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The dimensionality of a thermometer is key in the design of quantum thermometry schemes. In general,
the phenomenology that is typical of qubit-based quantum thermometry does not apply to infinite-dimensional
ones. We analyze the dynamical and metrological features of nonequilibrium Gaussian quantum thermometers:
On one hand, we highlight how quantum entanglement can enhance the readiness of composite Gaussian
thermometers; on the other hand, we show that nonequilibrium conditions do not guarantee the best sensitivities
in temperature estimation, thus suggesting the reassessment of some of the working principles underpinning
quantum thermometry.

DOI: 10.1103/PhysRevResearch.2.033498

I. INTRODUCTION

The direct assessment of the properties of quantum me-
chanical systems is not always possible or convenient: In
general, any direct interference would alter the properties of
the system, possibly spoiling them. In addition to such a prob-
lem, the need to characterize systems which cannot be directly
accessed has fostered the research for effective schemes for
indirect quantum probing [1,2]. Quantum thermometry, i.e.,
the estimation of the operating temperature of a quantum
system, offers interesting opportunities for the design and ap-
plication of indirect probing strategies, which would be useful
for the characterization and control of temperature of micro-
and nanodevices [3–7].

Most of the current investigations in quantum thermometry
use two-level systems as thermometers [8–11], shedding light
on the link between the equilibrium heat capacity of such
microscopic probes and the amount of information that can
be gathered on the temperature of the environment [12–14],
introducing bounds on the irreversible entropy production of
the probe [15–17], and clarifying the extent of the advantages
resulting from finite-time interactions for both temperature
discrimination and estimation [14,18]. Such investigations
have ultimately opened the path to the exploration of the role
played by genuine quantum features in the enhancement of
the thermometric performance of two-level quantum probes
[19–29]. However, little has been explored about the effects
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that the dimensionality of the quantum probe has on the fea-
tures of a given thermometric protocol.

This is precisely the context within which the study
reported in this article is set. We consider quantum thermom-
etry operated using infinite-dimensional (Gaussian) quantum
probes, each interacting with its own thermal bath, whose
temperature we aim at estimating [30–32]. We show that en-
tanglement between the probes significantly impacts on how
fast the two-mode Gaussian state changes as a consequence of
the coupling to the external environment. We call such a rate
of change readiness and use it as the core figure of merit of our
work. The latter quantifies how fast the two-mode Gaussian
state changes as a consequence of the presence of the external
environment. Our study marks significant discrepancies with
the recently explored qubit-based case reported in Ref. [33],
where geometric considerations on the dynamics of the ther-
mometer have been explored.

Here we show that a composite thermometer operating
under nonequilibrium conditions does not always offer higher
sensitivities in temperature estimation, thus leaving room for
the reappraisal of some of the aspects underpinning quantum
thermometry [14,23]. While the formalism used to illustrate
our findings is that of Gaussian quantum states and operations
[34–36], our study addresses a wealth of physical situa-
tions of strong experimental relevance for quantum probing,
from micro-/nanomechanical oscillators driven by optical or
electric forces to microwave fields in superconducting waveg-
uides and atomic spin systems collectively coupled to driving
fields [37].

The remainder of this work is organized as follows. In
Sec. II we describe the model addressed in our analysis. Sec-
tion III is devoted to geometric considerations leading to the
definition of a dynamical speed on the Riemannian manifold
of quantum states. In Sec. IV we discuss the metrological
precision of the probing mechanism through the evaluation of
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FIG. 1. Conceptual scheme of the protocol. Two ensembles of
atomic spin states are led to interact with an environment which is
made of two independent Markovian thermal baths at temperatures
Ta and Tb, with average numbers of excitations Ma and Mb. The
interaction between the two ensembles is modulated through the G
parameter. The dissipation to the local thermal bath depends on the
ka,b decay rate.

the nonequilibrium quantum Fisher information (QFI) of the
system. Section V then summarizes our findings and offers
different perspectives of investigation.

II. PHYSICAL MODEL

We consider a thermometric scheme which is based on the
weak interaction between two N-atom spin systems (labeled
as a and b) and their respective thermal baths (see Fig. 1).
Collective states of atomic spin systems have long been con-
sidered for metrological tasks in light of their high sensitivity
[38], and thus embody a natural platform where to investigate
thermometry.

The ground and excited states of each atom are |g〉 and
|e〉, respectively, and the free Hamiltonian of the probing
system is Ĥ0 = h̄ωa(

∑N
k=1 σ̂ z

k,a + 1/2) + h̄ωb(
∑N

k=1 σ̂ z
k,b +

1/2), where ωa,b represents the transition frequency of the
atoms. The ensembles are coupled through the interaction
term

Ĥ int = h̄G

2
Ŝx

aŜx
b, (1)

where we have introduced the collective spin operators Ŝx
j =

Ŝ−
j + Ŝ+

j with Ŝ±
j = ∑N

k=1 σ̂±
k, j ( j = a, b) and σ̂+

k = σ̂
−†
k =

|e〉〈g|k . Equation (1) results from the off-resonant dipolelike
coupling of the two ensembles with the same light field,
which is then adiabatically eliminated [38]. As collective spin
systems are symmetric with respect to particle exchange, we
can ignore any external degree of freedom associated with the
position of the individual particles.

As mentioned, local and independent baths, coupled to
the respective subsystems at a rate k j , induce thermal
fluctuations described through the zero-mean input oper-
ators ĵin, each characterized by the two-time correlation
functions 〈 ĵin,†(t ) ĵin(t ′)〉 = Mjδ(t − t ′) and 〈 ĵin(t ) ĵin,†(t ′)〉 =
(Mj + 1)δ(t − t ′). Here Mj = (eh̄ω j/kBTj − 1)−1 is the thermal
occupation number of bath j at temperature Tj and kB is the
Boltzmann constant [39].

We assume that the spin system exhibits no large
fluctuations (enforced by the assumption of low temper-
ature, i.e., Mj � 1), so the collective spin operators can
be mapped onto effective bosonic degree of freedom, with
creation and annihilation operators ĵ and ĵ†( j = a, b), re-
spectively, through a Holstein-Primakoff (HP) transformation
[40,41]. In this regime, the interaction Hamiltonian is recast
into the form Ĥ int

HP = h̄nG/2(â† − â†â†â/2N + H.c.)(b̂† −
b̂†b̂†b̂/2N + H.c.); in this contribution, terms of order higher
than quadratic are suppressed by at least a factor 1/N . Further
details on the manipulation of the Hamiltonian via the HP
transformation are given in Appendix A. From now on, we
refer to the total Hamiltonian of the system in the HP regime
as HHP.

It is convenient to introduce the vector of dimensionless
quadrature operators of the system f̂ = (x̂a, p̂a, x̂b, p̂b), where
x̂ j = ( ĵ† + ĵ)/

√
2 and p̂ j = i( ĵ† − ĵ)/

√
2. The dynamics of

f̂ , which can be described using the formalism of Heisenberg-
Langevin equations, is made very challenging by the presence
of nonlinear terms in HHP. In order to overcome this hurdle,
we consider the fluctuations of the HP operators by taking the
first-order expansion f̂ j = f̄ j + δ f̂ j , where f̄ j ∈ C is a classi-
cal mean value and δ f̂ j is a zero-mean fluctuation operator
[42]. Such expansion is justified by the assumption of low
temperatures and allows for the linearization of the equations
of motion, which can be cast in the form

∂tδ f̂ = Aδ f̂ + Rin, (2)

with R̂in = (
√

2kax̂in
a ,

√
2ka p̂in

a ,
√

2kbx̂in
b ,

√
2kb p̂in

b ) (we recall
that the input noise operators are already zero-mean quanti-
ties). We have introduced the drift matrix

A =

⎛
⎜⎝

−ka ωa 0 0
−ωa −ka −nG 0

0 0 −kb ωb

−nG 0 −ωb −kb

⎞
⎟⎠, (3)

with the rescaled coupling strength nG = NG. Equation (2)
describes the dynamics of the quadrature operators for the
two ensembles and includes terms accounting for dissipation
at rate k j into the local baths.

The linearity of such equations and the choice of initial
Gaussian states imply that the probability distribution de-
scribing the system is Gaussian at any time. Under these
conditions, the complete description of the whole system can
be enshrined in the covariance matrix σ (t ) of the fluctuations,
whose entries are defined σmn(t ) = 〈{δ f̂m(t ), δ f̂n(t )}〉 as the
first moments are always null (for clarity, we have indicated
time dependences explicitly). The equation of motion for the
covariance matrix σ takes the form of a deterministic diffusion
equation

σ̇ (t ) = Aσ (t ) + σ (t )AT + D, (4)

where D = 2ka(2Ma + 1)Ia ⊕ 2kb(2Mb + 1)Ib is the diffu-
sion matrix with I j the 2 × 2 identity matrix, which is
determined by assuming the two-time correlation functions
for the noise operators stated above. The stability of the so-
lution is guaranteed by the Routh-Hurwitz test, ensuring that
a unique nonequilibrium steady state described by the sta-
tionary covariance matrix σs ≡ σ (∞) satisfying the Lyapunov
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equation Aσs + σsAT = −D is eventually achieved [43]. If the
whole system is noninteracting, each ensemble will equili-
brate with its own thermal bath, thus leading to a final thermal
state.

It is important to remark that we consider the initial co-
variance matrix of the composite thermometer in the so-called
canonical form [44]

σ (0) =
(

α γ

γ β

)
, (5)

with α = α1, β = β1 (α, β � 1), and γ = diag[γ+, γ−]. The
entries α, β, and γ± are bound to satisfy the conditions set
for a physically legitimate covariance matrix [36], which are
briefly discussed in Appendix C. Equation (5) encompasses
several examples of experimentally relevant Gaussian states,
such as thermal states and squeezed thermal states. Remark-
ably, the dynamics we consider leaves σ (t ) in canonical form
throughout the evolution. In what follows, we will exploit
this model to explore the readiness of the composite Gaussian
probe by introducing a geometric figure of merit able to define
its dynamical speed. Moreover, we seek to investigate the
metrological precision of such a nonequilibrium thermometer.

III. GEOMETRIC CONSIDERATIONS

Here we highlight the geometric features of the dynamics
at hand making use of Riemannian tools. Specifically, we refer
to the set of density matrices of a given quantum system,
which form a Riemannian manifold S over the Hilbert space
H of the system: The one-to-one correspondence between the
state of the system and its placement onto the manifold is
such that, while evolving, the state will draw a curve 	γ on
S, depending on t . For each q ∈ 	γ , an inner product on the
tangent space TqS of the manifold S can be defined permit-
ting the definition of an infinitesimal length ds2 = Zρ̂ (d ρ̂, d ρ̂ )
[33,45,46]. The reconstruction of an analytic form for the Rie-
mannian metric Zρ̂ in our problem is made difficult by the lack
of a version of the Morozova-Čencov-Petz (MCP) theorem
for infinite-dimensional systems [47–50]. The MCP theo-
rem states that each Riemannian metric for discrete-variable
systems is characterized by a correspondence with a set of
functions that, by satisfying very restrictive conditions, can
lead unambiguously to the quantum Fisher information metric
[51,52]. The restriction to Gaussian states, however, greatly
simplifies the problem as the first and second moments of the
system are the only elements to be considered for its complete
description [53,54].

Here we focus on the Bures metric ds2
B = 2[1 − F (ρ̂, ρ̂ +

d ρ̂ )], which can be computed through the Uhlmann fi-
delity F between two infinitesimally close Gaussian states
ρ̂ and ρ̂ + d ρ̂ [50,55,56]. By calling r and σ the first
and second moments of the state ρ̂, the Bures metric
can be expressed as ds2 = (drT σ−1dr)/2 + δ/8, where δ =
Tr[dσ (Lσ +L�)−1dσ ], with � the d-mode symplectic ma-
trix � = ⊕d

j=1iσy, j (here d = 2 as we consider two-mode
systems and σy, j is the y Pauli matrix of the subsystem j) and
LY X := Y XY for any pair of operators X and Y . The inverse
operation on the superoperator refers to the Moore-Penrose
pseudoinverse.

The canonical form of the covariance matrices in our study,
such as the one in Eq. (5), allows us to write the Bures metric
as

ds2
B = 1

4

∑
j=±

[ν j (t + dt ) − ν j (t )]2

ν j (t )2 − 1
, (6)

where ν± represent the symplectic eigenvalues of the Gaus-
sian state. Equation (6) provides a simple and general way to
manipulate the geometrical features of the Gaussian dynamics
considered [56]. As a direct consequence of Williamson’s
theorem, the covariance matrix of the subsystem σa,b can be
reduced in its standard form such that det σa,b = ν2

a,b, with νa,b

the symplectic eigenvalue of the subsystem. In this way, the
local form of the infinitesimal length ds2

B, j for the subsystem

j = a, b can be obtained as ds2
B, j = 1

4
[ν j (t+dt )−ν j (t )]2

ν j (t )2−1 , proving

that ds2
B 
= ds2

B,a + ds2
B,b.

The above constructions lead to the instantaneous speed of
quantum evolution on the Riemannian manifold

v2
B(t ) = 1

4

∑
j=±

[∂tν j (t )]2

ν j (t )2 − 1
, (7)

depending on the time derivatives of the symplectic eigenval-
ues ν± of the Gaussian state. The form of the Riemannian
speed in Eq. (7) holds when setting to zero the initial value
of the first moments of the quadratures of the system. It is
worth stressing that, under this condition, Eq. (7) does not
depend on the specific dynamics at hand and it is hence
valid for closed and open system dynamics. Further consider-
ations on the Bures metric and Riemannian speed are given in
Appendix B.

In what follows, we shed light on the consequences of
nonclassical correlations on the instantaneous Riemannian
speed of the system. Since the latter is a purely dynamical
figure of merit, it is not explicitly connected to the precision
of the thermometer at hand. On one hand, such an inspection
can be useful in unearthing dynamical aspects of quantum
correlations, i.e., entanglement, while on the other it can lead
to a more profound understanding of the dynamical readiness
in the context of quantum thermometry. This exploration can
be opportunely managed numerically, as correlation quanti-
fiers are nonlinear functions of the state. In this regard, we
proceed by randomly generating a large number of Gaussian
states to explore the role of nonclassical features in the initial
Riemannian speed of the system.

The results of our numerical analysis are shown in Fig. 2,
where we consider the symmetric case of Ma,b = M. There we
report the Riemannian speed of Gaussian states undergoing
the dynamics shown in Eq. (4) for an arbitrarily small time ε

versus the smallest symplectic eigenvalue ν̃− of the covariance
matrix associated with the partially transposed state of the
system. According to the continuous-variable (CV) counter-
part of the Peres-Horodecki criterion, entangled (separable)
states have ν̃− < 1 (ν̃− � 1) states [57]. In contrast to what
emerges from qubit-based thermometry [33], the thermomet-
ric phenomenology of CV entangled states is different from
that resulting from the use of separable states. In particular, the
trends displayed by Fig. 2 suggest that larger degrees of en-
tanglement, i.e., smaller values of ν̃−, correspond to growing
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FIG. 2. Behavior of the Riemannian speed v2
B(ε) vs the symplectic eigenvalue ν̃−. The panels refer to different configurations of the system,

in particular, (a)–(c) nG = 0, (d)–(f) nG = 0.35ωb, (a) and (d) Ma = Mb = 0.1, (b) and (e) Ma = Mb = 0.5, and (c) and (f) Ma = Mb = 1, where
ωa = ωb = 2, ka = 0.2ωa, and kb = 0.1ωb. In the ν̃− � 1 entangled region, the lower bound on the Riemannian speed increases more and more
evidently when the temperature of the baths increases.

values of the minimum initial Riemannian speed. Statistically,
entangled states appear to increase the initial readiness of the
thermometer. Differently from qubit-based thermometry, the
physical origin of this feature seems to be intrinsically related
to nonclassical effects. The numerical analysis points out the
dependence of the lower bounds to the temperature of the
external environment: In the entangled region, the larger the
temperature of the baths, the larger the minimal initial Rie-
mannian speed of the thermometer. Moreover, it is remarkable
to highlight that maximally entangled Gaussian states at fixed
global and local purities approach the lower bound to the Rie-
mannian speed at a given degree of entanglement, thus having
the slowest response to the dynamics induced by the baths.
Such states can be expressed as entangled two-mode squeezed
thermal states, whose free parameters can be suitably mini-
mized to numerically build the lower bound shown in Fig. 2.
The presence of the interaction (G 
= 0) between the two
subsystems does not affect the dynamical behavior of the ther-
mometer in Fig. 2 as it is expected to emerge at longer times.

IV. METROLOGICAL CONSIDERATIONS

As a second point of our investigation, we aim at exploiting
the designed setup to build indirect measurement schemes
able to infer temperature-related parameters associated with
the environment. As we are probing a property of the bath,
which is maintained in its initial thermal state, the temperature
here is a well-defined parameter throughout the evolution. In
other words, we are not concerned with an effective tempera-
ture of the probe, nor do we need to be. In particular, the case
at hand is ideal for this purpose as the adopted system can be
initialized with a high degree of control and then effectively
measured after its interaction with the sample to be probed. In
the adopted scheme, we considerN independent copies of the
system at hand, allowing for the same number of independent
measurements which can be implemented to obtain an unbi-
ased estimator M̃ for the average number of excitations in the
baths M. In this case, the variance �2M = 〈(M̃ − M )2〉 satis-

fies the quantum Cramér-Rao bound �2M � 1/NQM , where
QM is the quantum Fisher information. Plainly, the precision
of the measurement can be enhanced by increasing the QFI
[58–60]. The latter can be interpreted as the distance between
Gaussian states interacting with thermal baths whose average
numbers of excitations differ by an infinitesimal variation, so
QM (t ) = 8{1 − F [ρ̂M (t ), ρ̂M+dM (t )]}/dM2, where the func-
tional F is the Uhlmann fidelity between the Gaussian states
of the thermometer ρ̂M and ρ̂M+dM which are interacting with
environments at temperatures M and M + dM, respectively.
Remarkably for Gaussian states, the evaluation of the QFI can
be traced back to the Wigner formalism since the first and
second moments are sufficient for the complete description of
the state [56]. In the specific case at hand, where the initial
first moments have been set to zero, the fidelity can be defined
as

F 4[ρ̂M (t ), ρ̂M+dM (t )] =
det

[
2
(√

I + [�(t )�[−2

4 + I
)
�(t )

]

det
[

σM (t )+σM+dM (t )
2

] ,

(8)

where 2��(t ) = [σM (t ) + σM+dM (t )]−1[� + σM+dM (t )�σM

(t )].
A reparametrization of the QFI is made possible by the fact

that M is a continuously differentiable function of T . In this
spirit, the QFI on the temperature can be expressed as

QT (t ) = QM (t )
ω2csch4( ω

2T )

16T 4
. (9)

The plots in Fig. 3 show the dispersion of the nonequilib-
rium QFI QM (t ) as a function of the interaction time t . At
variance with the findings in Refs. [9,14,18] where qubit-
based thermometers have been considered, we notice how
nonequilibrium conditions do not enhance the precision of
temperature estimation in the Gaussian regime. In particular,
QM (t ) reaches its maximum value when the thermometer ap-
proaches its steady state. Figure 3 shows that thermometers
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FIG. 3. Plots of the nonequilibrium QFI QM (t ) for different initial preparations of the system as a function of the interaction time t . In all
plots, red curves describe the behavior of QM (t ) for initial thermal states σ0 = (1 + 2M̄a )I2 ⊕ (1 + 2M̄b)I2 with M̄a = M̄b = 0.1, blue curves
show the same dispersion for locally squeezed vacuum states σ0 = (Saσ0,aST

a ) ⊕ (Sbσ0,bST
b ) with σ0,a = σ0,b = I2 and Sa (Sb) a squeezing

transformation with the parameter ra = 2 (rb = −2), and green curves are associated with the initial two-mode squeezed states (twin-beam
states) with the parameter r = 2. The maximum of the QFI is reached when the system approaches its steady state, so any absolute metrological
advantage in the nonequilibrium regime is not observed. At the very beginning of the dynamics, the squeezed states considered show an
advantage over their thermal counterpart: The rung characterizing such an advantage is more pronounced when the temperature of the bath is
higher [(a) and (d) M = 0.1, (b) and (e) M = 0.5, and (c) and (f) M = 1]. The presence of the interaction between the two ensembles does not
modify the general trend of the QFI [(a)–(c) nG = 0 and (d)–(f) nG = 0.35ωb]. The parameters of the dynamics are ωa = ωb = 2, ka = 0.2ωa,
and kb = 0.1ωb.

prepared in a thermal state allow one to get the maximum of
the QFI in less time if compared to initial locally squeezed
or two-mode squeezed states. The presence of nonclassical
resources in the initial state of the thermometer brakes the
achievement of the maximum in the QFI, but powers up its
precision for very short times. Entanglement does not appear
to have a clear role in enhancing the performance of the probe:
Indeed, thermometers prepared in two-mode squeezed states
can lead to both increased and decreased metrological per-
formances if compared to those prepared in locally squeezed
vacuum states. In particular, the quantum enhancement in
temperature estimation due to the presence of the nonclassical
correlation is well displayed at short times, where entangle-
ment leads up the QFI. It is remarkable to highlight that such
an advantage appears more pronounced for low temperatures
of the external thermal bath and deteriorates the precision of
the thermometer in the remaining transient of the nonequilib-
rium dynamics. The presence of the interaction between the
subsystems accelerates the attainment of the optimal metro-
logical condition and reduces the gap between two-mode
squeezed states and locally squeezed vacuum states.

V. CONCLUSION

We have shown that the link between quantum features
and facets of quantum thermometry are often elusive. By
addressing explicitly the CV regime, we have highlighted a
profound discrepancy in the way small-scale thermometers
are influenced by quantum features. In the case examined,
the instantaneous response of the Gaussian thermometer to
the interaction with the environment shows a dependence
on nonclassical correlations among probing subsystems: The

minimum initial dynamical speed of the system increases with
the amount of entanglement and depends on the temperature
of the bath. There are no exceptions for the performance of
the thermometer, which can be powered up for very short
times by using quantum resources. The latter, however, can
be detrimental for the remainder transient dynamics of the
thermometer, reducing the nonequilibrium QFI with respect
to classical states. The picture coming out of our assessment
pushes for further exploration of the role of quantum facets
in quantum thermometry. The presence of higher-order non-
linearities in the interaction Hamiltonian of the subsystems
ought to be taken in consideration to investigate unexplored
thermometric regimes.

Note added. Recently, we became aware of a related work
in preparation by I. Gianani et al. [61] discussing about the
discrimination of thermal baths by single qubit probes.
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APPENDIX A: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

In this Appendix we briefly show how to manipulate
the Hamiltonian of the whole system through the Holstein-
Primakoff transformation.

Assuming that N � 1, the Holstein-Primakoff transforma-
tion to boson creation and annihilation operators is defined by
these relations

Ŝ+
j =

√
N ĵ†Ĵ, Ŝ−

j =
√

NĴ ĵ, Ŝz
j = ĵ† ĵ − N

2
, (A1)

where [ ĵ, ĵ†] = 1 and Ĵ =
√

1 − ĵ† ĵ/N (Â and B̂ for the
considered ensembles) is an operator ensuring that the oper-
ators in Eq. (A1) fulfill the SU(2) algebra. It is fair to say
that the operators in Eq. (A1) can be referred to the specific
ensemble of atomic spin states by substituting â and b̂ for
the generic operator ĵ. In terms of the collective bosonic
Dicke operators, the Hamiltonian of the system ĤHP results
in the sum of the free Hamiltonian Ĥ0

HP = h̄ωa[â†â − (N −
1)/2] + h̄ωb[b̂†b̂ − (N − 1)/2] and the interaction one Ĥ int

HP =
h̄G/2(

√
Nâ†Â + √

NÂâ)(
√

Nb̂†B̂ + √
NB̂b̂). The presence or

not of nonlinear effects from the Ĵ-like operators results
from a trade-off between 〈 ĵ† ĵ〉 and N . In general, the op-
erators in Eq. (A1) can be manipulated through the Ĵ =∑∞

h=0
(2h)!

(1−2h)(2hh!)
( ĵ† ĵ)h

Nh expansion: Here we limit the expansion

to Ĵ ∼ 1 − ĵ† ĵ/2N + O(N−2), which leads to the nonlin-
ear interaction Hamiltonian Ĥ int

HP = h̄nG/2(â† − â†â†â/2N +
H.c.)(b̂† − b̂†b̂†b̂/2N + H.c.), corresponding to the Hamilto-
nian used in the main text. It is remarkable to verify that
the structure of this interaction Hamiltonian reduces to the
one describing a positionlike interaction between harmonic
oscillators when dropping the nonlinear contributions from
the expansion.

APPENDIX B: GEOMETRIC CONSIDERATIONS:
BURES DISTANCE

The Bures distance between two arbitrary Gaussian states
with density matrices ρ1 and ρ2 is given by DB(ρ1, ρ2) =
2(1 − F [ρ1, ρ2]). By expanding the fidelity, we can derive
the Bures metric. When dealing with two infinitesimally close
Gaussian states ρ1 = ρ, with covariance matrix σ , and ρ2 =
ρ + dρ, with covariance matrix σ + dσ , the Bures metric
is given by ds2

B = 2(1 − F [ρ̂, ρ̂ + d ρ̂]). When the initial
first statistical moments are null, the Bures metric reduces
to ds2

B = δ/8 [56] where, for manifolds of quantum states
characterized by a covariance matrix written in canonical form
[44] such as the one we are considering in this work [cf.,
Eq. (5)], we have

δ =
∑

i j

δK
i j

dwidw j

wiw j − 1
, (B1)

with δK
i j denoting the Kronecker delta, wi representing the ith

eigenvalues of W = −iσ�, and dwi representing its infinites-
imal change. This implies Eq. (6), with which we can achieve
the form of the Riemannian speed in Eq. (7). A more compact,
but equivalent, form of the Riemannian speed can be obtained
by deforming the simplex, thus introducing the coordinate

�i = 1

4
√

2
ln

(√
wiwi − 1 + wi√
wiwi − 1 − wi

)
(B2)

such that d�i = (d�α/dwα )dwi, with d�α/dwα =
(2

√
2
√

wαwα − 1)−1. Under this deformation, ds2
B =∑

i d�id�i, so v2
B(t ) = ∑

i
d�i
dt

d�i
dt .

APPENDIX C: GENERATION OF RANDOM
GAUSSIAN STATES

Any physically legitimate covariance matrix σ should
satisfy the condition of positivity (σ � 0) as well as the
Robertson-Schrödinger uncertainty relation (σ + i�) � 0.
The entries of σ can be cast in terms of the purity of the
marginal state of each subsystem μζ = (det ζ)−1/2 = 1/ζ ∈
(0, 1], the global purity μ = (det σ )−1/2 = [(αβ − γ 2

+)(αβ −
γ 2

−)]−1/2 ∈ (0, 1], and a further symplectic invariant (the so-
called seralian) defined as � = α2 + β2 + 2γ+γ−, which is
constrained as 2/μ + (μα − μβ )2/μ2

αμ2
β � � � min{(μα +

μβ )2/μ2
αμ2

β − (2/μ), 1 + (1/μ2)}. The global purity and
the seralian are invariant under generic symplectic trans-
formations, while the local purities are invariant only for
transformations acting independently on the two modes.
It is straightforward to check that in terms of such
quantities we have γ± = √

μαμβ (η− ∓ η+)/4, with η∓ =√
[� − (μα ∓ μβ )2/μ2

αμ2
β]2 − 4/μ2.

According to the CV version of the Peres-Horodecki cri-
terion for entanglement [57], the bipartite Gaussian state
corresponding to σ is entangled if and only if ν̃− < 1,
where ν̃− is the smallest symplectic eigenvalue of the co-
variance matrix associated with the partially transposed state
of the system, reading ν− = (�̃ −

√
�̃2 − 4/μ2)1/2/

√
2, with

�̃ = � − 4 det γ . This happens for �̃ � 1 + 1/μ2.
By sampling the values of μα,β and μ within their re-

spective ranges, one can generate physical (separable or
entangled) Gaussian states. States such that μαμβ � μ �
μαμβ/(μα + μβ − μαμβ ) belong to the separability region.
Separable and entangled states coexist for choices of local and
global purities such that μαμβ/(μα + μβ − μαμβ ) < μ �
μαμβ/

√
μ2

α + μ2
β − μ2

αμ2
β , while inseparability is guaranteed

for the remaining (physically allowed) values of the global
purity.

When fixing both global and local purities, Gaussian
maximally entangled states can be obtained by choosing
� = 2/μ + (μα − μβ )2/μ2

αμ2
β . Gaussian maximally entan-

gled states at fixed global and local purities (GMEMS) have
γ± = ±(1/μαμβ − 1/μ)1/2. In the space of entangled states,
GMEMS have been shown to be the slowest ones, as they
achieve the lower bound in the Riemannian speed plot in
Fig. 2.
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