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In this work we demonstrate the usage of the VegasFlow library on multidevice situations: multi-
GPU in one single node and multi-node in a cluster. VegasFlow is a new software for fast evaluation
of highly parallelizable integrals based on Monte Carlo integration. It is inspired on the Vegas
algorithm, very often used as the driver of cross section integrationds and based on Google’s
powerful TensorFlow library. In this proceedings we consider a typical multi-gpu configuration
to benchmark how different batch sizes can increase (or decrease) the performance on a Leading

Order example integration.

40th International Conference on High Energy physics - ICHEP2020
July 28 - August 6, 2020
Prague, Czech Republic (virtual meeting)

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:juan.cruz@mi.infn.it
mailto:stefano.carrazza@mi.infn.it
https://pos.sissa.it/

VegasFlow Juan M. Cruz-Martinez

1. Introduction

State-of-the-art computations in High Energy Physics (HEP) require computing complex multi-
dimensional integrals numerically, as the analytical result is often not known. Monte Carlo (MC)
algorithms are generally the option of choice for this kind of integrals, be it when considering
HEP applications or elsewhere, as the error of such algorithms does not grow with the number of
dimensions.

In particular, in the HEP literature, MC methods based on the idea of importance sampling are
widespread as they combine the robustness of MC algorithms for high dimensional situations with
the flexibility of adaptive grids.

The Vegas algorithm [1, 2] is one of the main drivers for multi-purpose parton level event
generation programs based on fixed order calculations such as MCFM [3, 4] or NNLOJET [5]
and is also present in more general tools such as MG5_aMC@NLO [6] and Sherpa [7]. Whereas
the original implementation of the algorithm was written for a single CPU, nowadays it is usually
implemented to take advantage of multi-threading CPUs and distributed computing. Indeed, MC
computations are what is informally known as “embarrassingly parallel”.

However, the parallelization of a computation over multiple CPUs does not decrease the
number of CPU-hours required to complete a computation and the cost of such calculations is
driving the budget of big science experiments such as ATLAS or CMS [8]. With VegasFlow [9, 10]
we implement the importance sampling techniques from Vegas to run both in CPUs and GPUs,
enabling further acceleration of complicated integrals by leveraging the abstracting possibilities
offered by TensorFlow [11].

2. A toolset for a new generation of Monte Carlo generators

Monte Carlo generators are at the core of HEP phenomenology, and they have been for many
years. As a result a plethora of tools, libraries and algorithms have been developed around these
programs. Some examples of this are the LHAPDF library [12], the RAMBO [13] phase space
generator or the Vegas algorithm mentioned above. This bring us to the situation in Fig. 1a where,
if one would like to write a new program could take advantage of the existing tools, greatly reducing
the amount of effort necessary to produce results.

For GPU computations, however, the situation is direr: many (if not most) of the necessary tools
need to be written from scratch. Not only the ones we are interested in (in the example of Fig. 1b,
the matrix element) but also auxiliary elements such as the integrator or the PDF interpolation
library.

With VegasFlow [9] and PDFFlow [14] we provide two of these tools which we hope will
kick-start a new era of truly performant HEP phenomenology where the new advances in hardware
are exploited to the fullest.

3. VegasFlow

GPU computing has become ubiquitous in the world of High Performance Computing (HPC).
These devices provide a way of enormously accelerating parallel computations reducing both
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form a Monte Carlo generator to be coded from scratch.

Figure 1: Schematic view of the ingredients necessary to write a new Monte Carlo generator for a new
process. In this case the ideal situation is such we can only worry about the matrix element and use existing
tool for the rest of the program (left). For GPU computing, however, this cannot yet be the case, as only some
of the tools exist (right).

computing time and power consumption. With VegasFlow we aim to eliminate the technological
gap between the HPC and HEP communities by providing a library that can silently offload very
complicated calculation to hardware accelerators.

A paramount example is the simulation of proton-proton collisions considered above, with
PDFFlow [14] we already offload the computation of the initial state to the GPU, with VegasFlow [9]
the numerical Monte Carlo is also offloaded to the GPU. At this point only the actual matrix element,
describing the physics of the interaction, and its phase space need to be written by the user.

The documentation for this library can be consulted at VegasFlow.rtfd.io where a detailed
description of the code together with examples can be found.

One of the challenges of HPC is to manage multidevice computation. In this proceedings we
will mention two of the use cases considered in VegasFlow: running in multiple-GPUs in one single
machine and running in a cluster.

3.1 Multi-GPU

The amount of events that can be run in parallel on a GPU is directly related to the memory
capacity of the device. As a rule of thumb, running more events at once will reduce the latency
associated with the communication between the GPU and the CPU. On the other hand, and depending
on the specifics of the hardware, it might be preferable to reduce the number of points per batch.
One reason to do so is to ensure that all GPUs (if there is more than one) receive a share of the data
so no device is idle at any point.

In order to control the amount of points that VegasFlow will send to the GPU we provide the
keyword events_limit. This variable becomes specially relevant for multidevice computation.
It is clear from Fig. 2 that there is no one-trick value as different devices will work differently as
the batch size changes. We observe that the performance of the calculation in the GPU is impacted
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Figure 2: Example of the effect of running an integration in different devices with different batch sizes.
Greater batch sizes can improve the performance of the GPU by minimizing i/o latency. For CPU computation,
where this issue doesn’t exist, a greater batch size actually hurts performance. Note: the timing in the CPU
is scaled by a factor of 10 in order to show them in the same plot. The integration corresponds to the single
top example shown in [9].

when the number of events per batch is too small. This can be easily understood, as for a batch
size of 50% of the events, there is only two transfers of data from the CPU to the GPU, while for
a batch size of 2% there will be 50 operations of data transferring. We also observe that, once a
certain threshold is reached, increasing the size of the batch does not impact the performance. This
threshold depends on the hardware (how fast is the data transfer) and the calculation (for how long
will the GPU be computing) and it is the point at which the transfer time is offset by the calculation
itself.

Below we show an example of how to set the batch size using events_limit in actual code
with a small toy integrand:

>>> from VegasFlow import VegasFlow

>>>

>>> def complicated_integrand(xarr, **kwargs):
>>> return tf.reduce_sum(xarr, axis=1)
>>>

>>> n_dim = 10

>>> n_events = int(le6)

>>> integrator = VegasFlow(n_dim, n_events, events_limit = int(le5))
>>> integrator.compile(complicated_integrand)

>>> res = integrator.run_integration(n_iter = 5, log_time = True)
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Finally, one other interesting aspect on Fig. 2 is that for the CPU the behaviour is opposite to
that of the GPU. In this case there is no transfer of data to be performed and so an increase of the
batch size has a negative impact as VegasFlow needs to allocate a bigger chunk of RAM.

3.2 Cluster

A common use case for any parallelizable Monte Carlo algorithm is cluster computation. In
the simplest scenario one would just send a separate instance of the program to each node of the
cluster, combining the results afterwards in a consistent way.

This, however, presents a challenge for adaptable Monte Carlo algorithm such as VegasFlow,
as every iteration informs the subsequent run. We overcome this problem by implementing an
interface to the Dask [15] library.

The main advantage of implementing an interface to Dask is that it means automatic support
for all Dask-supported backend. The authors must warn, however, that it has not been possible to
test it beyond the systems available to them, so only the SLURM [16] system can be guaranteed to
work.

Below we extend the previous example where a SLURMCluster instance from Dask is config-
ured and passed to VegasFlow. After calling the method set_distribute with the reference to
the chosen cluster, the method run_integration will send the job to the cluster instead of running
them in the local computer.

>>> from dask_jobqueue import SLURMCluster

>>>

>>> cluster = SLURMCluster(queue="<g>", project="<p>", cores=4, memory="2g")
>>>

>>> integrator.set_distribute(cluster)

>>> res = integrator.run_integration(n_iter)
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