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ABSTRACT 

 

Lung mechanics, exhaled NO (NOe), and tumor necrosis factor (TNF-α) in serum and 

bronchoalveolar lavage (BAL) fluid were assessed in 8 closed and 8 open chest, normal 

anesthetized rabbits undergoing prolonged (3-4 h) mechanical ventilation (MV) at low volume with 

physiologic tidal volumes (10 ml·kg-1). Relative to initial MV on positive end-expiratory pressure 

(PEEP), MV at low volume increased lung quasi-static elastance (Est; +267 and +281%), airway 

(Rint; +471 and +382%) and viscolelastic resistance (Rvisc; +480 and +294%), and decreased NOe 

(-42 and -25%) in closed and open chest rabbits, respectively. After restoration of PEEP, Rvisc 

returned to control, while Rint remained elevated (+120 and +31%), and NOe low (-25 and -20%) 

in both groups of rabbits. Est remained elevated (+23%) only in closed chest animals, being 

associated with interstitial pulmonary edema, as reflected by increased lung wet/dry ratio with 

normal albumin concentration in BAL fluid. In contrast, in 16 additional closed and open chest 

rabbits there were no changes of lung mechanics or NOe after prolonged MV on PEEP only. At the 

end of prolonged MV, TNF-α was practically undetectable in serum, while its concentration in BAL 

fluid was low and similar in animals subjected or not subjected to ventilation at low volume (62 vs 

43 pg·ml-1). These results indicate that mechanical injury of peripheral airways due to their cyclic 

opening and closing during ventilation at low volume results in changes in lung mechanics and 

reduction in exhaled NO, and that these alterations are not mediated by a proinflammatory process 

as this is expressed by TNF-α levels. 

 

Key words: lung elastance; interrupter resistance; viscoelasticity; proinflammatory cytokines; 

exhaled vapor condensate 
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In an ex vivo model of lavaged rat lung, Muscedere et al. (25) showed that ventilation with 

physiologic tidal volumes from zero end-expiratory pressure (ZEEP) resulted in a significant 

increase of histologic injury scores in the respiratory and membranous bronchioles relative to 

ventilation from positive end-expiratory pressure (PEEP) above the lower inflection point on the 

static inflation volume-pressure curve of the lung. Subsequently, it has been shown that also in 

normal open chest rabbits prolonged (3-4 h) mechanical ventilation at ZEEP induces histologic 

evidence of peripheral airway injury and parenchymal inflammation with a concomitant increase in 

airway resistance which persists after restoration of physiologic end-expiratory lung volume 

(11,12). In these studies, morphological and mechanical alterations have been attributed to shear 

stresses caused by cyclic opening and closing of peripheral airways with tidal ventilation at low 

lung volumes, as previously suggested by Robertson (31), possibly combined with increased 

surface tension due to surfactant depletion or inactivation. 

Recruitment of polymorphonuclear leukocytes in the alveolar walls during ventilation at low 

volume (12) fits a recently described type of ventilator-induced lung injury called biotrauma (14). 

Under this condition, parenchymal overdistension and abnormal shear forces could represent the 

mechanical stimuli leading to release of mediators that prime polymorphonuclear leukocytes, which 

may represent the major effector cells in the generation of tissue injury and upregulation of the 

inflammatory response (14,39). Increased concentrations of proinflammatory cytokines, mainly 

tumor necrosis factor (TNF)- and interleukin (IL)-6, have been in fact observed in 

bronchoalveolar lavage (BAL) fluid of excised rat lungs after prolonged ventilation at ZEEP (6,38). 

Because these cytokines have been shown to enhance the expression of inducible nitric oxide 

synthase (iNOS) in an in vitro preparation (2), nitric oxide concentration in expired air (NOe) could 

eventually increase also in normal rabbits ventilated at low lung volume, and thus serve as a marker 

of parenchymal inflammation. Other studies have shown, however, that injurious ventilation in 

initially intact rats does not affect in vivo proinflammatory cytokine production (18,30,41). Human 

alveolar macrophages and epithelial cells subjected to prolonged cyclic stretching release IL-8, 

which is involved in the recruitment of polymorphonuclear leukocytes, but not proinflammatory 

cytokines, such as TNF- or IL-6 (29,42). Moreover, antiinflammatory mediators are also 

expressed during ventilation at low volume (38), thus making it difficult to recognize the effective 

orientation of cytokine balance (24). On this basis, increased concentration of NOe should not be 

expected to occur in normal rabbits during prolonged ventilation at low volume. In contrast, since 

most of the NO from the lungs is produced by small airway epithelium, a reduction in NOe levels 

could be a useful marker of the extent of the mechanical injury of the peripheral airways due to their 

cyclic opening and closing during tidal ventilation at low lung volumes (11,25). Moreover, NO 
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production could be reduced by prostaglandins E2 and F2a (21) released by alveolar macrophages, 

polymorphonuclear leukocytes, airway and alveolar epithelial cells activated by mechanical insults 

(23), as well as by the vasoactive intestinal peptide (13), which may be also involved in the 

inflammatory response of the lung (33). 

The purpose of the present investigation in normal rabbits is therefore to assess the effects of 

3-4 h ventilation at low lung volume on NO production from the tracheobronchial tree, also in 

relation to possible inflammatory reaction, as monitored by TNF-levels in serum and BAL fluid. 

While previous studies (11,12) on the morphological and mechanical effects of ventilation at low 

lung volume were performed on open-chest rabbits only, the present experiments also included 

closed chest rabbits, in order to avoid confounding inflammatory responses elicited by the major 

surgical intervention required in open chest animals. 

 

METHODS 

 Forty New Zealand white rabbits (weight range 2 to 3.1 kg) were anesthetized with an 

intravenous injection of a mixture of pentobarbital sodium (20 mgkg-1) and urethane (0.5 mgkg-1). 

A brass cannula and polyethylene catheters were inserted into the trachea, the carotid and femoral 

artery, and the external jugular vein, respectively. The animals were paralyzed with pancuronium 

bromide (0.1 mgkg-1) and mechanically ventilated (respirator 660; Harvard Apparatus, Holliston, 

MA) with a pattern similar to that during spontaneous breathing. Anesthesia and complete muscle 

relaxation were maintained with additional doses of the anesthetic mixture and pancuronium 

bromide. Throughout the experiment, Ringer-bicarbonate solution was infused via the jugular vein 

at a rate of 4 mlkg-1h-1. Before the final mechanics and subsequent nitric oxide measurements, 

boluses of bicarbonate (1 M) solution and epinephrine were given intravenously to keep arterial pH 

and systemic blood pressure close to the initial values. Sixteen rabbits were studied with closed 

chest (group A), and sixteen animals with open chest (group B). The chest was opened via a median 

sternotomy, a coronal cut was made just above the costal arch, and a positive end-expiratory 

pressure of 2-2.5 cm H2O was applied. In the latter animals and during the mechanics 

measurements, the ribs on the two sides and the diaphragm were pulled widely apart, in order to 

prevent contact between lung and chest wall, except in their dependent parts. The animals rested 

supine on a heating pad; rectal temperature was kept essentially constant under all conditions at 

37.5±0.1(S.E.) and 36.3±0.1 °C in closed-chest and open-chest animals, respectively. 

 Airflow ( V ) was measured with a heated Fleisch pneumotachograph no.00 (HS Electronics, 

March-Hugstetten, Germany) connected to the tracheal cannula and a differential pressure 

transducer (Validyne MP45, ±2 cm H2O; Northridge, CA). The response of the pneumotachograph 
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was linear over the experimental range of V . Tracheal (Ptr), esophageal (Pes), and systemic blood 

pressure (Pa) were measured with pressure transducers (model 1290A; Hewlett-Packard, Palo Alto, 

CA) connected to the side arm of the tracheal cannula, a latex balloon (2.5 cm long, 0.5 cm ID) 

suitably placed in the lower esophagus, and the femoral artery, respectively. There was no 

appreciable shift in the signals or alteration in amplitude up to 20 Hz. Nitric oxide (NO) was 

measured using a chemiluminescence analyzer (NOA 280i, Sievers, Boulder, CO), attached to a 

side port of the tracheal cannula through teflon tubing and set to draw air at a rate of 200 mlmin-1. 

Zeroing and calibration of the NO analyzer was verified repeatedly during the experiment using the 

Zero Air Filter and certified gas mixture provided by the manufacturer. The signals from the 

transducers were amplified (model RS3800; Gould Electronics, Valley View, OH), sampled at 200 

Hz by a 12-bit A/D converter (AT MIO16E-10; National Instruments, Austin, TX), and stored on a 

desk computer, together with the signal from the NO analyzer. Volume changes (V) were obtained 

by numerical integration of the digitized airflow signal. Arterial blood PO2, PCO2 and pH were 

measured by means of a blood gas analyzer (IL 1620; Instrumentation Laboratory, Milan, Italy) on 

samples drawn from the carotid artery at the beginning and at the end of each test session, while the 

pH of the deareated, exhaled airway vapor condensate (Hunt et al., 2000) was measured using an 

Amersham Pharmacia C900 pH meter (Uppsala, Sweden). 

 After completion of the surgical procedure and instrumentation, the rabbits were ventilated 

with a specially designed, computer-controlled ventilator, delivering a NO free (NO concentration 

<0.5 ppb), water-saturated gas mixture from a high pressure source (4 atm) at constant flow of 

different selected magnitudes and duration. A three way stopcock allowed the connection of the 

expiratory valve of the ventilator either to the ambient (zero end-expiratory pressure; ZEEP) or to a 

drum in which the pressure could be made positive (positive end-expiratory pressure; PEEP) or 

negative (negative end-expiratory pressure; NEEP) by means of a flow-through system. A detailed 

description of the ventilator can be found elsewhere (12). 

 For all animals, the baseline ventilator settings consisted of fixed tidal volume (VT; 10 

mlkg-1), inspiratory duration (TI; 0.25 s), and cycle duration (1.8 s). An end-inspiratory pause of 

0.35 s was applied in order to ensure a normal mean lung volume during the respiratory cycle. 

During NO measurements both the inspiratory and expiratory duration were set at 1 s and the end-

inspiratory pause was removed. With the above settings, no intrinsic PEEP was present under any 

experimental condition, as evidenced by an end-expiratory pause (zero flow) and absence of Ptr 

changes with airway occlusion at end-expiration. While open chest rabbits were always ventilated 

with air, closed chest animals were intermittently ventilated with 70-80% oxygen during MV on 
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NEEP in order to limit the profound, life threatening hypoxia that occurred otherwise. However, 

measurements were always performed during air breathing. 

Procedure and data analysis 

Rabbits of group A and B were equally divided into two subgroups, group Acontrol and Atest, 

and Bcontrol and Btest, respectively. Rabbits of group Atest and Btest were subjected to the following 

sequence of PEEP and NEEP or ZEEP: a) 30 min of mechanical ventilation (MV) with PEEP 

(PEEP1); b) 3-4 h of MV at NEEP or ZEEP; c) 1.5 h of MV with PEEP. Rabbits of group Acontrol 

and Bcontrol were subjected for the same cumulative time to MV with PEEP only. In open chest 

animals, the end-expiratory pressure was almost the same during the initial and final period of MV 

on PEEP, averaging 2.3±0.1 cmH2O. In closed chest animals, an end-expiratory pressure of 1.2±0.1 

cm H2O was applied in order to limit or prevent the expected fall in the end-expiratory lung volume 

with anesthesia and paralysis, while NEEP was –7.7±0.1 cm H2O. Upon completion of in vivo 

measurements, the animals were killed with an overdose of anesthetics, the lungs were isolated, the 

main right bronchus tied off, and the right lung was removed, weighed immediately, left overnight 

in an oven at 120 °C, and weighed again to compute the wet/dry ratio. The left lung was lavaged 

four times using 3-ml aliquots of normal saline, fluid recovery ranging from 40 to 50%. The 

effluents were pooled, centrifuged (Harrier 18/80, Sanyo Gallenkamp PLC, Loughborough, UK) at 

2000 rpm for 10 min, and the supernatant frozen and stored at –20°C.  The animals were from a 

single cohort and the experiments were done in random order. 

In order to assess tumor necrosis factor levels in the bronchoalveolar lavage (BAL) fluid 

before the prolonged MV at low or normal end-expiratory lung, in an additional group of eight 

closed-chest rabbits (group C), instrumented as described above, BAL fluid was obtained after 15 

min of MV with PEEP, while blood samples were taken before and after induction of anesthesia 

and paralysis, on completion of the surgical maneuvers, and at PEEP1.  

Mechanical characteristics were studied during PEEP1, at start (NEEP1 or ZEEP1) and end 

of the NEEP or ZEEP period (NEEP2 or ZEEP2), and ~15 min after MV on PEEP had been restored 

(PEEP2). Before all measurements on PEEP the lungs were inflated 3-4 times to Ptr of ~30 cm H2O. 

Two types of measurements were carried out: a) while keeping VT at baseline values, test breaths 

were intermittently performed with different V I and TI in the range 0.25 to 3 s to assess mechanics 

at end-inflation; and b) while keeping V I at baseline values, test breaths were intermittently 

performed with different VT to obtain quasi-static inflation volume-pressure curves. End-inspiratory 

occlusions lasting 5 s were made in all test breaths, which were performed in random order and 

repeated 3-5 times. During ventilation at NEEP or ZEEP, end-inspiratory occlusions were 

performed only for tidal volumes  baseline VT. In open  chest rabbits and during ventilation with 
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PEEP, the expiratory valve was opened to the ambient in order to measure the difference between 

the end-expiratory and the resting lung volume (EELV). In closed chest animals, EELV was 

obtained as the volume exhaled with a Ptr of –20 cmH2O. Mechanical parameters were assessed 

with the rapid airway occlusion method (3,10). The end-inspiratory airway occlusions were 

followed by a rapid initial drop in pressure (P1), and by a slow decay (P2) to an apparent plateau 

value (Pst). This pressure, computed as the mean pressure recorded during the last 0.5 s of 

occlusion, was taken to represent the quasi-static pressure, while P1 and P2 divided by V I yielded 

the interrupter (Rint) and additional (R) resistance, respectively. Viscoelastic parameters, Rvisc 

and visc=Rvisc/Evisc, were computed by fitting the values of R and TI with the function (10) 

      R=Rvisc(1-e-TI/visc)              (1) 

while quasi-static elastance (Est) was obtained as (Pst-Pee)/VT, Pee being the end-expiratory 

pressure. The parameters above referred to the respiratory system, lung and chest wall depending on 

whether tracheal, transpulmonary, or esophageal pressure was being used in the computations. In 

closed chest animals transpulmonary pressure (Ptp) was obtained as Ptr-Pes. The negative value of 

Ptr recorded after wide opening of the chest with closed airway opening was assigned to the 

esophageal pressure just before chest opening, and Pes values obtained under all other conditions 

were corrected accordingly. 

 Tracheal NO concentration was continuously measured for 15-20 min at the transition from 

PEEP (PEEP1) to NEEP or ZEEP (NEEP1 or ZEEP1) and from NEEP or ZEEP (NEEP2 or ZEEP2) 

to PEEP (PEEP2), and, for 10 min periods, ~60 and 90 min after restoration of MV on PEEP in 

order to check any possible deterioration of the preparation. Moreover, during this period, 

administration of epinephrine, boluses of bicarbonate (1M) solution, and/or short periods of 

hyperventilation and oxygen breathing were performed to keep the values of Pa, PaO2, PaCO2 and 

pHa close to those with PEEP1. For a given condition, ~60 breaths were ensemble averaged, and the 

mean concentration of NO during expiration was used as the exhaled NO concentration (NOe). 

Moreover, during PEEP1, NEEP2 or ZEEP2, and PEEP2, part of the tubing beyond the expiratory 

valve of the ventilator was immersed in ice cold water to obtain ~1 ml of exhaled airway vapor 

condensate (20). 

 Analysis of tumor necrosis factor (TNF-) was carried out in a blinded fashion on BAL 

fluid and serum collected under conditions PEEP1, NEEP2 or ZEEP2, and PEEP2 in group A and B, 

and before and after induction of anesthesia and at the start and end of the 15 min period of MV on 

PEEP in group C, using a commercially available ELISA kit (BD Bioscience, Franklin Lakes, NJ), 

specific for rabbit. TNF- color development was measured at 405 nm (Titertek Multiskan MCC, 
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Flow Laboratories, Milan, Italy), background absorbancy of blank wells being subtracted from the 

standards and samples prior to determination of the concentration. The lower limit of detection was 10 

pgml-1, in which case TNF- concentration was assumed to be nil. The albumin concentration of the 

BAL fluid supernatant and serum obtained shortly before lung lavage was determined with a clinical 

chemistry analyzer (Falcor 350, Menarini Diagnostics, Florence, Italy) at 630 and 700 nm using the 

BCG method (Menagent, Menarini Diagnostics) with bovine albumin as standard. 

 Statistics. Results are presented as means±SE, except for TNF- measurements. The least-

square regression method was used to assess the parameters in Eq.1 and of the pressure-volume 

relationship of the lungs. Comparisons among experimental conditions were performed using one-

way analysis of variance (ANOVA); when significant differences were found, the Bonferroni test 

was performed to determine significant differences between different experimental conditions. 

Results from TNF- measurements are expressed as median and range, and the statistical analysis 

was performed using the Mann-Whitney test. The level for statistical significance was taken at 

P0.05. 

 

RESULTS 

The group mean values of PaCO2 and pHa during PEEP1 and PEEP2 were similar in closed 

and open chest rabbits, whereas those of PaO2 were significantly lower in closed chest animals 

(Table 1). Relative to PEEP1, with NEEP1 or ZEEP1 there was a similar increase of PaCO2 and 

decrease of PaO2 and pHa in both closed and open chest rabbits. Except for a significant decrease of 

pHa in open chest animals, no further changes of these parameters occurred with NEEP2 or ZEEP2. 

The values of wet-to-dry ratio assessed at the end of the experiments were similar in both 

groups of open chest rabbits, as well as in closed chest rabbits ventilated on PEEP only, and not 

significantly different from those of freshly excised rabbits lungs (11). In contrast, the wet-to-dry 

ratio of closed chest animals ventilated on NEEP was significantly larger than that of all other 

groups of rabbits (Table 1), whilst albumin concentration in BAL fluid and the ratio of BAL to 

serum albumin concentration were similar in both group A and B rabbits, and similar to the 

corresponding values (0.2±0.1 gl-1 and 1±0.3 %, respectively) found in closed chest animals not 

subjected to prolonged MV on ZEEP or PEEP (group C). 

Mechanics 

In closed chest animals, the quasi-static volume-pressure curve of the chest wall on PEEP1 

and PEEP2 did not differ (Fig. 1). Moreover, chest wall viscous resistance and viscoelastic 

properties were the same under all conditions (Tables 3 and 4). Hence any change in the mechanical 
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properties of the respiratory system because of prolonged ventilation at low volume was the 

consequence of changes in lung mechanics. 

 Static inflation V-P relationships. In all groups of rabbits Ptp at end-expiration was similar 

during PEEP1 and PEEP2, averaging 2.2 cm H2O, but the difference between the end-expiratory and 

the resting lung volume (EELV) was significantly larger in open than in closed chest animals 

(Table 2). With PEEP1 and PEEP2, EELV was the same in open chest rabbits and in closed chest 

rabbits ventilated on PEEP only, whilst in rabbits ventilated on NEEP, EELV decreased 

significantly (-4.2±1.4 ml; P<0.025) with PEEP2 (Table 2). 

In closed chest animals, independent of ventilation on NEEP,  the inflation V-P curve of the 

lungs on PEEP was s-shaped (Fig. 2). When the lower three data-points were disregarded, the V-P 

curve closely fitted (r>0.95) a function in the form Vo-Vxe-KPtp, where Vo is maximum volume 

above resting lung volume, Vx is a volume factor accounting for the rightward shift of the curve due 

to lung unit recruitment, and K (cmH2O
-1) is a shape factor, that reflects the overall distensibility of 

the lung (9,16,34). In group Acontrol rabbits, all these parameters were essentially the same during 

PEEP1 and PEEP2 (Table 2). In group Atest rabbits Vo and Vx, decreased significantly with PEEP2 

(-11.6±3.1 and -15.3±3.4 ml; P<0.001), whilst K, though reduced, did not (-0.01±0.01 cmH2O
-1; 

P>0.5). 

In open chest animals, the entire inflation V-P curve on PEEP closely fitted (r>0.97) a 

function in the form Vo(1-e-KPtp, ), with Vo and K as indicated above (Table 2). Because in all 

animals none of these values changed significantly after prolonged ventilation on ZEEP (group 

Btest) or PEEP (group Bcontrol), a unique relationship could be used to describe the quasi-static V-P 

curve above the end-expiratory lung volume with PEEP (Fig. 2). Finally, when compared to the 

corresponding value on PEEP1 in closed chest animals, Vo in open chest rabbits was essentially the 

same (81.1±3.9 vs. 89±2.9 ml; P=0.19), while K was significantly larger (0.178±0.005 vs. 

0.143±0.006 cmH2O
-1; P=0.001). 

 On NEEP or ZEEP, the quasi-static inflation V-P curve of the lung shifted downwards both 

in closed-chest and open-chest animals (Fig. 2). Moreover, the V-P curve of open chest animals, 

which on PEEP was concave towards the pressure axis, became markedly s-shaped, as in closed 

chest animals. All these changes increased with NEEP2 or ZEEP2. 

 Elastance.  On the basis of the Vo and EELV values in Table 2, tidal ventilation with PEEP 

occurred in the range 25-50 and 33-65% Vo in closed and open chest animals, respectively, while 

during NEEP or ZEEP, tidal ventilation occurred in the range 0-26% Vo in both closed and open 

chest animals. The average values of quasi-static lung elastance (Est) obtained in the various groups 

of animals and conditions are reported in Table 3. With PEEP1, Est was significantly larger in 
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closed than in open chest animals (209±11 vs. 144±5 cmH2Ol-1; P<0.001). With PEEP2, Est 

increased significantly only in group Atest rabbits. Est increased markedly and progressively from 

NEEP1 or ZEEP1 to NEEP2 or ZEEP2, more in closed than in open chest animals. Relative to 

PEEP1, Est increased however, by a similar amount in group Atest and Btest rabbits both with 

NEEP1 or ZEEP1 (225±18 vs. 203±25%; P=0.5) and with NEEP2 or ZEEP2 (267±19 vs. 281±28%; 

P>0.5). 

Rint. At the end-inspiratory volume of baseline ventilation, the pulmonary interrupter 

resistance (Rint) was independent of flow, at least in the range 10-100 mls-1, in all animals and 

conditions; hence the values of Rint obtained in each rabbit and condition were averaged (Table 3). 

With PEEP1, Rint was similar in closed and open chest animals (11.3±0.9 vs. 10.4±0.5 cmH2Osl-1; 

P=0.38). With PEEP2, Rint did not differ significantly from PEEP1 values in animals ventilated on 

PEEP only (group Acontrol and Bcontrol), whereas in animals ventilated on NEEP or ZEEP (group 

Atest and Btest), Rint increased significantly, and more in closed than in open chest animals, both in 

absolute (14.6±3.5 vs. 2.9±0.6 cmH2Osl-1; P=0.005) and relative terms (120±32 vs. 31±6%; 

P=0.014). Rint increased progressively from NEEP1 or ZEEP1 to NEEP2 or ZEEP2, and more in 

closed than in open chest animals. Relative to PEEP1, Rint increased, however, by a similar amount 

in group Atest and Btest rabbits both with NEEP1 or ZEEP1 (292±22 vs. 210±31%; P=0.11) and with 

NEEP2 or ZEEP2 (471±46 vs. 382±36%; P=0.15). 

Viscoelastic properties. In all animals and conditions, a unique function in the form of Eq. 1 

adequately described the experimental R-TI data of the respiratory system, lung, and chest wall  

(r>0.92), allowing computation of the dependent Rvisc and visc values. Figure 3 depicts the group 

mean relationships of R to TI of the lung obtained under the various experimental conditions, 

while the group mean values of Rvisc and visc are reported in Table 4. With PEEP1, both the 

Rvisc and visc values did not differ significantly between closed and open chest animals (72±6 vs. 

65±7 cmH2Osl-1; P>0.5, and 1.30±0.11 vs. 1.34±0.13 s; P=0.09). With PEEP2, neither Rvisc nor 

visc changed significantly relative to corresponding PEEP1 values. Rvisc increased progressively 

from NEEP1 or ZEEP1 to NEEP2 or ZEEP2, and more in closed than in open chest animals (258±30 

vs. 134±21 cmH2Osl-1; P=0.005, and 330±52 vs. 191±15 cmH2Osl-1; P=0.022). While in open 

chest animals visc did not change with ZEEP, in closed chest animal visc increased during NEEP 

ventilation (visc=0.39±0.09 s; P<0.001). 
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NO production 

 The effects of prolonged MV at normal and reduced end-expiratory lung volume on exhaled 

NO (NOe) concentration in both closed and open chest rabbits are shown in Figures 4 and 5, 

respectively, together with the changes of a number of parameters that could potentially affect NOe 

concentration. 

With PEEP1, NOe concentration was 29.7±2.9 and 28.4±3.9 ppb in group Acontrol and Atest 

rabbits, and 20.4±1.5 and 21.3±1.9 ppb in group Bcontrol and Btest rabbits; thus NOe concentration 

did not differ significantly between the two subgroups of closed-chest and open-chest rabbits, whilst 

it was significantly larger in closed than in open chest rabbits (28.8±2.7 vs. 21±1.3 ppb; P=0.016). 

Mean systemic arterial pressure ( Pa ), PaO2, PaCO2, pHa, and body temperature were similar in the 

two subgroups of closed and open chest rabbits, respectively. While Pa , PaCO2, and pHa were 

similar in open and closed chest animals, PaO2 was significantly lower (82±2 vs. 103±2 mm Hg; 

P<0.0001) and body temperature higher (37.4±0.1 vs. 36.8±0.1 °C; P=0.001) in closed chest 

animals.  

With prolonged MV on PEEP only, there was a tendency for NOe to decrease; however, 

during the 5-5.5 h of MV the rate of decay of NOe concentration was not significant both in closed 

(-0.55±0.95 ppbh-1; P>0.5) and open chest animals (-0.37±0.47 ppbh-1; P=0.44). Similarly, none of 

the other parameters changed significantly with MV on PEEP only (Figs. 4 and 5).  

On transition from PEEP to NEEP or ZEEP, NOe concentration increased both in closed 

(2.8±2.4 ppb) and open chest animals (3.9±0.2 ppb), the change being significant only in the latter 

group of rabbits (P<0.001). On NEEP or ZEEP, NOe concentration decreased more in closed (-

12±2.7 ppb; P<0.001) than open chest animals (-5.7±1.9 ppb; P<0.025), whilst on transition to 

PEEP there was a small significant increase in NOe concentration in closed and open chest animals 

(2.4±0.5 and 1.4±0.1 ppb; P<0.001). On the other hand, no further changes in NOe concentration 

occurred during the subsequent 1.5 h of MV on PEEP both in closed and open chest rabbits (Figs. 4 

and 5). During this period, the average NOe concentration was similar in closed and open chest 

animals (19.5±2.3 vs. 16.7±0.9 ppb; P=0.25) and markedly lower than that on PEEP1 (Figs. 4 and 

5), amounting to 69 and 78 % of PEEP1 values in group Ates and Btest rabbits. 

 As shown in Figs. 4 and 5, no significant changes in PaCO2, and pHa occurred on transition 

from PEEP to NEEP or ZEEP, whilst PaO2 decreased markedly both in closed and open chest 

animals (-40±3 and -23±5 mm Hg; P<0.001). With prolonged MV at NEEP or ZEEP, PaCO2 

increased by  ~10 mm Hg, pHa decreased by ~0.14, and PaO2 dropped by an additional ~15 mm Hg. 

while on transition from NEEP or ZEEP to PEEP (PEEP2) only PaO2 showed a significant increase 

of ~15 mm Hg. With NEEP2 and ZEEP2, Pa  decreased significantly both in closed and open chest 
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animals, and remained significantly lower than control values also on PEEP2 (Figs. 4 and 5). During 

the final 1.5 h of MV on PEEP, administration of epinephrine, boluses of bicarbonate (1M) 

solution, and/or short periods of hyperventilation and oxygen breathing brought the values of all 

these parameters back to those with PEEP1 (Figs. 4 and 5). 

Airway vapor condensate 

 The mean pH of exhaled airway vapor condensate sampled in closed and open chest animals 

on PEEP1, PEEP2, NEEP2, and ZEEP2 are shown in Table 5. No significant differences were found 

between pH values of closed and open chest rabbits under all conditions, or among the pH values 

obtained under the various conditions in either closed or open chest rabbits. When pH values 

measured in all animals and conditions were pooled, the average pH of the exhaled airway vapor 

condensate was 6.89±0.05 (range: 6.15-7.61). 

Tumor necrosis factor- 

 Under all conditions, TNF-α concentration in BAL fluid was low, but significant. Although 

the largest median value occurred in animals subjected to prolonged MV on NEEP (group Atest), 

TNF-α levels did not differ significantly among all groups of animals (Table 6). Similarly, although 

the lowest median value of TNF-α concentration in BAL fluid occurred in animals not subjected to 

prolonged MV (group C), this concentration did not differ significantly from that of group A and B 

rabbits.  

 With PEEP1, serum TNF-α concentration was high and similar in all groups of closed and 

open chest animals (Table 6). In contrast, serum TNF-α concentration was essentially nil during 

NEEP2, ZEEP2,  and PEEP2, as well as in group C rabbits before induction of anesthesia. In these 

rabbits, serum TNF-α levels during MV on PEEP1 were, however, high and similar to those found 

under the same condition in group A and B rabbits (Table 6). Figure 6 provides a composite picture 

of the time course of serum TNF-α concentration in group Atest, Btest, and C rabbits. Serum TNF-α 

levels grew rapidly during the surgical interventions, peaking at their end, and then declined, 

becoming nil after 3-4 h, or likely earlier.  

 

DISCUSSION 

Lung injury during ventilation at low lung volumes with physiologic tidal volumes has been 

attributed to cyclic opening and closing of peripheral airways (11,31) with concurrent generation of 

abnormal, inhomogeneous shear stresses that are eventually responsible for mechanical and histologic 

damage in respiratory and membranous bronchioles (11,25), marked alterations of alveolar-

bronchiolar coupling, inflammatory response, and increase in airway resistance (11,12). The present 

results indicate that prolonged mechanical ventilation at low lung volumes reduces NO 
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concentration in exhaled air without affecting proinflammatory cytokines, as indexed by TNF-α 

concentration in BAL fluid and serum, and that both the fall of NOe and the adverse mechanical 

effects on the lung (Tables 3 and 4, and Fig. 1) are greater in closed than open chest animals. In 

addition, in closed chest rabbits there is a significant increase in lung elastance, probably due to 

interstitial edema, as reflected by increased wet-to-dry ratio but normal albumin concentration in 

BAL fluid. On the other hand, when lung volumes are kept within the physiologic range with PEEP, 

prolonged mechanical ventilation does not result in significant changes in exhaled NO 

concentration, lung mechanics, and TNF-α levels in BAL fluid and serum. 

Lung mechanics 

In line with previous results (11,12), during mechanical ventilation with PEEP there was no 

evidence of airway closure in open chest animals, since the static inflation V-P curve of the lung was 

concave to the pressure axis (16), as shown in Figure 2. In closed chest animals, however, the initial 

part of the inflation V-P curve was slightly convex to the pressure axis, suggesting some 

progressive reopening of small airway (<1 mm in diameter; 19) during tidal ventilation. Indeed, 

small airway closure is likely to occur in the dependent zones of the lung in supine, anesthetized, intact 

rabbits at functional residual capacity, since under this condition pleural surface pressure in the 

lowermost part of the pleural space is nil (8). In contrast, at low end-expiratory volume the inflation 

V-P curve became markedly sigmoidal both in closed and open chest animals (Fig. 2), indicating 

that under this condition there was substantial cyclic airway opening and closing, which should be 

responsible for the histologic alterations previously observed in open chest animals (11,12), as well as 

the increase in Rint on PEEP2 relative to PEEP1. The presence of the vertical gradient of 

transpulmonary pressure in the closed chest rabbits probably explains the greater convexity of the 

initial part of the quasi-static inflation V-P curve from low end-expiratory volumes in closed than 

open chest rabbits (Fig. 2). Indeed, the ratio between Est with the lowest inflation volume (~4 

mlkg-1) and baseline VT was significantly larger in group Atest than Btest both at the beginning 

(2.22±0.07 vs 1.18±0.06; P<0.001) and at the end of the NEEP and ZEEP period (2.83±0.16 vs 

1.30±0.06; P<0.001), respectively. This should indicate that in closed chest animals more airways were 

involved in cyclic opening and closing with greater mechanical alterations (Table 3) and, possibly, 

histologic damage. 

 Both in closed and open chest rabbits, there was a significant increase of Est, Rint, and Rvisc 

relative to PEEP1, which was significantly greater after 3-4 h (NEEP2 and ZEEP2)  than after ~15 min 

(NEEP1 and ZEEP1) of ventilation at low lung volume (Tables 3 and 4). Similar results have been 

reported in previous studies on open chest rabbits (11,12,36), in which the increase of Est and Rvisc 

was attributed to a higher surface tension and a decrease of ventilated tissue due to airway closure and 
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dependent gas trapping, that of Rint to reduction of ventilated tissue, uncoupling between peripheral 

airways and lung parenchyma and, possibly, increased bronchomotor tone (11,12). The first 

mechanism should contribute mainly to the increase in Rvisc, especially on ZEEP2, since most of 

Rvisc should reside in the air-liquid interface (1), while the second accounts for the proportional 

changes of Est and Rvisc with an essentially constant visc (Tables 3 and 4). Enhanced depletion or 

inactivation of lung surfactant and greater extent of airway collapse and cyclic opening and closing 

should explain the greater increase of Est, Rint, and Rvisc observed in closed chest animals, while an 

increased inequality of regional lung expansion with decreasing lung volume may account for the 

augmented visc and loss of proportionality between Rvisc and Est relative changes (Tables 3 and 4). 

Greater inhomogeneity of ventilation distribution in closed chest animals, poorly compensated by the 

PO2-dependent redistribution of pulmonary perfusion, is further supported by the lower values of PaO2 

(Table 1 and Figs. 4 and 5), in spite of intermittent oxygen administration. 

 Increased surface tension, differences in pulmonary vascular pressures, and release of 

vasoactive substances (see below) could explain the presence of pulmonary edema in closed chest 

animals with NEEP, as reflected by the significant increase of wet/dry ratio (Table 1), the downward 

shift of the inflation V-P curve (Figs. 1 and 2), and the reduction of EELV (Table 2). Edema was, 

however, limited to the interstitium, because both the albumin concentration in BAL fluid and the ratio 

between albumin concentration in BAL fluid and serum were normal. Moreover, on dissecting the 

lungs no foam could be observed in peripheral units and airways. 

After return to PEEP (PEEP2), Rvisc and Est of open chest animals reversed to the initial 

(PEEP1) values (Tables 3 and 4). In closed chest animals, however, Est, though partially restored, 

remained significantly larger (Table 3), likely because of interstitial edema and increased surface 

forces. In contrast, Rint was significantly increased both in closed and open chest animals (Table 3). 

The increase in Rint could not be related to changes in arterial blood gases or pH (Table 1), nor to 

changes in elastic recoil which, relative to PEEP1 , was either the same or moderately increased in open 

chest or closed chest rabbits, respectively (Table 3 and Fig. 2). This increase is due to damage of 

peripheral airway (11), changes in the mechanical coupling between peripheral airways and lung 

parenchyma (12), interstitial edema, and, possibly, increased bronchomotor tone. These mechanisms 

played a greater role in closed chest animals, as Rint increased more in closed (120±32%) than in open 

chest rabbits (31±6%). Based on greater wet/dry ratio (Table 1), small airway edema could have been 

more pronounced in closed chest animals. Similarly, because of the greater number of airways 

involved in cyclic opening and closing and higher airway opening pressures in closed than open chest 

animals during low-volume ventilation (Fig. 2), larger inhomogeneous shear stress should have 

occurred in the former group of rabbits, thus enhancing the functional alterations. 
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Exhaled NO concentration 

In both closed and open chest animals ventilated for 3-4 h on PEEP, exhaled NO 

concentration did not change significantly (Figs. 4 and 5). Furthermore, NOe values on PEEP1 were 

comparable with those of normal, anesthetized rabbits (15,17). They were, however, significantly 

higher in closed than open chest rabbits. This could reflect the lower body temperature in open than 

closed chest animals (36.3 vs 37.5°C), a difference that might have been larger at the level of 

airway epithelium. Moreover, the major surgery required to open the chest may also have played a 

role, though the concentration of the proinflammatory cytokine TNF-α did not differ significantly 

between open and closed chest animals (Table 6). At ZEEP1 and NEEP1 there was a small increase 

in NOe (Figs. 4 and 5), likely related to the decrease in pulmonary blood flow (4,7) with increasing 

pulmonary vascular resistance due to the reduction in lung volume. 

Prolonged mechanical ventilation at low volume substantially lowered NOe both in closed 

and open chest animals, a reduction which persisted after restoration of the end-expiratory volume 

(Figs. 4 and 5). Since the tidal volume was the same under all conditions, the fall of NOe was the 

consequence of decreased elimination of NO from injured terminal and respiratory bronchioles, 

which in our preparation are the main source of exhaled NO (27). Indeed, prolonged mechanical 

ventilation at low lung volume causes small airway injury with epithelial necrosis and sloughing in 

open chest rabbits (11). Although peripheral airway injury has not been studied histologically in 

closed chest rabbits, it seems likely that the greater reduction of NOe found in these animals (Figs. 

4 and 5) was related to greater histologic and mechanical damage. 

 In open chest animals ventilated on ZEEP, necrosis and epithelial sloughing involved 12% of 

peripheral airways (11). Considering  that those rabbits were ventilated with lower inflation flows than 

the present ones, and that higher inflation flows cause greater functional and morphological damage  

(12), the percentage of injured airways might have been even larger in the present open chest animals 

ventilated on ZEEP. Interestingly, in these animals the fall in NOe at PEEP2 averaged 22% relative to 

PEEP1. However, the satisfactory correspondence between percentage of injured airways and 

relative decrease of NOe may be fortuitous, also because other factors can reduce NO production 

and elimination from airway epithelium. In isolated, blood perfused rabbit lungs ventilated with a 

fixed pattern, decreasing PaO2 to 33 mmHg caused a nearly 40% decrease in end-expiratory NO 

concentration (4). Therefore, hypoxia could explain the reduced NO elimination on NEEP and 

ZEEP (Figs. 4 and 5), as well as the larger decrease of NOe in closed than open chest animals. 

Hypercapnia can also depress NO formation: in intact, anesthetized rabbits an increase of PaCO2 

from 30 to 75 mmHg decreased NOe by ~30% within a few minutes (35). On the other hand, the 

effect of hypoxia and hypercapnia are rapidly reversible (4,35), while in the present animals NOe 
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remained well below control values long after return to PEEP and initial PaO2, PaCO2, and pHa 

values (Figs. 4 and 5). It should be noted, however, that in the present experiments hypoxia was 

maintained for hours instead of minutes as in the isolated rabbit lung preparation. 

Changes in the volume or composition of the fluid lining the lower airways may also affect 

NO formation. Exhaled NO is markedly decreased in isolated pig lungs with developing interstitial 

edema (7) and with administration of nebulized aqueous solutions in healthy subjects (22), whereas 

an increased hydrogen ions concentration in the lining fluid leads to an increased NOe (20). In the 

present animals, the acid-base balance of this fluid was essentially unaffected, since the pH of the 

condensate was the same under all conditions (Table 5). On the other hand, in animals ventilated at 

low volume interstitial edema (Table 1) could have contributed to the fall of NOe, which might 

have been also due to the depressant action exerted on NO production by prostaglandins E2 and F2a, 

VIP, and free radicals (13,21,26). Indeed, damage and shedding of small airway epithelium, by 

exposing sensory nerve endings, fibroblasts, and collagen, can eventually cause release of 

tachykinins and vasoactive intestinal peptide (VIP), activation of bradykinin with release of 

prostaglandins E2 and F2a, and formation of free radicals (28,40), while alveolar epithelial cells, 

macrophages and polymorphonuclear leukocytes activated by mechanical insults could represent an 

additional source of VIP and prostaglandins E2 and F2a (13,23). Moreover, because bradykinin 

causes bronchoconstriction of mainly peripheral airways and systemic vasodilation (28), it could 

have contributed to the persistent increase of Rint after NEEP or ZEEP ventilation (Table 3), as 

well as to the significant fall of Pa  on NEEP2, ZEEP2 and PEEP2  (Figs. 4 and 5). The latter effect 

was not related to reduced heart performance, since additional experiments in open chest rabbits 

showed that whilst Pa  decreased progressively during the 3-4 h period of ventilation on ZEEP, 

mean pulmonary artery pressure remained essentially unchanged. 

Proinflammatory cytokines 

Serum TNF-α levels were essentially undetectable before and after induction of anesthesia 

and paralysis, peaked immediately after surgery (PEEP1), and were back to initial values after 3-4 h 

of ventilation both at normal or decreased lung volume (Fig.6), consistent with the known kinetics 

of this cytokine (43). The time course of serum TNF-α could suggest that surgery was involved in 

this response; but peak levels were similar in closed and open chest rabbits, in spite of more 

extensive surgery in the latter animals. In contrast with serum TNF-α levels, those in BAL fluid, 

though higher with PEEP2, did not differ significantly between PEEP1 and PEEP2, nor at PEEP2 

between animals undergoing prolonged ventilation at low (group Atest and Btest) and physiologic 

end-expiratory volume (group Acontrol and Bcontrol), independent of closed or open chest (Table 6). 

This indicates that a) the greater decrease of NOe production in animals subjected to prolonged 
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ventilation at low volume (Figs. 4 and 5) cannot be related to lower TNF-α levels; b) the 

mechanical alterations caused by this type of ventilation (Tables 2-4), as well as histologic damage 

of peripheral airway (11,12), are largely independent of cytokine production; and c) relative to 

ventilation at physiologic end-expiratory lung volume, prolonged ventilation at low volume does 

not induce any significant change in TNF-α production. Indeed, in most of the present rabbits, both 

serum and BAL fluid TNF-α levels were too low to produce injury (37), in line with recent results 

showing that in excised mouse lungs a positive cytokine response is elicited only with NEEP of -15 

cm H2O (5). Nevertheless, the higher TNF-α levels in rabbits ventilated at low volume (Table 6), 

possibly coupled with a secondary release of IL-8 (32), may account for the greater recruitment of 

polymorphonuclear leukocytes in the alveolar walls observed in a previous study (12). On the other 

hand, it has been suggested that ventilation at low volume can increase cytokine production (6,38); 

but this seems to depend mainly on the VT used. While in excised rat lungs TNF-α, IL-6, and 

macrophage levels were higher during ventilation with ZEEP and large VT (15 mlkg-1) than with 

PEEP of 3 cmH2O and low VT (7 mlkg-1), they were, however, similar to corresponding values 

with PEEP and large VT (38). Similarly, inflammatory cytokines were higher in BAL fluid from 

lungs ventilated with low VT on ZEEP than atelectatic lungs, but similar to those in BAL fluid from 

lungs ventilated with low VT and PEEP of 5 cmH2O (6). 

In conclusion, the present results show that mechanical ventilation at low-volume with 

physiologic tidal volumes causes an increase in airway resistance in both open and closed chest 

normal rabbits. In closed chest animals, this increase is more pronounced and associated with an 

increase of lung elastance, likely due to interstitial edema and surfactant depletion or inactivation. 

Ventilation at low volume decreases NOe without affecting pH of exhaled vapor condensate and 

concentration of the proinflammatory cytokine TNF-α in BAL fluid and serum. The decreased NOe 

should mainly reflect necrosis and sloughing of the epithelium of the respiratory and membranous 

bronchioles due to the abnormal shear stress related to their cyclic opening and closing. On the 

other hand, the low TNF-α levels suggest that damage of small airways with ventilation at low 

volume is due to direct mechanical injury rather than biotrauma elicited by increased release of 

proinflammatory cytokines. 
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LEGENDS 

Fig.1. Average relationships between volume above resting lung volume (V) and tracheal (Ptr) or 

esophageal pressure (Pes) under quasi-static conditions obtained in 8 rabbits (Group Atest; upper 

panels) during ventilation with PEEP of 1.2 cmH2O before (PEEP1) and after 3-4 h of ventilation 

on NEEP (PEEP2), and during the initial (NEEP1) and final period (NEEP2) of ventilation on NEEP 

(see key to symbols) and in 8 rabbits (Group Acontrol; lower panels) during ventilation with PEEP 

before (PEEP1) and after 3-4 h of ventilation on PEEP (PEEP2). Bars: SE. Continuous lines were 

visually fitted through all data points obtained in a given condition. 

Fig. 2. Left panels: average relationships between volume above resting lung volume (V) and 

quasi-static transpulmonary pressure obtained in 8 closed chest rabbits (Group Atest; upper panel) 

during ventilation with PEEP of 1.2 cmH2O before (PEEP1) and after 3-4 h of ventilation on NEEP 

(PEEP2), and during the initial (NEEP1) and final period (NEEP2) of ventilation on NEEP (see key 

to symbols) and in 8 closed chest rabbits (Group Acontrol; lower panel) during ventilation with 

PEEP before (PEEP1) and after 3-4 h of ventilation on PEEP (PEEP2). Bars: SE. Continuous lines 

are visual fit through all data points obtained in a given condition; dotted lines are monoexponential 

fit in the form Vo-Vxe-KPtp, after omission of the lower three data points of each curve. Right 

panels: same relationship obtained in 8 open chest rabbits (Group Btest; upper panel) during 

ventilation with PEEP of 2.3 cmH2O before (PEEP1) and after 3-4 h of ventilation on ZEEP 

(PEEP2), and during the initial (ZEEP1) and final period (ZEEP2) of ventilation on ZEEP (see key 

to symbols) and in 8 open chest rabbits (Group Bcontrol; lower panel) during ventilation with PEEP 

before (PEEP1) and after 3-4 h of ventilation on PEEP (PEEP2). Bars: SE. On PEEP, all data fit a 

unique monoexponential function in the form Vo(1-e-KPtp). 

Fig. 3.  Relationships of additional lung resistance (R) to duration of inflation obtained at an 

inflation volume of 10 mlkg-1 obtained in 8 closed chest (Group Atest; upper left panel) and 8 open 

chest rabbits (Group Btest; upper right panel) during ventilation with PEEP before (PEEP1) and 

after 3-4 h of ventilation on NEEP or ZEEP (PEEP2), at the beginning (NEEP1 and ZEEP1) and end 

of the 3-4 h period (NEEP2 and ZEEP2) of ventilation on NEEP or ZEEP (see key to symbols) and 

in 8 closed chest (Group Acontrol; lower left panel) and 8 open chest rabbits (Group Bcontrol; lower 

right panel) during ventilation with PEEP before (PEEP1) and after 3-4 h of ventilation on PEEP 

(PEEP2). Bars: SE. Under all conditions, the data fit a monoexponential function in the form of Eq. 

1. 

Fig. 4. Average values of concentration of nitric oxide in expired air (NOe), mean arterial pressure  

( Pa ), arterial pH (pHa), partial pressure of carbon dioxide (PaCO2) and oxygen (PaO2) in 8 closed 

chest rabbits (Group Atest; hatched columns) during ventilation with PEEP of 1.2 cmH2O before 
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(PEEP1) and after 3-4 h of ventilation on NEEP (PEEP2), and during the initial (NEEP1) and final 

period (NEEP2) of ventilation on NEEP and in 8 closed chest rabbits (Group Acontrol; white 

columns) during ventilation with PEEP before (PEEP1) and after 3-4 h of ventilation on PEEP 

(PEEP2). During the final 3-3.5 h on NEEP, the rabbits were ventilated with 70-80% oxygen. Bars: 

SE. *Values significantly different (P<0.05) from those on PEEP1. Number in parentheses indicate 

the average time (minutes) elapsed from the initial measurements on PEEP. 

Fig. 5. Average values of concentration of nitric oxide in expired air (NOe), mean arterial pressure  

( Pa ), arterial pH (pHa), partial pressure of carbon dioxide (PaCO2) and oxygen (PaO2) obtained in 8 

open chest rabbits (Group Btest; hatched columns) during ventilation with PEEP of 2.3 cmH2O 

before (PEEP1) and after 3-4 h of ventilation on ZEEP (PEEP2), and during the initial (ZEEP1) and 

final period (ZEEP2) of ventilation on ZEEP and in 8 closed chest rabbits (Group Bcontrol; white 

columns) during ventilation with PEEP before (PEEP1) and after 3-4 h of ventilation on PEEP 

(PEEP2). Bars: SE. *Values significantly different (P<0.05) from those on PEEP1. Number in 

parentheses indicate the average time (minutes) elapsed from the initial measurements on PEEP. 

Fig. 6. Time course of serum TNF-α concentration (median values) in 8 closed chest rabbits not 

subjected to prolonged  mechanical ventilation (Group C), and in 8 closed (Group Atest) and 8 open 

chest rabbits (Group Btest) during ventilation with PEEP of 2.3 cmH2O before (PEEP1) and after 3-

4 h of ventilation on NEEP or ZEEP (PEEP2), and during the final period of low-volume ventilation 

(NEEP2 or ZEEP2). 
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Table 1. Arterial blood gases and pH during mechanics assessment, wet-to-dry ratio of lung and ratio 

of albumin bronchoalveolar lavage (BAL) fluid to serum (S) concentration in closed and open chest 

rabbits with or without prolonged low-volume ventilation under various conditions 

 

  PaO2  PaCO2 pHa wet/dry BAL/S 

  mmHg mmHg   % 

Group  A (closed chest)     

control PEEP1 80±4 39.0±1.7 7.34±0.01   

 PEEP2 82±7 40.0±2.3 7.33±0.01 4.86±0.06 1.3±0. 3 

       
test PEEP1 78±4 35.3±1.9 7.38±0.02   

 NEEP1   34±1*   44.3±3.1*   7.32±0.03*   

 NEEP2   34±2*   53.7±5.9*   7.29±0.03*   

 PEEP2 75±3 40.5±2.3 7.33±0.02  5.23±0.13#  2.4±1.5 

Group B (open chest)     

control PEEP1 92±3§ 37.6±2.1 7.38±0.02   

 PEEP2 91±4§ 39.7±3.5 7.33±0.02 4.82±0.06 1.0±0.5 

       
test PEEP1 98±2§ 35.3±1.8 7.39±0.01   

 ZEEP1   46±5*‡   45.7±4.0*   7.30±0.02*   

 ZEEP2   52±3*§   48.6±3.9*        7.17±0.04*†‡   

 PEEP2 94±4§ 37.2±2.2 7.35±0.03 4.98±0.09 2.1±1.2 

 

 Values are means±SE. PaO2, PaCO2, and pHa: arterial PO2, PCO2, and pH, respectively; PEEP1, 

ventilation with positive end-expiratory pressure (PEEP) at the beginning of the experiment; NEEP1 

and NEEP2 or ZEEP1 and ZEEP2, initial and final part of the 3-4 h period of ventilation on negative 

(NEEP) or zero end-expiratory pressure (ZEEP); PEEP2, ventilation with PEEP after 3-4 h of 

ventilation either on NEEP, ZEEP or PEEP. Significantly different from corresponding values on 

PEEP1, *P<0.001; significantly different from corresponding values on ZEEP1, †P<0.001; 

significantly different from corresponding values of group A rabbits, ‡P<0.05, §P<0.001; 

significantly different from corresponding control values, # P=0.017. 



 

 

26 

Table 2. Values of constants in equations Vo-Vxe-KPst and Vo(1-e-KPst) used to fit the lung inflation 

volume-pressure curve, PtpEE and EELV at the beginning and end of the experiment in closed and 

open chest rabbits with (test) or without prolonged low-volume ventilation (control)  

 

  Vo Vx K PtpEE EELV 

  ml ml cm H2O
-1 cm H2O ml 

Group A (closed chest)     

control 

 

PEEP1 90.1±4.4 123.8±6.6 0.152±0.007 2.3±0.2 17.5±1.7 

 PEEP2  90.8±3.7 123.8±5.2 0.147±0.011 2.1±0.1 19.7±1.6 

       
test PEEP1 87.9±3.1 114.8±6.6 0.139±0.010 2.1±0.1 18.4±1.1 

 PEEP2   76.3±3.5*     99.5±5.2* 0.131±0.009 2.2±0.1   14.1±1.6* 

Group B (open chest)     

control 

 

PEEP1 78.4±2.6     0.186±0.009† 2.3±0.1   24.2±1.7† 

 PEEP2 77.1±3.0     0.185±0.011† 2.2±0.1   25.9±1.3† 

       
test PEEP1 83.9±5.7     0.174±0.006† 2.3±0.1    25.6±1.7† 

 PEEP2 79.1±5.2     0.172±0.008† 2.3±0.1    24.4±1.3† 

 

Values are means±SE. Vo, maximum volume above resting lung volume; Vx and K, volume and shape 

factors (see text); PtpEE, end-expiratory transpulmonary pressure; EELV, difference between end-

expiratory and resting volume; PEEP1, ventilation with positive end-expiratory pressure (PEEP) at the 

beginning of the experiment; PEEP2, ventilation with PEEP after 3-4 h of ventilation on either NEEP, 

ZEEP or PEEP. Significantly different from corresponding values on PEEP1, *P<0.001; 

significantly different from corresponding values of group A rabbits, †P<0.01. 
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Table 3. Values of Est and Rint in closed and open chest rabbits with (test) or without prolonged low-

volume ventilation (control) under various conditions 

 

 Lung  Chest Wall 

 Est Rint  Est Rint 

 cmH2Ol-1  cmH2Osl-1  cmH2Ol-1  cmH2Osl-1 

Group A (closed chest)     

control PEEP1 177±5 9.7±1.1  44±4 8.4±0.6 

 PEEP2 163±9 8.9±1.3  47±6 8.6±0.5 

       
test PEEP1 241±13  12.9±1.2   50±6 7.9±3.2 

 NEEP1     768±19†‡       49.3±3.2†‡       123±22† 8.4±0.8 

 NEEP2     869±23†‡     72.5±7.1†‡    114±15† 8.4±0.8 

 PEEP2   294±20*    27.5±3.6†   58±5 7.3±0.8 

Group B (open chest)     

control PEEP1  148±9§ 11.2±0.9    

 PEEP2 157±11 10.7±0.9    

       
test PEEP1   140±10§  9.7±0.6    

 ZEEP1     422±33†‡      29.6±2.8†‡       

 ZEEP2     529±34†‡    45.9±3.5†‡    

 PEEP2 160±11  12.6±0.9†    

 

  Values are means±SE. Est, quasi-static elastance; Rint, interrupter resistance; PEEP1, ventilation 

with positive end-expiratory pressure (PEEP) at the beginning of the experiment; NEEP2 and ZEEP2, 

final part of the 3-4 h period of ventilation on negative (NEEP) or zero end-expiratory pressure 

(ZEEP); PEEP2, ventilation with PEEP after 3-4 h of ventilation on either NEEP, ZEEP or PEEP. 

Significantly different from values on PEEP1,* P<0.05, † P<0.01; significantly different from 

corresponding values on PEEP, ‡ P<0.01; significantly different from corresponding values of 

group A rabbits on PEEP1, § P<0.01. 
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Table 4. Values of Rvisc and visc computed according to Eq.1 in closed and open chest rabbits with 

(test) or without prolonged low-volume ventilation (control) under various conditions 

 

 Lung  Chest Wall 

 Rvisc visc  Rvisc visc 

 cmH2Ol-1  s 

 

 

 

 cmH2Ol-1  s 

 

 

 

Group A (closed chest)     

control PEEP1  74±5 1.29±0.14  29±8 1.31±0.08 

 PEEP2  75±4 1.24±0.12  29±8 1.31±0.11 

       
test PEEP1  70±8  1.31±0.15   27±4 1.25±0.20 

 NEEP1   328±35*   1.79±0.18*   24±4 1.03±0.16 

 NEEP2   401±57*   1.61±0.15*  23±4 1.01±0.17 

 PEEP2  91±15 1.24±0.18  26±4 1.20±019 

Group B (open chest)     

control PEEP1 62±19 1.33±0.16    

 PEEP2 57±15 1.28±0.15    

       
test PEEP1 66±5 1.34±0.17    

 ZEEP1     200±25*‡   1.25±0.15†    

 ZEEP2     257±19*†   1.31±0.14†    

 PEEP2 69±8 1.20±0.13    

 

 Values are means±SE. Rvisc, viscoelastic resistance; visc, viscoelastic time constant; PEEP1, 

ventilation with positive end-expiratory pressure (PEEP) at the beginning of the experiment; NEEP2 

and ZEEP2, final part of the 3-4 h period of ventilation on negative (NEEP) or zero end-expiratory 

pressure (ZEEP); PEEP2, ventilation with PEEP after 3-4 h of ventilation on either NEEP, ZEEP or 

PEEP. Significantly different from values on PEEP, *P<0.001; significantly different from 

corresponding values of group A rabbits, †P<0.05, ‡P<0.01. 
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 Table 5. pH of exhaled airway vapour condensate in closed and open chest rabbits under various 

conditions 

 

 PEEP1 NEEP2 ZEEP2 PEEP2 

     
Group A (closed chest) 6.97±0.08 6.86±0.15  6.82±0.14 

     
Group B (open chest) 6.96±0.08  6.87±0.11 6.86±0.11 

 

Values are means±SE. PEEP1, ventilation with positive end-expiratory pressure (PEEP) at the 

beginning of the experiment; NEEP2 and ZEEP2, final part of the 3-4 h period of ventilation on 

negative (NEEP) or zero end-expiratory pressure (ZEEP); PEEP2, ventilation with PEEP after 3-4 h of 

ventilation on either NEEP, ZEEP or PEEP. 
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 Table 6. Tumor necrosis factor-α concentration (pg/ml) of bronchoalveolar lavage (BAL) fluid and 

serum under various conditions in closed and open chest rabbits 

 

 Closed chest rabbits  Open chest rabbits 

 Group A  Group C  Group B 

 control test    control test 

        
BAL fluid        

PEEP1    18 

(0-234) 

   

PEEP2 55 

(0-234) 

80 

(0-2200) 

   64 

(0-191) 

36 

(0-205) 

        
Serum        

awake    0    

PEEP1 2345 

(0-20000) 

1194 

(53-20000) 

 2251 

(150-20000) 

 1183 

(0-7299) 

1106 

(0-20000) 

NEEP2-ZEEP2  0 

(0-142) 

    8 

(0-433) 

PEEP2 0 

(0-62) 

0 

(0-456) 

   0 

(0-51) 

30 

(0-290) 

 

Values are median with range in parentheses. PEEP1, ventilation with positive end-expiratory pressure 

(PEEP) at the beginning of the experiment; NEEP2 and ZEEP2, final part of the 3-4 h period of 

ventilation on negative (NEEP) or zero end-expiratory pressure (ZEEP); PEEP2, ventilation with PEEP 

after 3-4 h of ventilation on either NEEP, ZEEP or PEEP. 
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