
Neverlang and FeatureIDE Just Married
Integrated Language Product Line Development Environment

Luca Favalli
Università degli Studi di Milano

favalli@di.unimi.it

Thomas Kühn
Karlsruhe Institute of Technology

thomas.kuehn@kit.edu

Walter Cazzola
Università degli Studi di Milano

cazzola@di.unimi.it

ABSTRACT
Language development is inherently complex. With the support of a
suitable language development environment most computer scien-
tists could develop their own domain-specific language (DSL) with
relative ease. Yet, when the DSL is the result of a configuration over
a language product line (LPL)—a special software product line (SPL)
of compilers/interpreters and corresponding IDE services—they fail
to provide adequate support. An environment for LPL engineering
should facilitate the underlying process involving three distinct
roles: a language engineer developing the LPL, a language deployer
configuring a language product, and a language user using the lan-
guage product. Neither IDEs nor SPLE environments can cater all
three roles and fully support the LPL engineering process with dis-
tributed, incremental development, configuration, and deployment
of language variants. In this paper, we present an LPL engineer-
ing process for the distributed, incremental development of LPLs
and an integrated language product line development environment
supporting this process, catering the three roles, and ensuring the
consistency among all artifacts of the LPL: language components
implementing a language feature, the feature model, language con-
figurations and the resulting language products. To create such an
environment, we married the Neverlang language workbench and
AiDE its LPL engineering environment with the FeatureIDE SPL en-
gineering environment. While Neverlang supports the development
of LPLs and deployment of language products, AiDE generates the
feature model for the LPL under development, whereas FeatureIDE
handles the feature configuration. We illustrate the applicability of
the LPL engineering process and the suitability of our development
environment for the three roles by showcasing its application for
teaching programming with a growable language. In there, an LPL
for Javascript was developed/refactored, 15 increasingly complex
language products were configured/updated and finally deployed.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
Software product lines.

KEYWORDS
Domain Specific Languages, Language Product Lines, Neverlang

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montréal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414961

ACM Reference Format:
Luca Favalli, Thomas Kühn, and Walter Cazzola. 2020. Neverlang and Fea-
tureIDE Just Married: Integrated Language Product Line Development En-
vironment. In 24th ACM International Systems and Software Product Line
Conference (SPLC ’20), October 19–23, 2020, Montréal, QC, Canada.ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3382025.3414961

1 INTRODUCTION
Computer scientists generally agree that the development of a
programming language is inherently complex. With the advent
of language development environments [14]—dedicated integrated
development environments (IDE) for software language engineering—
most of them could now develop their own domain-specific lan-
guage (DSL) or programming language with relative ease. Con-
sequently, some computer scientists combined different language
variants to families of both DSLs and programming languages,
e.g., [15, 23, 24, 26, 31]. However, state-of-the-art language devel-
opment environments reach the limits of their capabilities when
tasked with incrementally developing reusable language compo-
nents, configuring language variants by choosing and picking in-
dividual language features for a language variant,1 or deploying
IDEs for multiple different language variants. To address their limi-
tations, researchers recently started investigating language prod-
uct lines (LPL), i.e., a special software product line (SPL) of com-
pilers/interpreters and embedded IDE services, as well as dedi-
cated language development environments for LPL engineering,
e.g., [21, 24, 32]. However, in contrast to these approaches, we
argue that such an environment, should support an engineering
process enacted by three distinct roles: (1) a language engineer
developing the LPL, (2) a language deployer configuring and de-
ploying language variants and (3) a language user using one (or
more) language products in an IDE. Moreover, we emphasize that
an effective LPL IDE must support incremental development and
configuration as well as rapid deployment and testing of language
variants. Currently, neither language development nor SPL engi-
neering environments nor LPL development environments are able
to support the LPL engineering process catering all three roles in
one tightly integrated development environment.

In this paper, we outline the LPL engineering process and present
an integrated language product line development environment for
bottom-up LPLs able to support this process catering all roles in a
single IDE. For brevity, we assume the bottom-up approach is meant
whenever we refer to LPLs, LPL development environment and LPL
engineering. By extension, we support distributed and incremental
development, configuration, and deployment by maintaining the

1Following [30], language features are either language constructs, e.g., for loop, or
language concepts (without concrete syntax), e.g., scope and recursion.

https://doi.org/10.1145/3382025.3414961
https://doi.org/10.1145/3382025.3414961

SPLC ’20, October 19–23, 2020, Montréal, QC, Canada Luca Favalli, Thomas Kühn, and Walter Cazzola

consistency between language components implementing a lan-
guage feature, the feature model (FM), the language configurations
and the deployed language products. Additionally, we allow de-
ployers to cope with the domino effect when restricting a language,
i.e., where strongly connected dependencies between language
features prevent language specialization [20]. To create this LPL
development environment, we married the Neverlang language
workbench [30] and AiDE its LPL development environment [20]
with the FeatureIDE [25] SPL engineering environment.Neverlang
permits the development of LPLs and deployment of language prod-
ucts within the Eclipse IDE, AiDE generates the feature model for
the LPL under development whereas FeatureIDE provisions the
feature configuration. Moreover, we extended the Feature Configu-
ration Editor to allow for declaring a language configuration and
dealing with the domino effect. We demonstrate the applicability of
both the process and our environment for LPL engineering by show-
casing their application for gradually teaching JavaScript [5] by em-
ploying the LPL of JavaScript-based languages [30]—neverlang.JS.
We incrementally recreated 15 JavaScript language variants of in-
creasing complexity following the teaching case study whereas
each variant was individually deployed and tested within equiva-
lent Eclipse IDEs. Besides, we showcase how the deployer copes
with the domino effect and illustrate the consistency preservation
mechanisms in play when refactoring language components. In con-
clusion, this marriage brings the state-of-the-art in LPL engineering
and SPL engineering together to support distributed, incremental
development, configuration, and deployment of language families.

2 BACKGROUND
2.1 SPL Engineering with FeatureIDE
Product variability, product families and product lines are concepts
not only applied to product development, but also to software de-
velopment. SPL engineering strives to ease the creation of software
variants by applying product line concepts to software development.
An SPL is a family of software products whose commonalities and
differences can be described in terms of their features. SPL engineer-
ing combines concepts from domain engineering for the design and
implementation of software artifacts with concepts from applica-
tion engineering to create products from selected features [2]. SPLs,
along with features and their dependencies are often described in
terms of a feature model (FM) [17].

FeatureIDE [25] is a SPL development environment that copes
with all aspects of the development of SPLs. It supports the FM con-
struction, the management of software artifacts, the configuration
and product derivation. SPL engineering support in FeatureIDE
encompasses: (1) the Feature Model Editor for the creation, visual-
ization and tracing of FMs, concrete and abstract features, feature
dependencies and cross-tree constraints; (2) theConfiguration Editor
for the creation, modification, and validation of feature configu-
rations; and (3) various Composers for the derivation of product
variants from a given a valid feature configuration. As an example,
Figure 1 showcases a FM built with FeatureIDE.

FeatureIDE maintains consistency between the different views
during all phases of the development process. For instance, any
modification of the FM in the FM Editor is propagated to the Config-
uration Editor, while any other configuration is marked if it became

LogLang

statement

SYNTAX Remove

RemovePermCheck ROLE permissions

RemoveLogging ROLE logging

Remove ROLE execution

SYNTAX Backup

BackupPermCheck ROLE permissions

BackupLogging ROLE logging

Backup ROLE execution

SYNTAX Rename

Rename ROLE execution

RenamePermCheck ROLE permissions

RenameLogging ROLE logging

SYNTAX Merge

Merge ROLE execution

MergePermCheck ROLE permissions

MergeLogging ROLE logging

utils

task
SYNTAX Task Task ROLE execution

SYNTAX Main

SYNTAX LogLangTypes LogLangTypes ROLE terminal evaluation

3

Legend:

Abstract Feature

Concrete Feature

Optional

1 Collapsed Nodes

Figure 1: Example feature model for log rotating tools [6].

inconsistent, as a result. The Configuration Editor runs a SAT-solver
to check the validity of feature configurations in relation to feature
dependencies and cross-tree constraints. Finally, a composer gener-
ates the final product variant for a given configuration by selecting
and composing the corresponding software artifacts.

2.2 Language Product Lines
The development of families of programming and DSLs has gained
popularity among researchers and practitioners, e.g., [15, 22, 23, 26].
Following the ideas from SPLs, an LPL facilitates the process of
language development, which can be customized by selecting indi-
vidual features: similarly to any other software, a language can be
designed for a specific use case or application domain. For instance,
several works [10, 29, 32] showed that the variants of state ma-
chine languages can be modeled as a single family of programming
languages. Nonetheless, this is also true for general-purpose pro-
gramming languages, from which dialects may be defined for DSL
purposes. On one side, specialized versions of full-fledged program-
ming languages can be employed in case of security purposes (e.g.,
Java Card [8]) or teaching [5, 12]. Language extension, on the other
side, can be useful to embed new language features into an existing
programming language, such as type-checked SQL queries [13].

LPLs can be created using either a top-down or a bottom-up
approach [19]. In the former approach, the feature model is created
first, then the features are mapped to the language artifacts and
finally language variants are developed though a configuration
process. In the latter, the language developer creates individual
language artifacts, from which a feature model is generated and
used to guide the configuration. Henceforth, we will focus on the
bottom-up approach for LPL engineering.

Figure 1 showcases the FM generated for the family of LogLang
variants. LogLang is a simple DSL that describes tasks for a log ro-
tating tool similar to the logrotate Unix utility with a modular Nev-
erlang implementation [6]. Given valid feature configuration the
interpreter for a specific LogLang variant is generated. We denote
a language variant to be viable, if its language recognizes/evaluates
the selected language constructs with the expected semantics.

Neverlang and FeatureIDE Just Married SPLC ’20, October 19–23, 2020, Montréal, QC, Canada

1 module Backup {
2 reference syntax {
3 provides { Backup: backup, statement; Cmd: statement; }
4 requires { String; }
5 Backup ← "backup" String String;
6 Cmd ← Backup;
7 categories : Keyword = { "backup" };
8 in-buckets : $1 ← { Files }, $2 ← { Files };
9 out-buckets : $1 → { Files }, $2 → { Files };
10 }
11 role(execution) {
12 0 .{
13 String src = $1.string, dest = $2.string;
14 $$FileOp.backup(src, dest);
15 }.
16 }
17 }
18 slice BackupSlice {
19 concrete syntax from Backup
20 module Backup with role execution
21 module BackupPermCheck with role permissions
22 }

24 language LogLang {
25 slices BackupSlice RemoveSlice RenameSlice
26 MergeSlice Task Main LogLangTypes
27 endemic slices FileOpEndemic PermEndemic
28 roles syntax < terminal-evaluation < permissions : execution
29 }

Listing 1: Syntax and semantics for the backup task.

2.3 Neverlang and AiDE in a Nutshell
Neverlang [4, 7, 30] is a framework for component-based develop-
ment of programming languages. Language components, called
slices, embody language features and are developed as separate
units that can be independently compiled, tested, and distributed,
enabling developers to share and reuse the same units across dif-
ferent language implementations. The basic development unit is
a module (Listing 1). A module may contain a syntax definition
and/or roles. A role defines semantic actions that should be exe-
cuted when some syntax is recognized, as prescribed by the syntax-
directed translation technique [1]. Syntax definitions and semantic
roles are tied together using slices.

Listing 1 illustrates the implementation of the Backup feature
of the LogLang LPL. Here the module Backup declares a reference
syntax for the backup task (lines 2-10). The reference syntax of a
module also declares information for basic IDE services, such as
syntax highlighting (line 7) and code-completion (lines 8-9). Se-
mantic actions are attached to nonterminals of the productions
(lines 12-15) by referring to their position in the grammar: number-
ing starts with 0 from the top left to the bottom right.2 Thus, the
Backup non-terminal on line 5 is referred to as 0 and the two String
non-terminals on the right-hand side of the production as 1 and
2, respectively. Each role may declare different semantic actions
for the same productions and will represent a different compilation
phase. In contrast, the BackupSlice (lines 18-22) declares that it
will combine this syntax (as the concrete syntax) in our language
(line 19), with the semantics of two separate semantic actions from
two different modules (lines 20-21). Finally, the language descriptor
(lines 24-29) indicates which slices should be composed to gener-
ate the language interpreter (lines 25-26). Therefore, composition in
2Neverlang also permits to label a production and refer nonterminals via an offset
from such a label, e.g., $BKP[0] is the head of the BKP production.

Neverlang is twofold: (1) between modules, which yields slices, and
(2) between slices, which yields a language implementation. The
grammars are merged to generate the complete language parser. Se-
mantic actions are performed with respect to the parse tree of the in-
put program; roles are executed in the sequence and traversal spec-
ified in the roles clause (line 28) of the language descriptor, e.g.,
permission is executed after parsing and terminal-evaluation.
Besides that, it can declare endemic slices, instances shared across
multiple compilation phases (line 27).3

Neverlang supports LPL engineering thanks to AiDE [19, 20].
AiDE is a variability management tool tailored for the develop-
ment of LPLs. It uses information provided by Neverlang modules
(lines 3-4 of Listing 1) and implements an extension to the method
presented in [20, 31, 32] to automatically synthesize the FM of a
given language family [30]. Through its graphical user interface,
the user can explore the FM, choose features, create a language
variant, and test it. Because FM of LPLs tend to be large [19], AiDE
initially shows the first level of the tree enabling its expansion.
Moreover, AiDE tracks all unresolved dependencies—i.e., all open
nonterminals in the current configuration—and provides the user
with mechanisms, such as renaming, to bind them to other non-
terminals already in the configuration, while the user configures
a language variant. This simplifies the resolution of dependencies
during the feature selection.

Another important feature of AiDE is its ability to dynamically
update the language variant during its configuration. Whenever
a valid configuration, i.e., one without unresolved dependencies,
exists, the user can update the internal language variant and test
it using the integrated command line interface of Neverlang. This,
permits users to verify the consistency and test the behavior of
the language variant under construction. Internally, AiDE updates
the language descriptor maintained by the underlying Neverlang
language development framework. The AiDE current configuration
can be deployed at any time, resulting in a Java archive contain-
ing the developed language and all dependencies. By changing
the name of the deployed language, users can effectively develop
a library of variants of the same language family. In sum, AiDE
guides users towards the generation of consistent language variants
by supporting multiple dependency resolution strategies and con-
tinuous generation of the language compiler/interpreter. Notably
though, AiDE lacks automatic feature selection and suggestion as
well as an integrated editor for language variants supporting syntax
highlighting, code-completion, and debugging.

3 TOWARDS AN INTEGRATED LPL
DEVELOPMENT ENVIRONMENT

First and foremost, an LPL development environment must sup-
port the LPL engineering process, and thus, individually support
the three roles: language developer, language deployer, language
users. Moreover, it must support several distinct views on the LPL
under development and provide basic IDE services, e.g., syntax
highlighting, error marking, code-completion. Thus, in this sec-
tion, we outline the LPL engineering process, the roles involved,
the different views used by each role, the underlying artifacts, and
consistency relations between the artifacts.
3Please see [30] for further details.

SPLC ’20, October 19–23, 2020, Montréal, QC, Canada Luca Favalli, Thomas Kühn, and Walter Cazzola
la

ng
au

ge
 d

ep
lo

ye
r

Language
Configuration

Language
Generation

Language
Deployment

no

yes

la
ng

ua
ge

 u
se

r

Execution of
Language
Variant

Program

Write & Edit
Language

Variant
Program

yes

la
ng

ua
ge

 d
ev

el
o

pe
r

Language
Decom-
position

Test
Complete
Language

Feature
Model

Generation

Language
Configurations

Language Variant
Program

Issue in
Language

Variant

Language
Variants

Language
Components

Request
Refactoring

Notify Feature
Model Change

Notify Language
Variant Change

viable?

no issue in
variant?

Feature Model

Language Variant
Program Output

Figure 2: BPMN describing the LPL engineering process.

3.1 LPL Engineering Process
Although the general SPL engineering process presented in [27] and
illustrated in [25] also applies for LPLs, we argue that it is still too
coarse-grained to disclose the relevant users and views for an LPL
development environment. Similarly, the LPL development process,
described in [19], is not detailed enough as it neglects the language
user. As a result, Figure 2 illustrates the process of LPL engineering
as a business process model [9]. It shows the three distinct roles,
i.e., language developer, language deployer, and language user, as
different swim lanes (rows) of the process and their corresponding
task. Moreover, it shows the artifacts created or refined by each
task. Distributing the engineering process over several areas of
responsibility allows for the concurrent development of LPLs while
minimizing conflicts. Here, only the language components, the FM
and the language variants are highlighted, because they are shared
between several tasks of different roles, therefore they must be kept
consistent between the views of the three roles.

3.2 Language Engineering
The language developer starts the LPL engineering process by de-
composing a language into individual language components and
iteratively testing a complete language variant (typically) against
a monolithic reference implementation. Following the bottom-up
approach [19], the FM can be regenerated from the set of language
components. Finally, the language developer commits the LPL. To
support these tasks, an LPL development environment must pro-
vide an editor for implementing language components, facilities
to run and test a complete language variant, and finally an editor
to review and analyze the generated FM for the LPL under con-
struction. Naturally, the FM generation should be automated, e.g.,

by triggering the (re)generation of the FM each time a language
component is added, modified, or deleted.

3.3 Language Configuration and Deployment
In contrast, the language deployer is notified about each FM change
when checking out the LPL, to create or revise language configura-
tions of the different language variants. The deployer incrementally
generates language variants and tests their viability, i.e., whether
it includes the desired language constructs and concepts. In case
a language variant that is not yet viable is generated, e.g., due to
a too coarse-grained language component, the language deployer
requests a refactoring of language components by the language
developer. Otherwise, the deployer (re)deploys and commits the lan-
guage variant, which makes it available to its users.Consequently,
the deployer requires a different set of views and services from an
LPL development environment. They require a language configura-
tion editor to easily select individual language features and create a
viable language variant. However, as already outlined in [20], this
language configuration editor should not only automatically select
implied language features and ease the configuration of compilation
phases (order of semantic actions), but also cope with the domino
effect, i.e., specifically leaving dependencies unfulfilled enabling
their resolution on a syntactical level or by selecting alternative
language components. Besides that, the LPL development environ-
ment must provide means to generate a language variant and test
its viability before deployment. Again, the generation of a language
variant lends itself to automation, as it can be triggered whenever
a language configuration is created or modified.

3.4 Usage of Language Variants
Once a language variant is deployed and committed, a language
user can checkout the latest version to create, edit, and execute the
corresponding programs. In case of issues in the language variant
either on the syntactic or semantic level, they report them to the
language deployer, who, in turn, could adapt the language configu-
ration. For the language user, the LPL development environment
should be indistinguishable from an IDE, and provide the expected
basic IDE services. Simply put, a language variant’s user needs
a syntax highlighting editor, preferably with code-completion, as
well as means to execute and/or debug the program written in the
language variant. From their perspective, each language variant is
its own isolated programming language supported by the IDE.

In conclusion, each role requires very different views and ser-
vices provided by the LPL development environment. Granted, it
is challenging to implement these views in one development envi-
ronment. Yet, we argue that this enables distributed, incremental
development of LPLs with tight feedback loops and rapid deploy-
ment, whereas the LPL development environment maintains the
consistency between the shared artifacts, i.e., the language compo-
nents, the FM, and language variants. The engineering process can
also address conflicts in the requirements: requests from different
language user can be balanced by configuring additional language
variants while feature conflicts are translated into FM constraints
by the environment.

Neverlang and FeatureIDE Just Married SPLC ’20, October 19–23, 2020, Montréal, QC, Canada

Algorithm 1: ExpandFeatureModel (FM: Feature Model)
begin

𝑃 := {𝑝 | 𝑝 is a node in FM};
for 𝑝 ∈ 𝑃 do

𝑆 := {𝑓 | 𝑓 ∈ syntactic_features(𝑝) };
for 𝑓 ∈ 𝑆 do

generate concrete syntactic node 𝑛 for 𝑓 ;
children (𝑛) B ∅;
𝑅 := {𝑓 ′ | 𝑓 ′is a semantic feature compatible with 𝑓 };
for 𝑓 ′ ∈ 𝑅 do

generate concrete semantic node 𝑛′ for 𝑓 ′;
children (𝑛) B children (𝑛) ∪ {𝑛′ };

end
children (𝑝) B children (𝑝) ∪ {𝑛};

end
end
return 𝐹𝑀 ;

end

4 MARRY NEVERLANG AND FEATUREIDE
Instead of implementing an LPL development environment from
scratch, we opted to marry two established development environ-
ments, Neverlang and AiDE for LPL development and FeatureIDE
for feature-oriented SPL development. This section outlines howwe
combined the two into a powerful LPL development environment.

4.1 Integrating AiDE into FeatureIDE
FeatureIDE and AiDE are standalone environments for the devel-
opment of product lines. Our contribution is an integrated LPL
development environment born by marrying the two. We refac-
toredAiDE employing the FeatureIDE core to implement the layered
language feature model as an extension of the default FeatureIDE
FM class and a set of additional abstractions to represent the differ-
ent syntactic and semantic features of an LPL, as well as cross-tree
constraints. The IDE was implemented as an Eclipse plugin and
provides several extension to FeatureIDE and native Eclipse: (1) the
AiDE project nature for LPL projects; (2) a Neverlang incremental
builder for said nature; (3) theAiDE composer for the creation of lan-
guage artifacts from configuration files; (4) wizards for the creation
of new LPL projects and language variants extending the New Fea-
ture Project Wizard and the New Configuration Wizard respectively;
(5) the Neverlang Configuration Editor extending the FeatureIDE
Configuration Editor. In addition, we utilize the Neverlang Editor,
introduced in [21], for the development and usage of LPLs featuring
basic IDE features. Yet, we extended its implementation to allow
dynamic reloading of language variants.

4.2 AiDE
For generating a FM from language components, we extended the
algorithm presented in [20]. The novel AiDE algorithm expands
the FM one level deeper by distinguishing between syntactic and
semantic language features. Algorithm 1 accepts the FM generated
with the original AiDE algorithm from [20] as an input. First, only
abstract features are present, then our extension creates the corre-
sponding syntactic features as leaves. Finally, all semantic actions,
attached to a syntactic feature are added as their leaves. This en-
ables a more fine-grained customization of languages, as it enlarges
the variant space.

Figure 1 shows the FM for LogLang generated by AiDE. It contains
abstract features generated from the tags in defined modules (List-
ing 1 lines 3-4) and two layers of concrete features. The first holds
the syntactic features of the LPL, whereas the second contains the
corresponding compatible semantic features. To seamlessly support
the LPL engineering process, the AiDE FM generation algorithm
has been integrated with the Eclipse build process. Whenever a
module is added, deleted or changed in the workspace, the incre-
mental Neverlang compiler compiles the most recent version of the
file. The pool of available language features and the FM are updated
by the AiDE runtime environment.

4.3 Neverlang Language Configuration Editor
Language features can be combined into a language configura-
tion using the Neverlang language construct. AiDE supports the
automatic generation of language and slice files through the Nev-
erlang Language Configuration Editor (Figure 3, language deployer
layer). It extends the default FeatureIDE Configuration Editor to
create all the language variants. The variability space of an LPL
can be further expanded wrt. its SPL equivalent by allowing for
language restrictions that would normally lead to invalid config-
urations. Due to the domino effect, removing a language feature
requires all features dependent on it to be removed as well. In case
of language grammars, this is often due to open non-terminals.
Neverlang permits renaming to stop the domino effect, i.e., an open
non-terminal can be renamed to a provided non-terminal to fill the
gap and obtain a viable language variant although the feature con-
figuration is invalid. The Neverlang Language Configuration Editor
adds a Renames tab (Figure 3, language deployer layer, right side)
to incorporate this functionality into FeatureIDE. In addition, the
compilation phases for the interpreter/compiler can be specified
in the Roles tab by defining the succession and traversal of seman-
tic actions. The source generation process is triggered whenever
changes are saved. This will automatically generate all slices by
collecting the selected syntactic and semantic features and compile
the corresponding language variant. The generated code for the
language variant can be inspected in the Neverlang source tab. Since
the Neverlang compiler translates language files into Java classes,
the language variant’s interpreter can be immediately tested by
running the generated Java class as Java application.

4.4 Neverlang Editor
The Neverlang Editor (Figure 3, language developer and language
user layers) is an LPL-driven editor, introduced in [21]. It collects
and integrates IDE services specified in modules to deploy a tailored
editor for language variants.

Since the Neverlang compiler is bootstrapped, the Neverlang
Editor serves as an environment for both the development of lan-
guage components and the usage of language variants. Moreover,
language variants can be dynamically loaded and the editor’s IDE
services adapted at runtime. Furthermore, it provides syntax high-
lighting and code-completion services by cross-referencing the
IDE specifications within the language components in language
variants, e.g., categories hold stylistic information for a grammar
fragment, out-buckets are fed with text from a terminal or non-
terminal symbol and can be retrieved to provide suggestions for

SPLC ’20, October 19–23, 2020, Montréal, QC, Canada Luca Favalli, Thomas Kühn, and Walter Cazzola

la
ng

ua
ge

de
ve
lo
pe
r

la
ng

ua
ge

de
pl
oy
er

la
ng

ua
ge

us
er

Figure 3: Overview on the Neverlang LPL development environment highlighting the views provided to each role.

code-completions using the in-buckets directive (Listing 1 lines 7-
9). For further information on IDE specifications in Neverlang and
their implementation, we refer the reader to [21]. This work con-
tributes to the Neverlang Editor by integrating dynamic reloading
of language implementations within the same Eclipse instance to
better suit the LPL engineering process and the incremental devel-
opment of multiple language variants.

4.5 Deployment of a Language Product
FeatureIDE can deploy languages and language families using the
AiDE library and Gradle. Upon creation of an LPL project, AiDE
optionally generates a build.gradle file with a distribution task,
which generates a Java archive containing the required project
binaries and their dependencies. Binaries of language variants can
be registered by referring to either binary project folders or jar
archives and specifying the fully-qualified name of the language
class file within the Neverlang config.json file.

Once a language is registered, the Neverlang Editor can load its
basic IDE services. Programs compliant with any registered lan-
guage variant can be executed inside the Eclipse console (Figure 3,
language user layer, bottom part) by producing a Neverlang run
configuration for that file specifying the desired language variant.

4.6 Consistency Preservation
Consistency preservation between the LPL artifacts is maintained
in part by the Neverlang compiler, AiDE, and FeatureIDE. Any
change to a Neverlang source file (language components) in the
workspace triggers the Neverlang compiler. The compiler is respon-
sible for both the translation of Neverlang into the target language
(Java by default) and the synchronization of an environment holding
all the language features relevant to the FM creation. AiDE issues
the regeneration of the FM according to Algorithm 1, when the
Neverlang source update forces an update to the environment. The

language developer reviews the updated version of the FM inside
the FM Editor and decides to either discard or accept the changes
by canceling or performing the save operation. Finally, he commits
the LPL. After checking out the recent LPL, FeatureIDE notifies
the language deployer by applying a warning on any inconsistent
configuration wrt. the current FM. The language deployer reviews
the language configurations, to solve any inconsistency in the FM,
and commits any change. The Neverlang Language Configuration
Editor automatically reestablishes a consistent language configura-
tion whenever the FM change is not substantial—i.e., no concrete
features are renamed or removed. In this way FeatureIDE supports
the incremental development of LPLs with little to no side effects.

5 DEMONSTRATION CASE STUDY
This section showcases the applicability of the engineering process
we presented in Sect. 3, as well as the suitability of our development
environment for the three roles, i.e., language developer, language
deployer, and language user, by illustrating its use for gradually
teaching programming as featured in [19]. The whole experiment
was undertaken in a distributed environment and versioned using
git.4 The repository features 3 different authors, each one embody-
ing one of the three roles: language developer, language deployer,
and language user; the contribution made by each author can be
reviewed by inspecting the commit history and highlights the un-
derlying distributed, incremental LPL engineering process.

5.1 Family of JavaScript-based Languages
For our case study, we employed and refactored the LPL for the fam-
ily of JavaScript-based languages introduced in [30]—neverlang.JS.

4The repository is available at:
https://cazzola.di.unimi.it/aide/neverlangjs-lpl.git.tgz.

To setup a copy of the repository on your machine please download it, extract it, switch
to the new directory and run: git clone .git neverlangjs-lpl.

https://cazzola.di.unimi.it/aide/neverlangjs-lpl.git.tgz

Neverlang and FeatureIDE Just Married SPLC ’20, October 19–23, 2020, Montréal, QC, Canada

1

numeric
expr.

first
language
variant

2

precedence

3

Boolean,
relations

4

strings,
arrays

5

variable
assign-
ments

5b

Boolean
variables

only

6

if-else,
switch

7

while,
for loops

8

functions
without
recursion

8b

functions
without
loops

9

lambda
expr.

10

objects,
methods

11

throw,
catch

12

prototype
model

Figure 4: Course schedule and language products for teaching JavaScript, adapted from [5].

Although JavaScript provides a realistic level of complexity and
variety of language features, its implementation only amounts to
3599 lines of code (LoC) in 79 slices, 83 modules, and 3 endemic slices
and support classes. Moreover, the neverlang.JS interpreter mostly
conforms to the ECMAScript 3 Language Specification (ECMA-262),
except for several built-in functions. Despite its limited size, the FM
generated by AiDE, as partially depicted in Figure 5, comprises 234
language features (including 43 abstract features) and 162 cross-tree
constraints.5 Notably, some of them are redundant, this, however,
results from the individual generation of cross-tree constraints. As
such, the FM gives rise to at least 139713 valid feature configurations
(i.e., fulfilling all tree and cross-tree constraints) and corresponding
language variants (estimated via FeatureIDE’s number of products
analysis). Note that this number is an underestimation because
the Neverlang renaming mechanism could still be used to derive
viable language variant from invalid feature configurations. Unfor-
tunately, we cannot give a more accurate estimate on the number of
viable language configurations and, thus, language variants, as the
viability of a renaming depends on the language implementation.

5.2 Teaching a Growable Language
For our demonstration case study, we adapted the teaching schedule,
proposed in [5], for gradually teaching programming to students.
Figure 4 highlights the 14 language variants (circles) which grad-
ually introduce new language features over the duration of the
programming course. In particular, we included three additional
language variants. The first, Variant 5b, is a language specializa-
tion that only permits Boolean expressions and the declaration of
Boolean variables. It mirrors Variant 5, yet focuses on propositional
logical formulas. In contrast, Variant 8 and Variant 8b were intro-
duced to teach recursion or lack thereof. While the former, permits
function calls yet prohibits recursion, the latter supports recursive
function calls yet removes loops from the language variant. Hence-
forth, we will take the perspective of the teacher as the language
deployer tasked to configure and deploy the 14 language variants
to students as language users.

5.3 Growing a JavaScript Variant
To create the increasingly complex language variants, the language
developer clones the neverlang.JS git project provided by the lan-
guage developer and opens it within our LPL development environ-
ment. Then they use the Neverlang Language Configuration wizard
5The complete feature model is available: https://cazzola.di.unimi.it/aide/
neverlangJS-fullfm.png.

to create a new language configuration and open it in the Neverlang
Language Configuration Editor. Initially the configuration is empty
and they proceed by selecting the desired language features from
the Configuration tab, as in the second layer of Figure 3. Henceforth,
we use a dot-notation to denote the path to a feature from the root
of the FM, shown in Figure 5.

In our case, we started with Variant 2, a language variant only
allowing numerical expressions. For this example, Figure 5 high-
lights the relevant features with a yellow background. The lan-
guage deployer starts by selecting the desired language features for
this language specialization found under expression.numbers, i.e.,
sum.JSAdditiveExpression and literal.JSNumbericLiteral.
Additionally, the corresponding evaluation semantic features are
selected too. The configuration editor automatically selects
endemics.JSMathEndemic but yields an invalid configuration due
to unsatisfied cross-tree constraints. However, it suggests to se-
lect mul.JSMultiplicativeExpression and literal.JSNumberic-
LiteralProd from the expression.numbers subtree. Although this
yields a valid configuration, the resulting language variant is still
empty, as the selected productions are never reached. The language
deployer additionally selects the language features leading from
the start symbol (Program by convention) to the numerical expres-
sions to make them reachable. Such features include JSMain and
statement.JSStatement (top of Figure 5) and JSExpressionState-
ment and JSPrimaryExpressions (from the expression subtree).
At this point, the configuration editor suggests the JSExpression
feature which cascades into additional dependencies that the lan-
guage variant should not include. In fact, at this point the de-
ployer requests help from the language developer who, in turn,
assesses that in this case renaming is not enough and introduces
two alternative language components, i.e., AddExprRestriction
and UnaryExprLiteralRestriction, that introduce the missing
productions needed to make this language variant viable. Imme-
diately, after adding the new language components the FM is re-
generated. The language developer can now commit the newly
created Neverlang modules and the changes to the FM file to the
repository. The language deployer pulls the latest changes which
cause FeatureIDE to automatically reload the Neverlang Language
Configuration Editor, i.e., publishing the corresponding language
features within the expression.restrictions subtree. Finally, the
configuration is valid and the deployer only needs to declare the
sequence of the semantic actions and corresponding traversal, i.e.,
evaluation with preorder, in the Roles tab. Once the configuration is
saved, the language variant is automatically generated and ready

https://cazzola.di.unimi.it/aide/neverlangJS-fullfm.png
https://cazzola.di.unimi.it/aide/neverlangJS-fullfm.png

SPLC ’20, October 19–23, 2020, Montréal, QC, Canada Luca Favalli, Thomas Kühn, and Walter Cazzola

javascript

expression

boolean

numbers

variables 2
incr decr

SYNTAX JSArithmeticAssignmentExpression

unordered
SYNTAX JSUnorderedMultiplicativeExpression

SYNTAX JSUnorderedAdditiveExpression

sum
SYNTAX JSAdditiveExpression

SYNTAX JSOptimizedAdditiveExpression

mul
SYNTAX JSOptimizedMultiplicativeExpression

SYNTAX JSMultiplicativeExpression

SYNTAX JSUnaryMathExpression

literal
SYNTAX JSNumericLiteral

SYNTAX JSNumericLiteralProds
objects

bitwise

primary

functions 2

restrictions

SYNTAX PrimaryExprRestriction

SYNTAX AddExprRestriction

SYNTAX UnaryExprLiteralRestriction

SYNTAX RelExprRestriction
unary

no in

SYNTAX JSExpression

SYNTAX JSAssignmentExpression

SYNTAX JSExpressionStatement

SYNTAX EmptyAction

statement

statement sat

interrupts

exception handling

SYNTAX JSEmptyStatement

SYNTAX JSVariableStatement

SYNTAX JSBlockStatement

boolean 2
switch

SYNTAX JSIfStatement
SYNTAX JSStatement

SYNTAX Pause

SYNTAX JSLabelledStatement

cflow

for

SYNTAX JSWhileStatement

SYNTAX JSLoopStatements

SYNTAX JSBlockComponent

endemics

functions

SYNTAX JSMain
JSMain ROLE evaluation

JSMainAnalysis ROLE analysis

SYNTAX JSStatementList

SYNTAX JSComments

variables

32
4

1

1

1

1

1

1

1

1

1

1
27

17

18

9

1

1

1

1

9

6

1

3

2

1

9

5

2

2

1

6

2
1

2

1

6

2

1

1

4

7

1

4

Legend:

Abstract Feature

Concrete Feature

Selected Feature

Optional

1 Collapsed Nodes

Figure 5: FM generated by AiDE for the JavaScript-family.

to be published to the repo for testing. To do this, the language
user can simply update the repository and run the generated Java
program within the gencode.aide package in the gen-src folder
as Java application. This starts an interactive interpreter of the
language variant in the Console. After evaluating that the language
variant correctly parses and evaluates the desired numerical expres-
sions, they can proceed to package the language variant via gradle
and registering it to Neverlang selecting a unique file extension,
e.g., js02. As a result, language users can now use the Neverlang
Editor to edit all js02 files with the correct syntax highlighting
and code-completion. They can also run the files using the Nev-
erlang run configuration with the corresponding language variant,
i.e., Variant 2 and file path, as showcased in [21]. Figure 3 (language
user layer) showcases the editors for the first four language variants

with syntax highlighting and code-completion, and the execution
of the factorial.js04 program with the fourth language variant.

Building on these language variants, the language deployer can
reuse previous language configurations to derive the other language
variants. Moreover, with feedback from the language developer they
can also derive language variants, which require renaming, such as,
Variant 4 to exclude assignments and Variant 5b to exclude bitwise
operations and relations, or diverging semantics, such as, Variant 1
requiring language components violating the precedence rules and
Variant 8 which prohibits recursive function calls. Henceforth, we
change the perspective to the language developer detailing how
Variant 5b and 8b were facilitated.

5.4 Refactoring the neverlang.JS LPL
Variant 5b was derived restricting variant 5 by removing support
for numerical values, strings and arrays to allow the language
deployer to configure a language variant of only Boolean assign-
ments and expressions. Introducing the new variant in the LPL
highlighted a refactoring opportunity. Listing 2 showcases the im-
plementation of assignments before the refactoring process. The
syntax definition for the JSAssignmentExpression modulewas too
coarse-grained and required the AssignOperator non-terminal to
be defined leading to invalid language configurations when numer-
ical values and arithmetic assignment operators are not present in
the variant. To fix this we refactored the JSAssignmentExpression
into two modules (cf. Listing 3) to distinguish standard assign-
ments from arithmetic assignments, e.g., +=. In total, the added
JSArithmeticAssignmentExpression amounts to 61 additional LoC.
After completing the refactoring the LPL development environ-
ment automatically compiles all changed language components
and regenerates the FM. Then the language developer only needs
to review and save the FM via the FM Editor. As previously out-
lined, this change is propagated to all Language Configuration
Editors. Additionally, all variants 5–13 that were using the modi-
fied JSAssignmentExpression feature are marked with a warning
indicating that they need to be reviewed by the language deployer.

A similar refactoring process was required to derive Variant 8
from Variant 8b to introduce functions. Recall, Variant 8 adds func-
tions with loops but prohibits recursive calls whereas Variant 8b
permits recursive functions but lacks loops. For the former, this
required selectively changing the language semantics. Hence, the
language developer opted for preceding the evaluation with an ad-
ditional semantic role, i.e., the analysis role. This role was added
to JSFunctionDeclaration, JSFunctionCalls, and JSMain to re-
trieve the static call graph from the parsed program and prevent its
evaluation when a cycle is detected.

1 module neverlang.js.variables.JSAssignmentExpression {
2 reference syntax {
3 provides { AssignExpr: expression, variables; }
4 requires { LeftHandSideExpr; AssignOperator; }
5 AssignExpr ← LeftHandSideExpr "=" AssignExpr;
6 AssignExpr ← LeftHandSideExpr AssignOperator AssignExpr;
7 }
8 role (evaluation) {/*...*/}
9 }

Listing 2: Too coarse-grained module defining assignment.

Neverlang and FeatureIDE Just Married SPLC ’20, October 19–23, 2020, Montréal, QC, Canada

1 module neverlang.js.variables.JSAssignmentExpression {
2 reference syntax {
3 provides { AssignExpr: expression, variables; }
4 requires { LeftHandSideExpr; }
5 AssignExpr ← LeftHandSideExpr "=" AssignExpr;
6 }
7 role (evaluation) {/*...*/}
8 }
9 module neverlang.js.variables.JSArithmeticAssignmentExpression {
10 reference syntax {
11 provides {
12 AssignExpr: expression, variables, numbers, strings;
13 AssignOperator: ..., operators;
14 }
15 requires { LeftHandSideExpr; AssignExpr; }
16 AssignExpr ← LeftHandSideExpr AssignOperator AssignExpr;
17 AssignOperator ← "+="; // other rules for *= /= %= -=
18 }
19 role (evaluation) {/*...*/}
20 }

Listing 3: Assignment split into separate modules.

1 module neverlang.js.analysis.JSFunctionDeclarationAnalysis {
2 reference syntax from
3 neverlang.js.functions.JSFunctionDeclaration
4 role(analysis) {
5 func_decl: .{
6 String foo = $func_decl[1].toTerminalString();
7 String args = $func_decl[2].toTerminalString();
8 $$CallStackBuilder.declare(foo, args.split(","));
9 eval $func_decl[3]
10 $$CallStackBuilder.pop();
11 }.
12 }
13 }
14 module neverlang.js.analysis.JSFunctionCallsAnalysis {
15 reference syntax from
16 neverlang.js.expression.JSFunctionCalls
17 role (analysis) {
18 c_expr: .{
19 String foo = $c_expr[1].toTerminalString();
20 String args = $c_expr[2].toTerminalString();
21 $$CallStackBuilder.call(foo, argsString.split(","));
22 }.
23 }
24 }

Listing 4: Semantic actions for creating the call graph.

Listing 4 shows the implementation of the semantic actions
added to function declarations and function calls. The former uses
a stack to keep track of the current function in scope whereas the
latter adds call edges from the current function to the called function.
Excluding the employed third-party graph library, this extension
only introduced 52 new LoC. The impact of this refactoring on the
FM is limited to the added language features without changing its
structure. Thus no other language configuration was affected by
the change. Hence, to configure Variant 8, the language deployer
only needs to pull the FM with the new features, add those features
to the configuration, select the corresponding analysis role and list
it as preceding the evaluation phase in the Roles tab.

To recap, these cases illustrate the benefits of a tight feedback
loop from the language variant’s deployer to the LPL developer in
a distributed environment, such that the language developer only
needs to make small changes to the LPL to gradually make more of
the language deployer’s language variants viable.

5.5 Comparison of the 15 Language Variants
During the course of this case study, we incrementally created 15
distinct language variants of increasing complexity including the
14 variants for the teaching schedule and the full-fledged version
of JavaScript while refactoring the underlying neverlang.JS LPL ac-
cording to need. Accordingly, Table 1 provides an overview on the
15 created language variants. For each language variant it highlights
the used semantic roles. Moreover, it indicates the total number of
selected (abstract and concrete) features and in brackets the number
of features introduced and selected for language specialization. The
four newly introduced features were needed for all the variants
except 6, 7 and the full-fledged JavaScript whereas variants 2, 3 and
4 needed two specializations each. UnaryExprLiteralRestriction
was used eleven times, RelExprRestriction was used twice and
the remaining two slices were used once. The addition of language
components for specialization was mainly needed to deal with the
domino effect, but in case of Variants 4 and 5 it could be resolved
by renaming nonterminals, as indicated in the Renames column. In
these two cases, the automatic feature selection was disabled. Con-
sequently, all but these two language configurations are considered
valid by FeatureIDE, yet all produce viable language variants. To
sum up, there were a total of eight language features that caused
the domino effect, four of which were solved by adding dedicated
features to the LPL and four by means of nonterminal renaming.

From our experience, we observed that the distributed, incre-
mental development, rapid testing and deployment significantly
reduced the effort to create new and provision language variants.
Due to the power of FeatureIDE’s feature configuration with au-
tomatic feature selection and feature suggestion, the creation of
viable language variants was significantly reduced when compared
to manually writing Neverlang language files. Additionally, the
total number of LoC required to build each language variant from
scratch is shown in the last column whereas the lines of included
Java code is shown in brackets. Granted, this assumes that each
language variant would have been built from scratch using Nev-
erlang, still it illustrates how LPL engineering could speed up the
creation of language variants and improve reuse among members
of a family of languages. Last but not least, with this case study we
could illustrate the suitability of our LPL development environment
for the teaching case, as it simplified the teacher’s task to create
viable language variants. Conversely, we argue that our LPL devel-
opment environment is applicable for the distributed, incremental
development, configuration and deployment of LPLs, as it directly
supports the LPL engineering process. As showcased in this section,
our LPL development environment provides all views and services
required/expected by language developers, deployers, and users.

6 RELATEDWORK
Language workbenches and the development of domain-specific
languages are established research topics. The problem of IDE sup-
port for DSLs is well known. It is addressed by most recent language
workbenches [14], such as, Spoofax [35],MPS [33],MontiCore [18]
andMelange [11]. Some of these approaches generate an IDE using
templates, thus neglecting feature modularity and the specific char-
acteristics of the DSL under development. EMF-based tools [28]
such as EMFText [16] support modular language implementation

SPLC ’20, October 19–23, 2020, Montréal, QC, Canada Luca Favalli, Thomas Kühn, and Walter Cazzola

Table 1: Overview on the 15 NeverlangJS language variants highlighting the selected features including features for language
specialization in brackets as well as total lines of code (LoC) including Java code in brackets.

Variant Description Roles Features Renames LoC

1 Numeric expressions and operators (without precedence) evaluation 37 (11) - 330 (80)
2 Numeric expressions and operators (correct precedence) evaluation 42 (5) - 354 (82)
3 Booleans and relational operators evaluation 70 (5) - 780 (215)
4 Strings, arrays and their operators evaluation 76 (5) 1 866 (229)
5 Variables and assignments evaluation 53 (3) - 1356 (350)
5b Only Boolean assignments and expressions evaluation 106 (3) 3 641 (154)
6 Conditional statements (e.g., if, else, switch) evaluation 145 (0) - 2010 (571)
7 Loop statements (e.g., while & for) evaluation 162 (0) - 2479 (821)
8 Loops and functions without recursion analysis, evaluation 171 (10) - 2727 (877)
8b Functions with recursion, but without loops evaluation 183 (3) - 2470 (739)
9 Functions and lambda expressions evaluation 181 (3) - 2766 (884)
10 Objects and Methods evaluation 186 (3) - 2937 (974)
11 Exception Handling evaluation 193 (3) - 2990 (984)
12 Constructors and prototype model evaluation 208 (3) - 3224 (1054)

Complete Variant conforming to ECMAScript 3 debug, evaluation 234 (0) - 3599 (1194)

and IDE generation for DSLs. EMFText is similar to Neverlang
since it uses attribute grammars to share IDE implementations
through languages, however it does not explicitly consider lan-
guage variability for LPL development. Among the most successful
approaches, Monticore, Spoofax and MPS directly or indirectly
provide LPL engineering capabilities. Monticore directly supports
compositional development of DSLs and IDEs by means of lan-
guage embedding and inheritance. Butting et al. [3] presented an
approach to manage syntactic variability of extensible LPLs us-
ing Monticore. Spoofax supports generation of a wide variety of
IDE tools for Eclipse and IntelliJ including syntax highlighting,
code-completion and parse error recovery, but also the creation
of language configurations. LPLs are not addressed directly but
emerge from the incremental development of language features
and language variants. Liebig et al. [24] used Spoofax alongside
FeatureHouse for the representation and composition of language
features. MPS offers full IDE support and customizable abstract
syntax tree manipulation through the Projection Editor. Languages
can be defined as standalone languages or as modular extensions
of existing languages. Most notably, mbeddr [34] is a project built
on top of MPS, presented as a set of integrated and extensible lan-
guages based on C for embedded software engineering with an
IDE and support for SPL development. MPS arguably represents
a fully-fledged LPL development environment with IDE support,
however, to the best of our knowledge, there is no contribution
for a dedicated bottom-up LPL development environment covering
all the evolution phases of an incremental LPL, including creation,
development of language artifacts, configuration and deployment.
Other works focus on one or a few of said aspects and embrace LPL
engineering in a top-down fashion. Except for previous works on
AiDE [19–21, 31, 32], we could not find any reference to a language
workbench using a variability management tool capable of abstract-
ing language features, a feature model and cross-tree constraints
from language artifacts. Nevertheless, while the engineering pro-
cess we propose in this paper was tailored for the bottom-up LPLs,
we argue that it could be easily adapted to fit the needs of top-down
LPLs: in this scenario the language developer should commit to

update the FM manually, but the workflow of language deployer
and language user would be unchanged.

7 CONCLUSION
Current language development environments lack support for deal-
ing with families of languages. To remedy this, recent LPL devel-
opment environments approached the development of families of
languages, denoted LPL. Yet, none of them could equally support
the full LPL engineering process and needs of language developers,
language deployers, and language users within one IDE. To this end,
we described the underlying (bottom-up) LPL engineering process
established between them and introduced an LPL development en-
vironment supporting this engineering process: our environment is
suitable for distributed, incremental development, language config-
uration, rapid deployment and testing, as well as, simply working
with a language variant. In particular, we married the established
SPL engineering environment, FeatureIDE [25], with the LPL de-
velopment environment Neverlang [30] and AiDE. Moreover, we
demonstrated the applicability of our IDE for the development of
LPLs using the neverlang.JS LPL. Furthermore, we illustrated the
suitability of our LPL development environment for the distributed
and incremental development, rapid configuration and deployment
of language variants, as well as their use, by creating 15 distinct
language variants, adapted from the teaching schedule, used for
teaching a growable language [5].

Nonetheless, to improve the usability of our LPL development
environment the implementation must be further optimized for
better performance and robustness, as well as include more of the
features already provided byNeverlang, such as agents for concerns
cross-cutting multiple language modules, guards for multi-actions
and support for remapping nonterminals.

ACKNOWLEDGMENTS
We want to thank Ralf Reussner who partially funded this project.
We also want to thank Sebastien Krieter, Thomas Leich and Gunter
Saake for their insights on the FeatureIDE implementation and their
interest in this work.

Neverlang and FeatureIDE Just Married SPLC ’20, October 19–23, 2020, Montréal, QC, Canada

REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,

Techniques, and Tools. Addison Wesley, Reading, Massachusetts.
[2] Sven Apel, Alexander von Thein, Philipp Wendler, Armin Größlinger, and Firk

Beyer. 2013. Strategies for Product-Line Verification: Case Studies and Experi-
ments. In Proceedings of the 35th International Conference on Software Engineering
(ICSE’13), Betty H. Chang and Klaus Pohl (Eds.). IEEE, San Francisco, CA, USA,
482–491.

[3] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. 2018. Controlled and Extensible Variability of Concrete and Ab-
stract Syntax with Independent Language Features. In Proceedings of the 12th
International Workshop on Variability Modelling of Software Intensive Systems
(VAMOS’18). ACM, Madrid, Spain, 75–82.

[4] Walter Cazzola. 2012. Domain-Specific Languages in Few Steps: The Never-
lang Approach. In Proceedings of the 11th International Conference on Software
Composition (SC’12) (Lecture Notes in Computer Science 7306), Thomas Gschwind,
Flavio De Paoli, Volker Gruhn, and Matthias Book (Eds.). Springer, Prague, Czech
Republic, 162–177.

[5] Walter Cazzola and Diego Mathias Olivares. 2016. Gradually Learning Pro-
gramming Supported by a Growable Programming Language. IEEE Trans-
actions on Emerging Topics in Computing 4, 3 (Sept. 2016), 404–415. https:
//doi.org/10.1109/TETC.2015.2446192 Special Issue on Emerging Trends in
Education.

[6] Walter Cazzola and Davide Poletti. 2010. DSL Evolution through Composition.
In Proceedings of the 7th ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’10). ACM, Maribor, Slovenia.

[7] Walter Cazzola and Edoardo Vacchi. 2013. Neverlang 2: Componentised Language
Development for the JVM. In Proceedings of the 12th International Conference on
Software Composition (SC’13) (Lecture Notes in Computer Science 8088), Walter
Binder, Eric Bodden, and Welf Löwe (Eds.). Springer, Budapest, Hungary, 17–32.

[8] Zhiqun Chen. 2000. Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide. Addison-Wesley, Reading, MA, USA.

[9] Michele Chinosi and Alberto Trombetta. 2012. BPMN: An Introduction to the
Standard. Computer Standards and Interfaces 34, 1 (Jan. 2012), 124–134.

[10] Michelle L. Crane and Juergen Dingel. 2005. UML vs. Classical vs. Rhapsody Stat-
echarts: Not All Models Are Created Equal. In Proceedings of the 8th International
Conference on Model Driven Engineering Languages and Systems (MoDELS’05)
(Lecture Notes in Computer Science 3713), Lionel Briand and Clay Williams (Eds.).
Springer, Montego Bay, Jamaica, 97–112.

[11] Thomas Degueule, Benoît Combemale, Arnaud Blouin, Olivier Barais, and Jean-
Marc Jézéquel. 2015. Melange: a Meta-Language for Modular and Reusable
Development of DSLs. In Proceedings of the 8th International Conference on Soft-
ware Language Engineering (SLE’15), Davide Di Ruscio and Markus Völter (Eds.).
ACM, Pittsburgh, PA, USA, 25–36.

[12] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. 2012. Language
Composition Untangled. In Proceedings of the 12th Workshop on Language Descrip-
tion, Tools, and Applications (LDTA’12), Anthony M. Sloane and Suzana Andova
(Eds.). ACM, Tallinn, Estonia.

[13] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann.
2011. SugarJ: Library-Based Syntactic Language extensibility. In Proceedings of
the 26th ACM SIGPLAN Conference on Object-Oriented Programming (OOPSLA’11).
ACM, Portland, Oregon, USA, 391–406.

[14] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Alex Kelly, Gabriël
Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Kle-
mens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser, Kevin van del Vlist,
Guido Wachsmuth, and Jimi van der Woning. 2015. Evaluating and Compar-
ing Language Workbenches: Existing Results and Benchmarks for the Future.
Computer Languages, Systems and Structures 44 (Dec. 2015), 24–47.

[15] Debasish Ghosh. 2011. DSL for the Uninitiated. Commun. ACM 54, 7 (July 2011),
44–50.

[16] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. 2011. Model-Based Language Engineering with EMFText. In Proceedings
of the International Summer School on Generative and Transformational Techniques
in Software Engineering (GTTSE’11) (Lecture Notes in Computer Science 7680), Ralf
Lämmel, Joost Visser, and João Saraiva (Eds.). Springer, Braga, Portugal, 322–345.

[17] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie Mellon University, Pittsburgh, Penn-
sylvania, USA.

[18] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2010. MontiCore: A Frame-
work for Compositional Development of Domain Specific Languages. Inter-
national Journal on Software Tools for Technology Transfer 12, 5 (Sept. 2010),
353–372.

[19] Thomas Kühn and Walter Cazzola. 2016. Apples and Oranges: Comparing Top-
Down and Bottom-Up Language Product Lines. In Proceedings of the 20th Inter-
national Software Product Line Conference (SPLC’16), Rick Rabiser and Bing Xie

(Eds.). ACM, Beijing, China, 50–59.
[20] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. 2015. Choosy and

Picky: Configuration of Language Product Lines. In Proceedings of the 19th Inter-
national Software Product Line Conference (SPLC’15), Goetz Botterweck and Jules
White (Eds.). ACM, Nashville, TN, USA, 71–80.

[21] Thomas Kühn, Walter Cazzola, Nicola Pirritano Giampietro, and Massimiliano
Poggi. 2019. Piggyback IDE Support for Language Product Lines. In Proceedings
of the 23rd International Software Product Line Conference (SPLC’19), Thomas
Thüm and Laurence Duchien (Eds.). ACM, Paris, France, 131–142.

[22] Thomas Kühn, Ivo Kassin, Walter Cazzola, and Uwe Aßmann. 2018. Modular
Feature-Oriented Graphical Editor Product Lines. In Proceedings of the 22nd Inter-
national Software Product Line Conference (SPLC’18), Paulo Borba and Thorsten
Berger (Eds.). ACM, Gothenburg, Sweden, 76–86.

[23] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aß-
mann. 2014. A Metamodel Family for Role-Based Modeling and Programming
Languages. In Proceedings of the 7th International Conference Software Language
Engineering (SLE’14) (Lecture Notes in Computer Science 8706), Benoît Combe-
male, David J. Pearce, Olivier Barais, and Jürgen Vinju (Eds.). Springer, Västerås,
Sweden, 141–160.

[24] Jörg Liebig, Rolf Daniel, and SvenApel. 2013. Feature-Oriented Language Families:
A Case Study. In Proceedings of the 7th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’13), Philippe Collet and Klaus
Schmid (Eds.). ACM, Pisa, Italy.

[25] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[26] Karen Ng, Matt Warren, Peter Golde, and Anders Hejlberg. 2011. The Roslyn
Project: Exposing the C# and VB Compiler’s Code Analysis. White Paper. Microsoft.

[27] Klaus Pohl, Klaus Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[28] Dave Steinberg, Dave Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF:
Eclipse Modeling Framework. Addison-Wesley.

[29] Laurence Tratt. 2008. Domain Specific Language Implementation Via Compile-
Time Meta-Programming. ACM Transactions on Programming Languages and
Systems 30, 6 (Oct. 2008), 31:1–31:40.

[30] Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A Framework for Feature-
Oriented Language Development. Computer Languages, Systems & Structures 43,
3 (Oct. 2015), 1–40. https://doi.org/10.1016/j.cl.2015.02.001

[31] Edoardo Vacchi, Walter Cazzola, Benoît Combemale, and Mathieu Acher. 2014.
Automating Variability Model Inference for Component-Based Language Im-
plementations. In Proceedings of the 18th International Software Product Line
Conference (SPLC’14), Patrick Heymans and Julia Rubin (Eds.). ACM, Florence,
Italy, 167–176.

[32] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoît Combemale. 2013.
Variability Support in Domain-Specific Language Development. In Proceedings of
6th International Conference on Software Language Engineering (SLE’13) (Lecture
Notes on Computer Science 8225), Martin Erwig, Richard F. Paige, and Eric VanWyk
(Eds.). Springer, Indianapolis, USA, 76–95.

[33] Markus Völter and Vaclav Pech. 2012. Language Modularity with the MPS
Language Workbench. In Proceedings of the 34th International Conference on
Software Engineering (ICSE’12). IEEE, Zürich, Switzerland, 1449–1450.

[34] Markus Völter, Daniel Ratiu, Bernhard Schätz, and Bernd Kolb. 2012. mbeddr: an
Extensible C-Based Programming Language and IDE for Embedded Systems. In
Proceedings of the 3rd Annual Conference on Systems, Programming, and Applica-
tions: Software for Humanity (SPLASH’12). ACM, Tucson, AZ, USA, 121–140.

[35] Guido H. Wachsmuth, Gabriël D. P. Konat, and Eelco Visser. 2014. Language
Design with the Spoofax Language Workbench. IEEE Software 31, 5 (Sept./Oct.
2014), 35–43.

https://doi.org/10.1109/TETC.2015.2446192
https://doi.org/10.1109/TETC.2015.2446192
https://doi.org/10.1016/j.cl.2015.02.001

	Abstract
	1 Introduction
	2 Background
	2.1 SPL Engineering with FeatureIDE
	2.2 Language Product Lines
	2.3 Neverlang and AiDE in a Nutshell

	3 Towards an Integrated LPL Development Environment
	3.1 LPL Engineering Process
	3.2 Language Engineering
	3.3 Language Configuration and Deployment
	3.4 Usage of Language Variants

	4 Marry Neverlang and FeatureIDE
	4.1 Integrating AiDE into FeatureIDE
	4.2 AiDE
	4.3 Neverlang Language Configuration Editor
	4.4 Neverlang Editor
	4.5 Deployment of a Language Product
	4.6 Consistency Preservation

	5 Demonstration Case Study
	5.1 Family of JavaScript-based Languages
	5.2 Teaching a Growable Language
	5.3 Growing a JavaScript Variant
	5.4 Refactoring the neverlang.JS LPL
	5.5 Comparison of the 15 Language Variants

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

