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ABSTRACT 

 Lung mechanics and morphometry of 10 normal open-chest rabbits (group A) mechanically 

ventilated (MV) with physiologic tidal volumes (VT=8-12 ml/kg) at zero end-expiratory pressure 

(ZEEP) for 3-4 h was compared to that of 5 rabbits (group B) after 3-4 h MV with PEEP of 2.3 

cmH2O. Relative to initial MV on PEEP, MV on ZEEP caused a progressive increase in quasi-

static elastance (Est; +36%), airway (Rint; +71%) and viscoelastic resistance (Rvisc; +29%) with 

no change in viscoelastic time constant. After restoration of PEEP, Est and Rvisc returned to 

control, whilst Rint remained elevated (+22%). On PEEP, MV had no effect on lung mechanics. 

Gas exchange on PEEP was equally preserved in groups A and B, and the lung wet/dry ratios were 

normal. Both groups had normal alveolar morphology, whilst only group A had injured respiratory 

and membranous bronchioles. In conclusion, prolonged MV on ZEEP induces histologic evidence 

of peripheral airway injury with concurrent increase in Rint, which persists after restoration of 

normal end-expiratory volumes. This is probably due to cyclic opening-closing of peripheral 

airways on ZEEP. 

 

keywords: lung elastance, interrupter resistance, viscoelasticity, recruitment-derecruitment of lung 

units, lung injury scores                                       
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 In 1984 Robertson (18) suggested that ventilation at low lung volumes may cause lung 

injury as a result of shear stresses caused by cyclic opening and closing of small airways. Using an 

ex vivo model of lavaged rat lung, Muscedere et al. (17) showed that ventilation with physiologic 

tidal volumes from zero end-expiratory pressure (ZEEP) resulted in a significant increase of 

histologic injury scores in the respiratory (RIS) and membranous bronchioles (MIS) relative to 

ventilation from positive end-expiratory pressure (PEEP) above the lower inflection point on the 

static inflation volume-pressure curve of the lung. In normal closed-chest rabbits ventilated at low 

lung volumes for only 1 h, Taskar et al. (22) found no histologic evidence of airways and 

parenchymal lung injury. In a subsequent study on normal open-chest rabbits ventilated at low lung 

volumes for 3 h, Taskar et al. (23) again found no histologic evidence of parenchymal lung injury 

but they did not specifically assess peripheral airway injury with indices such as RIS and MIS. 

Thus, it is possible that ventilation at low lung volumes for more than 1 h may induce peripheral 

airway injury in the absence of pre-existent parenchymal lung injury. In fact, to the extent that 

cyclic opening and closing of peripheral airways is responsible for lung damage, it is likely that the 

injury should be preferentially located in peripheral airways. 

 Accordingly, in the present study we have assessed the effects of breathing at low lung 

volumes for 3-4 h in open-chest rabbits with normal lungs in terms of a) histologic indices of 

peripheral airway and parenchymal injury; and b) lung mechanics. The latter was studied not only 

during the initial period of ventilation on PEEP and next on ZEEP, as in previous studies (17,23), 

but also after restoration to PEEP from ZEEP in order to assess whether the changes in lung 

mechanics observed at ZEEP could be reversed. 

 

METHODS 

 Fifteen rabbits (weight range 2.2-3.1 kg) were anesthetized with an intravenous injection of 

a mixture of pentobarbital sodium (20 mg/kg) and urethane (0.5 mg/kg). A brass cannula and a 

polyethylene catheter were inserted into the trachea and carotid artery, respectively. The animals 

were paralyzed with pancuronium bromide (0.1 mg/kg) and mechanically ventilated (respirator 660; 

Harvard Apparatus, Holliston, MA) with a pattern similar to that during spontaneous breathing. 

Adequate levels of anesthesia and complete muscle relaxation were maintained with additional 

doses of the anesthetic mixture and pancuronium bromide. The chest was opened via a median 
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sternotomy and a coronal cut made just above the costal arch. Application of positive end-

expiratory pressure (PEEP; 2-2.5 cmH2O) prevented lung collapse. During the measurements, the 

ribs on the two sides and the diaphragm were pulled widely apart, so that the lungs did not contact 

the chest wall except in their lowermost parts. 

 Airflow (V’) was measured with a heated Fleisch pneumotachograph no.00 (HS 

Electronics, March-Hugstetten, Germany) connected to the tracheal cannula and a differential 

pressure transducer (Validyne MP45, ±2 cmH2O; Northridge, CA). The response of the 

pneumotachograph was linear over the experimental range of V’. Tracheal pressure (Ptr) was 

measured with a pressure transducer (model 1290A; Hewlett-Packard, Palo Alto, CA) connected to 

the side arm of the tracheal cannula; there was no appreciable shift in the signal or alteration in 

amplitude up to 20 Hz. The signals from the transducers were amplified (model RS3800; Gould 

Electronics, Valley View, OH), sampled at 200 Hz by a 14-bit A/D converter, and stored on a desk 

computer. Volume changes (V) were computed by numerical integration of the digitized airflow 

signal. Arterial blood PO2, PCO2 and pH were measured by means of a blood gas analyzer (IL 1620; 

Instrumentation Laboratory, Milan, Italy) on samples drawn at the beginning and at the end of the 

tests made on PEEP. 

 After completion of the surgical procedure, the rabbits were ventilated with a specially 

designed, computer-controlled ventilator, delivering water-saturated air from a high pressure source 

(4 atm) at constant flows of the selected magnitudes and durations. The inspiratory and expiratory 

solenoid valves (model S50 and S80; Peter Paul, New Britain, CT) had a closing or opening time of 

5 ms: they could be also operated so as to occlude the airways either at end-inspiration or end-

expiration for 5 s. The inspiratory and expiratory valves were connected to the pneumotachograph 

attached to the animal's trachea by means of short rigid tubings. A Fleisch pneumotachograph 

(no.00) connected to the exhaust valve (model S50) of the inspiratory line and differential pressure 

transducer (Validyne MP45, ±2 cmH2O) provided the feedback signal to the computer for the fine 

adjustement of the proportional valve (model PSV1; Aalborg, Orangeburg, NY) setting the inflation 

flow. A three way stopcock allowed the connection of the expiratory valve either to the ambient or 

to a drum in which the pressure was set at 2-2.5 cmH2O by means of a flow-through system. The 

baseline ventilator setting consisted of fixed tidal volume (VT) of 25 ml (8-12 ml/kg), and 

inspiratory (TI) and expiratory durations of 1 and 2.2 s, respectively. With this setting no intrinsic 
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positive end-expiratory pressure was present under any experimental condition, as evidenced by an 

end-expiratory pause (zero flow) and absence of Ptr changes with airway occlusion at end-

expiration. 

Procedure and data analysis. After opening the thorax, 10 rabbits (group A) were subjected to the 

following sequence of PEEP and ZEEP while the baseline ventilatory settings remained constant in 

each rabbit: a) 15 min of mechanical ventilation (MV) with PEEP (PEEP1); b) 3-4 h of MV at 

ZEEP; c) 15 min of MV with PEEP (PEEP2). Lung mechanics was assessed with the rapid airway 

occlusion method (2,5) during the PEEP1 and PEEP2 periods, and after 5-10 min (ZEEP1) and at 

the end of the ZEEP period (ZEEP2). In 5 rabbits (group B) who were subjected only to MV with 

PEEP for 3-4 h, assessment of lung mechanics was made 5-10 min after the onset of MV with 

PEEP (PEEP1) and at the end of the PEEP period (PEEP2). Before measurements during MV with 

PEEP the lungs were inflated 3-4 times up to Ptr of ~25 cmH2O. Two types of experimental 

procedures were carried out: a) while keeping VT at baseline values, test breaths were intermittently 

performed with different V’I and TI in the range 0.25 to 3 s; and b) while keeping V’I at baseline 

values, test breaths were intermittently performed with different VT in the range 8 to 61 ml to 

obtain quasi-static inflation volume-pressure curves. End-inspiratory occlusions lasting 5 s were 

made in all test breaths, which were performed in random order and repeated 4-5 times in all 

experimental conditions. During ventilation at ZEEP, end-inspiratory occlusions were performed 

only for VT of 8 and 25 ml. During ventilation with PEEP, the expiratory valve was opened to the 

ambient for 4-6 expirations in order to measure the difference between the end-expiratory and the 

resting lung volume (EELV); these breaths were followed by two inflations up to Ptr of 20-25 

cmH2O. The animals were from a single cohort and the experiments were done in random order. 

 The end-inspiratory airway occlusions were followed by a rapid initial drop in Ptr (P1), 

and by a slow decay (P2) to an apparent plateau value (Pst). This pressure, computed as the mean 

pressure recorded during the interval between 4.5 and 5 s after the occlusion, was taken to represent 

the quasi-static lung recoil pressure, while P1 and P2 divided by V’I yielded the lung interrupter 

(Rint) and additional (R) resistances, respectively. Viscoelastic parameters, Rvisc and 

visc=Rvisc/Evisc, were computed by fitting the values of R and durations of inflation (TI) with 

the function (5) 

     R=Rvisc(1-e
-TI/visc)           (1) 
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while lung quasi-static elastance (Est) was obtained as (Pst-Pee)/VT, Pee being the end-expiratory 

pressure. After completion of the mechanics measurements, the left or right lung was processed for 

histologic analysis, while the other one was weighed immediatedly after removal, left overnight in 

an oven at 120C, and weighed again to compute the wet/dry ratio. 

Histological analysis. After excision and isolation, the lungs were fixed by intabronchial infusion 

of 10% formalin with the pressure maintained at 20 cmH2O for 24 h. Technically adequate fixation 

was achieved in seven lungs from rabbits of group A and five from rabbits of group B. Five blocks, 

1cm thick, involving both subpleural and para-hilar regions, were obtained in each animal: 2, 1, and 

2 blocks from the upper, middle, and lower lobe, respectively, for the right lung, and 2 and 3 blocks 

from the upper and lower lobe, respectively, for the left lung. Each block was processed through a 

graded series of alcohols and embedded in paraffin. From each block, sections of 5  thickness 

were cut and stained with hematoxylin-eosin for light miscroscopic analysis. Histologic evaluation 

was done without knowledge of the mechanical data. The following measurements were performed: 

a) mean linear intercept (Lm), which is a measure of air-space enlargement, as described by 

Thurlbeck (24); b) indices of parenchymal injury, as described by Taskar et al. (23); and c) presence 

of bronchiolar epithelial necrosis and sloughing, which is a measure of bronchiolar injury, as 

described by Muscedere et al. (17). 

 For Lm measurements, one section from each block was examined at a magnification of 

125, and 40 non-overlapping fields were analyzed on each section, giving a total of 200 fields per 

animal. The value of Lm was obtained as the ratio between the length in  of a line passing 

transversely through each field and the number of alveolar walls intercepting the line, the final 

result for a given animal being the average Lm of the 200 fields examined. Additional histologic 

evidence of parenchymal injury was assessed according to the following 5 parameters, namely focal 

alveolar collapse, intraalveolar edema, hemorrhage, epithelial desquamation in alveoli, and 

presence of granulocytes in the air spaces (23). Each parameter was evaluated semiquantitatively in 

a single blind manner, using a four grade scale (absent; mild; moderate; prominent). 

 Bronchiolar injury was assessed from the presence of epithelial necrosis and sloughing (i.e. 

separation of necrotic tissue) in the respiratory bronchioles, i.e. airways with alveolar outpouchings 

in their walls, and in the membranous bronchioles, i.e. airways without cartilage including terminal 

bronchioles and the parent generation to respiratory bronchioles. At least 50 bronchioles were 
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examined per animal. Three indices were obtained for each lung: a) the respiratory bronchiole 

injury score (RIS) computed as the percent ratio of injured to total respiratory bronchioles 

examined; b) the membranous bronchiole injury score (MIS) computed as the percent ratio of 

injured to total membranous bronchioles examined; and c) the total injury score (TIS) computed as 

the percent ratio of injured respiratory and membranous bronchioles to total respiratory and 

membranous bronchioles (17). Statistics. Results from mechanical studies are presented as means 

±SE. The least-square regression method was used to assess the parameters in Eq.1 and of the 

pressure-volume relationship of the lungs. Comparisons among experimental conditions were 

performed using one-way analysis of variance (ANOVA); when significant differences were found, 

the Bonferroni test was performed to determine significant differences between different 

experimental conditions. Results from histologic studies are expressed as median and range, and the 

statistical analysis was performed using the Mann Whitney-U test. The level for statistical 

significance was taken at P0.05. 

 

RESULTS 

Ventilation on PEEP 

 In each animal, the values of arterial PO2, PCO2 and pH obtained at the beginning and at the 

end of the sessions on PEEP did not differ significantly, and were thus averaged. The mean values 

of PaO2, PaCO2 and pHa during PEEP1 and PEEP2 were similar for both group A and B rabbits 

(Table 1). Also the mean values of the wet/dry ratio assessed at the end of the experiments in the 

two groups of rabbits did not differ significantly (Table 1) and were virtually the same as that 

obtained on 29 lungs (4.61±0.07) removed 30 to 40 min after the induction of anesthesia from 

rabbits in which the only other intervention was the excision of part of the pericardium (3). 

 The end-expiratory pressure applied to rabbits of both group A and B was almost the same 

during PEEP1 and PEEP2: its average value was 2.3±0.1cm H2O. Similarly, the mean values of 

EELV did not differ significantly among the various conditions in both groups of rabbits (Table 

2). 

Static V-P relationships. In each animal, both before and after the prolonged ventilation on ZEEP or 

PEEP, the inflation volume-pressure curve on PEEP could be closely fitted (r>0.95) by a function 

in the form Vo(1-e
-kPst

), where Vo is maximum volume above the resting volume of the lung and 
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k=1/P is a shape factor (4,19). The group mean values of these constants during PEEP1 and PEEP2 

are reported in Table 2. Since in all animals the values of Vo and k did not change after prolonged 

ventilation on ZEEP (group A) or PEEP (group B), a unique relationship could be used to describe 

the quasi-static lung V-P curve above the end-expiratory lung volume with PEEP, as shown in 

Figure 1. 

Elastance. On the basis of the Vo and EELV values in Table 2, tidal ventilation with PEEP 

occurred in the range 30-65 %Vo. The average values of Est obtained under the various conditions 

in the two groups of animals are given in Table 3. During ventilation with PEEP, Est was almost 

the same before and after the prolonged period of ventilation on ZEEP (group A), as well as with 

PEEP (group B). 

Interrupter resistance. In all animals and conditions, Rint was independent of flow; hence, the 

values of Rint obtained in each animal and condition were averaged (Table 3). With PEEP1, Rint 

did not differ significantly between group A and B (P=0.45). In group A rabbits, with PEEP2 Rint 

increased significantly relative to PEEP1 in seven animals, decreased significantly in one, and was 

unchanged in two animals: on average, Rint was, however, significantly increased (Rint=3.5±1.2 

cm H2Osl-1; P<0.02) after the prolonged ventilation on ZEEP. On the other hand, in group B 

rabbits the prolonged ventilation with PEEP did not change Rint significantly (Rint=-0.6±0.5 cm 

H2Osl-1; P>0.2).  

Viscoelastic properties.  In all animals and conditions, a unique function in the form of Eq.1 

adequately described the experimental R-TI relations (r>0.975), allowing computation of Rvisc 

and visc. Figure 2 (upper panels) depicts the relationship of R to TI obtained in one animal 

during ventilation with PEEP before and after prolonged ventilation on ZEEP (left) and the average 

results obtained from the 10 lungs (right). Also shown in that figure (lower panels) are an 

individual (left) and the group mean relationship (right) obtained before and after prolonged 

ventilation on PEEP. No significant changes of Rvisc and visc occurred before and after prolonged 

ventilation on ZEEP or on PEEP (Table 4). 

Ventilation on ZEEP 

Elastance. According to the Vo values in Table 2, baseline tidal ventilation (VT=25 ml) on ZEEP 

occurred in the range 0-35 %Vo. There was both an immediate and a progressive increase of Est 

with ventilation on ZEEP (Table 3). With VT=8 ml, Est was significantly larger than that for VT=25 
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ml (Est=6.4±1.8 cmH2Ol-1; P<0.001); this was related to the pronouced "knee" in the lowest part 

of the dynamic inspiratory V-P curve, that was practically absent during ventilation with PEEP, as 

shown in Figure 3. Indeed, under the latter condition Est at VT=8 ml was significantly smaller than 

that with VT=25 ml (Est=-6.6±1.2 cmH2Ol-1; P<0.001). 

Interrupter resistance. As during ventilation with PEEP, Rint was independent of flow in all 

animals. The mean values of Rint obtained with ZEEP1 and ZEEP2 are shown in Table 3. Though 

larger, Rint with ZEEP1 was not significantly different from that with PEEP1 (Rint=4.1±2.5 

cmH2Osl-1; P>0.05), suggesting that in the volume range 35-65% Vo there is little or no change of 

Rint. However, Rint increased with ZEEP2, becoming significantly larger than that with both 

PEEP1 (Rint=11.4±3.6 cmH2Osl-1; P<0.01) and PEEP2 (Rint=8.9±3.1 cmH2Osl-1; P<0.02). 

Viscoelastic properties. Figure 2 (middle panels) depicts the relationship of R to TI pertaining to 

one animal (left) and to the entire group (right) obtained with ZEEP1 and ZEEP2. In all animals and 

conditions, a unique function in the form of Eq.1 adequately described the data points, the mean 

values of Rvisc and visc being reported in Table 4. With ZEEP1, Rvisc increased significantly 

relative to that with PEEP1 (Rvisc=13.8±4.1 cmH2Osl-1; P<0.02), and a further significant 

increase occurred between ZEEP1 and ZEEP2 (Rvisc=8.7±3.6 cmH2Osl-1; P<0.05). In contrast, 

visc remained essentially the same under all conditions. 

Histology 

The results of Lm for the animals that underwent the prolonged period of ventilation on 

ZEEP (group A) and on PEEP (group B) are shown in Table 5. The Lm did not differ significantly 

between group A and B, while the membranous, respiratory, and total injury score were 

significantly greater in group A (P<0.05). There was no histologic evidence of lung edema on 

specimens from both groups A and B, in line with the normal values of the wet/dry ratio of the lung 

(Table 1), nor of focal alveolar collapse, hemorrhage, epithelial desquamation in alveoli. Signs of 

mild inflammation, as judged from the presence of granulocytes in the air spaces, were found only 

in two out of seven animals of group A, and one animal of group B. 

 

DISCUSSION 

 Using an ex vivo model of lavaged rat lungs ventilated with physiologic tidal volumes from 

ZEEP or PEEP above the lower inflection point on the static inflation V-P relationship of the lung, 
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Muscedere et al. (17) showed that on ZEEP there was a significant increase of RIS and MIS. In line 

with the latter results, we found that the values of  RIS and MIS were significantly higher in group 

A than B (Table 5). In group A rabbits, however, the bronchiolar injury scores were substantially 

lower than those obtained in the lavaged rats lungs (17). Since lavaged lungs axiomatically exhibit 

greater regional structural inhomogeneity, such a discrepancy is predictable based on the concept of 

parenchymal interdependence postulated by Mead et al. (15). Thus marked regional structural 

inhomogeneity should enhance the shear stresses and related injury due to cyclic opening-closing of 

peripheral airways. This has been recently discussed in detail by Marini (14). In the present study 

we have also measured Lm which did not differ significantly between groups A and B, indicating 

that mechanical ventilation on ZEEP does not cause enlargement of air spaces when compared with 

mechanical ventilation on PEEP. 

 Contrary to Taskar et al. (22), we have found that in normal open-chest rabbits ventilation 

at low lung volumes elicits significant histologic damage to the peripheral airways. This 

discrepancy is probably due to the fact that these authors ventilated their rabbits at low-volume for 

only 1 h as compared to 3-4 h in the present study. In a subsequent study, Taskar et al. (23) found 

no evidence of lung injury in normal open-chest rabbits ventilated at low lung volume for 3 h. This 

was based on the following 6 parameters, namely focal alveolar collapse, intraalveolar edema, 

hyaline membranes, hemorrhage, epithelial desquamation in airways and alveoli, and presence of 

granulocytes in the air spaces. In both group A and B rabbits there were no histologic signs of 

alveolar injury, like hemorrhage, focal alveolar collapse, alveolar epithelial desquamation, or intra-

alveolar edema, as also evidenced by normal values of lung wet/dry ratio (Table 1), whilst, at 

variance with Taskar et al. (23) results, there was evidence of epithelial desquamation in the 

respiratory and membranous bronchioles (Table 5). It should be noted, however, that Taskar et al. 

(22,23) did not use specific, quantitative indices of peripheral airway injury like those used in the 

present study. Air-space enlargements, emphysema-like lesions, bronchiectasis and pseudocysts are 

characteristic feature of baro- and volotrauma in patients with severe respiratory dystress syndrome 

(7). Such changes, which have also been found in pigs with multifocal pneumonia ventilated at high 

lung volumes (10), were absent in the present model of low-volume injury. 

 Lung injury during ventilation at low lung volumes is generally attributed to cyclic opening 

and closing of relatively small airways with concomitant generation of shear stresses that may be 
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responsible for some of the lung damage (17,18). With PEEP, there was no evidence of airway 

closure since, as shown in Figure 1, the static inflation V-P curve of the lung was concave to the 

pressure axis (8). Accordingly, at PEEP of 2 cmH2O the static compliance with VT=8 ml was higher 

than that with VT=25 ml (Fig. 3). In contrast, at ZEEP the initial part of the static inflation V-P 

curve was convex to the pressure axis, and accordingly the compliance with VT=8 ml was lower 

than that VT=25 ml (Fig. 3). This change in shape of the static V-P curve at low lung volumes has 

been attributed to airway closure (8). The site of closure, as determined by serial sections of quick-

frozen dog lungs, is in small (<1mm in diameter) airways (11). Thus, based on the above mentioned 

considerations, it appears that during mechanical ventilation on ZEEP the present rabbits exhibited 

cyclic airway opening and closing, which should be responsible for the changes in RIS and MIS, as 

well as the increase in Rint on PEEP2 relative to PEEP1. 

 On ZEEP, Ptr increased more markedly and rapidly at the onset of inflation than on PEEP, 

as illustrated in Figure 4, which shows the time course of Ptr, V’, and V in a rabbit at PEEP1 and 

ZEEP2. During the initial 90 ms of inflation the average rate of rise of Ptr (Ptr/t) on PEEP1 and 

ZEEP2 was 6.8 and 32.9 cmH2Os-1, respectively. The corresponding average values for all rabbits 

were 6.1±0.8 and 33.7±2.9 cmH2Os-1, respectively. The high values of Ptr/t on ZEEP probably 

contributed to the histologic damage of the peripheral airways observed after ventilation on PEEP 

in group A. In contrast, in group B the values of Ptr/t were low and almost constant troughout 

the ventilation period. The increase in the initial Ptr/t on ZEEP was due to increased impedance 

caused by atelectasis and/or airway closure. 

 On ZEEP there was a significant increase of Est, Rint, and Rvisc relative to PEEP1, which 

was significantly greater after 3-4 h (ZEEP2) than after 5-10 min of ventilation on ZEEP (ZEEP1). 

A progressive increase of dynamic lung elastance during mechanical ventilation at low lung volume 

has been previously reported by Dechman et al. (6) in a normal open-chest dogs and by Taskar et al. 

(23) in open-chest rabbits. In line with our results, Taskar et al. (23) found a progressive increase in 

total lung resistance on ZEEP, whereas Dechman et al. (6) found no significant change. It should be 

noted, however, that in the latter study the lowest PEEP was 1 cmH2O and the time spent on this 

PEEP (20 min) was much shorter than in the present investigation. 

 Two mechanisms can account for the increase of Est that occurs on ZEEP, namely an 

increase in stiffness of lung tissue due to larger surface forces, and a decrease in the amount of 
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ventilated tissue caused by airway closure and/or alveolar collapse. Both mechanisms could also be 

responsible for the progressive increase in Est with time. An increase of surface forces with time at 

low end-expiratory transpulmonary pressure and lung volume has been advocated to explain the 

changes of lung compliance in the absence of detectable airway closure (25,26). However, changes 

in surface forces alone can not account for lung behaviour at very low lung volumes (20). Airway 

closure and atelectasis represent, therefore, conditions which may contribute to the progressive 

increase of Est on ZEEP. In fact, a theoretical study of Stamenovic and Wilson (21) indicates that 

regional mechanical inhomogeneities should lead to diffuse alveolar collapse at low transpulmonary 

pressures. Presence of focal atelectasis was found, however, only in one out of three additional 

rabbit lungs fixed after 4 h on ZEEP with a transpulmonary pressure similar to the peak tracheal 

pressure during mechanical ventilation (~8 cmH2O) to avoid re-expansion of collapsed areas, whilst 

for essentially the same end-inspiratory pressure the lung volume was about 25 ml larger on PEEP 

than on ZEEP (Fig.3). Hence, atelectasis alone can not account for such a volume reduction 

(~30%Vo). Accordingly, it is likely that small airway closure is the main mechanism leading to 

increased Est during ventilation on ZEEP. 

 The present study shows for the first time that on ZEEP there is a significant time-

dependent increase in Rvisc, while visc does not change (Table 4). In principle, the same two 

mechanisms that have been invoked to explain the increase of Est with ventilation on ZEEP, could 

account for the concurrent increase of Rvisc (Table 4). In line with previous observations in dog 

lungs (6,12), most of the resistive properties of the rabbit lung arise from tissue, as Rvisc was 

markedly larger than Rint under all experimental conditions (Tables 3 and 4), and these mainly 

reside in the air-liquid interface (1). Changes in the properties of the surface film during ventilation 

at ZEEP could, therefore, have contributed to the increase in Rvisc. Increased inhomogeneity within 

the lung due to peripheral airway closure is another mechanism which could have contributed to the 

increase of Rvisc at ZEEP. A decrease in the amount of ventilated tissue that occurs with airway 

closure and/or atelectasis, could also cause per se an increase in Rvisc without affecting visc. The 

fact that this was the case (Table 4) suggests that airway closure and/or atelectasis may have been 

the main cause of the changes in Rvisc on ZEEP. Moreover, a reduction in ventilated tissue should 

have a proportional effect on both Est and Rvisc. In fact, there was a highly significant correlation 

between changes in Est and Rvisc (Fig. 5). 
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  Airway resistance has been found to increase with acute reductions in lung volume, and 

this is ascribed to the concomitant decrease in lung recoil (13). Indeed Rint increased with ZEEP1, 

though not significantly (Table 3). It should be noted, however, that as a result of the reduced lung 

compliance on ZEEP1, the recoil pressure at end-inflation was only slightly smaller than that on 

PEEP1. At ZEEP2 Rint became significantly larger than on PEEP1 (Table 3). The increase in Rint 

between  ZEEP1 and ZEEP2 cannot be related to loss of lung recoil as Est became even larger on 

ZEEP2 than on ZEEP1 (Table 3), and the transpulmonary pressure at end-inflation was essentially 

the same as that with PEEP1 (Fig. 3). Since the increase of Rint on ZEEP occurred in spite of an 

increased lung recoil, these changes of Rint should be due to damage of peripheral airways, as 

evidenced by the injury scores of respiratory and membranous bronchioles (Table 5), and/or to 

increased brochomotor tone. 

 After return of group A rabbits to PEEP (PEEP2), Rvisc as well as Est reversed to the initial 

(PEEP1) values, while Rint remained significantly (P<0.01) larger (Table 3).  The increase in Rint 

on PEEP2 could not be related to changes in arterial blood gases or pH, as the latter were not 

significant (Table 1). Similarly in group B animals the arterial PO2, PCO2 and pH were essentially 

the same on PEEP1 and PEEP2, indicating that on PEEP gas exchange was stable during the entire 

experimental period. Since the elastic recoil of the lung was also the same on PEEP1 and PEEP2 

(Fig. 1), the increase in Rint was probably due to changes in mechanical properties of the peripheral 

airways, as reflected by the significant increase of RIS and MIS (Table 5), and/or increased 

bronchomotor tone caused by release of inflammatory mediators on ZEEP. Although signs of 

inflammation, as evaluated by the presence of granulocytes in the air spaces, were very modest both 

in group A and B, this does not exclude the possibility of a different release of inflammatory 

mediators in the two groups, since the number of inflammatory cells does not necessarily reflect 

their state of activation. In group A, the increase in Rint between PEEP1 and PEEP2 averaged 3.5 

cmH2Osl-1 (Table 3). Assuming that under normal conditions peripheral airway resistance (Rp) 

contributes 20% of Rint (13), Rp with PEEP1 should have amounted to 3.2  cmH2Osl-1. Thus, in 

the absence of changes in bronchomotor tone, Rp should have doubled from PEEP1 to PEEP2 (i.e. 

from 3.2 to 6.7 cmH2Osl-1). 

 In the present open-chest rabbits, peripheral airway lesions were found throughout the lungs 

because pleural pressure was essentially uniform. In closed-chest normal lung models, however, the 
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lesions should be confined to the lower lung zones as a results of the vertical gradient in pleural 

surface pressure (9). Indeed, with closed chest peripheral airway closure at low volumes occurs 

preferentially in the dependent lung zones which are subjected to lower transpulmonary pressure 

(16). 

 In conclusion, the present study shows for the first time that in normal lungs of open-chest 

rabbits 3-4 h mechanical ventilation with physiologic tidal volumes at zero end-expiratory pressure 

induces histologic evidence of peripheral airway injury with a concurrent increase in airway 

resistance (Rint), which persists after return of mechanical ventilation to a PEEP value that restores 

normal end-expiratory volumes. In contrast, when shifting from ZEEP to PEEP both Est and Rvisc 

return to the initial values observed with PEEP. That mechanical ventilation at low lung volume 

may cause airway damage in normal lungs is of substantial interest. In fact, our open-chest rabbit 

model may serve to study the effects of acute low volume injury on release of pulmonary 

inflammatory mediators in the absence of pre-existing alterations or lesions. 
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LEGENDS 

Figure 1. Average relationship between volume above resting lung volume (V) and quasi-

static transpulmonary pressure (Pst) obtained (upper panel) in 10 open chest rabbits 

(group A) during ventilation with PEEP of 2.3 cm H2O before (PEEP1) and after 3-4 

h of ventilation on ZEEP (PEEP2), and in 5 open chest rabbits (group B) during 

ventilation with PEEP of 2.3 cm H2O before (PEEP1) and after 3-4 h of ventilation 

on PEEP (PEEP2). Bars: SE. All data fit a unique monoexponential function. 

Figure 2. Relationships of additional lung resistance (R) to duration of inflation obtained at a 

fixed inflation volume during ventilation with PEEP of 2.3 cmH2O (upper panels) 

before (PEEP1) and after 3-4 h of ventilation on ZEEP (PEEP2) and during 

ventilation on ZEEP  (middle panels) at the beginning (ZEEP1) and end of the 3-4 h 

period (ZEEP2) in 10 open chest rabbits (group A), and during ventilation with 

PEEP of 2.3 cmH2O (lower panels) before (PEEP1) and after 3-4 h of ventilation on 

PEEP (PEEP2) in 5 open chest rabbits (group B). Left: representative animal; right: 

average relationships. Bars: SE. Under all conditions, the data fit a monoexponential 

function. 

Figure 3.  Average relationships (continuous lines) between volume above resting lung 

volume (V) and transpulmonary pressure (Ptp) obtained in 10 open chest rabbits 

during ventilation with PEEP of 2.3 cmH2O (PEEP1) and at the end of the 3-4 h of 

ventilation on ZEEP (ZEEP2). Closed symbols joined by dotted lines represent 

corresponding static end-expiratory and end-inspiratory conditions for tidal volumes 

of 25 and 8 ml, respectively. 

Figure 4.  Ensemble average of records of flow (V’), volume changes (V), and tracheal 

pressure (Ptr) from ten consecutive breath cycles in an open-chest rabbit during 

baseline ventilation with PEEP of 2.3 cmH2O (PEEP1) and after 3 h ventilation on 

ZEEP (ZEEP2). 

Figure 5.  Relationship of changes in viscoelastic resistance to those in static elastance 

occurring after 5-10 min (ZEEP1) and 3-4 h of ventilation on ZEEP (ZEEP2), both 

expressed relative to the corresponding values during the initial period of ventilation 

with PEEP of 2.3 cmH2O (PEEP1), obtained in 10 open chest rabbits. 
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Table 1. Mean values (±SE) of arterial PO2, PCO2 and pH, and wet/dry ratio of the lung of group A 

rabbits during ventilation with PEEP of 2.3 cmH2O before (PEEP1) and after 3-4 h of ventilation on 

ZEEP (PEEP2), and of group B rabbits during ventilation with PEEP of 2.3 cmH2O before (PEEP1) 

and after 3-4 h of ventilation on PEEP (PEEP2) 

 

  PaO2  PaCO2 pHa wet/dry 

  mmHg mmHg   

      
Group A      

 PEEP1 85±7 38.5±3.5 7.34±0.04  

 PEEP2 94±11 37.8±4.5 7.30±0.07 4.59±0.07 

      
Group B      

 PEEP1 95±7 35.5±4.1 7.33±0.09  

 PEEP2 96±15 34.0±5.5 7.30±0.07 4.72±0.10 
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Table 2. Mean values (±SE) of constants in equation Vo(1-e-kPst) used to fit the lung inflation 

volume-pressure curve and of end-expiratory volume above resting volume (EELV) during 

ventilation with PEEP of 2.3 cmH2O before (PEEP1) and after 3-4 h (PEEP2) of ventilation on 

ZEEP (group A), and during ventilation with PEEP of 2.3 cmH2O before (PEEP1) and after 3-4 h 

(PEEP2) of ventilation on PEEP (group B) 

   Vo k EELV 

   ml cmH2O
-1 ml 

      
 Group A     

  PEEP1 75.7±2.4 0.180±0.005 24.2±1.0 

  PEEP2 75.7±2.4 0.176±0.004 24.3±1.2 

      
 Group B     

  PEEP1 78.3±4.0 0.187±0.012 25.0±1.4 

  PEEP2 80.5±5.3 0.184±0.011 25.5±1.3 
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Table 3. Mean values (±SE) of quasi-static pulmonary elastance (Est) and interrupter resistance 

(Rint) of group A rabbits during ventilation with PEEP of 2.3 cmH2O before (PEEP1) and after 3-4 

h of ventilation on ZEEP (PEEP2), and at the beginning (ZEEP1) and end of the ventilation period 

on ZEEP (ZEEP2), and of group B rabbits during ventilation with PEEP of 2.3 cmH2O before 

(PEEP1) and after 3-4 h of ventilation on PEEP (PEEP2) 

 

 Est Rint  Est Rint 

 cmH2Ol-1  cmH2Osl-1  cmH2Ol-1  cmH2Osl-1 

      
Group A      

    PEEP1 178±9  16.2±1.1  ZEEP1 219±9§   20.3±1.9    

    PEEP2 182±10 19.7±1.5* ZEEP2 242±9*§  27.7±3.1*§ 

      
Group B      

    PEEP1 166±10 14.8±1.0    

    PEEP2 166±10 14.2±0.7    

 

* significantly different from values on PEEP1 (P<0.01); § significantly different from 

corresponding values on PEEP (P<0.01). 
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Table 4. Mean values (±SE) of viscoelastic resistance (Rvisc) and time constant (visc) 

computed according to Eq.1 of ten open-chest rabbits (group A) during ventilation with PEEP of 

2.3 cmH2O before (PEEP1) and after 3-4 h of ventilation on ZEEP (PEEP2) and at the beginning 

(ZEEP1) and end of the ventilation period on ZEEP (ZEEP2), and of five open-chest rabbits 

(group B) during ventilation with PEEP of 2.3 cmH2O before (PEEP1) and after 3-4 h of 

ventilation on PEEP (PEEP2) 

 

 Rvisc visc  Rvisc visc 

 cmH2Osl-1  s  cmH2Osl-1  s 

      
Group A      

    PEEP1 77.5±8.7 0.97±0.11 ZEEP1  91.3±7.3§   1.07±0.08 

    PEEP2 80.7±7.7 0.96±0.09 ZEEP2 100.0±6.9*§ 1.06±0.10 

      
Group B      

    PEEP1 75.4±12 1.18±0.05    

    PEEP2 69.4±10 1.08±0.08    

 

* significantly different from values on PEEP1 (P<0.01); § significantly different from 

corresponding values on PEEP (P<0.01). 
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Table 5. Mean linear interecept (Lm), respiratory (RIS), membranous (MIS) and total bronchiole 

injury score (TIS) from lungs subjected to 3-4 h of ventilation on ZEEP (group A) or PEEP 

(group B) 

 

 N   Lm,  RIS%    MIS, %   TIS, % 

      
Group A 7  377  18*   14.5*  12* 

  (286-403) (0-33)  (9-22) (6-16) 

      
Group B 5  319 0  2.7 2.2 

  (294-414)   (1-16) (1-14) 

 

values are medians with range in parentheses. *P<0.05, group A vs B. 
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