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A CONSTRUCTION OF FROBENIUS MANIFOLDS

FROM STABILITY CONDITIONS

ANNA BARBIERI, JACOPO STOPPA AND TOM SUTHERLAND

Abstract. A finite quiver Q without loops or 2-cycles defines a CY3

triangulated category D(Q) and a finite heart A(Q) ⊂ D(Q). We show
that if Q satisfies some (strong) conditions then the space of stability
conditions Stab(A(Q)) supported on this heart admits a natural fam-
ily of semisimple Frobenius manifold structures, constructed using the
invariants counting semistable objects in D(Q). In the case of An eval-
uating the family at a special point we recover a branch of the Saito
Frobenius structure of the An singularity y2 = xn+1.

We give examples where applying the construction to each mutation
of Q and evaluating the families at a special point yields a different
branch of the maximal analytic continuation of the same semisimple
Frobenius manifold. In particular we check that this holds in the case
of An, n ≤ 5.
MSC2010: 14N35, 53D45, 16G20.
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1. Introduction

There is a strong formal analogy between wall-crossing structures for in-
variants enumerating semistable objects in abelian and triangulated cate-
gories and certain data attached to a semisimple Frobenius manifold. We
refer to the wall-crossing theory developed in [13, 15, 16] and in particular to
the structures described in [4, 5, 9, 10, 13, 17], as well as to the connections
between spaces of stability conditions and semisimple Frobenius manifolds
discovered by Bridgeland (see e.g. [2, 3]).
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The purpose of the present paper is to present an approach for turning
this formal analogy into precise results, at least for some special examples.

We work with a well-studied class of CY3 triangulated categories D =
D(Q,W ) attached to quivers with potential (Q,W ), see e.g. [6, Section
7]. An important example is the CY3 category D(An) = D(An, 0) attached
to the Dynkin quiver An. Here we do not consider the difficult problem
of identifying (a quotient of) the space of Bridgeland stability conditions
Stab(D) globally with a manifold which is known a priori to admit a natu-
ral Frobenius structure (see e.g. [3, 6, 18]). Instead we first study in detail
the different, local problem of constructing a germ of a semisimple Frobe-
nius manifold using only the invariants enumerating semistable objects in D.
In the second part of the paper we work out how this germ changes under
mutation of Q, and relate this to analytic continuation of the germ, in some
special examples. So the structures we describe do not live on (a quotient
of) Stab(D), but rather on the natural domain of definition of n-dimensional
semisimple Frobenius structures, the configuration space of n points in C.
More precisely we develop two main ideas.

(A) Fixing a finite heart A ⊂ D, with n isomorphism classes of simple
objects, we study how to use the invariants enumerating semistable objects
in D to endow the space of stability conditions Stab(A) ∼= H̄n supported
on A with the structure of a semisimple Frobenius manifold. The canonical
coordinates u1, . . . , un allow us to regard this semisimple Frobenius structure
as living on an open subset of the configuration space

Cn(C) = {(u1, . . . , un) ∈ Cn : i 6= j ⇒ ui 6= uj}/Σn.

Such a structure may then be continued analytically to the universal cover

C̃n(C).

(B) Suppose A′ = A′(Q′,W ′) ⊂ D is another heart, where (Q′,W ′) is ob-
tained from (Q,W ) by quiver mutation. Via the canonical coordinates u′i
this gives a different semisimple Frobenius structure on another open subset
of Cn(C). Since the categories D(Q), D(Q′) are equivalent, it seems natural
to ask if the two structures are related by analytic continuation, i.e. if they

belong to the same semisimple Frobenius manifold structure on C̃n(C). This
would give a way to understand the Frobenius manifold in terms of stabil-
ity conditions (with different branches corresponding to tilts of the original
heart).

Under (very) restrictive conditions we can make the above picture precise.

(A) If A ⊂ D is a finite heart as above then by the results of [1] (based
on [4, 15] and especially on the work of Joyce [13]) there is a well-defined,
canonical (but infinite-dimensional) Frobenius type structure on an auxil-
iary bundle over Stab(A), defined over a ring of formal power series C[[s]],
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s = (s1, . . . , sn), depending only on categorical data. There is a formal pa-
rameter si for each class of a simple object. Joyce’s original, formal construc-
tion in this case is recovered at the special point sJ = (s1 = 1, . . . , sn = 1).
The notion of a Frobenius type structure is due to Hertling and arises in
the construction of Frobenius manifolds in singularity theory [12]. By gen-
eral results of Hertling, a section ζA of this auxiliary bundle can be used to
pull back this structure to the tangent bundle TStab(A), and one can give
conditions under which this pullback is Frobenius. We say that the heart
A ⊂ D is good if there is a (good) section ζA such that the pullback along ζA
gives a nontrivial jet (quadratic or higher) of semisimple Frobenius manifold
structures, i.e. if the pullback is a Frobenius structure modulo terms which
lie in (s)p for some p ≥ 3. By general theory such jets can always be lifted
to genuine families of semisimple Frobenius manifolds, which can then be
evaluated at the geometrically meaningful Joyce point sJ . (The lift is not
unique, but for a fixed good heart A there is a natural finite set of lifts,
including a canonical minimal choice). We give a characterisation of good
sections ζA (Corollary 3.14), and work out the quadratic jets of the Stokes
data (generalised monodromy) of the corresponding semisimple Frobenius
manifolds (Lemma 4.4). Our whole construction is summarised in Theorem
5.4.

We provide several examples, and we treat in detail the special case of
D(An). (In this case the jet is of order n, and all the natural lifts coincide
with the canonical one). In particular we prove the following result.

Theorem 1. Let A(An) ⊂ D(An) be the standard heart. The construc-
tion described in (A) above (see Theorem 5.4 and Corollary 7.2) endows the
space of stability conditions Stab(A(An)) with the structure of a semisimple
Frobenius manifold, and this coincides with a branch of the Saito Frobenius
structure on the unfolding space of the An singularity y2 = xn+1.

(B) We extend Theorem 1 to all mutations of An, and we give examples
where all the quivers in a mutation class admit good sections, such that
evaluating at sJ yields different branches of the same semisimple Frobenius
manifold on Cn(C). Our examples currently include An for n ≤ 5 (Figure
1) as well as some other quivers obtained from triangulations of marked
bordered surfaces (Figure 2).

Theorem 2. Let Q be a quiver mutation equivalent to An, A(Q) ⊂ D(Q) ∼=
D(An) the corresponding heart.

(i) The construction described in (A) above (see Theorem 5.4 and Lemma
8.1) endows Stab(A(Q)) with the structure of a semisimple Frobe-
nius manifold.

(ii) Suppose n ≤ 5. Then this semisimple Frobenius manifold coin-
cides with a branch of the maximal analytic continuation of the Saito
Frobenius structure for the An singularity y2 = xn+1.
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We expect that the statement (ii) can be generalised to all values of n.
In the simplest case this gives a way to reconstruct the Saito Frobenius
structure for the A2 singularity y2 = x3 from the CY3 category D(A2).

Recall that analytic continuation of semisimple Frobenius manifolds can
be understood in terms of a braid group action on Stokes matrices. We
prove Theorem 2 (ii) by writing down explicit braid relations for mutations
of the basic quiver An. For simple mutations we observe a neat correspon-
dence between mutations and braidings, but the general picture seems quite
complicated (Cotti, Dubrovin and Guzzetti explained to us that a similar
phenomenon occurs in their work on the quantum cohomology of Grassman-
nians [7]).

1 2 3// // 1

2

3__❅❅❅❅❅❅❅❅

//

��✁✁
✁✁
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✁

Figure 1. Mutation equivalent quivers corresponding to
hearts for D(A3). They also correspond to different branches
of the A3 Frobenius manifold.
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3

oo

2

❃❃
❃

��❃
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AA✂✂✂✂✂✂✂✂

Figure 2. Mutation equivalent triangulation quivers for the
annulus. They also correspond to different branches of the
same semisimple Frobenius manifold.

Plan of the paper. Section 2 contains background material about the
infinite-dimensional Frobenius type structure on Stab(A). Section 3 uses
this to construct jets of families of finite-dimensional, semisimple Frobenius
type structures, and Section 4 discusses how to lift these jets naturally to
genuine families. Both sections contain some explicit examples. Section 5
recalls the notion of a Frobenius manifold, due to Dubrovin [8], and then uses
Hertling’s pullback to turn our structures into families of semisimple Frobe-
nius manifolds. There are further explicit examples in Section 6. Section 7
contains the proof of Theorem 1. Section 8 discusses the relation between
mutations and analytic continuation and contains the proof of Theorem 2.

Acknowledgements. We would like to thank Tom Bridgeland, Sara An-
gela Filippini, Mario Garcia-Fernandez and Giordano Cotti. We are grateful
to the anonymous Referee for a careful reading of the manuscript.
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2. Infinite-dimensional Frobenius type structures

We start by briefly recalling the categorical setup described e.g. in [6, Sec-
tion 7]. Let D be a C-linear triangulated category of finite type. Following
[6] in this paper we always assume that

• D admits a bounded t-structure whose heartA ⊂ D is a finite abelian
category, with n distinct simple objects up to isomorphism;

• D is CY3, that is for all A,B ∈ D there are functorial isomorphisms

HomD(A,B[i]) = HomD(B,A[3− i])∗.

The finiteness condition is especially restrictive. It implies that the Grothe-
dieck group K(D) (generated by isomorphism classes of objects modulo the
relations given by exact triangles) is isomorphic to Zn.

Definition 2.1. The Euler form on K(D) is defined by

〈E,F 〉 =
∑

i∈Z

(−1)i homD(E,F [i]).

By the CY3 condition this is a skew-symmetric bilinear form on K(D).

One can associate a quiver to a category D as above with a fixed finite
heart A ⊂ D.

Definition 2.2. Let A ⊂ D be a finite heart. We define a quiver Q(A)
given by

• the set of vertices is the set of isomorphism classes of simples Si ∈ A;
• there are nij = ext1A(Si, Sj) arrows between the vertices i and j.

The main point is that, fixing a choice of potential, one can essentially
reverse this construction.

Theorem 2.3 ([6, Theorem 7.2]). Let (Q,W ) be a quiver with reduced poten-
tial. Then one can construct a C-linear, finite type CY3 category D(Q,W ),
and a finite heart A = A(Q,W ) ⊂ D(Q,W ), such that the associated quiver
Q(A) is isomorphic to Q. In particular the simple objects of A are in natural
bijection with vertices of Q, and the arrows of Q give bases for the extension
spaces between them.

In the rest of this paper we write A for a category A(Q,W ), with its
natural embedding

A = A(Q,W ) ⊂ D(Q,W ) = D.

In particular the natural inclusion of Grothendieck groups K(A) →֒ K(D) is
an isomorphism. So K(A) is the lattice generated by the classes of simples
[Si], i = 1, . . . , n.
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Definition 2.4. The effective cone K(A)>0 ⊂ K(A) is the submonoid gen-
erated by the classes of simples [Si], i = 1, . . . , n. Equivalently it is the
submonoid of K(A) generated by classes of nonzero objects.

Let us denote by H̄ the semi-closed upper half plane H ∪ R<0.

Definition 2.5. The space of stability conditions Stab(A) is the open subset

{Z ∈ Hom(K(A),C) : Z(K>0(A)) ⊂ H̄} ⊂ Hom(K(A),C).

Thus Stab(A) is a complex manifold, biholomorphic to H̄n. We refer
to points Z ∈ Stab(A) as central charges. A stability condition for D is
determined by a pair (A, Z), consisting of a heart A and a central charge Z
(see e.g. [6, Section 7.5]).

There is a well-defined enumerative theory for semistable objects of a
given class in D, [14, Chapter 7].

Definition 2.6. We denote by DTA(α,Z) ∈ Q the Donaldson-Thomas type
invariant virtually enumerating objects in D of class α ∈ K(D) ∼= K(A)
which are semistable with respect to the stability condition determined by
the pair (A, Z).

The shift functor [1] ∈ Aut(D) preserves the class of semistable objects
and acts on K(D) as −I, so we have

DTA(α,Z) = DTA(−α,Z).

We turn to describing the natural infinite-dimensional Frobenius type
structure on the space of stability conditions Stab(A). We need some pre-
liminary notions.

Definition 2.7. We denote by C[K(A)] the twisted group-algebra onK(A).
It is generated by xα, α ∈ K(A), with commutative product

xαxβ = (−1)〈α,β〉xα+β.

It is a Poisson Lie algebra with the bracket

[xα, xβ ] = (−1)〈α,β〉〈α, β〉xα+β .

The classes [Si] ∈ K(A)>0 give a canonical basis of K(A) with respect to
which we decompose every other class,

α =

n∑

i=1

ai[Si].

We write

[α]± =

n∑

i=1

[ai]±[Si]
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where [ai]± denote the positive and negative parts, i.e. [ai]+ = max(ai, 0),
[ai]− = min(ai, 0), and we define

len(α) =

n∑

i=1

|ai|.

Let s1, . . . , sn denote formal parameters. We denote this collection of formal
parameters by s, and set

sα =

n∏

i=1

saii .

In particular s[α]+−[α]− is a monomial, not just a Laurent monomial. We
denote the maximal ideal and its powers by

(s)N = (s1, . . . , sn)
N ⊂ C[s1, . . . , sn].

Let us introduce the coefficients

c(α1, · · · , αk) =
∑

T

1

2k−1

∏

{i→j}⊂T

(−1)〈αi,αj〉〈αi, αj〉.

where the sum is over all connected trees T with vertices labelled by {1, . . ., k},
endowed with an orientation compatible with the labelling.

Definition 2.8. For α 6= 0 we introduce the complex-valued formal power
series in s given by

fα
s
(Z) =

∑

α1+···+αk=α, Z(αi)6=0

c(α1, . . . , αk)Jk(Z(α1), . . . , Z(αk))

k∏

i=1

s[αi]+−[αi]− DTA(αi, Z), (2.1)

where Jk : (C
∗)k → C are the sectionally holomorphic functions introduced

by Joyce [13]. Note that this is well-defined because there are only finitely
many decompositions in (2.1) modulo (s)N for N ≫ 1. The holomor-
phic generating function of DTA is the holomorphic function with values
in C[K(A)][[s]] given by

Φs(Z) =
∑

α6=0

fα
s (Z)xα.

Remark 2.9. The original, formal definition of a Joyce holomorphic gen-
erating function is recovered at the special point

sJ = (s1 = 1, . . . , sn = 1).

We do not know how to give a meaning to this specialisation in general. In
the following we will reduce to a finite-dimensional context and specialise to
the point sJ after the reduction.

Proposition 2.10 ([1, Proposition 3.17]). The coefficients of the formal
power series fα

s (Z) are holomorphic functions of Z ∈ Stab(A).
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Let us also recall the notions of Frobenius structure on the fibres of an
arbitrary holomorphic vector bundle.

Definition 2.11 (Frobenius type structure, [12, Definition 5.6]). Let K →
M be a holomorphic vector bundle on a complex manifold. A Frobenius
type structure on K is given by a collection (∇r, C,U ,V, g) of holomorphic
objects with values in K, where

• ∇r is a flat connection,
• C is a Higgs field, i.e. a 1-form with values in endomorphisms such
that C ∧ C = 0,

• U ,V are endomorphisms,
• g is a quadratic form,

such that the conditions

∇r(C) = 0,

[C,U ] = 0,

∇r(V) = 0,

∇r(U)− [C,V] + C = 0 (2.2)

hold. Moreover we require that g is covariant constant with respect to ∇r,
and that C, U are symmetric and V is skew-symmetric with respect to g.

The function DTA determines a Frobenius type structure on a bundle
over Stab(A). The endomorphism U and Higgs field C are given essentially
by the central charge Z and its exterior differential. The endomorphism
V and flat connection ∇r are given essentially by the adjoint action of the
holomorphic generating function.

Proposition 2.12 ([1, Proposition 3.17]). Let K → Stab(A) denote the
trivial vector bundle with fibre C[K(A)][[s]]. Consider the following (formal
power series) holomorphic objects with values in K:

• a connection

∇r
s
= d+

∑

α6=0

ad fα
s
(Z)xα

dZ(α)

Z(α)
,

• a 1-form with values in endomorphisms

C = −dZ,

(acting as CX(xα) = XZ(α)xα for all holomorphic vector fields X)
• endomorphisms

U = Z

(acting as Z(xα) = Z(α)xα) and

Vs = adΦs(Z) = ad
∑

α6=0

fα
s (Z)xα

• a quadratic form
g(xα, xβ) = δαβ .
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Then (∇r
s
, C,U ,Vs, g) defines a C[[s]]-linear Frobenius type structure.

Note that here we use the Lie algebra structure on C[K(A)] just to de-
scribe endomorphisms ofK, i.e. we work with a vector bundle not a principal
bundle.

Although we do not reproduce the proof of the Proposition here, we should
point out that it follows quite easily from Joyce’s work [13]. In particular
we note that

• flatness of ∇r
s
follows from a partial differential equation satisfied by

Φs(Z), which in turn follows easily from results in [13];
• the covariant constancy of g with respect to ∇r

s
uses the triangulated

and CY3 properties of D in an essential way.

What is needed for the latter condition is the equality

fα−β
s (Z)〈α, β〉 = −fβ−α

s (Z)〈β, α〉

for all α, β ∈ K(D). In our case this follows from

fα−β
s (Z) = fβ−α

s (Z)

which holds since [1] ∈ Aut(D) preserves semistability, and

〈α, β〉 = −〈β, α〉

which follows from the CY3 property.

The general notion of a bundle with a Frobenius type structure is of course
motivated by the special case of a Frobenius manifold M , corresponding to
certain structures on the tangent bundle TM . The notion of a Frobenius
manifold and its relation to a Frobenius type structure on TM are briefly
recalled at the beginning of Section 5 (see Definition 5.1 and Lemma 5.2).

3. Approximate finite-dimensional Frobenius type structures

Let K → M be a holomorphic vector bundle with Frobenius type struc-
ture (∇r, C,U ,V, g) on a complex manifold M . Write TM for the holomor-
phic tangent bundle to M . A holomorphic section ζ ∈ H0(M,K) can be
contracted with the Higgs field C to give a map

− C•(ζ) : TM → K (3.1)

i.e. minus the derivative of the section ζ along the Higgs field.
Our constructions in the present Section are motivated by the following

result.

Theorem 3.1 (Hertling [12, Theorem 5.12]). Suppose that ζ is a global
section of K such that

• it is a flat section with respect to the flat connection of the Frobenius
type structure, ∇r(ζ) = 0,

• it is homogeneous with respect to the endomorphism V, i.e. we have
V(ζ) = d

2ζ for some d ∈ C,
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• the map (3.1) is an isomorphism.

Then the pullback of (∇r, C,U ,V, g) along the map (3.1) gives a Frobenius
manifold structure on M with unit field given by the pullback of the section
ζ and with conformal dimension 2− d (see Definition 5.1).

We would like to apply Theorem 3.1 to the Frobenius type structure on
the bundle K → U given by Proposition 2.12, where U ⊂ Stab(A) is a
suitable open subset. Note that for a fixed holomorphic section ζ of K the
map −C•(ζ) = dZ(ζ) is onto the finite rank subbundle defined by

K(ζ) = im(dZ(ζ)) ⊂ K.

It is natural to ask when ζ is in fact a section of the bundle K(ζ).

Lemma 3.2. We have that ζ is a section of K(ζ) if and only if there are
elements α1, . . . , αr ∈ K(A), linearly independent over R, such that

ζ =
r∑

i=1

ci(Z, s)xαi
+

∑

a1+···+ar=1
a1α1+···+arαr 6=αi, i=1,...,r

ca1,··· ,ar(Z, s)xa1α1+···+arαr

where ci(Z, s), ca1,··· ,an(Z, s) are formal power series in the variables s with
holomorphic coefficients.

Proof. A holomorphic section ζ of K takes the form

ζ =
∑

α∈I′

cα(Z, s)xα

where I ′ ⊂ K(A) and the cα(Z, s), α ∈ I ′ are formal power series which do
not vanish identically. Let X be a holomorphic vector field. We compute

dZ(X)(ζ) =
∑

α∈I′

cα(Z, s)dZ(X)(xα)

=
∑

α∈I′

cα(Z, s)X(Z(α))xα .

So ζ ∈ K(ζ) if and only if there exists a holomorphic vector field X such
that for all α ∈ I ′ we have

X(Z(α)) = 1.

Choose a maximal set of elements α1, . . . , αr of I
′ which are linearly indepen-

dent over R. The functions Z(α1), . . . , Z(αr) are part of a local coordinate
system u1, . . . , un on Stab(A) with ui = Z(αi) for i = 1, . . . , r. The general
solution X to Xui = 1, i = 1, . . . , r is a vector field

X =

r∑

i=1

∂ui
+

n∑

j=r+1

bj∂uj

for arbitrary bj . All the other α ∈ I = I ′ \ {α1, . . . , αr} are linear combi-
nations α =

∑r
i=1 aiαi. The condition X(Z(α)) = 1 holds for α ∈ I if and

only if
∑r

i=1 ai = 1. �
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The following result is clear from the proof of Lemma 3.2.

Corollary 3.3. Suppose ζ is a section of K(ζ). The map −C•(ζ) = dZ(ζ) :
TU → K(ζ) is injective (and so an isomorphism) if and only if in Lemma 3.2
we have r = n and the functions c1(Z, s), . . . , cn(Z, s) are nowhere vanishing
on U . In this case K(ζ) ⊂ K is the subbundle generated by

dZ(∂Z(αi))(ζ) = xαi
+

∑

a1+···+ar=1
a1α1+···+arαr 6=αj , j=1,...,n

aica1,··· ,an(Z, s)xa1α1+···+anαn

for i = 1, . . . , n (following the notation of Lemma 3.2).

We will always assume that we are in the situation of Corollary 3.3. Thus
ζ is a section of the bundle K(ζ) and the natural map −C•(ζ) : TU → K(ζ)
is an isomorphism, so we can contemplate applying Theorem 3.1.

Definition 3.4. Let us denote by πζ : K → K(ζ) the orthogonal projection
onto K(ζ) with respect to the quadratic form g of Proposition 2.12. Note
that K is infinite-dimensional, but we will only apply πζ to sections of K

for which it is well-defined. We write ∇r,ζ
s , Cζ ,Uζ ,Vζ

s , g
ζ for the connection,

endomorphisms and quadratic form given respectively by

πζ ◦ ∇r
s|K(ζ), π

ζ ◦ C|K(ζ), π
ζ ◦ U|K(ζ), π

ζ ◦ Vs|K(ζ), g|K(ζ).

The holomorphic data

(K(ζ),∇r,ζ
s , Cζ ,Uζ ,Vζ

s , g
ζ)

give a formal family of structures on K(ζ), parametrised by s.
This is not in general a family of Frobenius type structures, and moreover

ζ is not in general a flat or Vs-homogeneous section of K(ζ): the Frobenius
type, ζ-flatness and conformal conditions do not hold modulo terms in s of
arbitrarily high degree.

However one can still ask whether this formal family osculates a family
of Frobenius type structures on K(ζ) to some order. More precisely we
ask whether the Frobenius type, ζ-flatness and conformal conditions hold
modulo some power (s)p of the ideal (s) = (s1, · · · , sn) with p ≥ 3, i.e.
modulo terms which are at least cubic.

In the rest of this section we study this problem. Even if it makes sense
more generally we will restrict to the case when the bundleK(ζ) is preserved
by the Higgs field and the endomorphism U . This condition is clarified by
the following result.

Lemma 3.5. Let ζ be a holomorphic section of K (we do not assume a
priori that ζ is a section of K(ζ)). The following are equivalent:

• K(ζ) is preserved by the Higgs field C = −dZ,
• K(ζ) is preserved by the endomorphism U = Z,
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• the section ζ has the form

ζ =

r∑

i=1

ci(Z, s)xαi

where α1, . . . , αr ∈ K(A) are linearly independent over R.

Proof. Suppose K(ζ) is preserved by C. Let us write

ζ =
∑

α∈I

cα(Z, s)xα

where I ⊂ K(A) and the cα(Z, s), α ∈ I are formal power series which do
not vanish identically. Then by construction sections of the bundle K(ζ)
have the form

dZ(X)(ζ) =
∑

α∈I

cα(Z, s)X(Z(α))xα

as X varies in the space of holomorphic vector fields on U . In order to
simplify the notation we set ζX = dZ(X)(ζ). Acting with the Higgs field
C = −dZ contracted with a holomorphic field Y we find

CY ζX = −
∑

α∈I

cα(Z, s)X(Z(α))Y (Z(α))xα.

So CY ζX is a section of K(ζ) if and only if there exists a holomorphic field
W = W (X,Y ) such that for all α ∈ I we have

W (X,Y )(Z(α)) = −X(Z(α))Y (Z(α)). (3.2)

Let α1, . . . , αr denote a maximal set of R-linearly independent elements
of I. Suppose there is a nontrivial α ∈ I \ {α1, . . . , αr}. Decomposing
α = a1α1 + · · · + arαr we find

W (X,Y )(Z(α)) =

r∑

i=1

aiW (X,Y )(Z(αi))

= −
r∑

i=1

aiX(Z(αi))Y (Z(αi)) (3.3)

where the second equality follows from applying (3.2) to each αi. On the
other hand applying (3.2) to α gives

W (X,Y )(Z(α)) = −
r∑

i,j=1

aiajX(Z(αi))Y (Z(αj)). (3.4)

By (3.3) for all k 6= l we have

W (∂Z(αk), ∂Z(αl))(Z(α)) = 0.

On the other hand (3.4) gives for all k 6= l

W (∂Z(αk), ∂Z(αl))(Z(α)) = −akal.
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It follows that ak or al vanish for all k 6= l, i.e. α must be a multiple of one
of α1, . . . , αr. By (3.3) for all k we have

W (∂Z(αk), ∂Z(αk))(Z(α)) = −ak.

On the other hand (3.4) gives for all k

W (∂Z(αk), ∂Z(αk))(Z(α)) = −a2k.

It follows that we must have ak = 0 or ak = 1 for all k. Since we already
know that at most one ak does not vanish we see that α must be one of
α1, . . . , αr, a contradiction. Thus the section ζ must take the form

ζ =

r∑

i=1

ci(Z, s)xαi

where α1, . . . , αr ∈ K(A) are linearly independent over R.
Conversely a straightforward computation shows that for a section ζ of

this form and arbitrary fields X,Y we can find a vector field W (X,Y ) as
above, so K(ζ) is preserved by C.

The argument for the endomorphism U is almost identical and we leave
it to the reader. �

In the following we always assume that the bundle K(ζ) is preserved by
the Higgs field C and the endomorphism U , and that the map −C•(ζ) :
TU → K(ζ) is an isomorphism. According to Corollary 3.3 and Lemma 3.5
this holds precisely when the section ζ takes the form

ζ =

n∑

i=1

ci(Z, s)xαi
(3.5)

where α1, . . . , αn ∈ K(A) are a basis over R and the functions ci(Z, s) are
nowhere vanishing on U . Our family of structures on K(ζ) is then given by

(∇r,ζ
s , C|K(ζ),U|K(ζ),V

ζ
s , g|K(ζ)).

Lemma 3.6. Pick a section ζ of the form (3.5) (so ζ is a section of K(ζ)
and the latter is preserved by C and U). Fix i, j = 1, . . . n, and p ≥ 3.
Suppose one of the following alternatives holds: we have

len(αj − αi) ≥ p,

or

quadratic condition: for all k 6= i, j we have

〈αj , αi〉〈αj − αk, αk − αi〉 = 〈αj , αk〉〈αk, αi〉, (3.6)

vanishing condition: for all nontrivial decompositions αj−αi = β+γ
with β, γ not equal to αj − αk, αk − αi the product

〈β, γ〉fβ
s (Z)fγ

s (Z) (3.7)

lies in (s)p.
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Then the curvature component g(xαj
, F (∇r,ζ

s )xαi
) vanishes modulo terms

which are of order at least p in s.

Proof. Under the assumptions the bundle K(ζ) is the subbundle generated

by the sections xα1
, . . . , xαn . Let us write the connection ∇r,ζ

s with respect
to this local trivialisation. We compute

∇r,ζ
s
(xαi

) =
∑

α6=0

πζ
(
fα
s
(Z)(−1)〈α,αi〉〈α,αi〉xα+αi

)
d logZ(α)

=
n∑

j=1

(−1)〈αj ,αi〉〈αj , αi〉f
αj−αi
s (Z)xαj

d logZ(αj − αi).

So the connection matrix of 1-forms A in this local trivialisation is given by

Aji = (−1)〈αj ,αi〉〈αj , αi〉f
αj−αi
s (Z)d logZ(αj − αi) (3.8)

and the curvature form dA+A ∧A is the matrix of 1-forms

(−1)〈αj ,αi〉〈αj , αi〉df
αj−αi
s (Z) ∧ d logZ(αj − αi)

+

n∑

k=1

(−1)〈αj ,αk〉+〈αk ,αi〉〈αj , αk〉〈αk, αi〉f
αj−αk
s (Z)fαk−αi

s
(Z)

d logZ(αj − αk) ∧ d logZ(αk − αi).

We see from this expression that if len(αj − αi) ≥ p then the component
(dA+A ∧A)ji vanishes modulo (s)p. In general, flatness of the connection
∇r

s
on K is expressed by the Joyce PDE [13]

dfα
s
(Z) = −

∑

α=β+γ

(−1)〈β,γ〉〈β, γ〉fβ
s
(Z)fγ

s
(Z)d logZ(β)

for all α 6= 0 (summing over decompositions with β, γ 6= 0). In our case we
choose α = αj − αi and write the PDE in the form

df
αj−αi
s (Z) = −

∑

k 6=i,j

(−1)〈αj−αk,αk−αi〉〈αj − αk, αk − αi〉f
αj−αk
s (Z)fαk−αi

s
(Z)

(
d logZ(αj − αk)− d logZ(αk − αi)

)

−
∑

αj−αi=β′+γ′

(−1)〈β
′,γ′〉〈β′, γ′〉fβ′

s
(Z)fγ′

s
(Z)d logZ(β′)

where in the last term we sum over decompositions with β′, γ′ not equal to
αj − αk, αk − αi for k 6= i, j. Note that we have

(
d logZ(αj − αk)− d logZ(αk − αi)

)
∧ d logZ(αj − αi)

= d logZ(αj − αk) ∧ d logZ(αk − αi).
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It follows that

(−1)〈αj ,αi〉〈αj , αi〉df
αj−αi
s (Z) ∧ d logZ(αj − αi)

= −
∑

k 6=i,j

(−1)〈αj ,αi〉+〈αj−αk,αk−αi〉〈αj , αi〉〈αj − αk, αk − αi〉

f
αj−αk
s (Z)fαk−αi

s (Z)d logZ(αj − αk) ∧ d logZ(αk − αi)

−
∑

αj−αi=β′+γ′

(−1)〈αj ,αi〉+〈β′,γ′〉〈αj , αi〉〈β
′, γ′〉fβ′

s (Z)fγ′

s (Z)

d logZ(β′) ∧ d logZ(αj − αi).

where in the last term we sum over decompositions with β′, γ′ not equal to
αj − αk, αk − αi for k = 1, . . . , n. Thus if we have

(−1)〈αj ,αi〉+〈αj−αk,αk−αi〉〈αj , αi〉〈αj − αk, αk − αi〉

= (−1)〈αj ,αk〉+〈αk ,αi〉〈αj , αk〉〈αk, αi〉

for k 6= i, j and 〈β′, γ′〉fβ′

s (Z)fγ′

s (Z) lies in (s)p then the xj component of

F (∇r,ζ
s )(xαi

) vanishes modulo terms which are of order at least p in s. �

Remark 3.7. We can choose the exponent p = pij as a function of i, j (so
we get different vanishing conditions of the various curvature components).
Note also that the quadratic condition (3.6) involves only our choice of
basis αi and the Euler form, while the vanishing condition (3.7) involves the
invariants DTA through the holomorphic generating functions.

The quadratic equations appearing in Lemma 3.6 can be rephrased as
follows.

Lemma 3.8. Fix p ≥ 3. Let αi be a basis of K(A)⊗ R. We denote by ǫij
a skew-symmetric tensor with ǫij = ±1, and by λ a fixed arbitrary constant.
Then we have the following equivalence: for all pairwise distinct i, j, k

len(αj − αi) < p ⇒ 〈αj , αi〉〈αj − αk, αk − αi〉 = 〈αj , αk〉〈αk, αi〉

if and only if

len(αj − αi) < p ⇒

{
〈αi, αj〉 = ǫijλ and

1 + ǫijǫjk + ǫjiǫik + ǫikǫkj = 0.

A particular solution is given by choosing ǫij = −1 for all i < j such that
len(αj − αi) < p.

Proof. We set xij = 〈αi, αj〉, so xij = −xji. The quadratic equations hold
if and only if

x2ij + xijxjk + xjixik + xikxkj = 0 (3.9)

for all pairwise distinct i, j, k. Cyclically permuting i → j → k in (3.9) and
subtracting from (3.9) gives

x2ij − x2jk = 0
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for all pairwise distinct i, j, k, so we must have xij = ǫijλ for a skew-
symmetric tensor ǫij and a fixed, arbitrary constant λ. Plugging this into
(3.9) turns it into

1 + ǫijǫjk + ǫjiǫik + ǫikǫkj = 0. (3.10)

Direct computation shows that a skew-symmetric index ǫij with ǫij = −1
for all i < j is a solution. �

Remark 3.9. We may regard (3.10) abstractly as a system of quadratic con-
straints on a skew-symmetric tensor ǫij = ±1, without reference to a basis αi

for K(A)⊗R. Many other solutions are possible, e.g. when rank(K(A)) = 3
the possibilities are

ǫij =


1
1 1


 ,


−1

1 1


 ,


1
1 −1




up to overall multiplication by ±1. We will consider these solutions further
in Section 6. Note that when rank(K(A)) = 2 the condition (3.10) is empty.

Similarly we take a closer look at the vanishing condition (3.7). At least
in the simplest case p = 3 (i.e. when we are only looking at quadratic jets)
there is a natural, simpler condition which implies it, and which does not
involve the Euler form or DTA invariants.

Lemma 3.10. Let αi be a basis of K(A) ⊗ R. Suppose that for all i, j =
1, . . . , n, i 6= j we have either

• αj − αi is the class of a simple object or its shift, or
• αj − αi is the sum of two classes of simple objects or their shifts of
the form αj − αk, αk − αi, or

• αj −αi is not the sum of two classes of simple objects or their shifts.

Then the vanishing condition in Lemma 3.6 holds for p = 3 and all i, j =
1, . . . , n.

Proof. This is obvious from the definition of the grading by length. �

If [Si] is the basis of K(A) given by classes of simple objects, another
basis αj for K(A)⊗ R satisfies the assumptions of Lemma 3.10 if and only
if for all i 6= j we have either

αi − αj = ±[S]

for some simple S, or

αi − αj = (±[S]) + (±[T ])

where, for some k,

±[S] = αi − αk, ±[T ] = αk − αj.

This condition clearly depends only on the rank of K(A).
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Example 3.11. Let rank(K(A)) = n. If [Si] are the classes of simple
objects, a possible solution αj to the conditions of Lemma 3.10 is given by
the triangular basis

αj =

n∑

i=j

[Si],

so e.g. in ranks 2, 3 we have

α1 = [S1] + [S2], α1 = [S1] + [S2] + [S3],
α2 = [S2] α2 = [S2] + [S3],

α3 = [S3].

Another possible solution is given by

αi = (−1)i−1[Si] + [Sn], i = 1, . . . , n − 1; αn = [Sn]

so e.g. in rank 3 we have

α1 = [S1] + [S3],

α2 = −[S2] + [S3],

α3 = [S3].

Lemma 3.12. Suppose that the conditions of Lemma 3.6 hold for fixed

i, j = 1, . . . , n and p ≥ 3. Then we have g(xαj
,∇r,ζ

s (Vζ
s )xαi

) = 0 modulo
terms which are of order at least p in s.

Proof. We compute

πζ(Vs(xαl
)) = πζ

(∑

α6=0

fα
s (Z)(−1)〈α,αl〉〈α,αl〉xα+αl

)

=

n∑

k=1

fαk−αl
s (Z)(−1)〈αk ,αl〉〈αk, αl〉xαk

.

So in the local trivialisation ofK(ζ) given by xα1
, . . . , xαn the endomorphism

Vζ
s is given by the skew-symmetric matrix

(Vζ
s
)kl = (−1)〈αk ,αl〉〈αk, αl〉f

αk−αl
s

(Z). (3.11)

We have

∇r,ζ
s (Vζ

s ) = dVζ
s + [A,Vζ

s ]

= d(Vζ
s )kl +

n∑

p=1

(Akp(V
ζ
s )pl − (Vζ

s )kpApl)

= (−1)〈αk ,αl〉〈αk, αl〉df
αk−αl
s (Z)

+

n∑

p=1

(−1)〈αk ,αp〉+〈αp,αl〉〈αk, αp〉〈αp, αl〉f
αk−αp
s (Z)fαp−αl(Z)

(
d logZ(αk − αp)− d logZ(αp − αl)

)
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using the explicit form of Aij , (V
ζ
s )ij found in Lemma 3.6 and above. Arguing

as in the proof of Lemma 3.6 we see that if the conditions of that Lemma

are satisfied for fixed i, j = 1, . . . , n and p then ∇r,ζ
s (Vζ

s ) vanishes modulo
terms which are of order at least p in s. �

The following result is straightforward.

Lemma 3.13. Suppose that ζ is of the form (3.5) (so ζ is a section of K(ζ)
and the latter is preserved by C and U). Then we have

∇r,ζ
s
(C|K(ζ)) = 0,

[C|K(ζ),U|K(ζ)] = 0,

∇r,ζ
s (U|K(ζ))− [C|K(ζ),V

ζ
s ] + C|K(ζ) = 0.

Moreover g|K(ζ) is covariantly constant with respect to ∇r,ζ
s , and C|K(ζ),

U|K(ζ) are symmetric and Vζ
s is skew-symmetric with respect to g.

Lemmas 3.6, 3.12 and 3.13 immediately imply a result about Frobenius
type structures.

Corollary 3.14. Pick a section ζ of the form (3.5) and suppose that the
conditions of Lemma 3.6 hold for all i, j = 1, . . . , n, with the same p ≥ 3.
Then

• −C•(ζ) : TU → K(ζ) is an isomorphism,
• the structure on K(ζ) given by

(∇r,ζ
s
, C|K(ζ),U|K(ζ),V

ζ
s
, g|K(ζ))

is a Frobenius type structure modulo terms which are of order at least

p in s. More precisely the conditions F (∇r,ζ
s ) = 0 and ∇r,ζ

s (Vζ
s ) = 0

hold as identities of formal power series in s, modulo terms in s

which lie in (s)p, while the remaining conditions (2.2) and those on
the metric g|K(ζ) hold automatically to all orders in s.

Definition 3.15. We call a section ζ for which the conclusions of Corollary
3.14 apply a good section, and we say that the heart A is good if there exists
a good section ζ : U ⊂ Stab(A) → K. Similarly we say that the basis of
K(A)⊗ R underlying ζ is a good basis.

Thus Corollary 3.14 gives a characterization of good bases and sections.
The finite-dimensional Frobenius type structures obtained via Corollary 3.14
are only approximate, that is they are order p jets of families of Frobenius
type structures on the bundle K(ζ). Before we may apply Hertling’s result
(Theorem 3.1) we need to consider the problem of lifting them to genuine
Frobenius type structures. This problem will be solved in the next section.

Remark 3.16. The structure on K(ζ) specified by (∇r,ζ
s , C|K(ζ),U|K(ζ),V

ζ
s ,

g|K(ζ)) depends on the choice of a section ζ of the form (3.5) such that
the conditions of Lemma 3.6 hold for all i, j = 1, . . . , n. The section ζ
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encodes moduli given by the choice of basis αi for K(A)⊗R (satisfying the
strong constraints of Lemma 3.6), as well as those given by the choice of
holomorphic functions ci(Z, s). However it is clear from the results of this
section that the structure only depends on the choice of basis. This is in
contrast to the Frobenius manifolds we will construct by using Theorem 3.1,
which will depend on the ci(Z, s) moduli as well (through the pullback along
−C•(ζ) : TU → K(ζ)).

4. Lifting to finite-dimensional Frobenius type structures

This section is devoted to proving the following result.

Proposition 4.1. The approximate Frobenius type structure given by Corol-
lary 3.14 can be lifted canonically to a genuine Frobenius type structure. In

other words the solutions to the equations F (∇r,ζ
s ) = 0 and (2.2) given by

Corollary 3.14, which are defined modulo (s)p, can be lifted canonically to
solutions to all orders in s, and these lifted formal power series solutions
converge provided ||s|| is sufficiently small. Moreover the conditions on the
metric g|K(ζ) are also preserved.

The proof of Proposition 4.1 uses the general theory of isomonodromy for
a family of meromorphic connections on P1 with poles divisor 2·0+1·∞, and
in particular the relevant notions of Stokes factors, matrices and multipliers
(see e.g. [5, Section 2]).

We consider the family of meromorphic connections on the holomorphi-
cally trivial vector bundle on P1 modelled on K(ζ) (more precisely, a fibre
of the trivial bundle K(ζ)) given by

∇ζ
s
(Z) = d+

(U(Z)

z2
−

Vζ
s (Z)

z

)
dz

with parameter space U ⊂ Stab(A). This induces a family of connections on
the holomorphically trivial principal bundle on P1 with fibre GL(K(ζ)[[s]]).

Definition 4.2. Let P be the holomorphically trivial principal bundle on
P1 with fibre the complex affine algebraic group GL(K(ζ)[[s]]/(s)p) corre-
sponding to the GL(K(ζ)[[s]])-bundle described above.

We define the family of connections ∇ζ
s,p(Z) on P as the reduction modulo

(s)p of the connections ∇ζ
s(Z), that is

∇ζ
s,p(Z) = d+

(U(Z)

z2
−

Vζ
s,p(Z)

z

)
dz

where Vζ
s,p ∈ gl(K(ζ)[[s]]/(s)p) is the reduction modulo (s)p of Vζ

s .

Lemma 4.3. The family of connections on P given by ∇ζ
s,p(Z) has constant

generalised monodromy as Z varies in U .
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Proof. By Corollary 3.14 we have F (∇r,ζ
s,p) = 0 and the equations (2.2) hold

in the bundle P . This can be stated equivalently by introducing a connection
on the pullback of P to U × P1, given by

∇r,ζ
s,p −

1

z
dZ +

(U(Z)

z2
−

Vζ
s,p(Z)

z

)
dz,

which is then flat. It is well known that flatness of this connection is precisely
the isomonodromy condition (see e.g. [5, Section 3.3]). �

Let us focus for a moment on the special case p = 3, i.e. quadratic jets
of Frobenius type structures. For generic Z the generalised monodromy of

∇ζ
s,3(Z) can be computed explicitly. We introduce the set of roots (eigen-

values of ad(U))
{Z(αi − αj), i 6= j} ⊂ C

and assume its elements are distinct. We write Eij for the elementary ma-
trices. Finally we introduce the function

M2(z1, z2) = 2πi

∫

[0,z1+z2]

dt

t− z1
.

Lemma 4.4. The generalised monodromy of the connection ∇ζ
s,3(Z) is given

by

• the Stokes rays

ℓij(Z) = R>0Z(αi − αj) ⊂ C∗

for i 6= j,
• the corresponding Stokes factors

Sij(Z) = Sℓij (Z) = I − 2πi (Vζ
s,3)ijEij

+
∑

k

M2(Z(αi − αk), Z(αk − αj))(V
ζ
s,3)ik(V

ζ
s,3)kjEij .

(4.1)

Proof. The result follows from the Theorem in [5, Section 4.5] applied to the
bundle P . �

The following result allows to compute the monodromy modulo (s)3 in
the situation of Lemma 3.10.

Corollary 4.5. Suppose αi − αj is the class of a simple object or the sum
of classes of simple objects of the form αi − αk, αk − αj . Then we have

Sij(Z) = I − (−1)〈αi,αj〉〈αi, αj〉DTA(αi − αj, Z)sαi−αjEij .

Proof. If αi−αj is the class of a simple object or its shift then according to
(4.1) we have modulo (s)3

Sij(Z) = I − 2πi(−1)〈αi ,αj〉〈αi, αj〉f
αi−αj
s (Z)Eij

= I − (−1)〈αi,αj〉〈αi, αj〉DTA(αi − αj, Z)sαi−αjEij .
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In the other case we have similarly modulo (s)3

Sij(Z) = I − 2πi(−1)〈αi ,αj〉〈αi, αj〉f
αi−αj
s (Z)Eij

+ (−1)〈αi,αk〉+〈αk ,αj〉〈αi, αk〉〈αk, αj〉

M2(Z(αk − αi), Z(αj − αk))f
αi−αk
s (Z)f

αk−αj
s (Z)Eij .

Let log(z) denote the branch of the complex logarithm branched along
[0,+∞). According to the formulae for holomorphic generating functions in
[4] we have modulo (s)3

f
αi−αj
s (Z) =

1

2πi
DT(αi − αj, Z)sαi−αj

+
1

(2πi)2
(−1)〈αi−αk,αk−αj〉〈αi − αk, αk − αj〉

M2(Z(αi − αk), Z(αk − αj))

DTA(αi − αk, Z)DTA(αk − αj , Z)sαi−αj .

On the other hand we have modulo (s)3

fαi−αk
s

(Z)f
αk−αj
s (Z) =

1

(2πi)2
DTA(αi − αk, Z)DTA(αk − αj, Z)sαi−αj .

Moreover the quadratic condition gives

(−1)〈αi,αj〉〈αi, αj〉(−1)〈αi−αk,αk−αj〉〈αi − αk, αk − αj〉

= (−1)〈αi,αk〉+〈αk ,αj〉〈αi, αk〉〈αk, αj〉.

The claim follows. �

Example 4.6. Suppose A = A(A2, 0) for the quiver A2 = • → •. The
simple objects are S1 = C → 0, S2 = 0 → C. Since rank(K(A)) = 2 the
quadratic conditions (3.6) are empty. Setting p = 3, a basis αi for K(A)
satisfying the vanishing conditions (3.7) is found by applying Lemma 3.10.
As already observed we may choose α1 = [S1] + [S2], α2 = [S2]. According
to Corollary 4.5 we have

S12 = I − (−1)〈α1 ,α2〉〈α1, α2〉DTA(α1 − α2, Z)sα1−α2E12

= I − (−1)〈[S1],[S2]〉〈[S1], [S2]〉s1E12

= I − s1E12.

This example can be readily adapted to the generalised Kronecker quiver

Kλ with λ > 1 arrows •
λ // • , giving

S12 = I + (−1)λλs1E12.

Example 4.7. Suppose A = A(A3, 0) where A3 = • → • → •. The simple
objects are S1 = C → 0 → 0, S2 = 0 → C → 0, S3 = 0 → 0 → C. Let
E = C → C → 0 be the unique extension between S1 and S2. In particular
S2 is a subrepresentation of E. We choose the basis α1 = [S1] + [S2] + [S3],
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α2 = [S2] + [S3], α3 = [S3] so by Lemma 3.10 the vanishing conditions
(3.7) for p = 3 are satisfied. The quadratic conditions (3.6) also hold since
〈αi, αj〉 = −1 for all i < j. According to Corollary 4.5 we have

S12 = I − (−1)〈[S1],[S2]〉〈[S1], [S2]〉s1E12,

= I − s1E12,

S23 = I − (−1)〈[S2],[S3]〉〈[S2], [S3]〉s2E23

= I − s2E23

and

S13(Z) = I − (−1)〈[S2],[S3]〉〈[S2], [S3]〉DTA([S1] + [S2], Z)s1s2E13

= I −DTA([S1] + [S2], Z)s1s2E13.

More generally for the quiver •
λ // •

λ // • we find

S12 = I + (−1)λλs1E12,

S23 = I + (−1)λλs2E23

S13(Z) = I + (−1)λλDTA([S1] + [S2], Z)s1s2E13.

There is an analogue of Lemma 4.4 which holds for any p ≥ 3. This
follows at once from the explicit formulae proved in [5, Section 4.5].

Lemma 4.8. The generalised monodromy of ∇ζ
s,p(Z) is given by the Stokes

rays ℓij(Z) = R>0Z(αi−αj) ⊂ C∗, for i 6= j, together with the corresponding
Stokes factors Sℓij(Z) which are the reduction modulo (s)p of

I−2πi(Vζ
s,p)ijEij+

−
∑

m≥1

∑

k1 6=···6=km

Mm+1(Z(αi − αk1), . . . , Z(αkm − αj))

(Vζ
s,p)ik1 · · · (V

ζ
s,p)kmjEij , (4.2)

where Mm+1 : (C∗)m+1 → C are the iterated integrals defined in [5, Defini-
tion 4.4].

In the rest of this section we let Sℓ(Z) denote the matrices of Lemma 4.8
corresponding to a choice of central charge Z.

Corollary 4.9. Let V ⊂ C∗ be a convex open sector.

• The clockwise ordered product

→∏

ℓ⊂V

Sℓ(Z) ∈ GL(K(ζ)[[s]]/(s)p)

is constant as a function of Z as long as the rays ℓ(Z) do not cross
∂V .
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• The Stokes multiplier of the connection ∇ζ
s,p(Z) with respect to the

admissible ray R>0, which by definition is given by the clockwise
ordered product

S =

→∏

ℓ⊂H̄

Sℓ(Z) ∈ GL(K(ζ)[[s]]/(s)p), (4.3)

is in fact constant as a function of Z ∈ U ⊂ Stab(A).

Proof. Both statements are well-known characterisations of isomonodromy,
see e.g. [5, Sections 2.7, 2.8]. �

Definition 4.10. The canonical lift S̃0 of the Stokes multiplier S given by
(4.3) to GL(K(ζ)[s]) is S(Z) regarded as an element of GL(K(ζ)[s]). Note

that we have S̃0|s=0 = I.

Example 4.11. In Example 4.6 we find

S̃0 = S12 =

(
1 (−1)λλs1

1

)
.

Evaluating at the special point sJ gives the Cartan matrix of the underlying
quiver. The A2 case corresponds to λ = 1 and the matrix

(
1 −1

1

)
.

Example 4.12. Similarly in Example 4.7 we can compute S̃0 assuming E
is unstable, so

S̃0 = S23S13S12

=
(
I + (−1)λλs2E23

)

(
I + (−1)λλs1E12

)

=



1 (−1)λλs1 0

1 (−1)λλs2
1


 .

In order to check that this agrees with the calculation when E is stable we
need to recall the well-known fact that in this case

DTA

(
[S1] + [S2], Z

)
= (−1)λ−1χ(Pλ−1) = −(−1)λλ.
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from which

S̃0 = S12S13S23

=
(
I + (−1)λλs1E12

)

(
I − (−1)2λλ2s1s2E13)
(
I + (−1)λλs2E23

)

=



1 (−1)λλs1 0

1 (−1)λλs2
1


 .

Evaluating at the special point sJ gives the Cartan matrix of the underlying
quiver. The A3 case corresponds to λ = 1 and the matrix



1 −1 0

1 −1
1


 .

Example 4.13. We can repeat the calculations in Examples 4.6, 4.7 for the
same quivers with opposite orientations. Alternatively we may think of this
as computing for the same orientation with an opposite choice of triangular
basis αi =

∑n+1−i
r=1 [Sr] (i.e. a different section ζ). The upshot in any case is

respectively

S̃0 =

(
1 −(−1)λλs1

1

)
, S̃0 =



1 −(−1)λλs1 −(−1)λλ2s1s2

1 −(−1)λλs2
1


 .

There is also a finite set of non-canonical, but natural lifts of the Stokes
matrix. To define these we lift each Stokes factor Sℓ(Z) ∈ GL(K(ζ)[[s]]/(s)p)

trivially to S̃ℓ(Z) ∈ GL(K(ζ)[s]), and take the product of lifts

→∏

ℓ⊂H̄

S̃ℓ(Z) ∈ GL(K(ζ)[s]). (4.4)

We regard (4.4) as a function of Z. It is constant modulo (s)p, but the higher
order terms can take finitely many distinct values on different chambers of
Stab(A).

Definition 4.14. A natural lift S̃ of the Stokes multiplier S given by (4.3)

to GL(K(ζ)[s]) is either the canonical lift S̃0, or one of the finitely many
possible values of the product (4.4). Note that all the natural lifts agree
modulo (s)p.

Example 4.15. Let A = A(A4, 0) where A4 = • → • → • → •. We work

with p = 3. Choose the triangular basis αi =
∑4

r=i[Sr]. This is good since
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〈αi, αj〉 = −1 for all i < j. Two possible determinations of the product (4.4)
in different chambers are

S̃34S̃23S̃12 = (I − s3E34)(I − s2E23)(I − s1E12) =




1 −s1 0 0
1 −s2 0

1 −s3
1




and

S̃12S̃13S̃23S̃24S̃34

= (I − s1E12)(I − s1s2E13)(I − s2E23)(I − s2s3E24)(I − s3E34)

=




1 −s1 0 s1s2s3
1 −s2 0

1 −s3
1


 .

Indeed one can check that these are the only values of (4.4) on Stab(A).

Proposition 4.16. For fixed Z and sufficiently small ||s|| there is a canon-

ical choice of a connection ∇̃ζ
s(Z) on the trivial principal GL(K(ζ))-bundle,

of the form

∇̃ζ
s
(Z) = d+

(U(Z)

z2
−

Ṽζ
s (Z)

z

)
dz

with Stokes multiplier with respect to the admissible ray R>0 given by the

canonical lift S̃0. The connection matrix Ṽζ
s (Z) is skew-symmetric and de-

pends holomorphically on both Z and s. The reduction of ∇̃ζ
s(Z) modulo

(s)p is ∇ζ
s,p(Z). The same holds for any other choice of a natural lift S̃.

Proof. The result follows immediately from the Theorem in [5, Section 4.8].
�

Definition 4.17. The canonical lift of the approximate Frobenius type

structure (∇r,ζ
s , C|K(ζ),U|K(ζ),V

ζ
s , g|K(ζ)) is defined as the collection of holo-

morphic objects

• the connection ∇r given by

∇̃r,ζ
s = d+ Ã

with connection form Ãij = (Ṽζ
s )ij d logZ(αi − αj),

• the Higgs field C, endomorphism U and metric g given by the re-
strictions C|K(ζ),U|K(ζ), g|K(ζ),

• the endomorphism V given by Ṽζ
s .

Of course one can give an identical definition for any other choice of a natural
lift S̃.

Corollary 4.18. The collection (∇̃r,ζ
s , C|K(ζ),U|K(ζ), Ṽ

ζ
s , g|K(ζ)) is a Frobe-

nius type structure on the bundle K(ζ) → U , depending holomorphically on
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s for ||s|| sufficiently small. The same holds for any other choice of a natural

lift S̃.

Proof. For fixed s, with ||s|| sufficiently small, the family of connections

∇̃ζ
s(Z) has constant generalised monodromy as Z varies in U . By a well-

known characterisation of isomonodromy (see e.g. [5, Section 3.3]), the
family of connections on P pulled back to U × P1

∇̃r,ζ
s

−
1

z
dZ +

(U(Z)

z2
−

Ṽζ
s (Z)

z

)
dz

is flat. This is equivalent to the equations F (∇̃r,ζ
s ) = 0 and (2.2). The

conditions on g can be checked directly. �

Proof of Proposition 4.1. This follows at once from Corollary 4.18. �

5. Pullback to Frobenius manifolds

Let K(ζ) → U the bundle constructed in Section 3 (where U ⊂ StabA
denotes an open subset where −dZ(ζ) is an isomorphism, as usual). Under
suitable assumptions Corollary 3.14 endows K(ζ) with a Frobenius type
structure defined modulo terms which lie in (s)p. In this section we fix
a natural lift of this jet to a genuine Frobenius type structure, depending
holomorphically on s in a sufficiently small polydisc ∆ (see Proposition 4.1
and Corollary 4.18). We denote this lifted, genuine Frobenius type structure,
depending holomorphically on the parameters s, by

(∇̃r,ζ
s
, C|K(ζ),U|K(ζ), Ṽ

ζ
s
, g|K(ζ)). (5.1)

We briefly recall the main ingredients in a Frobenius manifold, and then
apply Theorem 3.1 to endow U ⊂ Stab(A) with the structure of a semisimple
Frobenius manifold (with Euler field and flat identity).

Definition 5.1. A Frobenius manifold is a complex manifold M such that
the fibres of the holomorphic tangent bundle TM are endowed with a com-
mutative, associative product ◦. Moreover we assume that there are a unit
field e, a (Euler) field E, and a nondegenerate holomorphic quadratic form
gM on the fibres of TM (the metric) such that the following conditions hold.

• The metric gM is flat. Denote its Levi-Civita connection by ∇gM .
• Introducing a Higgs field CM on M by CM

X (Y ) = −X ◦ Y , we have

∇gM (CM ) = 0.
• The unit field e is flat, i.e. ∇gM (e) = 0.
• Taking Lie derivatives along the Euler field we have LE(◦) = ◦ and
LE(gM ) = (2 − d)gM for some d ∈ C (2 − d is called the conformal
dimension of M).

• We have gM (CM
X Y,Z) = gM (Y,CM

X Z), that is the metric is compat-
ible with the multiplication ◦.

M is called semisimple if ◦ is semisimple. Local coordinates which corre-
spond to a semisimple basis for ◦ are known as canonical coordinates.
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A Frobenius manifold M gives rise to a Frobenius type structure on TM .

Lemma 5.2 ([12, Lemma 5.11]). Let M be a Frobenius manifold (with flat
identity e and Euler field E of conformal dimension 2− d. Define

• a Higgs field CM by CM
X (Y ) = −X ◦ Y as above,

• endomorphisms UM and VM by

UM = E ◦ (•),

VM = ∇g
•E −

2− d

2
I.

Then (TM,∇gM , CM ,UM ,VM , gM ) is a Frobenius type structure on the fi-
bres of TM .

Suppose (∇r, C,U ,V, g) is a Frobenius type structure on an auxiliary
bundleK → M with a section ζ. Denote by v the natural morphism−C•(ζ) :
TM → K. Theorem 3.1 can then be restated by saying that, under the
assumptions spelled out in the Theorem, the pullbacks

∇r,M = v−1∇rv, CM = v−1Cv,

UM = v−1Uv, VM = v−1Vv,

gM = g(v(−), v(−))

define a Frobenius type structure on the tangent bundle TM , and moreover
that this Frobenius type structure comes from a genuine Frobenius manifold
as in Lemma 5.2. According to [12, Lemma 4.1] the multiplication ◦ on TM
is given by

X ◦ Y = −CM
X Y = v−1(CXv(Y )),

while the flat identity e is uniquely defined by requiring

Ce = −I.

Note that the multiplication ◦ is uniquely characterised by the property

CXCY = −CX◦Y .

As explained in the statement of [12, Theorem 5.12] and its proof, the flat
identity is in fact given by

e = v−1(ζ),

while the Euler field is

E = U(e).

It satisfies LE(gM ) = (2− d)gM , where d is the constant in Theorem 3.1.
We now turn to our Frobenius type structure (5.1) (depending holomor-

phically on s ∈ ∆). Recall that it depends on ζ only through the choice of
basis αi for K(A)⊗ R (see Remark 3.16).

Lemma 5.3. The endomorphism Ṽζ
s acts on the space of flat sections of

∇̃r,ζ
s on U ⊂ Stab(A). The spectrum of Ṽζ

s is constant on U , i.e. in the Z
direction (it depends highly nontrivially on s ∈ ∆).
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Proof. These are well-known consequences of isomonodromy, see e.g. [8,
Lecture 3]. �

Fix the choice of basis αi for K(A) ⊗ R. Let d
2 be an eigenvalue of Ṽζ

s

acting on the space of flat sections of ∇r,ζ
s (ζ) on U . Then we can find a

section ζ of K → U such that
{
∇r,ζ

s (ζ) = 0,

Ṽζ
s (ζ) =

d
2ζ.

(5.2)

Restricting U if necessary we may assume that dZ(ζ) is still an isomorphism.
We can now summarise all our results so far.

Theorem 5.4. Let d(s)
2 be an eigenvalue of Ṽζ

s . There exists a semisimple
Frobenius manifold structure on U ⊂ Stab(A) such that

• the canonical coordinates are given by

ui = Z(αi),

• the flat identity and Euler field are

e =
∑

i

∂Z(αi), E =
∑

i

Z(αi)∂Z(αi)

• the flat metric is given by

gs(u) =
∑

i

c2i (Z, s)du
2
i

• the conformal dimension is 2− d(s).

It is given by pulling back the Frobenius type structure (5.1) along dZ(ζ),
where ζ is a section of K → U as in Corollary 5.2.

Moreover if we have αi − αj ∈ ±K(A)>0 for all i 6= j then this can
be analytically continued to a Frobenius manifold structure on all Stab(A),
without monodromy.

In the following we refer to the structure given by Theorem 5.4 simply as
the semisimple Frobenius manifold structure on Stab(A) (at the point s).
Notice that flatness of e comes from flatness of ζ and that ∂

∂Z(αi)
◦ ∂

∂Z(αj)
=

δij
∂

∂Z(αi)
.

By construction we can easily understand the Stokes multiplier.

Lemma 5.5. The Frobenius type structure (5.1) and the semisimple Frobe-

nius manifold structure on Stab(A) have the same Stokes multiplier S̃ (given
by Definition 4.14).

Proof. This is clear computing in the basis ∂ũi
=
(
ci(Z, s)

)−1
∂ui

. �

From our point of view the main object of interest is the section ζ of
the bundle K. It determines the conformal dimension and the metric of
the Frobenius manifold structure on Stab(A). Computing ζ = ζ(S̃) as a
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(multi-valued) function of the Stokes multiplier is an instance of the (hard)
inverse problem for semisimple Frobenius manifolds (see e.g. [11]).

6. Examples

In this section we discuss several examples to which we may apply the
general theory developed so far. We concentrate on the case p = 3 for
these examples. By Theorem 5.4 these determine (possibly several) natu-
ral families of semisimple Frobenius manifold structures, sharing the same
quadratic jet. An important example of higher order jets is discussed in the
next Section.

6.1. A general construction. Fix positive integers n, λ. Write [Sk] for the
standard basis of the lattice Zn. Choose n linearly independent elements αi

of Zn such that for all i 6= j we have either

• αi − αj = ±[Sk] for some k, or
• αi−αj = (±[Su])+(±[Sv]) for some u, v, and we have [Su] = αi−αk,
[Sv] = αk − αj, or

• αi − αj is not of the form ±[Sk] or (±[Su]) + (±[Sv]).

Pick a skew-symmetric tensor ǫij, 1 ≤ i, j ≤ n, with values in {±1}, giving
a solution to the quadratic equations (3.9).

Let Q be a quiver with n vertices and let A = A(Q) ⊂ D(Q). Then K(A)
is identified with Zn and the canonical basis [Si] is the basis of classes of
simple objects. Similarly the lattice elements αi are canonically identified
with elements of K(A). Since αi is a basis there exist (possibly several)
skew-symmetric bilinear forms 〈−,−〉 on K(A) such that

len(αj − αi) < 3 ⇒ 〈αi, αj〉 = ǫijλ. (6.1)

Our general construction implies the following.

Lemma 6.1. Let Q be a quiver with Euler form 〈−,−〉 satisfying (6.1). In
particular we can choose Q as the quiver with vertices labelled by [Si] and
with 〈[Si], [Sj ]〉 arrows between [Si], [Sj ] for i ≤ j.

Then the assumptions of Theorem 5.4 hold and so there is a canonical
family of Frobenius manifold structures on Stab(A) for each choice of a

natural lift S̃.

6.2. Fixed triangular basis. We run the construction above with λ = 1
and the fixed choice of triangular basis αi =

∑n
r=i[Sr] (i.e. the ith basis

element αi is the ith row of the upper triangular rank n matrix given by
τn,ij = 1 for i ≤ j). The tables (Figures 3 - 5) list the quivers for which
this is a good basis (i.e. the basis underlying a good section) up to rank
4 together with the jet of the corresponding Stokes matrix. In the case
of rank 4 we only list half the solutions, up to reversing all arrows (which
acts nontrivially on the Stokes matrix). The rank 4 case contains a free
parameter κ = 〈α1, α4〉 since len(α1 − α4) = 3.
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1 2//
(
1 −s1

1

)
1 2oo

(
1 s1

1

)

Figure 3. Good quivers for τ2 and their Stokes matrix.

1 2 3// // 1 2 3oo oo 1 2 3oo //




1 −s1

1 −s2
1








1 s1 s1s2

1 s2
1








1 s1 −s1s2

1 −s2
1





1 2 3// oo 1

2

3

  ❆
❆❆

❆❆
2oo

??⑦⑦⑦⑦⑦

1

2

3``❅❅❅❅❅

2 //

}}④④
④④
④




1 −s1

1 s2
1








1 s1

1 −s2
1








1 −s1 −s1s2

1 s2
1





Figure 4. Good quivers for τ3 and their Stokes matrix.

6.3. A very useful example of a basis of Z3 satisfying the conditions of
Lemma 3.10 is obtained when αi corresponds to the ith row of

δ3 =



1 0 1
0 −1 1
0 0 1


 .

Setting λ = 1 we find δ3 is a good basis precisely for the quivers in Figure
6.

7. An quivers

Examples 4.6 and 4.7 can be generalised to give a canonical quadratic jet
of a family of semisimple Frobenius manifold structures on Stab(A(An)).
We first show how to do this and then we prove that a slight modification
of our construction enhances this quadratic jet to a jet of order n.

We run the construction of Section 6 with λ = 1, p = 3 and the special
solutions to the quadratic equations (3.9) and vanishing conditions (3.7)
given by

ǫij = −1, i < j, αi =

n∑

r=i

[Sr].
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1
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��❄
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❄
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��
4 3oo
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��
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oo
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��
4 3oo







1 −s1

1 −s2

1 −s3
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1 s1 −s1s2

1 −s2

1 −s3
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1 s1

1 −s2

1 −s3

1
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��
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��❄
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2oo
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1
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1
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1−κ

❄❄
❄❄

❄❄
❄❄

��❄
❄❄

❄❄
❄❄

❄

2oo
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4
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1 −s1

1 s2

1 −s3

1













1 s1 s1s2

1 s2 −s2s3

1 −s3

1













1 s1 s1s2

1 s2

1 −s3

1







Figure 5. Good quivers for τ4 and their Stokes matrix.

To check that the latter indeed gives a solution we note that

αi − αi+1 = [Si],

αi − αi+2 = [Si] + [Si+1]

= (αi − αi+1) + (αi+1 − αi+2),

αi − αj =

j∑

r=i

[Si] 6= [Su] + [Sv], j > i+ 2. (7.1)

We regard (6.1) as a linear system to be solved for 〈[Si], [Sj ]〉 for i < j. A
little thought shows that in the present case the unique solution is given by

〈[Si], [Sj ]〉 = −δj,i+1, i = 1, . . . , n− 1.
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1

��❃
❃❃

❃❃
❃❃

❃ 2oo

3

@@��������

1 //

��❃
❃❃

❃❃
❃❃

❃ 2

3

@@��������

1 2oo

3

^^❃❃❃❃❃❃❃❃

@@��������



1 −s1s2 −s1
0 1 0
0 s2 1








1 0 −s1
0 1 0
0 s2 1








1 s1s2 s1
0 1 0
0 s2 1





1 //

��❃
❃❃

❃❃
❃❃

❃ 2

����
��
��
��

3

1 2oo

����
��
��
��

3

^^❃❃❃❃❃❃❃❃

1 // 2

����
��
��
��

3

^^❃❃❃❃❃❃❃❃



1 0 −s1
0 1 0
0 −s2 1






1 s1s2 s1
0 1 0
0 s2 1






1 0 s1
0 1 0
0 −s2 1




Figure 6. Good quivers for δ3 and their Stokes matrix.

Therefore the quiver Q of Lemma 6.1 is An = • → · · · → • (n vertices),
endowed with the ordered collection of stable objects

Si = · · · → 0 → C︸︷︷︸
i

→ 0 → · · · , i = 1, . . . , n.

According to Theorem 5.4 this determines (several) families of Frobenius
manifolds whose underlying complex manifold is Stab(A(An)), one for each

choice of a natural lift S̃ (since αi−αj ∈ K>0(A) for all i 6= j, they are well-
defined on all Stab(A(An)), i.e. the monodromy there is trivial). All these
families agree modulo (s)3. We can also compute the Stokes multiplier S
modulo (s)3. Recall this is constant in Z and so we can compute it assuming
that only the simple objects are stable. With this assumption and using
(7.1), Corollary 4.5 shows that the only nontrivial Stokes factors Sij modulo
(s)3 (up to exchanging i, j) are

Si,i+1 = I − (−1)〈[Si],[Si+1]〉〈[Si], [Si+1]〉siEi,i+1 = I − siEi,i+1,

so we have

S =

n−1∏

j=1

Sn−j,n−j+1 = I −
n−1∑

i=1

siEi,i+1 =




1 −s1
1 −s2

. . .

1 −sn
1




. (7.2)

We now show that a slight modification of our construction for An resolves
the ambiguity in the choice of S̃ and gives a single canonical family. The
following simple observation is the crucial point.
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Lemma 7.1. Fix the oriented quiver An with triangular basis α1, . . . , αn as
above. Let i, j ∈ {1, . . . , n}. Then the quadratic condition (3.6) holds and
the vanishing condition (3.7) holds modulo terms of order len(αi − αj) + 1.

Proof. We have already observed that setting ǫhk = −1 for h < k gives a
solution to (3.9) for all i, j (i.e. with p = n + 1). For the claim concerning
the vanishing condition (3.7) we need to show

〈β, γ〉fβ
s (Z)fγ

s (Z) ∈ (s)len(αi−αj)+1

for all nontrivial decompositions αj − αi = β + γ with β, γ not equal to
αj − αk, αk − αi. We can assume i < j. For An with triangular basis we

have αi − αj =
∑j−1

k=i [Si], so a decomposition αj − αi corresponds uniquely
to a set partition A ∪ B = {i, i + 1, . . . , j − 1} with A ∩ B = ∅. For such a
decomposition we have

fβ
s (Z)fγ

s (Z) = f
∑

h∈A[Sh]
s (Z)f

∑
k∈B[Sk]

s (Z).

By (2.1) we always have f
∑

h∈A[Sh]
s (Z) ∈ (s)|A|. We claim that if A contains

a gap (i.e. it is not a subset of consecutive integers in {i, i + 1, . . . , j − 1})

then in fact f
∑

h∈A[Sh]
s (Z) ∈ (s)|A|+1. This can be shown by induction on |A|,

starting from the fact that f
[Sh]+[Sk]
s (Z) ∈ (s)3 if h, k are not consecutive

integers. To prove this note that for h 6= k we have

f
[Sh]+[Sk]
s (Z) =

1

2πi
DT([Sh] + [Sk], Z)shsk

+
1

(2πi)2
(−1)〈[Sh],[Sk]〉〈[Sh], [Sk]〉

M2(Z([Sh]), Z([Sk]))

DTA([Sh], Z)DTA([Sk], Z)shsk.

and for An we have DT([Sh] + [Sk], Z) = 〈[Sh], [Sk]〉 = 0 if h, k are not
consecutive.

The argument above applies equally to B, so f
∑

h∈A[Sh]
s (Z)f

∑
k∈B[Sk]

s (Z) ∈
(s)|A|+|B|+1 unless A, B are both sequences of consecutive integers in {i, i+
1, . . . , j − 1}. But this means that up to exchanging A, B we have A =
{i, i + 1, . . . , q}, B = {q + 1, q + 2, . . . , j − 1} for some q, that is β =∑

h∈A[Sh] =
∑q

h=i[Si] = αi−αq+1 and similarly γ =
∑

k∈B [Sk] = αq+1−αj ,
a contradiction. �

Recall the definition of Aij and Vζ
s in (3.8) and (3.11) respectively.

Corollary 7.2. In the case of An define a new connection form A′ and

endomorphism V ′ζ
s by

A′
ij = Aij mod (s)len(αi−αj)+1, V ′ζ

s = Vζ
s mod (s)len(αi−αj)+1.

Then the structure on K(ζ) given by

(d+A′, C|K(ζ),U|K(ζ),V
′ζ
s , g|K(ζ))
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is a Frobenius type structure modulo terms which are of order at least n+1 in
s. In particular its Stokes matrix S given by (7.2) is in fact constant modulo

(s)n+1, that is the canonical lift S̃0 and all the natural lifts S̃ coincide with
S thought of as an element of GL(K(ζ))[s].

Proof. It is enough to prove that the product

S̃ =
→∏

ℓ⊂H̄

Sℓ(Z)

is constant in Z modulo (s)n+1. By Lemma 7.1 the (i, j) entry (S̃)ij of S̃ is

constant modulo (s)len(αi−αj)+1. Now choose 0 < q < n − len(αi − αj) and

look at the component of the polynomial (S̃)ij of total degree len(αi−αj)+q.
By our choice of A′, V ′ and the explicit formula for Stokes factors in terms
of connection coefficients given in [5, Theorem 4.5] (i.e. the higher order

analogue of (4.1)) a contribution to (S̃)ij of this degree involves at least
len(αi − αj) + q distinct factors in the product and so corresponds to a
decomposition of αi−αj with at least len(αi−αj)+q nonvanishing summands
in K(A),

αi − αj =

len(αi−αj)+q∑

h=1

γh, γh ∈ K(A) \ {0}.

It follows that we must have γh ∈ −K>0(A) for some h, a contradiction
since we are taking the product over the positive half-plane H̄. �

Example 7.3. Let us revisit the case of A4 discussed in Example 4.15.
Recall that looking only at the Stokes factors modulo (s)3 we found two

different chambers for the product S̃(Z), namely

S̃34S̃23S̃12 =

(
1 −s1 0 0

1 −s2 0

1 −s3

1

)
, S̃12S̃13S̃23S̃24S̃34 =

(
1 −s1 0 s1s2s3

1 −s2 0

1 −s3

1

)
.

The problem is resolved by looking at Stokes factors modulo (s)5. Indeed

this gives an additional factor S̃14, and a lengthy direct computation shows
S̃14 = (I −DT([S1] + [S2] + [S3], Z))s1s2s3 which contributes to the second
factorisation giving

S̃12S̃13S̃14S̃23S̃23S̃34 =

(
1 −s1 0 0

1 −s2 0

1 −s3

1

)

as required.

We can now prove our main result in the case of the standard An quiver.

Proof of Theorem 1. By Corollary 7.2 we have a jet of a family of Frobenius
manifold structures on K(ζ) over Stab(A(An)) modulo (s)n+1. This can be

lifted canonically since all the natural lifts S̃ coincide.
According to [8, Corollary 4.7] the Stokes matrix S̃ given by (7.2) evalu-

ated at the special point sJ = (s1 = 1, · · · , sn = 1) (for a unique choice of
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eigenvalue d(sJ )) is precisely the Stokes matrix of a branch of the unfolding
space of the An singularity, so we recover this branch from A(An). �

The construction of the present Section applies equally to all quivers with
the same underlying unoriented graph as An. The proofs are just the same.

Lemma 7.4. Setting ǫij = ±1 for i = 1, · · · , n− 1 and all i < j and evalu-
ating at sJ gives 2n−1 Frobenius manifold structures on H̄n, corresponding
to the 2n−1 orientations of the An unoriented graph. Their Stokes matrices
for n ≤ 4 are given in Figures 3, 4 and 5 (choosing κ = ±1 for the latter).

Note that all these quivers are mutations of An with its standard orien-
tation. It turns out that the corresponding Frobenius manifolds are always
related by analytic continuation, i.e. they are different branches of the same
semisimple Frobenius structure on Cn(C). We describe this (including more
general mutations) in the next Section.

8. Mutations and analytic continuation

In this Section we extend Theorem 1 to all mutations of An, and then
provide examples where mutation-equivalence for quivers can be related di-
rectly to analytic continuation for semisimple Frobenius manifolds. The
main result concerns An for n ≤ 5, although we expect this holds for all
An. We refer to [6, Section 7] for basic material on quiver mutation and its
categorification, and to [8, Appendix F] and [11, Section 1.8] for analytic
continuation of semisimple Frobenius manifolds.

If the quivers (Qi,Wi), i = 1, 2 are mutation-equivalent the CY3 trian-
gulated categories D(Qi,Wi) are equivalent. So if the infinite-dimensional
Frobenius type structures K → Stab(A(Qi,Wi)) admit good sections, it
seems reasonable to expect that such sections ζA(Qi,Wi) can be chosen so
that the corresponding semisimple Frobenius manifolds are equivalent in
some sense. Via the canonical coordinates ui given by Theorem 5.4, both
structures can be thought of as living naturally on open subsets (isomorphic
to Hn) of the configurations space Cn(C) = {(u1, . . . , un) ∈ Cn : i 6= j ⇒
ui 6= uj}/Σn. Thus a natural equivalence relation is that the two structures
should be branches of the same semisimple Frobenius manifold on Cn(C).
This can be checked via the Stokes matrices as follows.

Fixing A ∈ Mn(C) an upper triangular matrix with eigenvalues 1, we
introduce an elementary braiding matrix βi,i+1(A), i = 1, . . . , n− 1 by per-
turbing the identity I with a block

(
0 1
1 −Ai,i+1

)

with upper left entry corresponding to the ith diagonal entry, so e.g.

β1,2

(
1 a
0 1

)
=

(
0 1
1 −a

)
.
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For the inverse operator β−1
i,i+1 the corresponding block is
(
−Ai,i+1 1

1 0

)
.

Setting

βi,i+1.A = βi,i+1(A)Aβi,i+1(A)

defines an action of the braid group Brn+1
∼= π1(Cn(C)).

Fix a semisimple Frobenius structure on an open subset of Cn(C), and
let S denote the corresponding Stokes matrix. We can assume without loss
of generality that S is upper triangular. The set of Stokes matrices corre-
sponding to analytic continuations of the structure is precisely the orbit of
S under the action of Brn+1, combined with the standard action of permu-
tation matrices P and change of sign matrices Ii,

A 7→ PAP−1, A 7→ IiAI
−1
i .

This is the equivalence relation we check in our examples.
In the following we fix a reference quiver Q and consider its orbit under

mutations. It is important to recall that if Qi, i = 1, 2 are mutation equiva-
lent there is a canonical bijection between their vertices and so a canonical
bijection between the simple objects of A(Qi). We fix once and for all a
labelling of the vertices of Q, corresponding to a labelling Si for the sim-
ple objects of A(Q). We will also use this specific induced labelling when
writing bases of K(A(Qi)) for mutation-equivalent Qi.

8.1. An quivers. Let µAn be a quiver in the (finite) mutation orbit of An.
Our aim is to write down good bases ofK(A(µAn)) for which the conclusions
of Lemma 7.1 and Corollary 7.2 hold.

(1) If the unoriented graph underlying µAn is the same as An, then
choose the basis

αi =

n∑

r=i

[Sr], i = 1, . . . , n. (8.1)

(2) If a clockwise oriented triangle appears,

// •
k−1

// •
k+1

}}③③
③③
③③
③③

//

•
k

aa❉❉❉❉❉❉❉❉

then consider the basis



αi =
∑k−2

j=i [Sj ] + αk−1 for i ≤ k − 2

αk−1 = [Sk−1] + [Sk+1] + αk+2

αk = −[Sk] + [Sk+1] + αk+2

αk+1 = [Sk+1] + αk+2

αi =
∑n

j=i[Sj ] for i ≥ k + 2.

(8.2)
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(3) Triangles can be combined. This is straightforward if they are not
overlapping, otherwise take

•
k−1

// •
k+1

||②②②
②②

// •
k+3

zz✈✈
✈✈
✈

•k

bb❊❊❊❊❊
•
k+2

dd❍❍❍❍❍





αk−1 = [Sk−1] + [Sk+1] + [Sk+3]

αk = −[Sk] + [Sk+1] + [Sk+3]

αk+1 = [Sk+1] + [Sk+3]

αk+2 = −[Sk+2] + [Sk+3]

αk+3 = [Sk+3].

(4) The last possible configuration we need to consider is

· · · •
li

// •
k−1

// •
k+1

||③③
③③
③③
③③

// •ri
· · ·

•
k

bb❉❉❉❉❉❉❉❉

•
di

OO

(8.3)

An admissible basis is




αri =
∑

j≥i[Srj ]

αk+1 = [Sk+1] + αri

αk−1 = [Sk−1] + [Sk+1] + αri

αk = −[Sk] + [Sk+1] + αri

αli =
∑

j≥i[Slj ] + αk−1

αdi =
∑

j≥i[Sdj ] + αk.

(8.4)

Arguing precisely as in the proofs of Lemma 7.1 and Corollary 7.2 we obtain
the following.

Lemma 8.1. Let µAn be mutation-equivalent to An. Then combining the
configurations (8.1) - (8.4) above yields bases for K(A(µAn)) for which the
conclusions of Lemma 7.1 and Corollary 7.2 hold.

Proof of Theorem 2 (i). This follows immediately from Lemma 8.1. �

Our next aim is to understand enough of the Stokes matrices of these
semisimple Frobenius manifolds in order to prove part (ii) of Theorem 2
(which is restricted at present to the case n ≤ 5). We present the computa-
tions below. In all cases it is possible to choose a central charge Z so that
the only stable objects are either simples or extensions between two simples,
so Corollary 4.5 is sufficient to perform the computation.
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Mutation classes of A2.

A2 = •
1

// •
2
, S(A2) =

(
1 −s
0 1

)

µ1A2 = •
1

•
2

oo , S(µ1A2) =

(
1 s
0 1

)
.

Mutation classes of A3.

A3 = •
1

// •
2

// •
3

S(A3) =



1 −s1 0
0 1 −s2
0 0 1




µ3A3 = •
1

// •
2

•
3

oo S(µ3A3) =



1 −s1 0
0 1 s2
0 0 1




µ1µ3A3 = •
1

•
2

oo •
3

oo S(µ1µ3A3) =



1 s1 s1s2
0 1 s2
0 0 1




µ1A3 = •
1

•
2

oo // •
3

S(µ1A3) =



1 s1 −s1s2
0 1 −s2
0 0 1




µ2A3 = •
1

// •
3

~~⑤⑤
⑤⑤
⑤

•
2

``❇❇❇❇❇

S(µ2A3) =



1 s1s2 −s1
0 1 0
0 −s2 1




µ2µ1µ3A3 = •
1

  ❇
❇❇

❇❇
•
3

oo

•
2

>>⑤⑤⑤⑤⑤

S(µ2µ1µ3A3) =



1 −s1s2 s1
0 1 0
0 −s2 1




Mutation classes of A4. It is enough to consider
µ1A4 = •

1
•
2

oo // •
3

// •
4

S(µ1A4) =




1 s1 −s1s2 0
0 1 −s2 0
0 0 1 −s3
0 0 0 1


 (8.5)

µ4A4 = •
1

// •
2

// •
3

•
4

oo

S(µ4A4) =




1 −s1 0 0
0 1 −s2 0
0 0 1 s3
0 0 0 1


 (8.6)
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µ4µ2µ1A4 = •
1

// •
2

•
3

oo •
4

oo

S(µ4µ2µ1A4) =




1 −s1 0 0
0 1 s2 s2s3
0 0 1 s3
0 0 0 1


 (8.7)

µ1µ4A4 •
1

•
2

oo // •
3

•
4

oo

S(µ1µ4A4) =




1 s1 −s1s2 0
0 1 −s2 0
0 0 1 s3
0 0 0 1


 (8.8)

µ2µ1A4 = •
1

// •
2

•
3

oo // •
4

S(µ2µ1A4) =




1 −s1 0 0
0 1 s2 −s2s3
0 0 1 −s3
0 0 0 1


 (8.9)

µ1µ2µ1A4 = •
1

•
2

oo •
3

oo // •
4

S(µ1µ2µ1A4) =




1 s1 s1s2 −s1s2s3
0 1 s2 −s2s3
0 0 1 −s3
0 0 0 1


 (8.10)

µ4µ1µ2µ1A4 = •
1

•
2

oo •
3

oo •
4

oo

S(µ4µ1µ2µ1A4) =




1 s1 s1s2 s1s2s3
0 1 s2 s2s3
0 0 1 s3
0 0 0 1


 (8.11)

µ2A4 = •
1

// •
3

//

~~⑤⑤
⑤⑤
⑤

•
4

•
2

``❇❇❇❇❇

S(µ2A4) =




1 −s1s2 −s1 0
0 1 0 0
0 s2 1 −s3
0 0 0 1


 (8.12)
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µ4µ2A4 = •
1

// •
3

~~⑤⑤
⑤⑤
⑤

•
4

oo

•
2

``❇❇❇❇❇

S(µ4µ2A4) =




1 −s1s2 −s1 0
0 1 0 0
0 s2 1 s3
0 0 0 1


 (8.13)

µ3A4 = •
1

// •
2

// •
4

~~⑤⑤
⑤⑤
⑤

•
3

``❇❇❇❇❇

S(µ3A4) =




1 −s1 0 0
0 1 −s2s3 −s2
0 0 1 0
0 0 s3 1


 (8.14)

µ1µ3A4 = •
1

•
2

oo // •
4

~~⑤⑤
⑤⑤
⑤

•
3

``❇❇❇❇❇

S(µ1µ3A4) =




1 s1 −s1s2s3 −s1s2
0 1 −s2s3 −s2
0 0 1 0
0 0 s3 1


 (8.15)

Mutation classes of A5. It is enough to consider
µ1A5 = •

1
•
2

oo // •
3

// •
4

// •
5

S(µ1A5) =




1 s1 −s1s2 0 0
0 1 −s2 0 0
0 0 1 −s3 0
0 0 0 1 −s4
0 0 0 0 1




(8.16)

µ5A5 = •
1

// •
2

// •
3

// •
4

•
5

oo

S(µ5A5) =




1 −s1 0 0 0
0 1 −s2 0 0
0 0 1 −s3 0
0 0 0 1 s4
0 0 0 0 1




(8.17)
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µ3A5 = •
1

// •
2

// •
4

~~⑤⑤
⑤⑤
⑤

// •
5

•
3

``❇❇❇❇❇

S(µ3A5) =




1 −s1 0 0 0
0 1 −s2s3 −s2 0
0 0 1 0 0
0 0 s3 1 −s4
0 0 0 0 1




(8.18)

µ1µ4A5 = •
1

•
2

oo // •
3

// •
5

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

•
4

``❆❆❆❆❆❆❆❆

S(µ1µ4A5) =




1 s1 −s1s2 0 0
0 1 −s2 0 0
0 0 1 −s3s4 −s3
0 0 0 1 0
0 0 0 s4 1




(8.19)

µ2µ4A5 = •
1

// •
3

~~⑤⑤
⑤⑤
⑤

// •
5

~~⑤⑤
⑤⑤
⑤

•2

``❇❇❇❇❇
•
4

``❇❇❇❇❇

S(µ4µ2A5) =




1 −s1s2 −s1 0 0
0 1 0 0 0
0 s2 1 −s3s4 −s3
0 0 0 1 0
0 0 0 s4 1




(8.20)

µ2µ1µ4A5 = •
1

// •
2

•
3

oo // •
5

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

•
4

``❆❆❆❆❆❆❆❆

S(µ2µ1µ4A5) =




1 −s1 0 0 0
0 1 s2 −s2s3s4 −s2s3
0 0 1 −s3s4 −s3
0 0 0 1 0
0 0 0 s4 1




(8.21)
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µ1µ2µ1µ4A5 = •
1

•
2

oo •
3

oo // •
5

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

•
4

``❆❆❆❆❆❆❆❆

S(µ1µ2µ1µ4A5) =




1 s1 s1s2 −s2s3s4 −s1s2s3s4
0 1 s2 −s2s3s4 −s2s3
0 0 1 −s3s4 −s3
0 0 0 1 0
0 0 0 s4 1




(8.22)

µ1µ3A5 = •
1

•
2

oo // •
4

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

// •
5

•
3

``❆❆❆❆❆❆❆❆

S(µ1µ3A5) =




1 s1 −s1s2s3 −s1s2 0
0 1 −s2s3 −s2 0
0 0 1 0 0
0 0 s3 1 −s4
0 0 0 0 1




(8.23)

µ5µ1µ3A5 = •
1

•
2

oo // •
4

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

•
5

oo

•
3

``❆❆❆❆❆❆❆❆

S(µ5µ1µ3A5) =




1 s1 −s1s2s3 −s1s2 0
0 1 −s2s3 −s2 0
0 0 1 0 0
0 0 s3 1 s4
0 0 0 0 1




(8.24)

We may now evaluate the Stokes matrices at the special point sJ and com-
pare them.

Proof of Theorem 2 (ii). Write S for S|s=1(An) and S(µAn) for S|s=1(µAn)
for brevity.

First we observe that when µ is a simple mutation then S(µAn) and S
are actually related by the action of permutation and diagonal matrices Ik,
or that of the braid group. Specifically:

if µ = µ1 then S(µAn) = β1,2.S,

if µ = µk, k = 2, . . . , n− 1, then S(µAn) = Pk,k+1

(
βk,k+1.S

)
Pk,k+1,

if µ = µn then S(µAn) = InSIn,

where Ik, k = 1, . . . , n, is the matrix which differs from the identity only for
the sign of the (k, k) entry. This is enough to cover the case n ≤ 3.
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For n = 4, 5 we can use various symmetries and reduce the claim to check-
ing a small number of cases, namely (8.5)-(8.8), (8.12)-(8.15) and (8.16)-
(8.20), (8.23)-(8.24) above.

In the case of A4 we compute:

(8.9) S(µ2µ1A4) = β−1
3,4 .S,

(8.10) S(µ1µ2µ1A4) = β1,2.
(
β2,3.

(
β1,2.S

))
,

(8.11) S(µ4µ1µ2µ1A4) = I4S(µ1µ2µ1A4)I4.

Similarly in the case of A5 we find:

(8.21) S(µ2µ1µ4A5) = β2,3.
(
β1,2.S(µ4A5)

)
,

(8.22) S(µ1µ2µ1µ4A5) = β1,2.S(µ2µ1µ4A5) = I5S(µ1µ2µ1A5)I5.

�

8.2. Further examples. Let us consider the mutation-equivalent quivers
of Figure 2. They come from triangulations of a surface with two boundary
components, with one and two marked points respectively. For the unori-
ented cycle we have





α1 = [S1] + [S3]

α2 = −[S2] + [S3]

α3 = [S3]

S =



1 −s1s2 s1
0 1 0
0 −s2 1


 .

For the oriented cycle with a double arrow we have




α1 = [S1] + [S2] + [S3]

α2 = [S2] + [S3]

α3 = [S3]

S ′ =



1 −s1 −s1s2
0 1 s2
0 0 1


 .

After evaluation at the point sJ , S and S ′ may be compared and we have

S = I1I2P2,3S
′P2,3I2I1.
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