
A Scalable Multi-Party Protocol

for Privacy-Preserving Equality Test

Maryam Sepehri, Stelvio Cimato, and Ernesto Damiani

Dipartimento di Informatica, Università Degli Studi di Milano
Crema, Italy

{firstname.lastname}@unimi.it

Abstract. Multi-party computation (MPC) is attractive for data own-
ers who are interested in collaborating to execute queries without sharing
their data. Since data owners in MPC do not trust each other, finding
a secure protocol for privacy-preserving query processing is a major re-
quirement for real world applications. This paper deals with equality test
query among data of multiple data owners without revealing anyone’s
private data to others. In order to nicely scale with large size data, we
show how communication and computation costs can be reduced via a
bucketization technique. Our bucketization requires the use of a trusted
third party (TTP) only at the beginning of the protocol execution. Ex-
perimental tests on horizontally distributed data show the effectiveness
of our approach.

Keywords: secure multi-party computation, equality test query,
privacy-preserving query processing and bucketization.

1 Introduction

In today’s collaborative environments there is an increasing need of performing
computations over data held by multiple owners without sharing the data them-
selves. This requirement is the subject of an important area of research, called
privacy-preserving computation. An important selection of privacy-preserving
computations consists in executing queries over partitioned databases while keep-
ing privacy. For instance, equality test queries [1, 2] selecting items in a database
that are equal to a given value, or range queries [1–3], selecting values in a fixed
range. In partitioned databases, owners can be required to execute even more
complex operations like intersection, which computes the set of items common
to all the private databases. Secure multi-party functions are often represented
as combinational circuits [4, 5]. This solution is quite efficient in two-party case
but does not scale to the multi-party case. Goldreich et al. [5] showed that a
multi-party version of Yao’s protocol needs a quadratic communication com-
plexity in the number of parties. Over the years, the research community has
developed a wide range of privacy-preserving techniques to realize different func-
tions across the shared databases based on homomorphic encryption, oblivious
polynomial evaluation and commutative encryption methods [6–10]. Homomor-
phic encryption has been deployed in [10] where a solution for two-party equality

X. Franch and P. Soffer (Eds.): CAiSE 2013 Workshops, LNBIP 148, pp. 466–477, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test 467

has been presented. Assuming that the receiver and the sender have a private
set of s elements, the computation and communication complexity amounts to
O(2s2lgN), where N is the RSA-modulus. The homomorphic encryption method
is not straightforwardly extendable to multi-party case because if multi-party
equality test runs in pairs, each party will learn the intersection with the re-
maining ones. In [11], the authors present a solution based on oblivious polyno-
mial evaluation (OPE) protocol. The protocol requires each party to perform s

oblivious evaluations of a polynomial of degree n with communication cost O(n).
For this reason, this protocol is considered too expensive to implement in the
multi-party setting. Li and Wu [12] propose a protocol that involves a TTP to
compare the values held by two other parties using homomorphic encryption. Al-
though this protocol is faster than OPE, it has two main drawbacks: 1) the TTP

should be trusted by all parties; 2) when the number of parties increases, the
solution does not scale because of the communication and computation bottle-
neck created at TTP. The set intersection problem is to compute the intersection
between these sets without revealing any other information. Freedman, Nissim
and Pinkas [9] propose a protocol based on the Paillier’s cryptosystem mentioned
above. According to [13], the average computation cost for each party and the
communication cost among all parties are O(s(s + m)lgN) and 10s(m − 1)2lgN ,
respectively. Following Freedman’s protocol, Kissner and Song [8] designed a
technique for set intersection problem using polynomial representations with
O(cs2lgN) computation complexity and 2cm(5s+2)lgN communication complex-
ity, where c is a suitable constant. Sang et al. [13] adopt a distinct through
related approach with lower computation and communication costs with respect
to [9, 8] with O(csmlgN) computation cost for each party and 2cm(4s + 5)lgN

communication cost. A major step forward was taken by Agrawal et al. [7], who
introduce a two-party protocol for set intersection based on commutative en-
cryption with linear complexity. The protocol has been extended to multi-party
case [14] with lower complexity than [9, 8, 13], i.e., O(smlgN) computation
and ((m − 1)s + (m − 2)s + 1 + (m − 1))lgN communication overhead. However,
Vaidya’s [14] extension only computes the size of the intersection, without iden-
tifying the intersection’s elements. Most of these techniques offer strong privacy
guarantees, but they do not scale well for large databases because of using heavy-
weight cryptographic operations or several rounds of interactions among parties.

A central issue in this context is designing a protocol for the Secure Multi-party

Equality test Problem (SMEP), which is secure and efficient when the number of
parties and the size of data increases. In this paper we present a new protocol,
B-SMEQ (Bucketized Secure Multi-party protocol for Equality test Queries) to ad-
dress the SMEP problem, which adopts a bucketization technique to reduce the
time complexity. Our solution uses a commutative encryption scheme to avoid
information being revealed among data owners. In order to make the protocol
fast, we divide data into buckets so that work can be done considering only a
subset of data. To realize the bucketization scheme, TTP is involved in an initial
phase. However, the TTP does not participate in the query processing, avoiding
the creation of computation and communication bottleneck.

468 M. Sepehri, S. Cimato, and E. Damiani

2 Problem Statement

We consider a Multi-party SystemMS = 〈D,m,U, q,R〉 for equality test computa-
tion involving five different entities as illustrated in Fig. 1: a common database D
with n records, which has been horizontally partitioned among a set of distrustful
data ownersO in which |O| = m; a set of users U allowed to search; an equality test
query q and the result R of the query computation across multiple partitions. The
data ownersO = {O1, ..., Om} hold data partitions {T1, ..., Tm}, respectively and we
assume that all partitions include a searchable attribute A with a set of values VA,
and another attribute B with a set of values VB. Moreover, for every i ∈ {1, ..., m}
we denote with Ti,A the column corresponding to attributeA, and for each v ∈ Ti,A,
with exti(v) each value occurring in VB where Ti,A = v.

In SMEP, the m data owners must jointly compute the result R to the equal-
ity test query q and return it to an authorized user u ∈ U without revealing
their private data to each other, satisfying: data privacy property, since the user
should learn just the result of the query; the query privacy property, since the
data owners should not learn the query; and query anonymous result, since the
user should not know whom the results belong to. In our model, the data own-
ers are honest but curious, meaning that they follow the protocol as exactly
specified, but they try to learn extra information by analyzing the transcript of
messages received during the execution. Owners are arranged in a ring topology
communicating each other via secure channels; one data owner is designated as
the master site (initiator)1.

Fig. 1. Basic Scenario

2.1 Preliminaries

Commutative Encryption Scheme. Informally, a commutative encryption is
a pair of encryption functions f and g such that f(g(v))=g(f(v)). By using the
combination f(g(v)) to encrypt v , we can ensure that no data owner can perform
encryption without the help of other data owners. For a more formal definition
of commutative encryption scheme, we remand the reader to [7].

Set Intersection Protocol. The set intersection protocol proposed by Agrawal
et al. [7] runs between two parties S(sender) and R(receiver), holding a set of
values VS, VR and keys ks, kr, respectively.

1 Since user authentication and access control are not the main focus in this paper,
we assume the authorization between the data owners and users are appropriately
managed.

A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test 469

Step 1. Both S and R apply hash function h to their own values and encrypt
the result with their secret keys, fks(h(VS)) and fkr (h(VR)).
Step 2. Sites S and R exchange fks(h(VS)) and fkr (h(VR)) after randomly
reordering their values to prevent possible inference attacks.
Step 3. Site S encrypts each value of the set fkr (h(VR)) with ks to obtain
ZR = fks(fkr (h(VR))) and sends back the pairs (fkr (h(VR)), ZR) to R.
Step 4. Site R creates pairs (v,ZR) by replacing fkr (h(VR)) with the corre-
sponding v where v ∈ VR.
Step 5. Site R selects all v for which ZR ∈ fkr (fks(h(VS))) for VS ∩ VR.

3 A Protocol for Equality Test

In this section, we extend Agrawal’s protocol for solving the SMEP problem.
Then, we introduce an improvement to ensure scalability. In the basic version,
called SMEQ, we extend set intersection protocol from two-party to multi-party
setting, where the role of sender is played by each of m data owners. SMEQ

is simple to describe and implement but suffers from high communication and
computation. We address these issues in an improved version protocol, B-SMEQ,
which makes use of bucketization technique on the searchable attribute.

3.1 Protocol 1:SMEQ

Input. A multi-party system (see Section 2) with the data owner O1 as
initiator2.
Output. The result of user query q to partitions {T1, . . . , Tm} where
[(T1,A = v) ∨ . . . ∨ (Tm,A = v)].

Step 1. Both user (receiver side, R) and data owners O (sender side, S) apply
a hash function h to the value v and to the set of their values of attribute
A, respectively. Let v′ = h(v) be the result of hashing from the receiver side
and let T ′

i,A = h(Ti,A), for each i ∈ {1, . . . ,m}, be the hashing of the set values
Ti,A. Sites S and R randomly choose a secret key, kr for R and 〈ki, k′

i〉 for
data owner Oi.
Step 2. R spans the encrypted hash value yR=fkr (v

′) to all data owners at
site S .
Step 3. At site S , each data owner Oi, 1 ≤ i ≤ m, does the following:

3.1 Computes fki

(
T ′
i,A

)
= Yi = {yi = fki(x)|x ∈ T ′

i,A}
3.2 Generates a set of new keys, one for each value of attribute B , as

KB
i ={kix = fk′

i
(x)|x ∈ T ′

i,A}
3.3 Encrypts each value x in Ti,B with the corresponding key kix to obtain

Y B
i = {Ekix(u)|u ∈ Ti,B} where E is an encryption function, which can

be efficiently inverted given key (kix)

2 Any data owner (for instance, the one holding the largest data partition) can be
chosen as initiator.

470 M. Sepehri, S. Cimato, and E. Damiani

3.4 Computes Ii = fk′
i
(yR) for the purpose of decrypting the values of at-

tribute B at site R

3.5 Owner Oi randomly reorders the tuples Yi and Y B
i and sends them along

with Ii to the next owner O(i mod m)+1

3.6 Data owner O(i mod m)+1 encrypts only Yi with the key k(i mod m)+1 and
sends the triple 〈fk(i mod m)+1

(Yi), Y
B
i , Ii〉 after reordering to the next par-

ticipant in the ring.
This process is repeated until Yi is encrypted by all keys of m data
owners, obtaining Zi = fk1(fk2(...(fkm (Yi)))), up to a permutation of the
encryption keys3

Step 4. Each data owner Oi sends 〈Zi, Y
B
i , Ii〉 to owner O1.

Step 5. Owner O1 receives all tuples from Step 4 in order to initiate a two-
party Agrawal’s set intersection protocol (see Section 2.1) between the user
as a receiver site and the initiator as a sender site.
Step 6. Owner O1 passes yR through the ring in order to have it encrypted
by all keys k1, . . . , km for obtaining y′

R = fk1(. . . (fkm(fkr (v
′
)))), and then

sends back y′
R together with 〈Zi, Y

B
i , Ii〉 to the user, for all i ∈ {1, . . . , m}.

Step 7. First, R decrypts y
′
R with her decryption key to obtain y

′′
R =

fk1(. . . (fkm(v
′
))), and then for each i, 1 ≤ i ≤ m: 1) Finds tuples in Zi

whose entry related to attribute A is equal to y
′′
R; 2) Considers the entry cor-

responding to attribute B of those tuples; 3) Decrypts Ii with kr, obtaining
fk′

i
(v′); 4) Uses fk′

i
(v′) to decrypt the corresponding entry in Y B

i .

Although this protocol is simple and effective, it has high cost in terms of com-
munication and computation over large data sets (see Section 5). Moreover, it
suffers from high query computation workload at user side. In the next section,
we use data bucketization to improve the protocol.

3.2 Protocol 2: B-SMEQ

In this Section, we describe the protocol B-SMEQ, which adopts a bucketization
technique on searchable attribute to reduce the communication and computa-
tion costs, while preserving the user and owner privacy and the result anonymity.
B-SMEQ makes use of a TTP that is not involved in the query processing, but
only in the realization of the bucketization scheme. Before the protocol starts,
the TTP builds an interchange matrix W (see Phase 1- Step 3) and sends the row
vectors of W to the data owners. The owner that receives W1 is called initiator.
Then, data owners are arranged into a ring; each holds a permutation4 of the
bucket order {1, . . . , s} and a vector from matrix W. In the first part of the pro-
tocol, each owner sends her buckets in encrypted form to the next participant.
When a user wants to submit an equality query, she gets from the TTP the
bucket number of the query value according to the TTP’s own permutation, Π̄.

3 The keys k1, k2, . . . , km represent a commutative set of keys.
4 For the purpose of this paper, we assume that partitions are abundant meaning that
the number of permutations is much greater than the number of participants.

A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test 471

This number is sent to the initiator who uses it to identify the bucket related to
the user value from her predecessor in the ring she should overencrypt with her
key. The procedure is repeated for each node of the ring. In the second phase
of the protocol, selected buckets (i.e., the ones corresponding to the user value)
are propagated along the ring until they have been encrypted by all keys. Once
all data owners hold the encrypted buckets, a two-party Agrawal’s protocol is
executed between the initiator and the user. In the next sections we will provide
a detailed description of the algorithm.

Defining Buckets. We divide the range of values, in the domain of each search-
able attribute A, into buckets so that each bucket is assigned a unique label (ID).
This label is then stored alongside the encrypted version of the searchable at-
tribute. We adopt equi-width strategy for selecting buckets, which divides the
range of possible values of searchable domain into s buckets of the same size
l, i.e. l = Amax−Amin

s
, where Amax and Amin are the maximum and minimum

values in the domain of A, respectively. Thus, we define bucket boundaries of
the searchable attribute as BU = {B1 : [Amin, l], . . . , Bs : (l(s − 1), Amax]}. BU

is called public bucketization scheme and it is accessible to all data owners and
authorized users as well.

The Protocol. B-SMEQ has two phases: computation of matrix W and query
protocol. First, in order to preserve data privacy, each data owner Oi separately
computes a local permutation (Bπi1

, . . . Bπis
) of the public bucketization scheme

for the searchable attribute. Each data owner i chooses a local permutation
Πi = (πi1 , . . . , πis) of bucket indices (1, 2, . . . , s). Moreover, the TTP chooses her
own permutation Π̄ and sends it to the user posing the query.

Let’s now assume that the user query value v falls into bucket Bi of public
bucketization. Then, the user sends to a pre-set data owner (henceforth, the
initiator) a query for the bucket Bπ̄i . In this way, when data circulate along
the ring, data owners will not know which bucket ID the user is looking for. We
will now present our matrix-based mechanism, which allows each data owner to
correctly select the local bucket corresponding to Bπ̄i .

Phase 1. Computation of Matrix W

Step 1. Each data owner Oi sends her permutation Πi to the TTP.

Step 2. The TTP builds the matrix Π containing the received permuta-
tion vectors and generates a m× s interchange matrix W, where the matrix
elements are defined by Eq. (1).

Π =

⎛
⎜⎜⎝

Π1

Π2

...
Πm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

π11 π12 . . . π1s

π21 π22 . . . π2s

...
...

πm1 πms

⎞
⎟⎟⎠W =

⎛
⎜⎜⎝

W1

W2

...
Wm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

w11 w12 . . . w1s

w21 w22 . . . w2s

...
...

wm1 wms

⎞
⎟⎟⎠

In the following equation, we denote by Π̄−1(l) the position in vector Π̄ that
contains value l: wij = πiδi ∀i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , s} where

472 M. Sepehri, S. Cimato, and E. Damiani

δ1 = Π̄−1(j)
δ2 = Π̄−1(k1) with k1 s.t. w1k1 = j
...
δi = Π̄−1(ki−1)

with ki−1 s.t. w1ki−1 = ki−2,
with ki−2 s.t. w2ki−2 = ki−3,
...
with k1 s.t. wi−1k1 = j

(1)

The rationale behind Eq. (1) is generating the entries of matrix W by identi-
fying a corresponding entry of matrix Π. This entry, for the first row (i = 1)

is obtained by looking for the position of index j in the TTP permutation.
For the other rows , the entry is obtained by looking for the position of in-
dex j in the previous rows of matrix W itself. For instance to compute δ2 for
w21 = π2δ2 , TTP follows this procedure: (a) Find j = 1 in the previous line
of matrix W , (b) Take the position of 1 and read the value in this position
of the TTP permutation.
Step 3. The TTP sends the row vectors of W to the data owners and her
permutation Π̄ to the user.

Phase 2. Query Protocol

Steps 1-3 of B-SMEQ correspond to Steps 1-3 (excluding Step 3.5) of SMEQ

Step 4. The user sends Bπ̄k to the initiator, where k is the number of the
bucket where the query value v falls.
Step 5. Let us recall that, at this step, each data owner Oi holds data
Yi−1 (which corresponds to Ti−1 encrypted with the key ki−1) of Oi−1. With
this arrangement, O2 is the algorithm’s initiator5. O2 sets h2 = w1π̄k , selects
Y1(h2) i.e. the bucket in Y1 whose ID is h2, and encrypts it with her own
key. Then O2 sends h2 to the next owner. When data owner Oi receives hi−1

from Oi−1, he sets hi = w(i−1)hi−1
, selects the corresponding bucket Yi−1(hi)

and sends the position hi to the next owner. This step iterates until all data
owners have selected their bucket.
Step 6.The data owners apply the procedure described in Step 3.5 of SMEQ

just on the selected buckets obtained at Step 5.
Steps 7-10 of B-SMEQ correspond to the Steps 4-7 of SMEQ

4 Correctness and Privacy Issues

Correctness. In order to show that B-SMEQ computes query results correctly,
we will sketch a simple proof showing that data owners always select the position
corresponding to the bucket ID including the user value (Step 5).

5 This is not a limitation, because any node can be selected as initiator by changing
the order of permutations at the time of W generation by TTP.

A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test 473

- Owner O2 who has the data Y1 of O1 receives π̄a, computes h2 = w1π̄a , selects
Y1(h2) and sends h2 to the O3. Observe that by definition h2 = w1π̄a = π1δ1 , where
δ1 = Π̄

−1
(π̄a). Hence h2 = π1a, which means O2 chooses the correct bucket.

- Owner Oi who has data Yi−1 of Oi−1 receives hi−1 from party i− 1, computes
hi = w(i−1)hi−1

, selects Yi−1(hi), and sends hi to next owner. Recall that by Eq.

(1), we have hi = w(i−1)hi−1
= π(i−1)δi−1

, where δi−1 = Π̄−1(ki−2) and

ki−2 s.t. w1ki−2 = ki−3

...
k2 s.t. w(i−3)k2

= k1
k1 s.t. w(i−2)k1

= hi−1

(2)

Since by definition hi−1 = w(i−2)hi−2
, we have that w(i−2)k1

= w(i−2)hi−2
, hence

k1 = hi−2. Again by definition, hi−2 = w(i−3)hi−3
and then w(i−3)k2

= w(i−3)hi−3

that implies k2 = hi−3. By iterating this procedure, we obtain ki−3 = h2, that
implies w1ki−2 = h2 = w1π̄a . This means ki−2 = π̄a, since δi−1 = a, proving the cor-
rectness for data owner Oi. �

Privacy of B-SMEQ. Here, we provide an informal analysis of B-SMEQ pri-
vacy. Here, we just consider processing a single query. A more detailed analysis
including multiple queries will be carried out as future work. We focus on the
privacy of Steps 5 and 6 where the records of each data owner are selected ac-
cording to the user bucket ID and circulated in order to be encrypted by all keys.

– Indistinguishability of data distribution: At each round of the query proto-
col, every data owner receives a new set from her predecessor via the ring.
Since each value of the received set has been hashed and encrypted using
commutative encryption function. The distribution of encrypted hash values
are indistinguishable from the uniform random distribution.

– Protection from relation inference: In each round of Step 6, data owner i
receives a data set encrypted with different keys, so that party i can not
infer the relationship between received data sets.

– Protection from bucket inference: In addition to the size of the whole up-
stream data set (revealed in the set intersection protocol), in Step 5 each
party can learn the size (number of tuples) of the upstream selected bucket.
Nevertheless, when a data owner Oi overencrypts the encrypted tuples re-
ceived from her predecessor, owner Oi does not know which bucket ID cor-
responds to the received tuples. The size of the selected position does not
reveal any further information to the data owner.

According to the above analysis, our protocol is secure against semi-honest par-
ties (see Section 2) as long as no two data owners collude.

5 Time Complexity Analysis

5.1 Theoretical Cost Analysis

Computation Cost. The main computation cost during the execution of both
protocols belongs to hashing and encrypting the set of values VA corresponding

474 M. Sepehri, S. Cimato, and E. Damiani

Table 1. Computation and Communication costs of SMEQ and B-SMEQ with m=10
data owners, s=5 buckets and t equal to 10% of the number of records

Number of records CSMEQ CB−SMEQ C
′
SMEQ C

′
B−SMEQ

50000 660.022 · 103 300.022 · 103 5450.645 · 103 991.145 · 103
100000 1320.022 · 103 600.022 · 103 10900.645 · 103 1981.145 · 103
200000 2640.022 · 103 1200.022 · 103 26160.774 · 103 4753.375 · 103
300000 3960.022 · 103 1800.022 · 103 39240.774 · 103 7129.374 · 103
500000 6600.022 · 103 3000.022 · 103 65400.774 · 103 11881.374 · 103

to n distributed records among m data owners6. Let Ch be the cost of evaluating
the hash function h, Cf be the cost of encryption/decryption by function f , CE

be the cost of encryption/decryption by functionE , and let t be the number of
tuples satisfying the equality match7. Following the SMEQ protocol step-by-step,
it is possible to quantify the complexity of each step and compute the overall
complexity of the protocol. For the sake of conciseness, we omit the details, but
report the total computation cost of SMEQ :

CSMEQ = (n+ 1) + 1 + (nm+ n) + (n+m) +m+ 2t
= nm+ 3n+ 2m+ 2 + 2t ∈ O(mn)

(3)

As regards the B-SMEQ protocol, a reduction factor s where s is the number
of buckets, is to be considered affecting the evaluation of the computation cost.
Table 1 shows the computation costs CSMEQ and CB−SMEQ for the protocols
SMEQ and B-SMEQ, respectively. We supposed t to be equal to 10 percent of
the number of records. B-SMEQ has significantly lower computation cost for the
record cardinality values of interest for practical applications.

Communication Cost. Communication cost can be computed as the total
number of bits transmitted during the protocol execution. We compute the total
communication cost of our protocols under the assumption that each data owner
has n

m
expected records (uniform distribution). We consider k as the length of

each encrypted codeword of the domain of encryption function f (see Section 2)

and k
′
the length of the encryption function E on other attribute. The commu-

nication cost of SMEQ can be computed by looking each step of the procedure,
for the sake of conciseness, here we only give the final result that is O(mn):

C
′
SMEQ = (m2 + nm− n

m
+ 3m+ n− 1) · k + (nm− n

m
+ n) · k′

(4)

The total communication cost of B-SMEQ is:

C
′
B−SMEQ = (m2 + 3m+ 1

s
(mn− n

m
) + 2ms+ n

m
− 1) · k

+(n
m

+ 1
s
(nm− n− n

m
)) · k′ (5)

Table 1 presents the communication costs C
′
SMEQ and C

′
B−SMEQ of SMEQ and

B-SMEQ. We assumed k and k
′
to be equal to the smallest integer greater than

6 We compute the total computation cost of the two mentioned protocols with the
assumption that each data owner has n

m
expected records (uniform distribution).

7 For the sake of simplicity in the calculations below, we do not consider the cost of
reordering encrypted values and assume a unitary cost when applying Ch, Cf and
CE to a single record.

A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test 475

lg (n). As Table 1 shows, the B-SMEQ protocol has lower communication cost;
also, in this range, the difference between the two protocol increases with the
number of records.

5.2 Practical Cost Analysis

In this section, we verify the scalability of our protocol via some experimental
tests. We report the results in terms of communication time on a Linux machine
with dual Intel CPU running at 2.26 GHz. and 2GB Ram. We use Castalia8 simu-
lator for Wireless Sensor Networks. In particular, for our simulation, we deploy 4
and 5 nodes, respectively for SMEQ and B-SMEQ. For both protocols, we create
a ring of three nodes with numbers from 0 to 2 for the three data owners and
one node (number 3) for the querier9. To encrypt the set of searchable attribute
of each data owner’s table, we implement a simple commutative encryption pro-
tocol based on exponentiation modulo p. Since the most communication time of
the two protocols is devoted to exchanging data of each data owner along the
ring in order to be encrypted by all keys, we only focus on Steps 3.4 and 3.5
of SMEQ, and Steps 5 and 6 of B-SMEQ. We run two different experiments: in
the first one, we compare the two protocols; in the second one, we evaluate the
effect the number of buckets has on the communication time for B-SMEQ.

In the first experiment, we set five different triples (θ1, . . . , θ5) of number of
records as θ1 = {5, 6, 7}, θ2 = {50, 60, 70}, θ3 = {500, 600, 700}, θ4 = {5000, 6000,
7000} and θ5 = {50000, 60000, 70000}, where the position j in each triple is the
number of records for data owner j ∈ {1, 2, 3}. Note that for B-SMEQ, we divide
the searchable attribute domain [1 . . . 100] into s=5 number of buckets of the same
size l = 20. Figure 2(a) shows the result of our simulation, the solid line displays
the result from SMEQ, whereas the dotted line displays the result from B-SMEQ.
The difference in communication time between SMEQ and B-SMEQ increases
fairly slowly when the number of records of data owners is relatively small, but it
grows much faster as the number of records increases. The results come from the
fact that for each query, in SMEQ all records of data owners must pass through
the ring, while in B-SMEQ only records corresponding to the bucket ID of user’s
query are taken into consideration. In the second simulation, we study the effect
of increasing the number of buckets on communication time for B-SMEQ. We fix
the number of records given by θ5 and searchable attribute with range [1 . . . 100]

and repeat the experiment with s=5k, where k ∈ {1, . . . , 13}. In Figure 2(b), the x

axis shows the number of buckets and y axis shows the total communication time.
Interestingly, with respect to varying the number of buckets in ascending order,
we can see a progressive communication time decreasing. For instance, when
the number of buckets is s = 5, B-SMEQ provides about 2 times improvement
over SMEQ (i.e. s=1). The reason is that, increasing the number of buckets, the
expected number of records ”falling” in each bucket decreases. Moreover, the
improvement due to bucketization is higher for 1 ≤ s ≤ 10, since when s > 10

8 http://www.omnetpp.org/component/content/article/8-news/3478
9 It should be noted that for B-SMEQ we need to deploy an initiator node for the role
of TTP.

476 M. Sepehri, S. Cimato, and E. Damiani

(a) (b)

(c)

Fig. 2. (a) Comparison of SMEQ and B-SMEQ Protocols based on communication
time (m=3, s=5), (b) Effect of increasing number of buckets on communication time
(θ5, m=3, 1 ≤ s ≤ 65) and (c) Effect of increasing number of buckets on communication
time (θ5, m=3, 1 ≤ s ≤ 5)

the expected number of records in each bucket and for each data owner does not
considerably change. In order to further clarify this concept, in Figure 3(c) we
show the results of the same experiment when s = {1, 2, 3, 4, 5}. Our results show
that bucketization decreases communication time dramatically at first; then,
the marginal contribution of additional buckets to speed-up tends to decrease.
This behavior suggests finding the optimal number of buckets, i.e., the number
of buckets where the marginal contribution speed of the additional bucket is
negligible. This behavior happens regardless of data distribution (uniform and
normal).

6 Conclusions

In this paper, we proposed the B-SMEQ protocol to compute equality test queries
in multi-party setting. Unlike existing approaches, our protocol scales well to
large size data and it is designed to work with more than two parties. The pro-
tocol adopts a bucketization technique to reduce the workload and make the
algorithm fast even when the number of records in the private databases con-
siderably increases. Experimental tests on randomly generated databases with
around 2·105 records confirm the efficiency on our protocol. Since each range
query can be translated into a sequence of equality queries [15], our protocol can
be straightforwardly extended to manage range queries. Moreover, an exten-

A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test 477

sion to join queries is underway, taking into account table fragmentation along
multiple data owners.

References

1. Damiani, E., Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Balanc-
ing confidentiality and efficiency in untrusted relational dbmss. In: Proceedings of
the 10th ACM conference on Computer and communications security, CCS 2003,
pp. 93–102. ACM, New York (2003)

2. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql over encrypted data in
the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2002, pp. 216–227.
ACM, New York (2002)

3. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

4. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167.
IEEE Computer Society, Washington, DC (1986)

5. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC 1987, pp. 218–229. ACM, New York (1987)

6. Agrawal, R., Asonov, D., Li, M.K.: Sovereign joins. In: Proceedings of the 22nd
International Conference on Data Engineering (2006)

7. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2003, pp. 86–97. ACM, New York (2003)

8. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section, pp. 1–19. Springer (2004)

10. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3),
177–206 (2002)

11. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

12. Li, R., Wu, C.: Co-operative private equality test. I. J. Network Security 1(3),
149–153 (2005)

13. Sang, Y., Shen, H., Tan, Y., Xiong, N.: Efficient protocols for privacy preserving
matching against distributed datasets. In: Ning, P., Qing, S., Li, N. (eds.) ICICS
2006. LNCS, vol. 4307, pp. 210–227. Springer, Heidelberg (2006)

14. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to as-
sociation rule mining. Journal of Computer Security 13(4), 593–622 (2005)

15. Damiani, E., De, S., Vimercati, C., Paraboschi, S., Samarati, P.: Computing range
queries on obfuscated data. In: Proc. of the Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (2004)

	A Scalable Multi-Party Protocol for Privacy-Preserving Equality Test

	1 Introduction

	2 Problem Statement

	2.1 Preliminaries

	3 A Protocol for Equality Test

	3.1 Protocol 1:SMEQ

	3.2 Protocol 2: B-SMEQ

	4 Correctness and Privacy Issues

	5 Time Complexity Analysis

	5.1 Theoretical Cost Analysis

	Practical Cost Analysis

	Conclusions

