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Abstract 

We analyze conservative solute transport under convergent flow to a well in 

perfectly stratified porous media, in which the hydraulic conductivity is treated as 

a random spatial function along the vertical direction (K(z)). The stratified model 

provides a rare exception of an exact analytical solution of travel time 

distributions in the proximity of pumping wells, and it is used here to obtain 

insights about ergodic and nonergodic transport conditions under nonuniform flow 

conditions. In addition, it provides a benchmark for numerical models aiming to 

correctly reproduce convergent flow transport in heterogeneous media, such as 

indicating the minimum number of layers required to obtain ergodic travel time 

distributions using only one model realization. The model provides important 

insights about the shape of the depth-integrated concentrations over time measured 

at the well (breakthrough curves, BTCs), which are usually applied to obtain 

transport parameters of the subsurface. It can be applied to any degree of system’s 

heterogeneity and using either resident or flux-weighted injection modes. It can be 

built using different probabilistic distributions of K. In our analysis, we consider 

a log-normal K distribution, and the results indicate that, especially for highly 

heterogeneous systems, described by the log-K variance (𝜎𝑌
2), the minimum number of 

layers required for from one model simulation to reproduce ergodic travel time 

distributions can be prohibitively high, e.g., above 106 for 𝜎𝑌
2= 8 considering flux-

weighted injections. This issue poses serious concerns for numerical applications 

aiming to simulate transport in the proximity of pumping wells. In addition, this 

simple solution confirms that stratification can lead BTCs to display strong 

preferential flow and persistent, power-law-like late-time tailing. Since the latter 

are common phenomenological macroscale evidences of other microscale hydrodynamic 

processes than pure advection (e.g., mass-transfer), caution must be taken when 

inferring aquifer properties controlling the anomalous transport dynamics in  

heterogeneous media from BTCs fitting. 

Introduction 

Predicting solute transport behavior for optimal aquifer risk assessment and 

remediation is a challenging and uncertain task. The presence of hydraulic 

heterogeneities, which involve erratic spatial distributions of hydraulic properties 

controlling transport in the subsurface (e.g., the hydraulic conductivity, K) and 

the associated computational and technical difficulties, renders the spatio-temporal 

distribution of solute concentration amenable to be treated under a stochastic 

perspective [1]. Despite stochastic modeling in hydrogeology being a well-

established discipline (e.g., [2–4]), there are still unexplored fields, such as the 

analysis of transport under radial convergent flow to a well, which require high 

attention for their practical utility. 

Convergent flow is a very common configuration in groundwater applications. For 

instance, it applies under convergent flow tracer tests (CFTTs), which are routinely 

used to infer transport parameter and predict solute transport behavior in aquifers 

[5–10]. Despite their extended use, the interpretation of CFTTs is still 

problematic. For instance, obtaining information after breakthrough curve (BTC) 
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fitting is cumbersome because of the fundamental difference between radial and 

uniform flow transport, which can be a source of error if not accounted for [11]. 

Analytical stochastic solutions are rarely applicable as they are usually based on 

weakly heterogeneous conditions (s2Y < 1, where s2Y is the variance of Y = ln K) and 

under uniform flow conditions. Numerical modeling provides a robust alternative to 

deal with highly heterogeneous transport (e.g., [12–14]), but they need to cope with 

problems of convergence and other numerical issues(like, e.g., the number of 

particles in Lagrangian models and the spatio-temporal discretization in Eulerian 

approaches), which can limit their extensive use in practical application. 

The system becomes further complicated when radial flow is used to characterize 

heterogeneous formations. Most of the traditional analytical stochastic solutions 

for mean uniform flow (e.g., [4]) cannot be applied under nonstationary conditions, 

which are intrinsic in the radial flow configuration [15]. Approximate solutions 

assuming low heterogeneity and high anisotropy of aquifers have been applied to 

describe divergent transport in Multi-Gaussian fields of Y [16–18]. However, such 

solutions cannot be applied in the case of convergent transport in highly 

heterogeneous formations. 

Very few numerical approaches have been reported in the literature to address this 

issue (e.g., [19–21]). In most cases, modelers have to face large computational 

domains in order to ensure ergodic transport conditions in their simulations. All 

these aspects leave the analysis of CFTTs in highly heterogeneous fields still a 

wide open field for research, despite its great relevance for practical purposes. 

The main objective of this paper is to illustrate and analyze an exact analytical 

solution to describe travel time distributions in a heterogeneous stratified 

formation under radial convergent flow. Stratified models provide a powerful 

conceptual modeling framework of transport in confined aquifers consisting of 

layered geological bodies or for transport in single fractures close to physical 

boundaries. Stratified models have been widely explored in the literature from 

different perspectives since the 1960s (e.g., [22–28], even though the assumption of 

uniform flow conditions has been always considered. Stratified models provide exact 

analytical stochastic solutions for any degree of soil heterogeneity and type of K 

distributions. As shown in the following section, this can be easily shown also for 

convergent radial flow configurations. 

This analysis serves to illustrate that this simple solution is able to show how the 

shape of the BTCs depends directly (a) on stratification and especially on vertical 

variability (heterogenity) of the soil structure, (b) on the type of tracer 

injection, and (c) on the ergodic conditions where the solute travel time 

distributions are generated from, and that mainly depend upon the number of layers 

used for the aquifer discretization. 

The first goal is to illustrate that a simple model based on a perfectly stratified 

radial flow configuration is able to generate anomalous travel time distributions 

(i.e., BTCs showing highly positively or negatively skewed travel time 

distributions) with similar features than those commonly observed on depth-

integrated non-Fickian BTCs (i.e., non symmetric distributions of concentrations 

measured over time at a fixed controlling section) from field experiments. This 

similarity is of fundamental importance since commonly aquifer hydrodynamic 

properties are sometimes inferred from specific patterns on BTCs. It has been shown 

that the latter patterns depend directly on the conceptual and physical conceptual 

model used to simulate microscale aquifer structures. Examples include the spatial 

distribution of porosities [9], presence of inclusions (e.g., [29]), fractional 

derivative approaches to transport [30], mass-transfer processes (e.g., [31]), 

nonstationary correlation structures in multiGaussian stochastic models (e.g., [32]) 

or conditional connectivity [33]. A classic example is for instance the apparent 

power-law latetime scaling of BTCs, which has been sometimes observed in field 

experiments. In this case, several physical-based models can be used to fit the 

BTCs, such as those simulating diffusive-based mass-transfer mechanisms following a 

power-law memory function (e.g., [31]). However, there are other mechanisms leading 

to power-law-shaped BTCs. Pedretti et al. [21], using 3D numerical simulations based 
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on unconditional multiGaussian fields, showed that under convergent radial flow 

configurations the late-time behaviors on BTCs can scale as a power-law function 

because of the underlying stratified flow distributions. Contrarily to Pedretti et 

al. [21], in this work we explicitly start from an analytical solution based on a 

stratification conceptual model to illustrate the relationship between 

stratification and anomalous BTCs under a radial convergent flow configuration. 

A second goal is that this analytical model indicates the conditions for which 

incomplete sampling occurs, e.g., when the injection well is not fully penetrating 

or is screened over a limited subset of the stratified medium. Such conditions may 

lead to nonergodic transport, for which the BTC is subject to uncertainty. We better 

define the concept of ergodicity later in the text.  

In this same line, the third goal is to show that this model can be used as a 

benchmark for numerical  simulations aiming at reproducing radial convergent 

transport in highly heterogeneous media, emphasizing possible problems related to 

incomplete sampling or numerical deficiencies in handling strong K contrasts. It 

suggests the minimum required resolution (in terms of number of layers) that a 

simulation requires to adequately reproduce the impact of the underlying 

heterogeneous soil structure on the BTCs.  

The paper is structured as follows. We first describe the conceptual model (Section 

2.1), the mathematical derivation of the travel time distributions (Section 2.2) and 

and their analytical solutions using a log-normal distribution of the hydraulic 

conductivity in terms of resident or flux-weighted injection modes. The results are 

presented in the following manner: first, the ergodic case of travel time 

distributions, depending on the type of injection (Section 3.1). Afterwords, we 

analyze the nonergodic case, involving the limited sampling of K (Section 3.2). We 

also evaluate here the global errors between analytical and numerical results  

depending on the degree of subsampling. Finally, the paper concludes with a 

discussion and the main conclusions drawn from this work. 

2. Methodology 

2.1. Conceptual model 

A conceptual sketch of the aquifer configuration is depicted in Fig. 1. We consider 

a formation characterized by thickness b (constant in space) and divided into a 

number of layers NL. All layers are characterized by the same constant thickness L, 

proportional to the vertical integral scale of K, such that 𝐿𝑖 =  𝑏/𝑁𝐿, where i 
(i=1,..,NL) indicates the generic layer of the formation. The formation is perfectly 

stratified, meaning that the hydraulic conductivity K is homogenous in each of the 

layer composing the formation, but heterogeneous along the vertical axis (K=K(z)). 

We treat K(z) as a stationary random function, with given univariate distribution 

f(K). 

The stratified formation is very useful in grasping the main features of transport 

in heterogeneous media, leading to an exact solution for flow and transport; for 

this reason it has been employed in the past, although mainly for transport under 

mean uniform flow. Such a conceptual model may also be adopted to model flow and 

transport in more realistic three-dimensional formations, provided that the solute 

is injected at a close distance from the pumping well, say at distances of the order 

of the horizontal integral scale of K (e.g., [2,21]). 

To simulate transport in a CFTTs scheme, we account for an extraction well with 

radius rw and a passive well at a radial distance r0 from it. The pumping well is 

fully penetrating and screened along the full aquifer, while the passive well may 

sample a more limited section of the porous medium. The extracting well is 

discharging for sufficient time at a constant rate Q to generate steady-state 

conditions at the passive well area. 

An injection of a conservative solute of total mass M takes place as a pulse 

injection from the passive well, acting as an injection line. Local dispersion and 

diffusion mechanisms are not accounted for; as such, solute exclusively moves due to 
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advection. In this sense, BTCs describing the distribution of solute flux at a 

controlling section over time can be modeled within a Lagrangian framework assuming 

travel time distributions of solute particles moving from the injection to the 

extraction well. Note that the incorporation of dispersive mechanisms is not 

possible in this analytical solution, but it can be readily performed from a 

numerical perspective (e.g., using a particle tracking approach [13,21]). 

Injection modes are usually modeled in terms of residence or flux-weighted 

concentration [34,35]. Past work shows how the selection of this boundary condition 

controls the spatio-temporal behavior of solute plumes, with direct consequences on 

transport parameter estimation and on the physical mechanisms such as mixing and 

spreading (e.g., [36–38]). The reason is qualitatively explained in Fig. 1. At the 

top of this figure (Fig. 1a), in case of ‘resident’ injection (R), solute particles 

are equivalently distributed at the injection line at the initial time (t0, red 

particles). As soon as the particles are released, they start travelling along the 

layer as in a confined stream tube, at a radially increasing velocity towards the 

well. Because layers do not exchange mass, solute particles remain constrained 

between the injection and the limit of the extraction well, where they finally mix 

with the other particles in the well column. Solute particles move depending on the 

mean tube velocity; at the snapshot time t3, solutes have already travelled along 

the most conductive channel (white), so that the mass moving in this channel has 

been extracted from the well and collected at the surface.  

No mixing mechanisms between layers also occur in case of FW injection (Fig. 1b); 

however, in this case the mass entering each layer from the injection line is 

proportional to the layer’s K. This is done aiming at reproducing the preferential 

distribution of the solute in the domain at the different depths because of the 

imperfect mixing condition in the passive well at the beginning of the test. Because 

of this weighting mechanism, most of the mass is injected in the higher channel; as 

such, more mass is collected earlier in FW injection mode than in R injection mode. 

The mathematical formulation of travel time distributions for this model and the 

different types of injections is described hereafter. 

2.2. Travel time analysis 

We analyze here the travel time distributions to the pumping well assuming the 

conceptual model illustrated above. The problem can be stated in a radial 

coordinates framework; we therefore define the transposed vector (r,z)T , where r is 

the plane (radial) direction and z is the vertical direction. We impose that the 

piezometric head at the well and at a distance R from it are constant along the 

vertical, with hw the head at the well. This way, the system behaves as a parallel 

series of resistors, the piezometric head h being constant along z and variable 

along r (h=h(r)); thus, no water flux exists between the layers. Under the above 

conditions, the Thiem solution [39] applies for each layer, and the head at each 

layer hi is equal to 

(1) 

 

where qi is the specific discharge in the i-th layer. To accomplish for the head 

boundary condition it must be also accomplished that qi=AKi , where the constant A 

is found by prescribing that the total discharge rate is Q at the well location 

[40,41], as follows 

(2) 
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where 𝐾 is the arithmetic mean of K. In each layer, the solute velocity is given by 

 

(3) 

 

where 𝜙 is the porosity (assumed as constant). Note that the velocity depends on the 
distance r from the extraction well. The travel time for each layer ti is obtained 

integrating Eq. (3) with respect to r such that 

(4) 

 

The problem can be cast in dimensionless variables, working with the random variable 

𝜏𝑖 (following e.g., [42]) 

(5) 

 

In the limit case of one layer (NL=1) (homogeneous formation), 𝐾=Ki and the travel 

time is constant and deterministic (𝜏𝑖 = 1). Conversely, when the number of layers is 

very large (NL !1), K ! KA, where KA is the ensemble arithmetic mean of Ki, and 𝜏𝑖 

=𝐾𝐴 = 𝐾𝑖. 

We define the latter case as our reference, or ‘‘ergodic’’, conditions, for which 

the entire distribution of K is sampled by the monitoring system. Intermediate cases 

belong to ‘‘non-ergodic’’ conditions. We refer to ergodicity in this paper, thus, as 

the possibility that the model is sufficiently detailed, in terms of vertical 

discretization, that its results from the adoption of any random K distributions 

(following the same probabilistic function) do not depend on the number of layers 

used to run the simulations. This also means that any adopted spatial organization - 

along the vertical direction - of the K value from the same population does not 

influence the resulting BTCs. It should be remarked that field-based depth-

integrated BTCs are not necessarily an indication of ergodic transport in real 

aquifers. In a numerical framework, however, establishing ergodic transport 

conditions is particularly useful for benchmarking purposes, as they allow 

evaluating possible departure from well-defined reference conditions due to aquifer 

subsampling. These concepts are further elaborated in the following sections. 
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2.3. Ergodic transport 

Under the ‘ergodic’ assumption, the number of layers is large enough to sample the 

entire distribution of K. Hence, 𝐾 = 〈𝐾〉 = 𝐾𝐴 , the arithmetic mean, and from (5) it is 

𝜏𝑖 = 𝐾𝐴/𝐾𝑖, and the travel time is inverse proportional to the hydraulic conductivity.  

The lognormal distribution is a suitable model to describe the distribution of K in 

stochastic subsurface hydrology [43]. With Y = ln K the log-conductivity, the 

lognormal distribution is fully characterized by the mean 〈𝑌〉 = ln 𝐾𝐺, with KG the 

geometric mean of K, and the log-conductivity variance𝜎𝑌
2. Notice that lognormal 

distributions are self-replicating under multiplication and division or 

multiplication by a constant. This means that the products and quotients of log-

normal random variables are themselves log-normal distributions [44,45]. Thus, since 

𝐾𝑖 is lognormal, so is 𝜏𝑖. This has an important implication in the interpretation of 

BTCs, as pointed out in the next sections. Hence, applying Eq. (5) and using our 

previous definition Y=ln(K), the travel time probability density function (PDF) can 

be written as follows: 

(6) 

 

As shown in the sequel, the above travel time distribution is equivalent to the BTC 

for a resident  concentration injection condition, hence the subscript R. Note that 

the selection of a log-normal K distribution in a perfectly stratified media where 

all the layers are of the same thickness leads to a linear type of correlation 

covariance between strata (e.g., [2]) where the integral scale is half the thickness 

of each layer. For this reason, we indistinctively refer in this text either to 

layer sampling or to integral sampling in the following pages. 

In a Lagrangian framework, there is a strict relationship between the travel time 

distributions and the solute masses distribution at a controlling section [4, p. 

166]. Consider the injected mass M as a bundle of particles Np, each of them 

carrying the same amount of mass (𝑚𝑝 = 𝑁𝑝/𝑀). Because there is no transversal 

dispersion, we can assume in our model that one single particle per layer is 

representative of the travel time occurring in that specific layer. The total mass 

can be divided by the number of layers such that 𝑁𝑃 = 𝑁𝐿. Thus, the mass distribution 

after a certain time is given by the number of particles arriving at a controlling 

section at a specific time. Such relationship depends however on the way solutes are 

released at the beginning of the tracer tests from a passive well. As discussed 

above, two general types of boundary conditions are generally accepted: resident (R) 

or flux-weighted (FW) injection modes. 

If R injection mode is used, it is assumed that the mass is initially (t=0+) 

homogeneously distributed along the vertical column of the injection well. 

Translated to our model, we can assume that particle is located in each layer at 

t=0+. In this sense, the analytical solutions for travel time PDF for the resident 

injection is Eq. (6) for the lognormal K distribution, which we shall denote in the 

following as 𝑓𝑅(𝜏).  

Matters are different for the flux weighted (FW) injection mode, which is more 

realistic than the resident mode in real applications. The mass of contaminant 

entering the domain at t=0+ is controlled preferentially by the local flow 

velocities which are encountered at different depths from the heterogeneous topsoil. 

Considering a constant mean gradient between the injection and extraction well, it 

means that the injected mass at different depths is weighted by the local value of 

K, i.e., 𝑚𝑝,𝑖 ∝ 𝐾𝑖 . Because in our stratified model 𝐾𝑖 ∝ 𝜏−1 , the travel time PDF for 

the flux-weighted (FW) injection mode is simply related to the one using  resident 

injections by  
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(7) 

 

where the subscripts indicate the type of injection considered. 

Thus, Eqs. (6) and (7) completely describe the BTC for the resident and flux-

weighted injection conditions, respectively. It is easy to ascertain that the first 

two moments of the travel time distributions are given by the following expressions 

 

It is seen that the travel time variance is not linear dependent on the distance, 

being 𝜎𝑌
2 ∝ (𝑟2 − 𝑟𝑤

2)2. hence, transport is anomalous for the present setup [46]. 

2.4. Nonergodic transport 

Analyzing the situation where the number of layers is not large enough to accomplish 

the ergodic conditions is important for two main reasons. First of all, in practical 

situations wells are drilled to explore a limited number of layers of a 

heterogeneous domain. In other words, the wells sample only a limited  number of 

vertical integral scales characterizing the spatial distribution of K. A common 

situation is to count on tens to hundreds of vertical integral scales, with rare 

exceptions of thousands of samples (e.g., [47]). In the case that the finite number 

NL of hydraulic conductivity samples is not sufficient to ensure a clear picture of 

the actual distribution of K, transport could be modeled under ‘nonergodic’ 

conditions.  Secondarily, a similar situation might occur in 3D numerical 

simulations, in which the memory and CPU constraints impose a limited vertical size 

of the flow domain and/or a limited number of random simulations, in stochastic 

frameworks. In all those cases the analytical solutions for the travel time 

distributions presented above would be no longer valid, as they imply a complete 

sampling of the K distribution. The travel time PDF for the nonergodic case defies 

an analytical solution, and the calculation of the travel time PDF is carried out 

numerically along the following procedure. 

We therefore analyze in detail what occur when ergodic conditions are not fulfilled, 

by generating (random) sets of Ki values, with 𝑁𝐿 ≪ ∞; the related 𝜏𝑖 distributions 

are obtained using Eq. (5). Then the  𝜏𝑖  are sorted, from the smallest to the highest 
values. In the case of resident (R) injections, the experimental discrete CDF values 

CR is a vector of length NL, the generic value CRj being equal to j/NL. That is, in 

the resident injection mode all the particles have the same mass. For the FW type of 

injection, an additional step is needed. From the sorted vector  𝜏𝑗, we generate a 

vector of weights pj which reflect the mass attached to each particle. pj is a 

function of the local velocity of the j stratum, which is in turn proportional to 

Kj. Hence, the weight employed in the calculations is equal to 

(8) 

 

We highlight that Kj, following the same index of the sorted vector sj, goes from 

the higher to the smaller  values, since 𝜏 ∝ 𝐾−1. With such weights pj, we generate 

the experimental CDF for the FW injection mode, CFW, as 

(9) 
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3. Results and discussion 

We report and discuss in this section the main results of our analysis. We first 

analyze the ergodic case, which helps analyze the ensemble behavior of the 

stratified model depending on the degree of variability of K. This is useful to 

further explore what occurs in nonergodic conditions, so as to compare the latter 

behavior with the analytical solutions and to have a quantitative measurement about 

the departure from ergodic conditions. 

3.1. Ergodic case 

In Fig. 2 we plot the travel time PDFs as a function of dimensionless travel time s 

for the two injection modes considered (Eqs. (6) and (7)), for different 

distributions of Y = ln K, assuming ergodic conditions. Considering the high 

variability of the distributions, we have reproduced in the inserts the travel time 

PDF in log scales. For the sake of further comparisons with the nonergodic case 

(carried out in the next section) we also reproduce in Fig. 3 the cumulative BTCs 

for the same cases of Fig. 2. 

Several relevant aspects can be observed in the figure. First, the shape of the BTCs 

may be strongly nonsymmetric, as a function of the heterogeneity (epitomized by 𝜎𝑌
2) 

and the type of injection. For very low heterogeneity (𝜎𝑌
2 < 0.1), the BTCs shape is 

rather symmetric for both types of injections and similar to the standard Inverse- 

Gaussian distribution, the peak of the BTC being around 𝜏 = 1 . In such conditions the 
injection mode does not have a significant influence on the BTC. As the variance 

increases, the peak of the BTC tends to depart from 𝜏 = 1  and the curve exhibits an 
increasing asymmetry. Also, the differences observed for the two injection modes 

start to be significant as 𝜎𝑌
2 increases. In particular, when 𝜎𝑌

2 = 1 (mild 
heterogeneity) the effect of the flux-weighted injection mode is dramatic as the BTC 

peak has sensibly moved toward low values of s. However, both R and FW show very 

long tailed distributions, which cannot be typically reproduced employing the 

Gaussian ADE model. A similar, anomalous behavior for transport was also found in 

stratified formations under uniform head gradients [24]. 

When the heterogeneity is very high (𝜎𝑌
2> 4) the BTC becomes very skewed, the peak 

being hardly visible on the plots in arithmetic scales. In such cases, the injection 

mode plays a very important role in determining the overall shape of the BTC. One 

can observe from Fig. 2 that for 𝜎𝑌
2 = 8 in the R injection mode, the peak of the BTC 

is found at 𝜏 = 10−2, i.e., strongly retarded as compared with the FW injection mode. 

In turn, the FW mode generally increases the mass of the fast arrivals. The damping 

effect caused by  the resident injection model and the fast transport determined by 

the FW one acts as a warning against accurate selections of the boundary conditions 

in numerical simulations or analytical models involving solute transport under 

convergent flow. 

Thus, the travel time PDFs (or the BTC) pertaining to transport in highly 

heterogeneous stratified media is characterized by a strong early mass arrival, 

which is due to high velocity preferential flow, and a long and persistent tailing. 

Such features have a significant impact in applications, like, e.g., those involving 

risk assessment or remediation (e.g., [48,49]). As for the latter, the slow arrivals 

of solute may indeed harm the effectiveness of a pump-and-treat remediation 

procedure. To further analyze the BTC tailing, we plot in Fig. 4 the distribution of 

travel time built with 𝜎𝑌
2> 1 in double log scales. This is a usual representation of 

BTCs from experiments, for instance to obtain effective transport models (e.g., 

[31]); in particular, power-law distributions of the BTC would appear as straight 

lines on these diagnostic plots. It is noticeable that the stratified model could 
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indicate apparent power-law distributions at late-time (i.e., after the peak), but 

this is only an apparent behavior which is pertinent to lognormal distribution with 

high variances. Specifically in Fig. 4 on the insert we report the local derivative 

log(𝐶) / log(𝜏), sometimes called the power-law slope 

‘m’, against log(𝜏), C being the travel time PDF. Notice that as the variance 

increases, m tends to around m=1 which persist over time. In particular, for 𝜎𝑌
2= 4 

and 8,  m tends to values which are usually observed from field scale experiments 

under convergent flow i.e., of the order of m =1 to m = 3 (e.g., [31]). This 

apparent power-law effect on the tails of log-normally distributed data is well 

known (e.g., [50]) but it can lead to misleading conclusions if a model fitting 

attempt is done only after partial knowledge of the entire behavior of the PDFs. 

With rare exceptions (e.g., [51]), BTCs are never collected over time intervals 

spanning more than 2–3 log time intervals; as such, care must be taken not to 

confuse stratifications with other kinds of mechanisms leading to a similar behavior 

(like, e.g., mass transfer into immobile zones), especially in the proximity of 

pumping wells (e.g., [21]). 

All these effects on the early peak and the late-time behavior of the BTC have been 

observed under ergodic distributions of K. In most practical applications, K samples 

are never sufficient to obtain a clear picture of the entire heterogeneous 

structure. These aspects are analyzed in detail in the following section. 

3.2. Nonergodic case 

We explore here what happens when K is not completely sampled and transport takes 

place under nonergodic conditions. Because of the incomplete sampling, the travel 

time PDF is different for any realization of the K field, and here we aim to analyze 

(1) how the shape of the travel time distributions changes as a function of the K 

(i.e., the number of layers) sampled by the passive well, (2) the minimum number of 

layers required to obtain convergence of the numerical solutions towards ergodic 

results, and (3) an estimate of the variability of the travel time distributions 

within the realizations. 

Since the transformation of cumulative distribution into densities is plagued with 

difficulties in most cases (e.g., [52]), we prefer here to display values in terms 

of CDFs, rather than using estimated PDFs, given such transformation not strictly 

necessary with the scope of this paper. 

We analyze the nonergodic travel time CDF through a Monte Carlo approach, in which 

the statistics of the CDF are obtained after running and averaging the results of 

several random realizations. We therefore generate a constant number of realization 

𝑁𝑅 = 103 of a random K field of NL layers and determine the ensemble statistics for 

the travel time CDF. The ensemble mean is found after first interpolating all the 

single realizations to a common discrete time scale and afterwards averaging all the 

CDF values for each time step. Note that the number of realization chosen here is 

arbitrary and done only for illustrative purposes. We could, for instance, have 

totally avoided a Monte Carlo scheme and used only one simulation having an 

additional number of layers (of the order of NR); however, our aim here it to stress 

the reader attention on the importance that the subsampling effect can have to 

obtain accurate model results with reference to the ergodic case, even in a Monte 

Carlo framework. 

We begin with the ensemble mean of the CDF, and Fig. 5 reports the results of 

ensemble mean behavior for  the different cases analyzed in this paper (increasing 

variance from the top to the bottom, and different injection modes). Note that in 

this figure all the plots show different horizontal log scales, as the variability 

of 𝜏 depends on 𝜎𝑌
2, as shown in the previous analysis. For graphical purposes, we 

have plotted the curves referring to four different numbers of layers (NL= 2, 10, 

100, 1000). The CDF for NL = 1 is always equal to H(𝜏-1), with H the Heaviside 
function. Starting from the top in Fig. 5, the case with lower heterogeneity 

(𝜎𝑌
2=0.1) indicates that a reduced number of layer such as NL=10, which is a common 

and feasible vertical discretization in typical modeling approaches, satisfactorily 



Accepted ms – Advanced in Water Resources (2013) – doi: 10.1016/j.advwatres.2013.07.013 

reproduces the ergodic, analytical solution (gray line underlying the plots). This 

is true for both the R-type and FW-type of injections. It should be noticed that 

NL=10 is possibly a minimum number of layers to be used in simulations for an 

accurate reproduction of transport under such a low variance. Using less layers, 

such as NL=2 (blue lines), leads to a significant departure from the ergodic case. 

These conclusions are also valid also for 𝜎𝑌
2=1, even though the green dotted line 

representing NL=10 does not completely capture the system behavior, while a higher 

number of layers, such as NL=100 leads to a solution closer to the ergodic one. When 

the variance further increases to 𝜎𝑌
2= 4, the differences appear much more evident 

and the effects of the type of injection also become important. For R-mode 

injections, the ensemble mean curve for NL= 10 dramatically departs from the ergodic 

case, while the CDF for the larger NL =100 is closer to the ergodic solution. This 

is no longer true for FW-type, and especially at early times. Such a larger dataset 

is also poorly reproducing the actual system behavior, as a consequence of how the 

experimental CDF in the case of flux-weighted injections is estimated (Eq. (9)). As 

explained there, for high values of 𝜎𝑌
2, the incomplete sampling mainly affects the 

high K values, so that the weights used to estimate the CDFs are not accurately 

reproduced. This effect is more visible for 𝜎𝑌
2 =8. For both types of injections a 

minimum number of layers of NL=103 seems to be required, even though for FW-type 

injections the early-time behavior is not still completely captured, despite the 

large combination of layers and realizations. We highlight that if only one 

realization is adopted instead of a Monte Carlo framework, then one should opt for 

an unfeasible number of layers (around 106) to obtain ergodic conditions; such an 

highly refined discretization can be of serious concern for the computation 

limitation of traditional computational machines. 

As previously stated, the nonergodic CDF may change from realization to realization, 

as a function of the number of strata NL detected by the passive well, the 

heterogeneity and the injection mode. A global indicator of the uncertainty 

associated with the BTC is provided by the root mean square error (RMSE), which is a 

measure of the global difference between the ensemble mean and the random cumulative 

BTCs (i.e., the CDFs) provided by the numerical Monte Carlo solutions. The smaller 

the RMSE indicator, the closer the CDFs becomes to the ensemble solution. Denoting 

the ensemble CDF as  𝑓𝐸 = 〈𝐶𝐷𝐹𝑖〉and the CDF pertaining to the generic i-realization as 
fi, the RMSE indicator can be formally written as 

(10) 

 

where n is the total number data. Results are plotted in Fig. 6 in log scale, for 

𝜎𝑌
2= 0.1, 1, 4, 8 and for the two injection modes. The plots suggest that, for all 

cases, RMSE decays to zero for increasing NL; the behavior is expected as for NL 

!1the CDF pertaining to each realization converges toward the ensemble result, 

leading to RMSE→0. While the convergence of the error to zero is relatively fast 

for low heterogeneity, it is much slower for increasing 𝜎𝑌
2, with significant 

differences between the two injection modes. As an example, the number of layers 

required to get a prescribed RMSE=102 would be around 102 for the smaller 𝜎𝑌
2 and 

several orders of magnitude larger for the higher 𝜎𝑌
2. 

The above behavior has consequences on both numerical simulations and field 

applications dealing with high heterogeneity in which the number of vertical 

integral scales (i.e., layers) sampled by the solute is limited. In such cases, the 

CDF (or analogously the BTC) may be quite different from its ensemble  counterpart, 

and a more detailed mapping of the K field in the region would be needed in order to 

reproduce correctly the experimental distributions. Also, these results are a 

warning against three-dimensional numerical solutions aiming to reproduce ergodic 

transport behavior, especially in the vicinity of the pumping well. Since 

computational times can dramatically increase with a large number of layers, 
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modelers may be sometimes tempted to make coarser vertical discretization in order 

to reduce the computation costs. However, these results show that in case of high 

variance, transport conditions similar to ergodic or ensemble ones can be reached 

only if a very large number of layers is employed. In other words, employing a 

limited number of vertical integral scales of K may lead to different travel time 

distributions for different realizations of the K field. 

This issue also poses serious limitations also on the use of stochastic approaches 

aiming at simulating CFTTs, and especially on the ability of single realizations to 

reproduce ergodic transport. While this approach based on random realizations of the 

K field can be effectively used to understand important phenomena occurring in the 

proximity of wells (e.g., [21]), exporting general conclusions in a stochastic sense 

would be obtained only under a numerical setup that can be prohibitively large for 

practical purposes. 

4. Conclusions 

An analytical solution of transport in heterogeneous media under radial convergent 

flow has been developed and employed to get insights on the breakthrough curve (BTC) 

of passive solutes. The model can be employed to simulate solute transport in the 

vicinity of pumping wells and in all those situations where the aquifer can be 

modeled as a perfectly stratified formation, with vertical distribution of hydraulic 

conductivity. The model is valid for any heterogeneity and distribution of the 

hydraulic conductivity K, and it may provide a useful benchmark solution for 

numerical models aiming at reproducing ergodic transport under radial convergent 

flow. 

The main conclusions that can be drawn from this work are listed as follows: 

We have developed and applied the stratified model to explore the behavior of solute 

when K is log-normally distributed, a common hypothesis in stochastic modeling. The 

results suggest that the travel time distributions are largely conditioned by the 

total system’s heterogeneity, expressed in term of variance of log transformed K. In 

particular, when heterogeneity is strong the BTC is highly asymmetric and typically 

characterized by early arrivals, due to high-velocity preferential flow, and a 

persistent tailing, pertaining to the late arrivals of solute parcels, moving slowly 

in low-conductive regions; 

The injection mode (resident or flux averaged) plays a key role in determining the 

BTC asymmetry: flux-weighted injections generally increase the mass which is 

delivered to the well in short times, while resident injections give a larger mass 

arrival at later times; these findings have important consequences for practical 

applications, like, e.g., risk assessment or aquifer remediation. 

  Apparent power-law behavior can be observed in the BTC when in presence of highly 

heterogeneous formations. There are other physical processes which may lead to 

power-law tailing, like, e.g., the presence of multiple rate mass transfer in 

‘‘immobile’’ regions [31]. Hence, the apparent power-law behavior may lead to 

misleading conclusions regarding the conceptual and physical interpretation of the 

transport processes. This results is in agreement with the analysis by Pedretti et 

al. [21], which indicate transport stratification as the responsible of power-law 

behaviors in heterogeneous Multi-Gaussian fields. 

  When the K sampling operated by the solute plume is limited, e.g., when the 

passive well screens a relatively small number of layers (a condition usually met in 

real experiments), transport can become strongly non ergodic. In particular, a very 

large number of layers is needed to adequately sample the entire K distribution when 

𝜎𝑌
2 is large (strong heterogeneity). Also, the BTC may vary considerably as a 

function of the particular K realization adopted. Thus, field experiments in highly 

heterogeneous formations in which a limited subset of K is sampled can be 

characterized by a BTC very much different from the ergodic one. Similar behavior is 

expected for three-dimensional numerical simulations in which the vertical extent of 

the domain is not sufficient for an accurate sampling of the K field, e.g., to limit 

the computational burden of the simulation. 
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We highlight that our analysis is valid for transport in perfectly stratified 

formations, which usually takes place only in the proximity of pumping wells, 

although there might be specific geological conditions (e.g., lacustrine 

environments, fractures, etc.) for which the perfectly stratified formation is a 

suitable conceptual model for the K structure. Nonetheless, this analysis indicates 

significant features of transport under convergence flow in heterogeneous media, 

like, e.g., the strong asymmetric shape of the BTC, the fast, preferential flow and 

the persistent tailing, similar to power-law. Also, the analysis shows how 

problematic the actual reconstruction of convergent flow transport can be due to the 

nonergodic effects caused by incomplete sampling, which certainly need to be further 

explored due to its wide use for practical applications, like, e.g., convergent flow 

tracer tests (CFTTs). 
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