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Measurement of the Local Intrinsic Curvature of a l = 1
Radio-Vortex at 30 GHz

Lorenzo Scalcinati1, Bruno Paroli1, *, Mario Zannoni2, and Marco A. C. Potenza1

Abstract—We exploit the properties of differential geometry of minimal surfaces to introduce a novel
approach for characterizing wavefronts. Since Gaussian and mean curvatures describe global and local
properties of any differentiable surface, a method for characterizing wavefronts endowed with non-trivial
topological features has been introduced. We provide experimental evidence that the wavefront of an
l = 1 radio-vortex at 30 GHz can be fully characterized by exploiting the wavefront phase in the far field
of the source, accessing a small portion of the beam only. A particular care is dedicated to distinguish
diffraction effects from the intrinsic curvature of the helicoidal wavefront. Results are applicable to the
local measurement of the topological charge and to the local detection of orbital angular momentum
radiation at the millimetric wavelengths.

1. INTRODUCTION

Electromagnetic vortices and singular wavefronts are recently attracting increasing interest in view of
scientific and technological applications. From a classical point of view, radiation endowed with Orbital
Angular Momentum (OAM) is characterized by helical wavefronts, where the topological charge is the
winding number [1–3]. Relevant results have been obtained in the field of singular optics, with potential
applications to telecommunication systems. Several results obtained with singular optics have also been
recently reproduced by simply scaling at the millimeter wave range [4, 5]. Beyond the fundamental
interest and the different diagnostic approach achievable with electromagnetic waves, which allow for a
direct measure of the field, millimeter waves allow for huge advantages with respect to visible/IR light
when propagating through turbulent media [6, 7]. Indeed, the effects of scintillation due to fog and
air turbulence make the optical systems even ineffective, while millimetric waves in proper bands are
almost undisturbed. On the contrary, large wavelengths undergo a strong limitation when the waves
propagate over long distances. Diffraction is more effective, imposing a beam divergence θ ≈ λ/D for a
transmitting antenna with transverse size D at a given the wavelength λ. Similarly, the far field regime
is reached much closer to the source, namely at a distance z ∼ D2

λ . As a result, working in the far field
with a diverging beam is almost mandatory when considering millimetric waves. Unfortunately, this is
in contrast with the traditional approaches to measure vortices, which typically require to access the
entire wavefront or at least a relevant part of it.

Recently, the feasibility of local measurements of the topological charge has been proven in the
visible wavelength range by adopting a proper scanning interferometry (asymmetric lateral coherence,
see [8–10]). It has been possible by exploiting the geometrical differential properties of a helical wavefront
curvature [11–13]. More precisely, it has been proven that the wavefront curvature due to the beam
divergence CD in the far field can be said apart from the intrinsic local curvature CI of the helicoidal
wavefront, proportional to the topological charge of the vortex. Both are related to the differential
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geometry of the wavefront, but they are basically different: they exhibit opposite Gaussian curvatures
when being measured along the principal directions, i.e., the directions of maximum and minimum
curvature. Therefore, just the Gaussian curvatures deliver fundamental differences in the geometrical
properties of the radiation wavefront.

In this paper we report the first experimental evidence of the curvature properties of a l = 1 radio-
vortex at the millimeter wavelengths (30 GHz) through the measurement of the Gaussian curvature
introduced above and the mean curvature that defines the main behavior of the minimal surfaces
such as the helicoid [14, 15]. This extends the applicability of the local method developed for optical
vortices to millimetric waves, paving the way to a novel framework of measuring the phase properties
of wavefronts.

The paper is organized as follows. We describe the theoretical framework in Section 2. The
experimental setup and measurement method are shown in Section 3. Section 4 is devoted to results
and discussions. Finally, we present conclusions in Section 5.

2. THEORETICAL FORMULATION

Let’s consider a reference frame x, y, z where x is the horizontal coordinate, y the vertical coordinate,
and z the propagation axis of the radiation beam. By assuming a Gaussian beam with a screw phase
dislocation, the phase term depending on the curvatures CD and CI is

φ(x) =
kx2

2R(z)
+ lθ ,

where k = 2π/λ, λ is the wavelength, R(z) the curvature radius of the Gaussian beam, l the topological
charge, and θ the azimuthal angle measured on a detection plane orthogonal to the propagation axis
(see Fig. 2(a)). By expressing θ as a function of x, we find

φ(x) =
kx2

2R(z)
+ l arccos

x√
x2 + y2

0

, (1)

where φ(x) is defined along a horizontal linear path at a vertical position y0 from the singularity.
The curvature along the x coordinate is obtained from the second derivative of φ(x) as (see [16])

C(x) =
1
k

d2φ(x)
dx2

= 1/R(z) + l
2xy0

(x2 + y2
0)2 k

= CD +CI . (2)

Equation (2) shows that the curvature is the sum of CD and CI as a consequence of the linearity
of the derivative operator.

Since CI(x) = C(x) − CD(x) the Gaussian curvature Kh = CI,maxCI,min and mean curvature
Hh = 1/2(CI,max + CI,min) as a function of the phase functions φ(x), φG(x) are written as

Kh = max
[

1
k

d2

dx2
(φ(x) − φG(x))

]
min

[
1
k

d2

dx2
(φ(x) − φG(x))

]
(3)

and

Hh =
1
2

{
max

[
1
k

d2

dx2
(φ(x) − φG(x))

]
+ min

[
1
k

d2

dx2
(φ(x) − φG(x))

]}
, (4)

where φG(x) is the phase of the transmitted Gaussian beam (l = 0) observed at the detection plane and
d2φG(x)/dx2 = k CD.

Equations (3) and (4) show that the Gaussian and mean curvatures are obtained from φ(x) and
φG(x) measured along linear paths. Both quantities are experimentally accessible.

3. EXPERIMENTAL SETUP

A radio-vortex beam with topological charge l = 1 is generated by means of a Spiral Phase Plate (SPP,
see Fig. 1), 170 mm in diameter, designed to operate at a frequency of 30 GHz. It has been realized
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Figure 1. Picture of the SPP used to generate the radio-vortex.

in Polytetrafluoroethylene (PTFE) at mill. To be properly shaped at the machines, two halves have
been worked separately, then kept in position by an external polymethylmethacrylate annular frame of
170 mm internal diameter (see Fig. 1).

The experimental setup is shown in Fig. 2. Two WR-28 FLANN standard pyramidal gain horns,
20 dB gain, are used as transmitter and receiver. The SPP is positioned 245 mm far from the transmitter.
The beam intensity outside the SPP is less than 0.1% of the total emitted power. The receiver is in the
far field of the beam, 248 mm from the SPP, in order to operate in the far field and to access the whole
beam intensity profile.

(b)(a)

Figure 2. (a) Geometry of the experimental setup. The scan has been performed in the horizontal
x direction through a linear translation stage positioned at two different vertical positions from the
singularity. (b) Picture of the experimental setup.

The experimental setup is mounted on an optical bench shielded with flat RF absorbers
(ECCOSORB R©HR-10) as shown in Fig. 2(b). The field is generated and acquired by means of an
Agilent Technologies PNA-X Vector Network Analyzer (VNA) connected to the antennas through ultra-
flexible GORE RF coaxial cables. The covered frequency range is 29.9–30.1 GHz in 101 points. The
IF width is 1 kHz. The scattering parameters of the radiation field are measured at different positions
along the x coordinate by translating the receiver over a linear path 180 mm long. Scans are performed
with 5mm sampling distance and 1 mm accuracy at vertical distances y0 = 0 mm and y0 = 35 mm from
the singularity.
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4. RESULTS AND DISCUSSION

The intensity and phase profiles of the radio-vortex are obtained from the scattering parameter
S21 = |S21|eiφ, where |S21|(dB) = 10 log10(P2/P1). Here P1 is the total emitted power, while P2

is the nominal power measured at the exit of the SPP. P2 is proportional to the radiation intensity
measured at the exit of the SPP, I ∝ P2. Unavoidable misalignments in the transversal and angular
positions between the transmitter, SPP, and receiver produce an uncertainty in the position of the
singularity about 5 mm at the detection plane. In comparison, the precision obtained by assessing the
horizontal position from the measured intensity profiles shown in Fig. 3 is higher. The minima of the fit
functions correspond to the horizontal position of the singularity in the detection plane. Starting from
Fig. 4 the position x = 0 (on-axis) is identified by means of the intensity profiles reported in Fig. 3. All
the right plots show fewer points with respect to the left ones because the probe scans a chord of the
SPP.
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Figure 3. Intensity profiles of the Gaussian beam with screw phase dislocation on axis ((a) y = 0)
and at y0 = 35 mm from the singularity (b). Black solid line indicates the theoretical fit of a l = 1
Laguerre-Gauss mode. Error bars are the statistical errors extracted from the theoretical fits.
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Figure 4. Phase profiles of the radiation beam with screw phase dislocation (l = 1) generated with
the SPP and measured on axis ((a) y = 0) and at y0 = 35 mm from the singularity (b).

Results are compared to the theoretical fit:

I(x) = I0
[
(x− s)2 + y2

0

]
exp

{−2[(x− s)2 + y2
0]

w2

}
, (5)
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where the position of the singularity s, amplitude I0, and beam size w are free parameters. Eq. (5) is
the intensity of the l = 1 Laguerre-Gauss mode

E(r, θ, z, t; k) = A(r, z) exp[i(2p + |l| + 1)ψ(z)]

exp
[−ikr2
2R(z)

]
exp[i(kz − ωt)] exp(ilθ) , (6)

where r is the radial coordinate in a plane perpendicular to the propagation axis z, t the time, ψ(z) the
Gouy phase shift, and A(r, z) is:

A(r, z) = E0

(√
2r

w(z)

)|l|
L|l|

p

(
2r2

w(z)2

)
w0

w(z)
exp

[ −r2
w(z)2

]
, (7)

where L|l|
p are the generalized Laguerre polynomials; p is the number of nodes in the radial direction;

w(z) is the Gaussian beam size; and w0 = w(0). In our case p = 0 and l = 1 thus L|l|
p

(
2r2

w(z)2

)
= 1.

From I = EE∗ we find

I = I0 r
2 exp

(−2r2

w2

)
, (8)

where I0 = 2E2
0w

2
0/w

4. By posing r = (x− s)2 + y2
0 in Eq. (8), we obtain Eq. (5).

The phase profiles φ(x) measured on axis and at 35 mm from the singularity are shown in Fig. 4.
Notice that the intensity profile on axis evidences a fast phase change when passing the singularity. This
effect is not observed at y0 = 35 mm because of the smooth phase variation of the arccos (see Eq. (1))
by increasing y0. The combined effect of CD and CI produces asymmetric profiles. To distinguish CD

and CI the SPP was removed, and φG(x) was measured on the detection plane. The model has then
been fitted to data assuming the far field approximation:

φG(x) =
(√

(x− s)2 + y2
0 + z2

0 − z0

)
k + c1 , (9)

where c1 is an arbitrary additive constant, and z0 is the distance between the transmitter and the
receiver. Data and fits are shown in Fig. 5.
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Figure 5. Phase profiles of the radiation beam on axis ((a) y = 0) and at y0 = 35 mm from the
propagation axis (b) measured after removing the SPP. Black solid lines are the curves fitted to data.

By using the datasets φ(x) in Fig. 4 and the fit functions φG(x) in Fig. 5, we find the phase
differences φLG = φ− φG as shown Fig. 6.

The considerable deviations of data with respect to the theoretical fit obtained for the on axis profile
(Fig. 6(a)) are due to the low intensity close to the singularity that reduces the signal-to-noise-ratio of
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Figure 6. Phase profiles of the phase difference φLG = φ− φG on axis ((a) y = 0) and at y0 = 35 mm
from the singularity (b). Here φ is the dataset in Fig. 4 and φG is the best fit in Fig. 5. Black solid
lines are the curves fitted to data.
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Figure 7. Transverse curvature of the helicoidal wavefront CI(x) calculated from the fit function of
data in Fig. 6(b).

the measurements. Nevertheless, data qualitatively show the expected step-like function (see Eq. (1)).
This function becomes smoother by increasing the vertical distance from the singularity, as it occurs
for y0 = 35 mm (Fig. 6(b)). Notice that the theoretical arccos function of the fit (the second term in
Eq. (1)) closely follows the experimental data. The statistical error is 0.07 rad.

We show in Fig. 7 the intrinsic curvature CI = (1/k)[d2(φ(x)−φG)/dx2] of the helicoidal wavefront
obtained by deriving the fit function φLG in Fig. 6(b) (y0 = 35 mm).

From this result we obtain the Gaussian curvature Kh = CI,max CI,min = −1.4 m−2 which is
in agreement with the value obtained from pure geometrical considerations Kg = −c2h/(c2h + ρ2

h)2 =
−1.1±0.4 m−2, where ch = 1/k is the helicoid slant and ph the radial distance from the singularity with
5mm uncertainty. Notice that the Gaussian curvature is a negative, unique characteristic of the OAM
beams, at variance to traditional radiation.

The mean curvature Hh has been obtained from data shown in Fig. 4 with two local fits (11
data points) around x1 = −25mm and x2 = 25 mm and then deriving the two independent fits to
obtain the relative curvatures CI,1(x) and CI,2(x). The average between the maximum curvature
max[CI,2(x)] = 0.0146 cm−1 and the minimum curvature min[CI,1(x)] = −0.0154 cm−1 gives Hh = −4
10−4 cm−1. It shows a value close to zero as predicted by the theory of the minimal surfaces [17].

The topological charge can be measured in a local manner from the curvature CI(x) deduced
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from transverse measurements of the phase functions, being l = k CI(x2 + y2
0)

2/(2xy0). To this aim
measurements can also be performed far from the singularity, but the position of the singularity from
the scan path should be known. Both the radio-vortex and the pure Gaussian beam are necessary to
measure φ(x) and φG(x), respectively, and they should be imposed at the source level (by inserting and
removing the SPP in our case). However, at large distances φG(x) becomes almost linear, and the pure
Gaussian beam (l = 0) is in principle not strictly necessary, with the corresponding curvature being
negligible.

5. CONCLUSIONS

Stemming from results recently obtained in the visible spectrum with lasers, we have introduced
a formalism and the corresponding experimental technique based on a scan interferometric method
to measure the Gaussian and mean curvatures of wavefronts endowed with non-trivial topological
properties. The wavefront of a radio-vortex has been characterized in the far field of the source, thus
proving the feasibility of local measurements of the topological charge. The two curvatures are obtained
by separating the helical wavefront from the phase profile of the Gaussian beam undergoing diffraction.
To the best of our knowledge, this is the first time a radio-vortex curvature is characterized in the far
filed of the source.

The Gaussian and mean curvatures are compatible with the theoretical expectations based on
geometrical/diffraction arguments. The large relative error, ≈ 36%, of the Gaussian curvature Kg

estimated geometrically comes from the misalignments and positioning errors of the transmitter, the
receiver, and the SPP adopted to generate the radio-vortex.

The topological charge value, l = 1.4 ± 0.4, is compatible with the twist imposed by the SPP. It
has been obtained from CI by exploiting the position of the singularity. Here the main source of error is
still the vertical position of the scan path from the singularity. In our setup, the actual position of the
singularity appears more critical than the curvature measurements in order to determine the topological
charge. By increasing l the relative detection accuracy of the topological charge (measured at the same
intensity and vertical distance y0) remains constant. In fact, despite that φG does not depend on l the
phase φLG is proportional to l. This introduces the benefit that the phase φLG becomes more easily
distinguishable from the overall phase function φ(x) for l > 1. However, the error of the topological
charge σl, due to the uncertainty of the vertical position y0, is still proportional to l, keeping the relative
accuracy σl/l constant.

In practical applications, where the measure of several OAM states is required, the singularity
position could be easily obtained from the curvature itself by sending a known initial OAM reference
state. On the contrary, the distance of the scanning line from the singularity is not strictly necessary for
the local detection of OAM radiation. The Gaussian beam (l = 0) is distinguishable from a radio-vortex
(l �= 0) by checking the condition of the minimal surface Hh ≈ 0, the negative sign of the Gaussian
curvature or the inversion of the sign in CI [11]. These quantities are directly obtained from the phase
profiles.

Notice that when the position of the scanning line from the singularity is known, the curvature can
also be measured by accessing a small portion of the scan. Obviously, despite that the locality of the
proposed method is not limited in principle, the instrumental signal-to-noise-ratio should be increased
by reducing the scan path, with the phase variation along the path being smaller.
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