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Abstract: Background: Pseudomonas aeruginosa cell envelope-associated proteins play a relevant role
in infection mechanisms. They can contribute to the antibiotic resistance of the bacterial cells and
be involved in the interaction with host cells. Thus, studies contributing to elucidating these key
molecular elements are of great importance to find alternative therapeutics. Methods: Proteins
and peptides were extracted by different methods and analyzed by Multidimensional Protein
Identification Technology (MudPIT) approach. Proteomic data were processed by Discoverer2.1
software and multivariate statistics, i.e., Linear Discriminant Analysis (LDA), while the Immune
Epitope Database (IEDB) resources were used to predict antigenicity and immunogenicity of
experimental identified peptides and proteins. Results: The combination of 29 MudPIT runs
allowed the identification of 10,611 peptides and 2539 distinct proteins. Following application
of extraction methods enriching specific protein domains, about 15% of total identified peptides
were classified in trans inner-membrane, inner-membrane exposed, trans outer-membrane and
outer-membrane exposed. In this scenario, nine outer membrane proteins (OprE, OprI, OprF,
OprD, PagL, OprG, PA1053, PAL and PA0833) were predicted to be highly antigenic. Thus,
they were further processed and epitopes target of T cells (MHC Class I and Class II) and B cells
were predicted. Conclusion: The present study represents one of the widest characterizations of
the P. aeruginosa membrane-associated proteome. The feasibility of our method may facilitates
the investigation of other bacterial species whose envelope exposed protein domains are still
unknown. Besides, the stepwise prioritization of proteome, by combining experimental proteomic
data and reverse vaccinology, may be useful for reducing the number of proteins to be tested in
vaccine development.
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1. Introduction

Pseudomonas aeruginosa is a highly adaptable Gram-negative bacterium able to infect several hosts
including human beings [1]. Since it is an opportunistic pathogen, the occurrence of antimicrobial
resistance makes its treatment difficult [2]. This is due to different reasons, ranging from the
production of a wide variety of virulence factors [3] to the role of membrane proteins, enzymes
and other molecules that protect bacterial cells from antibiotics and host immune system [4]. In this
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scenario, a relevant role is played by the complex architecture of the Pseudomonas aeruginosa envelope.
It includes an inner cytoplasmic membrane (IM) and an additional asymmetric lipid bilayer, the outer
membrane (OM), that act as selective barrier [5]. Moreover, surface-exposed proteins represent the
first molecules involved in the interaction with pathogens, playing a relevant role to invade host
cells. Thus, OM-exposed proteome has the potential to be an attractive drug target for Gram-negative
bacteria, and in particular for those highly infective like P. aeruginosa [6].

Due to the relevant role of the envelope-associated proteins, in the last two decades different
studies aimed to characterize the P. aeruginosa envelope proteome. Most of them focused on OM [7–10]
and global membrane [11–13], while a lesser number analyzed proteins from periplasmic space [14]
and IM [15]. Some of these studies were based on two-dimensional (2-D) gel electrophoresis protein
separation [7,8,10,14]. On the contrary, other authors used liquid chromatography (LC) coupled to
mass spectrometry (MS) with the purpose for a large scale protein identification [9,11,12,15].

To improve knowledge about P. aeruginosa cell envelope, we here analyzed the P. aeruginosa
membrane-associated proteome by combining selective membrane, peptide and protein extraction
methods [9,16] with a high-throughput proteomic approach based on LC-MS [17]. Besides, to provide a
landscape of P. aeruginosa membrane-anchored proteins, we discriminated inner from outer membrane
proteins, as well as trans-membrane from surface-exposed peptides by applying multivariate statistical
analysis [18]. Finally, since surface-exposed classified proteins may represent a valuable source
of information useful in developing new vaccines and drugs against P. aeruginosa, a preliminary
classification of the putative antigenic and immunogenic epitopes (MHC class I, MHC class II and B
cell) was also provided.

2. Material and Methods

2.1. Bacterial Growth Conditions and Membrane Fractionation

Pseudomonas aeruginosa PAO1 was grown in Mueller Hinton (MH, SigmaAldrich) broth at
37 ◦C until cells reached OD600 0.8. A total amount of 200 OD600 of cells were processed as
described in Lo Sciuto et al. [19]. The IM and OM of Pseudomonas aeruginosa PAO1 were separated by
sucrose gradient ultracentrifugation according to published procedures with some modification [19].
Briefly, total membranes were resuspended in 1 mL of 10 mM Tris/HCl buffer (pH 7.8) containing 25%
(w/v) sucrose and 800 µL were layered on top of the sucrose gradient. Fractions (400 µL) were collected
from the top and 50 µL each was assayed for NADH oxidase activity. The distribution profile of LPS
was estimated by western blot using the anti-Pseudomonas aeruginosa outer core specific (MEDIBAS).

2.2. Membrane Proteins Trypsin Digestion

The pellet contaning the global membrane fraction (GMF) was washed in sequence with PBS,
1 M NaCl and distilled water to remove contaminants. To enrich the surface exposed peptides,
the isolated membranes were shaved; in detail, the membranes were resuspended in PBS buffer
and subsequently treated overnight with 40 µg/mL trypsin (Sequencing Grade Modified Trypsin,
Promega, Madison, WI, USA) at 37 ◦C under stirring. The digested peptides were isolated through
ultracentrifugation (135,000× g for 60 min at 4 ◦C), collected and finally analyzed by Multidimensional
Protein Identification Technology (MudPIT), (n = 6).

To extract the proteins inserted into the membranes, IM (n = 6) and OM (n = 5) fractions were
resuspended and denaturated by a saline buffer containing 2% sarkosyl detergent (SigmaAldrich).
The total protein content was quantified using the SPNTM-Protein Assay (G-Biosciences, St Louis,
MO, USA) and 50 µg per sample were treated with RapiGestTM SF (Waters Corporation, Milford, MA,
USA) at the final concentration of 0.2% (w/v). After incubation at 100 ◦C for 5 min, the samples were
cooled to room temperature. Trypsin (Sequencing Grade Modified Trypsin, Promega, Madison, WI,
USA) was added to each sample at an enzyme/substrate ratio of 1:50 (w/w) and incubated at 37 ◦C
overnight; then, another aliquot of enzyme was added at an enzyme/substrate ratio of 1:100 (w/w)
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and the samples were incubated at 37 ◦C for additional 4 h. The enzymatic reaction was stopped by
acidification with 0.5% TFA (Sigma-Aldrich Inc., St.Louis, MO, USA), incubation at 37 ◦C for 45 min
and centrifugation at 13,000× g for 10 min.

Before MudPIT analysis, samples were desalted by PepClean C-18 spin colums (Pierce
Biothecnology Inc., Rockford, IL, USA), concentrated in a SpeedVac (Savant Instruments, Farmingdale,
NY, USA) at 60 ◦C and finally resuspended in 0.1% formic acid (Sigma-Aldrich Inc., St.Louis, MO, USA).

2.3. MudPIT Analysis

Trypsin-digested samples were analyzed by means of Multidimensional Protein Identification
Technology (MudPIT), using the ProteomeX configuration (Thermo Fisher, San Jose, CA, USA).
Briefly, 10 µL of peptide mixture per sample were loaded into a strong cation exchange (SCX) column
(Biobasic-SCX, 0.32 i.d.x100 mm, 5 µm, Thermo Scientific, Bellefonte, PA, USA) and eluted stepwise by
increasing the ammonium chloride molarity (0, 20, 40, 80, 120, 200, 400, 700 mM NH4Cl). Eluate from
each salt step was then captured on-line to be loaded into a reverse-phase (RP) C18 column (Biobasic-18,
0.180 i.d.x100 mm, 5 µm, Thermo Scientific, Bellefonte, PA, USA) and separated with an acetonitrile
gradient (eluent A, 0.1% HCOOH in H2O; eluent B, 0.1% HCOOH in CH3CN). The eluted peptides
were finally analyzed by an ion trap mass spectrometer (LTQ, Thermo Fischer, San Jose, CA, USA),
equipped with a nano electrospray ionization source, collecting MS and MS/MS spectra.

2.4. Processing of Experimental Tandem Mass Spectra

The experimental tandem mass spectra (MS/MS) were matched against in silico spectra from
the non-redundant Pseudomonas aeruginosa protein database (5564 entries), retrieved from UNIPROT
(http://www.uniprot.org/) in June 2018. Data processing was performed by Discoverer2.1 software
equipped with SEQUEST HT algorithm [20]. No enzyme specificity was assumed to identify semi-
and not-tryptic peptides, too. The following criteria were used for peptide identification (Figure S1):
briefly, parent and fragment mass tolerance of 0.6 Da and 500 ppm, respectively, and missed cleavage
sites per peptide was set to 2. Matches between spectra were only retained if they had a minimum
Xcorr of 2.0 for +1, 2.5 for +2, and 3.5 for +3 charge state, respectively, protein rank was fixed to 1,
while peptide confidence was set to “high.” In addition, false discovery rate (FDR) was set to ≤1%.

2.5. CHARACTERIZATION of Trans-Membrane and Membrane-Exposed peptides

Experimental data here produced (GMF, n = 7; IM, n = 6; OM, n = 5) were combined with other
data previously obtained by shaving intact Pseudomonas aeruginosa cells (SH, n = 6) and by using
carboxymethyl-dextran coated magnetic nanoparticles (NP, n = 6) [9]. The identified proteins were
ranked based on their abundance estimated by ntaSpC, the total average spectral count normalised
on protein length (total aSpC/Lenght(aa))*1000). The data matrix reporting all analyzed samples
and all identified peptides was processed by means of Linear Discriminant Analysis (LDA), using a
common covariance matrix for all groups and the Mahalanobis distance from each point to each group’s
multivariate mean [18]. To discriminate the peptides specifically enriched by the adopted extraction
methods a F-ratio ≥ 3 and a p-value ≤ 0.05 were applied. Hierarchical clustering and centroid distance
method were used to verify the discrimination level obtained by the peptides selected using LDA.
To characterize trans-membrane and membrane-exposed peptides, and to increase their confidence,
the peptides lists were grouped according to the extraction method applied (IM, OM, GMF, NP, SH),
thus based on the protein portions they enriched. As a rule, peptides enriched by GMF, NP and SH
were considered membrane-exposed, while those specifically enriched by IM or OM were classified as
trans-membrane. Specifically, the identification by GMF or NP was a sufficient condition to consider
a peptide membrane exposed, while the identification by SH was a necessary condition to define a
peptide exposed at the external cell surface. Finally, an enrichment by IM or OM was indicative of an
inner- or outer-membrane peptide, respectively. All processing were performed by in-house R scripts
and JMP15 software.

http://www.uniprot.org/
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2.6. Functional Classification, Amino Acid Distribution, Gravy Index, Immunogenicity and Antigenicity

Functional classification (enriched subcellular localization, biological processed and molecular
functions) of the identified Pseudomonas aeruginosa proteins was performed by Panther database [21];
FDR ≤ 0.05 and Fisher’s Exact Test ≤ 0.05 were applied. Amino acid composition of trans-membrane
and membrane-exposed peptides was compared by Chi-Square test (p < 0.05). Gravy index was
calculated according to Kyte and Doolittle by using an in-house python script based on protparam
library inserted in Biopython [22], while a model of prediction was used to estimate the peptide
immunogenicity [23]. The average Gravy index and immunogenicity were compared by ANOVA and
Tukey’s test. In addition, a non parametric test, such as Wolcoxon, was applied, too. To perform all
statistical analyses in-house R scripts were used; in particular, tidyr and dplyr library were used for
data transformation, ggplot2 library was used to make charts, while mvnor mtest library for evaluating
the normal distribution of data by Shapiro–Wilks test. Finally, OM annotated proteins were evaluated
about their antigenicity using VaxiJen server [24]. The proteins that contained the score value > 0.8
were considered for afterward analysis as an antigenic OMPs.

2.7. T Cell MHC (Class I and Class II) Epitope Binding and Processing Prediction

Antigenic OMPs selected using VaxiJen server (score > 0.8) were further evaluated about different
T-cell epitope analysis for potent epitopes identification. T cell MHC Class I epitope binding and
processing prediction was performed by NetMHCpan4.1 [25] and IEDB MHC-I [26] prediction server,
respectively. For both analyses we selected a HLA supertype representative reference list that contained
12 different alleles. Other parameters of prediction tools were set to default. The top predicted epitopes
from all the proteins were selected. About NetMHCpan4.1, only epitopes classified as Strong Binding
(SB) were considered, while for IEDB MHC-I only ones with a total score > 1. Similarly, T cell
MHC Class II epitope binding and processing prediction was performed by MHC-II binding (IEDB
server) [27] and MHCII-NP [28] prediction server, respectively; seven-allele HLA reference set and
a epitope length of 15 were set for binding prediction, while predicted epitopes were selected by
considering binding and cleavage percentile rank (<0.1). B-cell epitope analysis for potent epitopes
identification was performed by BepiPred-2.0 tool of IEDB server by applying default parameters [29].
Finally, selected epitopes were evaluated for their toxicity behaviour by ToxinPred tool [30]; specifically,
Support Vector Machine (SVM) based method and E-value cut-off of 10 were applied.

3. Results

To characterize the landscape of Pseudomonas aeruginosa membrane-anchored proteins,
P. aeruginosa global, inner and outer membranes were treated by different methods and selectively
extracted (Figure 1). Global membrane fractions (GMFs) were "shaved" by trypsin for enriching
membrane-exposed peptides, while IM and OM, separated by ultracentrifugation in a sucrose
gradient, were first denatured and then enzymatically digested to extract both trans-membrane
and membrane-exposed peptides. Peptides obtained following digestion were here identified by
Multidimensional Protein Identification Technology (MudPIT). In addition, with the purpose to
increase the proteome coverage, the experimental data produced here were integrated with others
previously obtained by shaving intact P. aeruginosa cells (SH) and by using carboxymethyl-dextran
coated magnetic nanoparticles (NP) [9].
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Figure 1. (a) Workflow for extracting and enriching exposed and embedded peptides from P. aeruginosa
inner (IM) and outer (OM) membranes. GMF: global membrane fraction. SH: Shaving on intact
P. aeruginosa cells. NP: peptide/protein extraction by Nanoparticles. (b) P. aeruginosa inner (IM) and
outer (OM) membranes separated by sucrose gradient ultracentrifugation. IM and OM containing
fractions were verified by the profile of NADH oxidase activity and distribution of LPS, respectively.

3.1. Pseudomonas aeruginosa Membrane Proteome

Following the combination of 29 MudPIT runs (incuding new and already published data),
10,611 unique peptides corresponding to 2539 distinct proteins were identified (Table S1). About 10%
of proteins were characterized by an average spectral count (SpC) greater than 1 (Figure 2a).
This seemingly low number was determined by the application of methods for enriching specific
protein portions, thus reducing a wider sequence coverage and the possibility to identify a high
number of peptides per protein. Starting from a comparable number of analyzed samples per condition,
most proteins and peptides were found in IM and OM samples, while a lower number was identified
by NP and GMF, and even less by SH (Figure 2b).

Protein extraction methods we applied allowed enrichment of membrane-anchored proteins
which were identified by a high number of peptides. Outer membrane porins (OprF, OprL, OprI,
OprH, OprD, OprG), the ATP synthase b and beta (AtpF, AtpD), the Succinate dehydrogenase B and
flavoprotein subunits (SdhB, SdhA) and proteins involved in bacteria motility (FliC, PilA) resulted
among the 20 most abundant-ranked proteins (Figure 3a). As expected, some of these proteins,
including outer membrane porins, became highly enriched in the outer membrane (OM) in agreement
with their subcellular localization, predicted or experimentally determined, while a lower number
of proteins, including transporters (PA1339, OpdE, PA4467, PA2653) and integral component of
membrane (PA1923, FtsH), were specifically found in the inner membrane (IM) (Figure 3b).
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Figure 2. Multidimensional Protein Identification Technology (MudPIT) analysis of P. aeruginosa cell
envelope. (a) Virtual 2D map of P. aeruginosa proteins identified by MudPIT approach (n = 2539 proteins).
Light blue/square indicates proteins identified by a total average SpC ≤ 1, yellow/circle proteins by a
total average SpC in the range 1–5, while red/rhombus proteins by a total average SpC ≥ 5. The blue
box corresponds to the typical pI and MW ranges of 2D gel analysis. (b) Venn diagrams reporting the
distribution of proteins identified following IM (Inner Membrane), OM (Outer Membrane), GFP (Global
Membrane Fraction), SH (Shaving) and NP (Nanoparticles) extraction methods.

The enrichment of membrane-anchored proteins with transporter activity globally emerged by the
gene ontology distribution associated with all identified proteins (Tables S2–S4). Despite subcellular
localization of almost 50% of proteins resulted unknown, proteins predicted to be localized in
membranes were those most represented (Figure 3c). A lower number was found for cytoplasmic and
intracellular annotated proteins, while ribosomal proteins, although much less represented, were found
enriched, too. Interestingly, some ribosomal subunits (RpmD, RpmB, RplB, RplV, RplU) were among
the most abundantly-ranked proteins (Figure 3a).

3.2. Trans-Membrane and Membrane-Exposed Peptides Classification

In addition to characterizing P. aeruginosa membrane proteome as widely as possible, extraction
methods applied aimed to discriminate specific protein portions. Based on that differential enrichment
and according to the scheme shown in (Figure 4), peptides corresponding to 591 proteins were classified
in Trans-Inner Membrane (T-IM, n = 248), Inner Membrane-Exposed (EXP-IM, n = 200), Trans-Outer
Membrane (T-OM, n = 668) and Outer-Membrane Exposed (EXP-OM, n = 434), (Table S5); specifically,
the identification of a given peptide following GFP/NP or SH extraction methods was the necessary
condition to classify it as Exposed (EXP), while the exclusive identification by IM or OM methods
was the necessary condition to classify peptides as Trans-Inner Membrane (T-IM) and Trans-Outer
Membrane (T-OM), respectively.
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Figure 3. (a) Histogram showing the 20 most abundant proteins of P. aeruginosa envelope ranked
based on total average spectral count normalized on protein length (ntaSpC). Blue border indicates
proteins located in membrane. (b) Proteins differentially enriched between inner (IM) and outer
membrane (OM). Proteins were extracted by Linear Discriminant Analysis (LDA), p < 0.05); hierarchical
clustering performed by Ward’s methods and Euclidean distance (JMP15.1 software) by processing
Spectral Count (SpC) of identified proteins. (c) Cellular components enriched from the characterized
P. aeruginosa membrane proteome (n = 2539). The number of proteins per sub-cellular component
is shown. Blue bars indicate cellular components related to membranes. Data were retrieved from
Panther (www.pantherdb.org); FDR ≤ 0.05, Fisher’s Exact test ≤ 0.05.

www.pantherdb.org
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Figure 4. (a) Hierarchical clustering performed by computing the Xcorr values (cross-correlation
between the experimental mass spectra and those theoretically predicted) of peptides (n = 722)
specifically enriched following the extraction methods applied (LDA, p ≤ 0.01). Euclidean distance
metric and Complete’s method were used. (b) Membrane protein portions (in yellow) enriched by IM
(Inner Membrane), OM (Outer Membrane), GFP (Global Membrane Fraction), SH (Shaving) and NP
(Nanoparticles). Combinations of MudPIT results used to classify peptides in Inner-Membrane Exposed
(EXP-IM), Outer-Membrane Exposed (EXP-OM), Trans-Inner Membrane (T-IM) and Trans-Outer
Membrane (T-OM).
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The amino acid composition of selected peptide categories evidenced, in trans-membrane peptides,
a higher representation of leucine (L), phenylalanine (F), tyrosine (Y) and Glutamine (Q). On the
contrary, glutamic acid (E), aspartic acid (D) and proline (P) resulted over-represented in exposed
peptides (Figure 5a,b). Exposed peptides showed also a ratio of negatively (D + E) and positively
charged residues almost double of trans-membrane ones (Figure 5c). Statistically significant differences
were also observed in Gravy index and Immunogenicity. As expected, Trans-Inner Membrane (T-IM)
peptides showed the higher average Gravy value, while Outer-Membrane Exposed peptides (EXP-OM)
the lowest. As opposite, Outer-Membrane Exposed peptides (EXP-OM) showed the higher value of
Immunogenicity (Figure 5d,e).

Figure 5. (a) Amino acid composition of T-IM, T-OM, EXP-IM, EXP-OM classified peptides.
(b) Differences in amino acid composition (∆%) between trans membrane (T-IM + T-OM) and
exposed (EXP-IM + EXP-OM) classified peptides. Positive values (blue bars) indicate amino acids
over-represented in trans membrane peptides, while negative values (red bars) indicated amino acids
over-represented in exposed peptides. Data were compared by Chi-Square test (p ≤ 10−5). (c) Ratio
between total number of negatively (D + E) and positively charged residues (R + K). (d) Comparison of
Gravy index and (e) Immunogenicity calculated for T-IM, T-OM, EXP-IM, EXP-OM classified peptides
(ANOVA and Tukey’s test; p ≤ 10−3).

3.3. Inner and Outer Membrane Classified Peptides and P. aeruginosa Protein Models

The accuracy of our peptide classification was tested using as a reference Pseudomonas aeruginosa
proteins whose subcellular localization was predicted or experimentally determined in membrane
(Table S6). In agreement with their subcellular localization, the outer membrane protein family
(OprB, OprC, OprD, OprE, OprF, OprG, OprH, OprI, OprL, OprM) [31], the outer membrane protein
assembly factors (BamA, BamB, BamD, BamE) [32], the Lpt complex (LptA, LptD, LptE) for LPS
transport to the cell surface [19,33], as well as many other outer membrane annotated proteins,
were predominantly characterized by outer-membrane classified peptides. On the contrary, the ATP
synthase subunits [34,35], located in inner-membrane, by inner-membrane classified ones (Table 1).
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3.4. Antigenicity, Immunogenicity and Toxicity of Selected Outer Membrane Proteins

Since major potentially antigenic proteins of P. aeruginosa are outer-membrane exposed, all proteins
outer-membrane annotated and characterized by OM classified peptides were processed by Vaxygen
server to predict their antigenicity (Table S6). Following the application of stringent criteria of filtering
(score < 0.8), 9 proteins, such as OprE, OprI, OprF, OprD, PagL, OprG, PA1053, PAL and PA0833,
were selected and further investigated to predict which of their epitopes could be bound and processed
by T cell MHC Class I, Class II and B cell (Figure 6). All selected epitopes resulted also non-toxic
(Table S7). Based on parameters set and filters applied, most of them were predicted targets of MHC
Class I or Class II, with few overlapping. oprD was the only protein whose epitopes were predicted to
bind MHC Class II. Of note, epitopes matching with EXP-OM classified peptides were found for oprI
and PA1053. In other cases, i.e., OprF, we found epitopes matching to sequences, partially overlapped,
classified T-OM and EXP-OM. Following the scheme in Figure 4, these overlapped sequences should
be considered exposed. However, concerning OprF these seemingly ambiguous results could be due
to the two different conformers of OprF [36,37], further confirming the accuracy of our classification
method. The predominant OprF conformer is constituted by a N-terminal β-barrel domain (aa 1-160)
inserted into membrane and by a C-terminal periplasmic domain rich in alpha-helices (aa 161-312),
while in a second one the C-terminal periplasmic domain is membrane-embedded, too (Figure S1).
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Table 1. Classification of peptides from P. aeruginosa proteins localized in membranes. The number of inner- and outer-membrane classified peptides per protein
is highlighted in yellow and blue, respectively. T-IM: Trans-Inner Membrane, T-OM: Trans-Outer Membrane, EXP-IM: Inner-Membrane Exposed, EXP-OM:
Outer-Membrane Exposed; full data reported in Table S6.

UNIPROT ID Protein Name Gene Name EXP-IM T-IM EXP-OM T-OM Sub. Localization

Q51485 Porin B oprB 4 plasma membrane [GO:0005886]
G3XD89 Putative copper transport outer membrane porin OprC oprC - 5 plasma membrane [GO:0005886]
P32722 Porin D oprD 18 plasma membrane [GO:0005886]
G3XDA5 Anaerobically-induced outer membrane porin OprE oprE 14 plasma membrane [GO:0005886]
P13794 Outer membrane porin F oprF 1 5 11 plasma membrane [GO:0005886]
Q9HWW1 Outer membrane protein OprG oprG 1 10 plasma membrane [GO:0005886]
G3XD11 PhoP/Q and low Mg2+ inducible outer membrane protein H1 oprH 2 3 1 1 plasma membrane [GO:0005886]
P11221 Major outer membrane lipoprotein oprI 1 2 plasma membrane [GO:0005886]
Q9I4Z4 Peptidoglycan-associated lipoprotein oprL 1 2 3 9 plasma membrane [GO:0005886]
Q51487 Outer membrane protein OprM oprM - - 15 plasma membrane [GO:0005886]

Q9HXY4 Outer membrane protein assembly factor BamA bamA 2 1 19 cell outer membrane [GO:0009279]
Q9HXJ7 Outer membrane protein assembly factor BamB bamB 2 8 cell outer membrane [GO:0009279]
P33641 Outer membrane protein assembly factor BamD bamD 6 cell outer membrane [GO:0009279]
O68562 Outer membrane protein assembly factor BamE bamE 1 3 cell outer membrane [GO:0009279]

Q9HVV7 Lipopolysaccharide export system protein LptA lptA 1 cell outer membrane [GO:0009279]
Q9I5U2 LPS-assembly protein LptD lptD 23 cell outer membrane [GO:0009279]
Q9HX32 LPS-assembly lipoprotein LptE lptE 1 4 cell outer membrane [GO:0009279]

Q9HT18 ATP synthase subunit alpha atpA 10 1 2 - plasma membrane [GO:0005886]
Q9HT14 ATP synthase subunit a atpB 1 1 - - plasma membrane [GO:0005886]
Q9HT21 ATP synthase epsilon atpC 1 1 - - plasma membrane [GO:0005886]
Q9HT20 ATP synthase subunit beta atpD 11 6 - 1 plasma membrane [GO:0005886]
Q9HT16 ATP synthase subunit b atpF - 2 - - plasma membrane [GO:0005886]
Q9HT19 ATP synthase gamma atpG 3 - - - plasma membrane [GO:0005886]
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Figure 6. (a) Experimentally identified peptides, classified in EXP-OM or T-OM (red and blue lines,
respectively), of oOM annotated proteins selected by a Vaxygen score > 0.8. Epitopes putatively bound
and processed by T cell MHC Class I and Class II are shown; in orange are highlighted epitopes
putatively bound and processed by MHC Class I, while in violet and blue those putatively bound and
processed by MHC Class II, respectively. (b) Prediction of epitopes, in yellow, putatively bound and
processed by B cells.

4. Discussion

The present study aims to shed light on the landscape of P. aeruginosa membrane-anchored
proteins. In fact, following the identification of 2539 distinct proteins, it represents one of the
widest characterizations of the P. aeruginosa membrane proteome. Most of the proteins identified and
provided with functional annotation were located in the membrane and involved in transport activity,
highlighting the selectivity of the extraction methods applied. This aspect further emerged by the
presence of several outer membrane porins among the most abundant identified proteins. Interestingly,
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also some ribosomal subunits were found abundant fitting with observations reported in previous
studies [14,38,39]; however, their role in a membrane district has not yet been fully explored and
further studies are needed to validate these observations and to elucidate the reasons for that.

Besides, to increase the membrane proteome coverage of P. aeruginosa, discerning from IM and
OM, the combination of selective peptide and protein extraction methods had the purpose to get a
differential enrichment of protein portions to discriminate in exposed and trans-membrane peptides.
The proposed classification was in good agreement with the protein topology available and highlighted,
as expected, a different tendency of the Gravy index and predicted immunogenicity. As conceivable,
the variation of these indices maybe related to peptide chemical-physical properties, thus to their amino
acid composition. In this context, trans-membrane classified peptides were characterized by the high
percentage of leucine (L) that, thanks to its alkyl side-chain, confers to peptides non-polar characteristics
fitting with their positioning in membrane bilayer. Similarly, tyrosine (Y) and phenylalanine (F)
may favor anchoring of proteins into the membrane through the interaction of their aromatic rings
with the lipid head groups [40,41], while glutamine has been put in relation with self-association of
transmembrane β-peptides within lipid bilayers [42]. Differently, as for exposed classified peptides,
the higher presence of aspartic (D) and glutamic (E) acids fits with their positioning in aqueous
environment: in fact, being negatively charged and polar amino acids, they prefer generally to be
on the protein surface [43]. Furthermore, although less significant, prevalence of proline residues
in exposed peptides could be related to their ability in generating loop. The role of this amino
acid has been correlated to immunomodulation as well as to protein–protein interactions including
host-pathogen recognition [44,45]. It is well known that outer membrane proteins play a relevant role
in these mechanisms [46]. Thus, a recent work highlighted their potential in vaccine development [47].
In agreement with these findings, the potential antigenicity of nine outer membrane proteins, including
several outer membrane porins, emerged fron our study. Some combination of these proteins, including
OprF and OprI [48], or OprF and OprL [49], are currently investigated as vaccine candidates. Similarly,
PA0833 was demonstrated is an OmpA C-like protein that induces a protective immune response in
mice, indicating it as a promising antigen for vaccine development [50].

Starting from the promising results we obtained, in the next future the proposed strategy will
have to be applied to P. aeruginosa at different conditions, mimicking infection models and affecting
the expression of membrane exposed proteins. In fact, it has recently demonstrated that the expression
of some proteins, including outer-membrane ones, may be affected by the environmental conditions.
For instance, TonB-dependent transporters (TBDTs) present in the outer membranes of P. aeruginosa
are induced under iron restricted conditions or when cells have been harvested from an infection
model [51]. Although bacteria we analyzed in our work were grown in Mueller Hinton (MH) medium,
far from the conditions adopted by Perraud et al., many TBDTs were identified also in our samples.
These proteins were here characterized by low identification frequency and low normalized average
spectral counts (ntaSpC), in agreement with an expression level generally low [52]. This low level could
therefore reasonably be associated with a bacterial environment, highlighting the need to investigate
P. aeruginosa membrane-associated proteins at different conditions. Finally, other aspects of our study
may certainly be improved. A weak point may be related to the low capacity of the proposed approach
in classifying periplasmic peptides. However, we already highlighted that the goal of our manuscript
was to provide a landscape of P. aeruginosa membrane-anchored proteins discriminating between inner
and outer membrane. On the other hand, the validation of our approach by comparing the obtained
results with the subcellular localization of the classified peptides/proteins remains an open question.
In fact, many annotations are computationally predicted bringing not always to correct considerations.

5. Conclusions

The present study provides a wide listing of P. aeruginosa membrane-associated proteins and
represents a proof of principle to develop genome-scale high-throughput methods well-suited to define
membrane protein topology. The feasibility of this approach may facilitate its use for investigating
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other bacterial species, especially those highly pathogenic whose envelope exposed protein domains
are still unclear. In addition to describe the landscape of P. aeruginosa membrane-associated proteins,
we provided also an ensemble of proteins that could induce immunogenicity and feasibility of
a vaccine construct; many of those tested in preclinical trials did not reach the clinical phase,
and none have been approved for marked authorization [53]. Thus, the data here presented suggest
that stepwise prioritization of proteome, obtained by combining experimental proteomic data and
bioinformatic approaches, may be useful for reducing the number of proteins that could be tested in
vaccine development.
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