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1 The Weighted Gene Regulatory Network problem

A gene regulatory network G(N,A ∪ I, w) is a graph model of the dynam-
ics of gene expression in a living cell: the set of nodes N represents gene
products, two disjoint sets of arcs A and I represent, respectively, activation
and inhibition influences between the gene products. Each arc has a weight
w : A∪I → (]0; 1], derived from statistical correlation indices: wij = 0 denotes
a full correlation between i and j; wij = 1 no correlation.

The problem is to identify a subset of nodes which explain the expression
of all other nodes, by acting either as activators or as inhibitors. A node
should only exert influences coherent with its label, or no influence at all.
However, biological evidence suggests the presence of few genes exerting both
kinds of influence. To account for this, given the minimum feasible number
M of labelled nodes, the model minimizes the total weight of the influences
(i.e., arcs) exerted by nodes labelled incoherently with respect to the arc. Let

z
(A)
i = 1 if i is labelled as activator, 0 otherwise, z

(I)
i = 1 if i is labelled as

inhibitor, 0 otherwise. Let xij = 1 if arc (i, j) ∈ A∪I represents an incoherent
influence, 0 otherwise.

min φ =
∑

(i,j)∈A∪I

wij · xij
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s.t.
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∑

i:(i,j)∈A

xij ≥ 1 j ∈ N (1)
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i:(i,j)∈I
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(I)
i +

∑

i:(i,j)∈I

xij ≥ 1 j ∈ N (2)

z
(A)
i + z

(I)
i ≤ 1 i ∈ N (3)

∑

i∈N

(z
(A)
i + z

(I)
i ) = M (4)

xij ≤ z
(I)
i (i, j) ∈ A (5)

xij ≤ z
(A)
i (i, j) ∈ I (6)

xij ∈ {0, 1} (i, j) ∈ A ∪ I (7)

z
(A)
i , z

(I)
i ∈ {0, 1} i ∈ N (8)

Each node receives at least one activating and one inhibiting arc from the
identified subset, either coherent with the label of the source node or not (1,2).
Each gene is labelled as activator, inhibitor or neutral (3). The number of
activator and inhibitor nodes is bounded from above, but any optimal solution
with less than M labelled nodes can be replaced by an equivalent one with
exactly M labelled nodes (4). An incoherent influence requires the arc and the
source node to have opposite labels (5,6).

2 A Lagrangian branch-and-bound

To compute lower bounds on the optimum, we dualize the covering con-
straints (1) and (2) with multipliers λi and πi, respectively :

L(z, x, λ, π) =
∑

(i,j)∈A

γij ·xij+
∑

(i,j)∈I

δij ·xij−
∑

i∈N

(αi ·z
(A)
i +βi ·z

(I)
i )+

∑

i∈N

(πi+λi)

where

αi =
∑

j∈N :(i,j)∈A

λj i ∈ N γij = wij − λj (i, j) ∈ A

βi =
∑

j∈N :(i,j)∈I

πj i ∈ N δij = wij − πj (i, j) ∈ I

Once the z variables have been fixed, the optimal values of the x variables
are uniquely determined: if (i, j) ∈ A, xij = 1 if γij < 0 and z

(I)
i = 1, 0

otherwise; if (i, j) ∈ I, xij = 1 if δij < 0 and z
(A)
i = 1, 0 otherwise. Thus,

for each node i we can sum to weight αi (or βi) all negative weights δij (or
γij) for the arcs exiting that node. This reduces the problem to optimizing
the z variables subject to cardinality and disjunctive constraints. To solve it,
we sort the nodes by increasing values of the modified weights and label the
first M nodes as activator or inhibitor, according to the label with the lower
weight.
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The multipliers are initially set to zero; then, they are tuned by a modified
subgradient procedure. This iteratively solves the Lagrangian relaxed problem
and updates the multipliers based on a moving average of the violations of the
covering constraints in the relaxed Lagrangian solutions computed so far.

The branching mechanism operates by labelling nodes: it selects a node and
generates two subproblems by forcing or forbidding it to be neutral (without
specifying its label in the latter case). When all nodes are neutral or nonneu-
tral, a second branching mechanism generates two subproblems by forcing a
labelled node to be an activator or an inhibitor. The branching node is chosen
on the basis of the Lagrangian multipliers. First, we compute for each node the
sum of the Lagrangian multipliers over all the nodes covered by it. Then, we
select the node with the largest sum, so that labeling it will have the strongest
possible influence on the constraints.

3 A Tabu Search algorithm

To compute feasible solutions of the problem (upper bounds) we implemented
a Tabu Search (TS) metaheuristic for the WGRN problem. This computes a
starting solution with a greedy procedure, and improves it with a local search
procedure based on a natural neighbourhood. As finding a feasible solution is
an NP-complete problem, both phases relax the covering constraints (1,2) and
evaluate the solutions lexicographically according to: i) the number of violated
constraints, v; ii) the cost, φ.

The neighbourhood of solution S is the set of solutions NS obtained by i) turn-
ing a single activator (inhibitor) node into inhibitor (activator); ii) assigning
the label of a nonneutral node to a neutral one and turning the former into
neutral. These moves do not modify the total number of labelled nodes, M .
The neighbourhood is composed of M +M (|N | −M) solutions, not necessar-
ily feasible, and it is always completely visited.

In order to avoid a cyclic behaviour, the algorithm stores for each node i

the last iterations ℓNi , ℓ
A
i and ℓIi , in which node i was, respectively, neutral,

activator or inhibitor. At each iteration, the algorithm visits the whole neigh-
bourhood of the current solution S and divides the solutions into tabu and
non tabu, based on the values stored in ℓNi , ℓ

A
i and ℓIi and on a tabu tenure L:

a solution is tabu if it assigns to a node a label assumed less than L iterations
ago. The best non tabu neighbour solution replaces the current one. As an
exception, the best tabu neighbour solution is selected if it is better and it
improves the best one found so far (aspiration criterium).

To enhance the search, the tabu tenure is adaptively tuned within a fixed
range [Lmin;Lmax]): L increases when the current solution gets worse, decreases
when it improves. The aim is to guide the search away from already visited
local optima and towards not yet visited local optima. To diversify the search,
the algorithm is terminated and restarted r times from solutions generated
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selecting M random nodes, half labelled as activators, half as inhibitors.

4 Experimental results

We have generated at random four groups of ten benchmark instances with
|N | = 100 nodes. First we have randomly drawn the indegree of each node in a
suitable range ([10; 20], [30; 50], [60; 80] or [99; 99]), then randomly generated
the ingoing arcs, classifying them half as activators half as inhibitors, and
finally associated to each arc a random cost from [0; 1]. The number M of
labelled nodes was set to the minimum for which a feasible solution exists, to
respect the parsimony principle required by the application.

The benchmark is quite hard for the basic TS (one third of unsolved instances
even after Kmax = 100 000 iterations and with several different tabu tenure
settings). However, random restart overcomes this ineffectiveness: r = 100 runs
of 1 000 iterations perform well (all solutions are feasible and 26 hit the best
known result), and r = 1 000 run of 100 iterations even better (all solutions
are feasible and 37 hit the best known result).

Neither the Lagrangean branch-and-bound nor CPLEX 11 could solve any
instance within one hour, and the gaps are wide. However, the upper bound
found by TS is always better than that computed by CPLEX. The Lagrangian
lower bound is much stronger than that computed by CPLEX on most in-
stances (two orders of magnitude on the complete ones), except for the spars-
est class of instances, where it is comparable. CPLEX generates much more
branching nodes than the Lagrangean approach, in sharp contrast with the fact
that the Lagrangean subproblem enjoys the integrality property, and therefore
provides (at the root node) a bound equivalent to the linear one. This might
be due to a stronger effectiveness of the branching strategy adopted.
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