mainly a disease prevalent in people over the age of 60 (Collier et al., 

2017). Thus, it is important to determine if and how overt T2D induced by a long-term intake 
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of an obesogenic diet during aging can impair the NDS when a head-to-head comparison is 

made with age-matched controls in which such a function is also reduced. Indeed it has been 

shown that aging-related changes in the DA system approach the biological threshold for 

parkinsonism, a so called “pre-parkinsonian state” (Collier et al., 2017). 

Another essential question to address is whether the treatment of T2D could prevent the 

impairment of NDS and, by doing so, could reduce the risk/incidence of PD in T2D. Indeed 

studies have shown that several antidiabetic drugs can counteract neurodegenerative 

processes (also in non-diabetics) leading to a significant improvement in different clinical 

settings (Patrone et al., 2014). Perhaps the most interesting discovery in relation to PD in 

T2D patients is a recent study showing that the use of glitazones (anti-diabetic drugs 

specifically targeting insulin resistance) is associated with a decreased risk of PD incidence in 

populations with diabetes (Brakedal et al., 2017).  

Dipeptidyl-peptidase 4 inhibitors (DPP-4i, also named gliptins) are oral antidiabetic drugs 

used to treat T2D. DPP-4i mediate their anti-diabetic effects primarily by inhibiting the 

degradation of endogenous glucagon-like peptide 1 (GLP-1) and glucose-dependent 

insulinotropic peptide (GIP), resulting in prolongation of postprandial insulin secretion and 

insulin-sensitizing effects (Deacon and Holst, 2013). Recent research has shown that DPP-4i 

can also reduce stroke-induced brain damage in animal models in presence or absence of 

diabetes [reviewed in (Darsalia et al., 2019; Darsalia et al., 2017)]. Furthermore, several 

reports have shown that gliptins mediate positive pleiotropic effects in animal models of 

Alzheimer’s disease (AD) [reviewed in (Chalichem et al., 2017)] and in diabetic patients with 

AD (Isik et al., 2017). Interestingly, recent studies have also shown that DPP-4 inhibition 

protects the NDS system in PD model (Nassar et al., 2015) and, importantly, reduces PD 

incidence in the clinical setting (Svenningsson et al., 2016). GLP-1 and GIP are regarded as 

main DPP-4 substrates and drugs targeting the GLP-1R can counteract PD in animal models 
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[reviewed in (Athauda et al., 2017b; Holscher, 2018)] as well as reduce the severity of motor 

symptoms in non-diabetic PD patients (Athauda et al., 2017a). However, DPP-4 cleaves 

additional substrates and we have recently shown that the DPP4i linagliptin induces 

neuroprotection independently from blood glucose regulation (Darsalia et al., 2013) and 

GLP-1R (Chiazza et al., 2018; Darsalia et al., 2016). Therefore, the molecular mechanisms 

underlying gliptin-mediated effects in the brain are still mostly undetermined. 

The aim of this study was to determine whether obesity-induced T2D in middle-aged mice 

damages the NDS functionally and structurally, and whether linagliptin prevents these 

effects. To address the potential specificity of the effects mediated by linagliptin, we 

performed a head-to-head comparison to the sulphonylurea glimepiride (Khunti et al., 2018), 

which induces direct insulin secretion and glycaemia regulation bypassing the GLP-1/GIP 

system. 

 

2. Materials and methods  

2.1. Animal models and experimental design 

Seventy-three, male C57/BL6j mice (Charles River Laboratories, Germany) were used in 

three studies. Mice were randomly assigned to experimental groups. They were housed in 

controlled conditions, in 12-hour light/dark cycle with free access to food and water. All 

applicable international, national and/or institutional guidelines for the care and use of 

animals were followed. All procedures were in accordance with the ethical standards of the 

Karolinska Instituet and Pronexus AB, where the studies were conducted. The ethical 

approval numbers are: S7-13 (Karolinska Institutet) and N96/13, N274/13, N27/14 (Pronexus 

AB). 

Study 1.  To determine the effect of T2D and/or aging on striatal tissue DA by HPLC and 

basal and amphetamine-stimulated striatal extracellular DA by microdialysis, we used 8-
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months-old mice (n=5) and 14-months-old middle-aged mice (n=6) fed with normal chow i.e. 

standard diet (SD-y and SD-m, respectively), and 14-months-old middle-aged mice fed with 

high-fat diet (ssniff E15126-34, 54% calories from fat, Germany) for 12 months (HFD-m) 

(n=7). Additionally, to study the potential effect of antidiabetic treatments on DA levels, 

middle-aged HFD-fed mice received either linagliptin (in food leading to an average dose of 

5-7 mg/kg b.w. per day; HFD-m-Lina) (n=7) or glimepiride (in food leading to an average 

dose of 2-4 mg/kg b.w. per day; HFD-m-Gli) (n=6) for the last 3 months before killing. The 

experimental design is shown in Fig.1S A. 

Study 2.  To determine potential T2D and/or aging-induced neural alterations in the brain 

areas of the dopaminergic system (substantia nigra pars compacta and corpus striatum), we 

used 2-months-old mice (SD-y) (n=7) and 14-months-old middle-aged mice (SD-m) (n=6) 

fed with SD, and 14-months-old middle-aged mice fed with HFD 4-12 months (HFD-m) 

(n=6). The experimental design is presented in Fig.1S B. 

Study 3.  To determine potential effect of anti-T2D treatments on neural alterations induced 

by either T2D or aging in the NDS, we used 14-months-old mice fed with HFD for 12 

months that received either linagliptin (in food, leading to an average dose of 5-7 mg/kg b.w. 

per day; HFD-m-Lina) (n=9) or glimepiride (in food, leading to an average dose of 2-4 mg/kg 

b.w. per day; HFD-m Gli) (n=7) for the last 3 months before killing. Control mice received 

HFD for 12 months (HFD-m) (n=9). The experimental design is depicted in Fig.1S C.  

 

2.2. Body weight, glycemic level, DPP-4i activity and GLP-1 levels 

Blood glucose levels after overnight fasting and body weight were measured in all animals. 

In order to verify the bioactivity of linagliptin, plasma DPP-4 activity and total active GLP-1 

levels were determined in the plasma (blood collected in the fed state) by enzyme 
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immunoassay (EIA) and by ELISA, respectively (Meso Scale discovery, Gaithersburg, MD, 

USA).  

 

2.3. Microdialysis and HPLC 

Microdialysis experiments were carried out on awake, freely moving mice following the 

protocol described elsewhere (Kehr, 1999; Kehr, 2006). DA was separated and measured by 

ion-exchange narrow bore column liquid chromatography with electrochemical detection as 

described elsewhere (Kehr, 2006). Detailed microdialysis and HPLC protocols are provided 

in Supplementary material. 

 

2.4. Immunohistochemistry (IHC) 

In study 2 and 3, mice were deeply anesthetized with sodium pentobarbital and transcardially 

perfused with saline followed by 4% paraformaldehyde (PFA). After explant, brains were 

post-fixed overnight in 4% PFA and then placed in 20% sucrose solution for 3 days. 

Afterwards, brains were cut using sliding microtome (Leica, Germany). Briefly: brains were 

attached to the specimen platform using OCT and frozen with dry ice. During cutting, 

freezing was maintained by powdered dry ice in the specimen tray. The brains were cut at 40 

micrometre-thick sections and collected in a cryoprotective solution for storage at -20 °C. 

The primary antibodies used for IHC (Table1) and detailed protocols are provided in 

Supplementary material.  

 

2.5. Quantitative microscopy 

The DARPP-32-, GAD67-, GFAP-, Iba-1-, PV-, and TH-positive cells were quantified using 

a computerized stereology toolbox equipped with Visiopharm v. 4.2.1.0 software for digital 

image analysis (NewCast, Denmark), connected to Olympus BX51 epifluorescent/light 
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microscope (Olympus, Japan). Olig2-, GPR17-, PCNA- and GSTπ-positive cells were 

quantified using an inverted fluorescence microscope (200M; Zeiss, Milan, Italy) connected 

to a PC computer equipped with Axiovision software (Zeiss). In striatum, positive cells were 

counted on three coronal sections per animal (1.50, 0.00 and -1.00 mm distance to Bregma). 

Quantification of TH+ cells in substantia nigra pars compacta was done on three sagittal 

sections per animal (1.40, 2.10 and 2.60 mm distance to Bregma). The cell density per 1 mm2 

for all the IHC markers was determined. Mean volume (in µm3) of Iba-1+ and PV+ cells was 

measured, using nucleator technique (Gundersen et al., 1988), by Visiopharm software. 

Experiments were performed by persons blinded to group assignment and outcome 

assessment.  

 

2.6. Statistical analysis  

In study 1, data from microdialysis experiments were first checked for sphericity to determine 

the appropriate statistical approach. Data did not pass the sphericity test, thus the mixed-

effects model (REML) with Geisser-Greenhouse correction was used to study overall diet and 

treatment effects on amphetamine-induced DA release and followed by the Tukey’s multiple 

comparison test to determine the differences between experimental groups on amphetamine-

induced DA release. Additionally, to show the effect of T2D and drug treatment on evoked 

DA release, the incremental area under the curve was computed for each sample (mouse) and 

the groups were analyzed for outliers using ROUT method (Motulsky and Brown, 2006). One 

outlier was identified (HFD-m group) and excluded from further analyses. The differences 

between the groups were analyzed using Welch’s ANOVA test followed by unpaired t-test 

with Welch’s correction where differences between following pairs of experimental groups 

were compared: SD-y vs. SD-m; SD-m vs. HFD-m; HFD-m vs. HFD-m-Lina; HFD-m vs. 

HFD-m-Gli; HFD-m-Lina vs. HFD-m-Gli. Data from HPLC experiments were analyzed 
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using ordinary One-way ANOVA. In study 2 and 3, to analyze cell density and mean cell 

volume, one-way ANOVA followed by either Tukey’s or Dunnett’s multiple comparisons 

tests was performed (see Figure captions). More information regarding choice of statistical 

tests used in the studies is available in Supplementary material.  

All data were analyzed using Graphpad Prism 8 and are presented as line or bar graphs 

showing means ± SEM. Differences between the groups were considered significant when p 

values were less than 0.05 (*p<0.05; **p<0.01, ***p<0.001, ****p<0.0001). 

 

3. Results 

Twelve months of high-fat diet induce obesity and glucose intolerance (Fig. 2S A-B). 

Linagliptin and glimepiride reduce hyperglycemia but have no effect on body weight (Fig. 3S 

C-D). In linagliptin-treated mice (HFD-m-Lina), plasma DPP-4 activity and GLP-1 levels 

were significantly decreased (Fig. 3S A) and increased (Fig. 3S B), respectively, as expected 

based on the drug mechanism of action. See Supplementary material for more detailed 

information. 

 

3.1. Diabetes impairs basal and amphetamine-stimulated DA release. This effect is 

counteracted by linagliptin and glimepiride  

To determine the effects of HFD on DA release after amphetamine challenge, we measured 

extracellular DA levels using microdialysis. Results in Figures 1 A1 and A2 show that the 

overall treatment (diet and drugs) effect on DA release was not statistically significant 

(p≤0.1002), however there was a statistically significant (p=0.0015) interaction between 

treatment and DA release over the course of amphetamine challenge, which imply that the 

effect of DA over time differed between the groups. Follow-up analyses, to determine 

differences between the groups using the Tukey's multiple comparisons test, showed a 
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statistically significant reduction of DA release in middle-aged diabetic mice (HFD-m) (Fig.1 

A3). This effect was completely abolished by both linagliptin and glimepiride treatments 

(HFD-m-Lina and HFD-m-Gli, respectively). No age-related changes were observed in non-

diabetic mice (SD-y vs. SD-m) (Fig.1 A3). Data were further analyzed by computing the 

incremental area under the curve (evoked DA release) after amphetamine challenge and by 

analyzing the differences between selected pairs (groups). Similarly, this analysis confirmed 

the prior observation of abolished DA release in middle-aged diabetic mice (p=0.03) and of 

the reversing effect of linagliptin (p=0.02) and glimepiride (p=0.02) treatments, without 

detecting any significant effect of aging in SD-fed mice (Fig.1 B). We also compared 

extracellular DA levels before amphetamine challenge (mean DA for times -40, -20 and 0 

min) and the results showed a significant lowering effect in HFD-m mice (see the square in 

Fig.1 A1). 

 

3.2. Diabetes, linagliptin and glimepiride do not affect total intra-striatal DA levels  

To further investigate whether reduced extracellular DA release was caused by overall 

decrease of DA content in striatum, we performed HPLC analyses of striatal tissue lysates. 

Results show that neither diabetes nor aging had any significant effect on the overall content 

of DA in this brain region (Fig.1 C). The levels of this neurotransmitter in striatum were also 

unaffected by linagliptin or glimepiride treatments (Fig.1 C). 

 

3.3. Neither diabetes nor aging affect dopaminergic neurons in substantia nigra, as 

well as medium spiny neurons and GAD67-positive interneurons in striatum 

We quantified neurons in substantia nigra pars compacta (SNpc) and striatum. The results 

show that aging or diabetes had no effect either on dopaminergic neurons in SNpc and in 

DARPP-32+medium spiny neurons or GAD67+ interneurons in striatum. The results of the 
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quantitative analysis and representative pictures are explained in detail on page 7 of the 

Supplementary material and shown in Fig. 4S. Additionally, the results showed no neuronal 

injury in striatum of obese/T2D mice compared to control, based on Hsp70/72 assessment 

(Fig. 5S). 

 

3.4. Aging, but not diabetes, affects parvalbumin-positive interneurons in striatum. 

This effect is not counteracted by linagliptin or glimepiride 

Results of the quantification of subpopulation of GABAergic interneurons show age-induced 

decrease in density of the parvalbumin (PV)+ interneurons in striatum (Fig.2 A, E; 

70.78±6.29 vs. 52.48±2.49 in SD-y and SD-m group, respectively; p=0.0213 and 70.78±6.29 

vs. 48.75±2.4 in SD-y and HFD-m group, respectively; p=0.0038). This aging effect was also 

observed for the mean cell body volume of PV+ interneurons (Fig.2 B; 910.7±27.49 vs. 

816.1±19.08 in SD-y and SD-m group, respectively; p=0.0274 and 910.7±27.49 vs. 

796.1±23.87 in SD-y and HFD-m group, respectively; p=0.006). We did not record any 

further effect induced by diabetes on both parameters (Fig.2 A-B and E). Linagliptin 

treatment had effect neither on PV+ cell density nor mean cell volume. After glimepiride 

treatment, a further decrease in volume of PV+ interneurons was observed in striatum of 

middle-aged mice (796.6±23.98 vs. 696.1±18.03 in HFD-m and HFD-m-Gli group, 

respectively; p=0.013) (Fig.2 D and F). 

 

3.5. Aging, but not diabetes, increases neuroinflammation in striatum. Linagliptin, 

but not glimepiride, partially counteracts this effect 

To assess potential T2D -induced neuroinflammation in striatum, we quantified Iba-1+ 

positive microglia and reactive GFAP+ astrocytes. Results show an aging-induced increase in 

the density of Iba-1+ microglia (Fig.3 A, E; 122.7±17.53 vs. 371.3±35.70 in SD-y and SD-m 
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groups, respectively; p<0.0001 and 122.7±17.53 vs. 325.1±14.89 in SD-y and HFD-m 

groups, respectively; p<0.0001). We also observed an age-induced effect on the mean cell 

body volume of these cells (Fig.3 B, E; 174.1±12.65 vs. 274.3±12.79 in SD-y and SD-m 

groups, respectively; p<0.0001, and 174.1±12.65 vs. 244.2±8.95 in SD-y and HFD-m groups, 

respectively; p=0.0002). No additional effect of diabetes was observed (Fig.3 A-B, E). 

Chronic DPP-4 inhibition by linagliptin did not affect the density of microglia (Fig.3 C, F), 

but decreased the cell body volume of Iba-1+ cells in the striatum of diabetic mice 

(207.8±6.08 vs. 186.8±3.79 in HFD-m and HFD-m-Lina group, respectively; p=0.0126), 

while glimepiride did not (HFD-m vs. HFD-m-Gli, p=0.18) (Fig.3 D, F). 

Similar changes as for microglia were observed for striatal GFAP+ astrocytes, with a 

significant age-induced increase in the density of GFAP+ cells (78.25±6.25 vs. 166.6±12.52 

in SD-y and SD-m groups, respectively; p=0.0002, and 78.25±6.25 vs. 146.5±11.23 in SD-y 

and HFD-m groups, respectively; p=0.0004) (Fig.4 A, C), which was inhibited by chronic 

linagliptin (239.4±19.06 vs. 184.5±7.66 in HFD-m and HFD-m-Lina group, respectively; 

p=0.033), but not glimepiride treatment (p=0.21) (Fig.4 B, D). 

 

3.6. Aging, but not type 2 diabetes, impairs oligodendrocytes maturation. Linagliptin 

partially counteracts this effect 

To investigate the potential effects of T2D on the oligodendrocyte lineage, we first quantified 

the number of cells expressing the transcription factor Olig2, i.e. cells at any stage of 

oligodendrocyte maturation (Barateiro and Fernandes, 2014), in striatum. Aging significantly 

reduced the density of Olig2+ cells, with no additional effect induced by diabetes (Fig.5 A, 

C) (number of Olig2+ cells/mm2: 351.21±9.17 vs 214.94±9.19 vs. 236.98±17.45 in SD-y, 

SD-m, and HFD-m, respectively; p<0.0001), thus indicating an overall depletion of cells in 

the oligodendrocyte lineage. Additionally, aging reduced by half the fraction of Olig2+ cells 
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co-expressing the marker of proliferation PCNA over the total Olig2+ cell population in 

striatum, once again with no additional effect of diabetes (16.41±1.45 vs 8.23±1.35 in SD-y 

and SD-m, respectively, p=0.0065; 7.68±1.28 in HFD-m, p=0.0038 vs SD-y; Fig.5 B-C). 

Interestingly, despite a lack of effect on the total number of Olig2+ cells (Fig.5 D, F) (HFD-

m vs. HFD-m-Lina group, p=0.095), linagliptin significantly enhanced the fraction of 

PCNA+/Olig2+ cells (6.62±0.89 vs 9.29±0.66 in HFD-m and HFD-m-Lina, respectively, 

p=0.0476; Fig.5 E-F), suggesting that DPP-4 inhibition can partially restore the proliferation 

of this cell lineage. Glimepiride promoted a partial recovery of the total number of Olig2+ 

cells (Fig.5 D, F) (193.23±8.78 vs 277.40±10.85 in HFD-m and HFD-m-Gli group, 

respectively; p<0.0001), but only a tendency albeit not statistically significant to increase in 

the percentage of proliferating cells (p=0.4253; Fig.5 E-F) was observed. 

We next evaluated the density of immature oligodendrocytes expressing the GPR17 receptor 

and of more differentiated oligodendrocytes in striatum expressing the GSTπ marker. 

Quantification of GPR17+ cells (i.e. oligodendrocytes precursor cells up to the stage of 

immature oligodendrocytes) (Fumagalli et al., 2011) show that the density of these cells was 

significantly decreased in the striatum of middle-aged mice (20.8±0.83 vs 9.71±1.04 in SD-y 

and SD-m, respectively, p=0.0002) (Fig.6 A-B). Diabetes seemed to, at least partially, inhibit 

this effect (14.85±1.80 in HFD-m, p=0.036 vs SD-m). Similarly, quantification of the density 

of GSTπ+ cells, i.e. more mature cells of the oligodendrocyte lineage, shows a significant 

decrease with age (134.9±9.77 vs 72.44±13.71 in SD-y and SD-m, respectively, p=0.0136; 

Fig.6 E-F). No effect of diabetes was observed (HFD-m vs. SD-m, p=0.7048). Interestingly, 

linagliptin induced an increase in both GPR17+ (19.17±2.73 vs 33.9±2.17 in HFD-m, and 

HFD-m-Lina, respectively, p=0.0017; Fig.6 C-D) and in mature GSTπ+ oligodendrocytes 

(74.81±9.17 vs 112.7±13.04 in HFD-m and HFD-m-Lina, respectively, p=0.0478; Fig.6 G-
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H). Glimepiride induced a non-statistically significant trend towards increase, but only in the 

latter cell population (p=0.3740).  

 

4. Discussion 

We show that 12 months of HFD did not affect striatal DA content but reduced extracellular 

DA release in striatum under basal conditions and, more importantly, after amphetamine 

challenge. This functional effect was not associated with neuronal/glial alterations in 

substantia nigra or striatum. We also show that linagliptin, but also the glycemic comparator 

glimepiride (not acting via DPP-4 inhibition), could normalize the T2D-induced effect on 

both basal and amphetamine-induced extracellular DA levels. Finally, along the 

characterization of potential structural alterations induced by T2D in striatum we show that 

aging, irrespectively from T2D, induced neuronal and glial alterations. These aging-

dependent effects did not correlate with functional changes in basal or amphetamine-induced 

extracellular DA levels and could be partially counteracted by both drugs, with a more potent 

and overall effect induced by linagliptin. 

To our knowledge this is the first study showing that obesity/T2D dramatically impairs the 

function of the NDS in the middle-aged mouse. These findings might be clinically relevant, 

since T2D has been associated to motor dysfunction and PD (see Introduction). Moreover, 

motor dysfunction disorders are strongly associated with aging (Bennett et al., 1996; Collier 

et al., 2017) and so is T2D (CDC, 2017). Nevertheless, literature addressing PD and T2D 

modeling during aging is very limited, possibly reflecting difficulties in obtaining aged 

animals. Previous studies have shown that obesogenic diets administered to young rodents 

from only 2 weeks (Barry et al., 2018) till up-to 4 months (Cone et al., 2013; Fritz et al., 

2018; Jang et al., 2017; Morris et al., 2011; Nguyen et al., 2017; Speed et al., 2011) can 

already negatively affect the NDS. These observations could not be extrapolated to overt T2D 
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since: 1) the mice employed in these studies were mainly insulin-resistant and “early 

diabetics/prediabetics”; 2) aging itself decreases striatal DA content and can impair the NDS 

(Collier et al., 2007). Thus, a head-to-head comparison between middle-aged SD and HFD-

fed mice was performed in our study. The molecular mechanisms (see Introduction) at the 

basis of the recorded effects were out of the scope of this study but they obviously represent 

the next step of this work. It will also be important to determine whether the effects recorded 

after amphetamine challenge are specific to the amphetamine mechanism of evoked DA 

release (Sulzer et al., 2016), implicating a critical role of VMAT2 and possible presynaptic 

silencing of DA vesicles (Pereira et al., 2016). The fact that there was no significant 

difference in striatal DA content between control and HFD-treated mice suggests that chronic 

HFD led to aberrant exocytosis of vesicular DA, as observed by blunted response of 

extracellular DA to amphetamine challenge. The mechanisms behind the effects of chronic 

HFD on impaired DA signaling in the mouse striatum are not known at present. It will also 

be important to understand whether impaired DA release relies on the direct impairment of 

DA neurons or also local striatal interneurons (reviewed in (Berke, 2018)) are involved in the 

reported impairment. The answer to these questions will be necessary to develop strategies 

aimed at reducing the risk of T2D patients to develop motor disorders. 

In the second part of the study, we showed that both linagliptin and glimepiride could 

counteract the identified functional effect of T2D on the NDS. Neuroprotective effects 

induced by GLP-1R agonists on the NDS system, independently from glycemia regulation, 

have been shown in the past decade (Bertilsson et al., 2008; Li et al., 2009; Zhang et al., 

2019) and reviewed in (Athauda et al., 2017b; Holscher, 2018). This made us hypothesizing 

that linagliptin (but not glimepiride) could protect the NDS independently by glycemia 

regulation and likely via GLP-1. Our findings disprove our hypothesis about the specific 

restorative effects of DPP-4i on the impairment of the dopaminergic system by T2D, 
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irrespectively of GLP-1 and/or their anti-diabetic properties. However, they are not less 

interesting since they suggest the possibility that different anti-diabetic treatments targeting 

glycemia regulation could be efficacious to counteract T2D-induced motor dysfunction, 

despite their differential mechanisms of action. The peripheral effects mediated by gliptins 

are mainly due to the inhibition of the degradation of GLP-1, leading to an increased insulin-

to-glucagon ratio and consequent reduction of HbA1c (Deacon and Holst, 2013). The 

additional effects of DPP-4i in the brain are mostly undetermined, although they may be 

related to the inhibition of other peptides (Avogaro and Fadini, 2018) (Chiazza et al., 2018). 

Recent studies have also shown that DPP-4i are neuroprotective (Darsalia et al., 2015) and 

can improve brain function via attenuating mitochondrial dysfunction, insulin resistance, 

inflammation, and apoptosis (Gault et al., 2015; Pintana et al., 2013; Sa-Nguanmoo et al., 

2017). Sulfonylureas such as glimepiride are a frequently prescribed anti-T2D medication 

due to their low cost and effectiveness, despite potential hypoglycemic risks (Costello and 

Shivkumar, 2018). These drugs bind to sulfonylurea receptors to allow insulin secretion from 

pancreatic beta cells (Khunti et al., 2018). Our hypothesis relied on the neurotrophic rather 

than the glycemic properties of DPP-4i, thus the results showing the efficacy of glimepiride 

to normalize DA release were unexpected. It would be interesting to determine if linagliptin 

or glimepiride could increase the DA release in non-diabetic mice and, therefore, the lack of 

these two groups could be viewed as a weakness of this study. However, since healthy 

animals do not exhibit DA release impairments, such experiment would have a limited 

clinical value. Moreover, since both drugs showed similar effects on DA release, one could 

speculate that this effect is related to insulin action or glycaemia regulation, which would not 

take place in non-diabetic mice linagliptin-treated and could lead to hypoglycemia after 

glimepiride treatment, thus complicating the interpretation of the results. It would be  

plausible to think that the common effects mediated by the anti-T2D drugs on the NDS, 
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showed in our study, could be mediated by increased peripheral insulin levels, due to the lack 

of reported additional shared mechanisms of action between gliptins and sulfonylureas in the 

brain. The normalization of fasting blood glucose obtained by both drugs indicate that insulin 

was up-regulated by the treatments. However, since the efficacy of glimepiride on the NDS 

system was unexpected, we did not measure peripheral insulin levels after fasting (the blood 

was collected in fed state to quantify the incretin/GLP-1 effect). This represents a limitation 

of this study and, therefore, more studies thoroughly investigating the efficacy of both drugs 

on insulin after fasting and to also improve insulin sensitivity directly in the striatum are 

warranted.  

A variety of brain cell types have been shown to become compromised during aging, thus 

contributing to disease progression (Palmer and Ousman, 2018). In an initial effort to 

determine whether T2D led to major cellular alteration in the NDS, we quantified relevant 

neuronal cell types related to this system, i.e. the dopaminergic neurons in substantia nigra, 

DARPP-32 positive cells (the major cell type in striatum), GAD67+ interneurons in striatum 

(GAD 67 is the rate limiting enzyme for the formation of GABA) and striatal PV+ 

interneurons. Around 95% of the latter cell population produce the glial cell line-derived 

neurotrophic factor which is required for the survival of dopaminergic neurons in response to 

injury (Hidalgo-Figueroa et al., 2012). T2D had no effect on any of these neuronal cell types. 

However, we showed an effect of aging in decreasing PV+ interneurons number and cell 

body volume. Although speculative, these data could suggest decreased striatal 

neuroplasticity during aging, in line with a recent study showing atrophy of PV+ interneurons 

in striatum of Huntington’s disease patients (Reiner et al., 2013). Both linagliptin and 

glimepiride showed no effect on these cells.  

When investigating Iba-1+ microglia and GFAP+ astroglia in striatum, our data show no 

effect induced by T2D. However, we showed that aging induced a dramatic increase in 
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microglial cells and in their activation (as measured by increased cellular volume) and in 

GFAP+ astrocytes. In Study 1 and 2 we did not observe the same number of GFAP+ cells in 

middle-aged mice fed with HFD, possibly due to different batches of antibodies and/or 

fixation procedures and this could represent a weakness of the study. However, each study 

had its own control group to compensate such differences. Regardless, linagliptin could 

normalize the effect of aging on both GFAP and Iba-1+ cells, while glimepiride induced only 

a trend in the same direction on Iba-1+cells. The current view is that aging can promote the 

development of a mild, albeit chronic, inflammatory state in CNS reflected in the activation 

of both microglia and astroglia (Palmer and Ousman, 2018). This increased basal 

inflammation may be a risk factor for the development of motor and cognitive impairment, 

depression and age-related neurodegenerative disorders such as AD, PD, and ALS 

(Ransohoff, 2016; Spittau, 2017). Our study fully supports this view. Although speculative, 

our data also suggest that DPP-4i can exert anti-aging effects by decreasing such a mild 

inflammatory state in striatum. Whether these effects can be reflected in improved motor 

function, it is an interesting hypothesis to be challenged by the use of specific animal models 

where motor function is impaired by aging. 

Concerning oligodendrocytes, our data in the aged striatum show not only an overall 

reduction in Olig2+ cells but, even more relevant, in their proliferation rate. This could reflect 

a reduced ability of oligodendrocyte precursor cells (OPCs) to promptly react to harmful 

events in an attempt to replace dead or malfunctioning oligodendrocytes and promote 

regeneration (Neumann and Kazanis, 2016). In vitro evidence also suggests that under 

specific conditions Olig2+ cells can generate new neurons (Boccazzi et al., 2016; Nunes et 

al., 2003), although in vivo data remain controversial (Guo et al., 2010; Kang et al., 2010). 

Additionally, OPCs and more mature oligodendrocytes are also known to foster neuronal 

communication, and to exert neuroprotective trophic effects. Our data show an aging-induced 
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decrease in the density of GPR17+ cells, namely OPCs/immature oligodendrocytes whose 

terminal differentiation is triggered by GPR17 down-regulation (Fumagalli et al., 2017). The 

concomitant reduction in the number of GSTπ+ mature oligodendrocytes in the aged brain 

suggests defective OPC maturation, and confirms an overall depletion of cells of this lineage, 

likely as a consequence of the increased neuroinflammation observed in our and other studies 

(Palmer and Ousman, 2018). Loss of myelin-producing cells has been observed in aging and 

age-related pathologies, such as AD and PD, and represents one of the long-term functional 

consequences of stroke (Shen et al., 2008). Treatment with linagliptin exerted an overall 

protective role against age-induced effects on cells in the oligodendrocyte lineage. Based on 

the number of signaling pathways activated by DPP-4i (see above), we can speculate anti-

aging properties for this class of drugs which could be exploited in neurodegenerative 

disorders. 

The paradoxical increase in the density of GPR17+ cells observed in T2D with respect to SD-

m mice could be explained by considering that one of the many transcription factors 

controlling receptor expression is FOXO1 (Ren et al., 2012). Although direct evidence is 

lacking, hyperglycemia and/or decreased insulin signaling/insulin resistance in T2D could 

promote aberrantly persistent GPR17 expression in oligodendrocytes by maintaining high 

levels of active FOXO1, thus preventing GPR17 down-regulation and blocking cells at 

immature stages. Additionally, a recent study has demonstrated that whole-body metabolism 

is controlled by GPR17 expressed by oligodendrocytes, and that GPR17-deficient mice show 

decreased body weight in respect to WT animals after up to 26 week HFD feeding (Ou et al., 

2019). Although the role of GPR17 in promoting food intake is still a matter of debate, it is 

tempting to speculate a contribution of altered GPR17 expression in promoting the 

pathological consequences of T2D on body weight and metabolism. High-fat diet is likely to 

promote food intake by disrupting hypothalamic insulin and leptin signalling by inducing 
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hypothalamic inflammation and lipotoxicity also in concert with advanced glycation end 

products as direct result of chronic hyperglycaemia. Nevertheless, in parallel with all its 

beneficial effects (see above), linagliptin also promotes a full recovery of the number of 

GPR17+ cells to values similar to SD-y animals, suggesting that this receptor contributes to 

the drug’s rejuvenation activities. 

 

In conclusion, in a preclinical setting of clinical relevance we showed that T2D/obesity 

decreases extracellular DA in striatum and severely impairs extracellular striatal DA release 

after amphetamine challenge. This suggests a detrimental role of T2D in the regulation of 

motor function. Whether the reported effects could represent an early pathophysiological 

mechanism induced by T2D on the NDS is a relevant hypothesis to be tested in future 

studies. Importantly, we also show that glycemic regulation, similarly achieved by both 

linagliptin and glimepiride could normalize the impairment of DA release induced by T2D. 

Although additional studies need to support this data, these results suggest that increased 

insulin production per se and/or consequent decreased glucotoxicity in T2D patients may be 

beneficial to prevent and/or delay motor disorders involving the NDS. Finally, we identified 

neuronal and glial alterations in striatum that were induced by aging but were not associated 

with T2D or with striatal DA changes. The glial effects could be counteracted by linagliptin 

and, to a lesser extent, also by glimepiride. Our data support the accepted view in the field 

that aging has a detrimental role on neuroplasticity, on myelin and nerve fibers, and that it 

increases neuroinflammation. Importantly, our results suggest that DPP-4i can normalize the 

identified glial alterations and, by doing so, they could exert rejuvenation properties. Whether 

these effects are mediated by incretins remains to be studied. These effects could be exploited 

for the treatment of motor disorders related with aging. 
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FIGURE CAPTIONS 
 
Fig.1 Effects of high-fat diet, linagliptin and glimepiride on basal and amphetamine-

stimulated dopamine levels in striatum and on total intra-striatal DA levels. Dopamine 

(DA) release after amphetamine challenge (initiated at time 0) in striatum of young-adult and 

middle-aged mice (SD-y and SD-m, respectively), and middle-aged mice fed with high-fat 

diet (HFD-m), untreated or receiving either linagliptin (HFD-m-Lina) or glimepiride (HFD-

m-Gli) for 3 months (A). Extracellular DA levels before amphetamine challenge (A1 square). 

Results from the Mixed-effects model (REML) (A2) and Tukey’s multiple comparisons tests 

(A3). Incremental area under the curve of DA release after amphetamine challenge (B). Total 

striatal tissue levels of dopamine by HPLC analysis in the five experimental groups (C). 

Welch ANOVA test followed by unpaired t test with Welch’s correction where differences 

between following pairs of experimental groups were compared: SD-y vs. SD-m; SD-m vs. 



 

 

26

HFD-m; HFD-m vs. HFD-m-Lina; HFD-m vs. HFD-m-Gli; HFD-m-Lina vs. HFD-m-Gli. ns 

– not significant. Histograms show means ± SEM, *p<0.05, **p<0.01, ****p<0.0001, n=4-7 

 

Fig.2 Effects of diabetes, aging and anti-diabetic treatments on parvalbumin (PV)+ 

interneurons in striatum. Density (A), mean volume (B) and representative 

microphotographs (E) of PV+ interneurons in the striatum of SD-y, SD-m, and HFD-m mice. 

Density (C), mean volume (D) and representative microphotographs (F) of PV+ interneurons 

in striatum of HFD-m mice and HFD-m mice that received either linagliptin (HFD-m-Lina) 

or glimepiride (HFD-m-Gli) for 3 months. One-way ANOVA followed either by Tukey’s (A-

B) or Dunnett’s (C-D) multiple comparisons test. Histograms show means ± SEM, *p<0.05, 

**p<0.01, n=5-7 

 

Fig.3 Effects of diabetes, aging and anti-diabetic treatments on Iba-1+ microglia in 

striatum. Density (A) and mean volume (B) of Iba-1+ microglial cells, and representative 

microphotographs of the staining (E) in striatum of SD-y, SD-m, and HFD-m mice. Density 

(C) and mean volume (D) of Iba-1+ microglial cells, and representative microphotographs of 

the staining (F) in striatum of HFD-m mice and HFD-m mice that received either linagliptin 

(HFD-m-Lina) or glimepiride (HFD-m-Gli) for 3 months. One-way ANOVA followed either 

by Tukey’s (A-B) or Dunnett’s (C-D) multiple comparisons test. Histograms show means ± 

SEM, *p<0.05, ***p<0.001, ****p<0.0001, n=6-7 

 

Fig.4 Effects of diabetes, aging and anti-diabetic treatments on GFAP+ astrocytes in 

striatum. Density of GFAP+ astrocytes (A) and representative microphotographs of the 

staining (C) in striatum of SD-y, SD-m, and HFD-m mice. Density of GFAP+ astrocytes (B) 

and representative microphotographs of the staining (D) in striatum of HFD-m mice and 

HFD-m mice treated either with linagliptin (HFD-m-Lina) or glimepiride (HFD-m-Gli) for 3 

months. One-way ANOVA followed either by Tukey’s (A) or Dunnett’s (B) multiple 

comparisons test. Histograms show means ± SEM, *p<0.05, ***p<0.001, n=6-7 

 

Fig.5 Effects of diabetes, aging and anti-diabetic treatments on the fraction of 

proliferating oligodendrocytes in striatum. Density of Olig2+ cells (A), percent of double 

stained PCNA/Olig-2+ cells over total number of Olig2+ cells (B) and representative 

microphotographs of the staining (C) in striatum of SD-y, SD-m, and HFD-m mice. Density 

of Olig2+ cells (D), percent of double stained PCNA/Olig-2+ cells over total number of 
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Olig2+ cells (E) and representative microphotographs of the staining (F) in striatum of HFD-

m mice and HFD-m mice treated either with linagliptin (HFD-m-Lina) or glimepiride (HFD-

m-Gli) for 3 months. One-way ANOVA followed either by Tukey’s (A-B) or Dunnett’s (D-

E) multiple comparisons test. Histograms show means ± SEM, *p<0.05, **p<0.01, 

****p<0.0001, n=5-9 

 

Fig.6 Effects of diabetes, aging and anti-diabetic treatments on GPR17+ and GST-π+ 

mature oligodendrocytes in striatum. Density of GPR17+ (A) and GST-π+ cells, and 

representative microphotographs (B and F, respectively) in striatum of SD-y, SD-m and 

HFD-m mice. Density of GPR17+ (C) and GST-π+ (G) cells, and representative 

microphotographs (D and H, respectively) in striatum of HFD-m mice and HFD-m mice 

treated either with linagliptin (HFD-m-Lina) or glimepiride (HFD-m-Gli) for 3 months. One-

way ANOVA followed by either Tukey’s (A, E) or Dunnett’s (C, G) multiple comparisons 

test. Histograms show means ± SEM, *p<0.05, **p<0.01, ***p<0.001, n=5-9  
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Highlights 
 
 

• Type 2 diabetes (T2D) impairs the release of dopamine in striatum during aging 

• The DPP-4 inhibitor linagliptin and sulfonylurea glimepiride prevent this effect 

• Aging but not T2D induces neuronal and glial alterations in striatum 

• The effects on glia are partially but more selectively reduced by DPP-4 inhibition 

 

 

 


