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Abstract

With the COVID-19 pandemic progressing after the peak, public health
authorities are facing the difficult decision of how to manage the final
phase of the epidemic wave. Diffuse uncertainty still persists about the
characteristics of the pandemic and its actual dynamics, in particular
with regard to the real extent of undiagnosed infected cases. We present
a discrete-time stochastic model with state-dependent transmission prob-
abilities and multi-agent simulations focusing on possible risks that could
materialize in the final phase of the epidemic. The results of our ex-
periments show that, in different scenarios, there is the possibility that
unknown undiagnosed cases still looms when diagnosed infected cases are
close to be extinguished. We study variants of base scenarios to account
for uncertain epidemiological estimates and the effects of testing and con-
tainment of cases otherwise undiagnosed. A trade-off between measures
producing a slower or accelerated dynamics is discussed. Ultimately, the
analysis we have presented highlights that the enduring uncertainty, char-
acterizing the current pandemic, calls for risk analyses approaches to com-
plement epidemiology studies.

1 Introduction

Uncertain estimates on the proportion of undetected COVID-19 cases have been
repeatedly suggested, with epidemiologists raising the alarm that covert cases,
mostly asymptomatic or mildly ill, are likely to be the driving factor of the epi-
demic’s dynamics [35, 16]. In many countries, the attention is now turning to
the final phase of the epidemic wave [10], which likewise could present unforeseen
and, in some scenarios, severe risks caused by undetected cases [34, 30]. The
critical situation that could arise is that when diagnosed cases will considerably
reduce and the pressure on national health systems will be relieved, the risk of a
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new rebound in transmission caused by the looming presence of undetected in-
fectious cases could be difficult to assess for public health authorities. Strategies
for reopening activities and lifting restrictions will likely be under the pressure
of the predominant individualistic approach to pandemic risks [11], with deci-
sion based on risk assessment processes heavily influenced by the uncertainty
still characterizing the COVID-19 dynamics [12].

Our research goal is to analyze the possible consequences of uncertain es-
timates of undetected infectious cases in a risk analysis perspective and the
natural dynamics of the network under several scenarios. To this end, by con-
sidering available evidences from epidemiological and virologist studies, we focus
on a specific research question: Under which conditions, as a result of the natu-
ral evolution of the model, in the final phase of an epidemic wave the undetected
infectious cases could represent a high risk situation? In particular, we deem a
situation as high risk if: i) undetected infectious cases cannot be safely approx-
imated by officially diagnosed cases; ii) different scenarios and their variants
exhibit relevant and variable differences between the dynamics of undetected
infected cases and of those officially recorded.

Apparently, this is a question still unanswered by current analyses of ’exit
strategies’ from lockdown and other mitigation measures. For example, even [12],
which are publishing truly excellent reports on the France situation and have
presented a rich model and a detailed analysis of possible strategies for the final
phase of the epidemic wave, have not addressed that question. Rather, they
concentrated on more specifically epidemiological issues, like the possible over-
whelming of medical facilities due to a rebound of the epidemic. Coherently,
they observed that exit strategies would be more effective the larger the propor-
tion of infected cases not requiring hospitalization, such as asymptomatic and
mildly ill cases.

While their analysis and others in the same vein are meaningful and infor-
mative for public health decisions, they do not really tackle with the problem
of deciding under what conditions of the epidemic dynamics, considering the
persistent uncertainty about the characteristics of the contagion, the epidemic
could be safely declared under control. Our aim is to contribute to identify
some properties of the system dynamics that are relevant in the final phase of
the epidemic wave. By developing a compartmental multi-agent model, we have
observed interesting behaviors of the class of undetected infectious cases, which,
depending on the scenario, could be not under control when, instead, observed
diagnosed cases seem to indicate a safe situation. Modeling possible dynamics of
the contagion with variable configurations of undetected infectious cases could
be useful for a better comprehension of the consequences of the uncertainty still
looming and given the still enduring difficulty in testing or tracing undiagnosed
infectious cases. Major findings of our work are that:

• risk situations due to undetected asymptomatic or mildly ill cases may
arise if they largely outnumber fully symptomatic cases;

• the larger the proportion of undetected cases with respect to fully symp-
tomatic ones, the less suitable is the number of detected diagnosed cases
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(i.e., contained in hospital facilities or home isolated) as an approximation
of the uncertain undetected cases;

• the more asymptomatic or mildly ill cases are diagnosed and contained
along the whole epidemic wave, the safer is the situation in the final phase
of the epidemic wave.

In this work, we use a compartmental model, as for long tradition of stud-
ies combining epidemiological theory and network theory [23, 32]. We study
three hypothetical scenarios for the final phase of the epidemic wave, with 10%,
30%, and 50% of total infected individuals, diagnosed and undiagnosed, with
respect to the reference population (infection attack rate). The range of vari-
ability of these scenarios is wide, with the largest case envisioning an extreme
outcome, which, for what we currently know, cannot be deemed as completely
unrealistic, according to actual guesses of some epidemiologists [2, 33, 4], from
journalistic reports [6, 25, 1], and from estimates made for the 2005 avian H5N1
infection [15]. For each scenario, we have varied the proportion of undetected
and detected cases, ranging from a minority of undetected cases, as typical for
the 2002-2003 SARS [3], to a majority of undetected cases, as now conjectured.
Variants and special cases have been considered.

The rest of the paper is structured as follows. First, we introduce the com-
partmental model by presenting the state transition diagram with a description
of compartments. Then, we describe the model execution with the initialization
of parameters and fitting with respect to data from Italian and World outbreaks.
Next, we present simulation results starting with the first scenario (i.e., 30% Sce-
nario) and varying proportions of undetected and detected cases, followed by the
other two (i.e., 10% and 50% Scenario). Then, we consider variants by changing
some of the initial assumptions, related to the viral load between compartments
and the possible transmission from contained state, and perform a sensitivity
analysis on the infectious period while incubating the disease, a parameter that
has received different estimates from epidemiological studies. After that, we
discuss the effects on the uncertainty in the final phase of the epidemic wave
of an increasing proportion of asymptomatic and mildly ill cases diagnosed and
contained. Finally, we discuss the results and draw some conclusions.

2 Model Definition

We present a discrete-time stochastic model with state-dependent transmission
probabilities derived from others developed to study pandemic influenza [15,
28, 29], the SARS dynamics of 2002-2003 [7], and the current SARS-CoV-2
pandemic [27]. Individuals when infected proceed through different stages (bio-
logical or due to isolation constraints), with varying transmission probabilities.
For example, an individual first incubates the infection, then s/he might de-
velop full symptoms, and then is diagnosed and isolated. These three states
have different transmission probabilities in the model. Analogously, another in-
dividual could incubate the infection and develop only mild symptoms, possibly
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misinterpreted as a normal cold, and for this reason neither be diagnosed nor
isolated until the spontaneous recovery. In this case, s/he only goes through
two infectious states in the model, with different transmission probabilities. In
addition to state-dependent transmission probabilities, our model also accounts
for different probability distributions of the time spent in a state, such as the
time spent incubating the infection, the time with full symptoms before being
diagnosed and isolated, or the time spent freely roaming the contact network
being infected but with mild symptoms before the spontaneous recovery.

2.1 State Transition Diagram

The definition of our model’s compartments and state transition diagram in-
herits intuitions from the literature and adds some variations to better serve
to our research goal [14, 37, 20, 36]. In Figure 1, we show the state transition
diagram with compartments as nodes and edges labeled with transition proba-
bilities. For sake of clarity, transition probabilities are showed with a notation
different from typical epidemiological studies, which adopt Greek letters. Here a
probability is showed with a single parameter when meant to be the probability
to remain in current state (e.g., P(S) is the probability of an agent to remain
susceptible); instead, it is showed with two parameters to denote the probability
to change state (e.g., P(II,AI) is the probability of an incubating infected node
(II) to move in the acute infected state (AI)). For all transitions except one,
the diagram is a discrete-time memoryless Markov chain. The exception is the
state transition from Contained (C) to Recovered (R), which depends on the
previous transition, because from epidemiological studies and medical reports of
the COVID-19 pandemics [27], the probability distribution of the recovery time
has clearly distinct ranges for individual with mild or acute infection. Choos-
ing a single state C has been done to keep the model as simple as possible,
the trivial solution would have been with two distinct C states, for Mild and
Acute individuals, with no advantage for our study. Table 1 summarizes the

Figure 1: State transition diagram consisting of six states: S (Susceptible), II
(Incubating Infected), MI (Mild Infected), AI (Acute Infected), C (Contained),
and R (Recovered/Removed).
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characteristics of compartments.

Table 1: Model’s compartments with description of characteristics and assump-
tions for simulations.

Symbol Compartment Description

S Susceptible The initial state for all individuals in the model except the
ones seeding the epidemic. At each discrete time step, in-
dividuals interact through the contact network with directly
connected peers and could become infected with a certain
probability that depends on the number of infected peers and
their infected state (II, MI, AI, or, but only for some simula-
tions, C).

II Incubating Infected Incubating infected are Susceptible individuals that become
infected. Infectivity develops in this phase, although reduced
with respect to the symptomatic state, according to current
medical analyses. This is the state assigned to the initial
seeding nodes in simulations. Individuals stay in this state
according to a probability distribution within a time frame
derived from the literature.

MI Mild Infected Infected persons showing no symptoms or mild symptoms eas-
ily misdiagnosed or, due to the mildness of the condition,
reluctant to self-quarantine and look for medical assistance.
Persons in this state are often assumed to carry a reduced
viral dose with respect to those that develop full acute symp-
toms. MI individuals could at some point be diagnosed and
contained (state C) or they remain in the same state until
spontaneous recovery (state R). A special case has also been
tested for the hypothesis of MI cases carrying a full viral dose.

AI Acute Infected Infected persons that develop full symptoms and carry the
full viral dose. We assume that all AIs certainly receive a
diagnose within a time frame, and then move to state C. The
possibility that AI individuals are not diagnosed and thus
contained exists in practice and the state diagram shows the
corresponding probability. However, in simulations, we have
considered that case as not relevant for the outcome and ig-
nored.

C Contained Infected persons that have been diagnosed and then isolated.
Our base assumption is that individuals in state C do not
transmit the infection to peers and move to recovery/removed
(state R) according to a probability distribution within a time
frame derived from the literature. The time frame is differ-
ent for the case of an individual in C being previously AI or
MI. The possibility of contained infected individuals spread-
ing the disease is of course very well-known (e.g., in hospitals
or other medical facilities). We have considered this case and
run some simulations with different probability of transmis-
sion also from C individuals.

R Recovered/Removed This is the final state of the transition diagram reached by
all individuals in our model. The transition from MI or from
C depends on probability distributions within different time
ranges.

With regard to the model’s state transition diagram, we add here some con-
text and details to the definitions given in Table 1. The Incubating Infected
(II) state has a specific characterization in our model, different from the typical
definition. A state representing the disease incubation time has a long tradition
in deterministic and stochastic models in epidemiology [20]. Among compart-
mental models, the standard SEIR dubbed it Exposed [8], which became Latent
in other SLIAR models, specifically referring to incubating but not infectious
persons [27, 5]. Others, like [19], studying the 2002-2003 SARS epidemic, did
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not consider a specific state for those incubating the disease being not infectious.
Instead, they defined an Asymptomatic compartment as the first stage for all
susceptible cases turned infected. In that state, persons are infectious and could
possibly be quarantined or develop a fully symptomatic state. With respect to
our research goal, these approaches are not suitable for our goals. There is no
purpose in our model to specify an incubating not infectious state, because ir-
relevant for the study of the dynamics of infectious individuals being isolated or
free to roam their contact network. On the other hand, regarding the current
COVID-19 epidemic, different epidemiological studies analyzing samples from
China and Singapore outbreaks have reached the conclusion that individuals
could develop infectivity in the incubation period [26, 17]. Being this possibil-
ity relevant for our study, we have included the Incubating Infectious (II) state
with the specific meaning of modeling the time period of infectivity during the
disease incubation. The probability distribution of the time spent in this state
has been obtained from [27].

The distinction between symptomatic and asymptomatic infected individuals
was originally introduced by [28] as an extension of the standard SEIR model,
by postulating the fundamental assumption that only the symptomatic cases
withdraw with some probability to a restricted place (e.g., home confined, hos-
pitalized). Most recent epidemic models, conveniently customized, are based on
that distinction [8]. Following the introduction of the two classes for the symp-
tomatic and the asymptomatic cases, models have attempted to manage the
different social impacts. In [8], the two new classes are added to represent dif-
ferent forms of social distancing: Generic quarantine for the asymptomatic and
specific isolation for the symptomatic. The quarantine compartment is useful
for modeling the dynamic of the contagion when a social distancing policy is en-
forced by the public health authority (e.g., national/federal state, regional/local
authority) in order to limit contacts between casual susceptible persons and un-
diagnosed infected individuals, untested and often asymptomatic [12]. Differ-
ently, symptomatic infected are supposed to be diagnosed and strictly isolated,
for example in a medical facility or hospital, within a certain time frame from
the outset of symptoms or after a positive test. With respect to our goal, we
have considered the quarantine state as not strictly needed. What matter most
to us is to account for the ability to spread the contagion of all undiagnosed
infected individuals, according to a certain transmission probability that we es-
timate to determine a given attack rate (i.e., our 10%, 30%, and 50% scenarios).
To this end, we do not distinguish if the final attack rate has been produced
by reducing contacts (as for isolation measures like generalized quarantine) or
because of a reduced infectivity; in both cases the final attack rate is the same.
Consequently, in our model, we have included only two states called Mild In-
fected (MI) and Acute Infected (AI). Next, we added a single Contained (C)
state for all individuals infected, diagnosed, and restricted. For our research
goal, the Contained compartment serves the purpose of modeling those whose
ability to spread is greatly reduced by means of personal containment measures,
with respect to others without limitations (or only subject to a general social
distancing policy). With regard to the infectious states, we make the hypoth-
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esis that information networks, the press, and generic public opinion makers,
in the final phases of the epidemic wave, will be primarily influenced by the
dynamics of the Acute Infected and the Contained classes, as recorded by of-
ficial statistics, with risks brought by the mostly unknown Mild Infected class
not well acknowledged. The emphasis over observable AI and C states and the
uncertainty regarding the mostly speculative MI state would put public health
authorities under pressure for immediate lift of isolation measures based on the
dynamics of the former two states, and instead would assess with great difficulty
the behavior of the third one.

The last compartment of our model is the traditional Recovered/Removed
(R), which accounts for all individuals that end the epidemic process and have
acquired immunization or deceased. In this work, we do not consider the case of
re-infection and temporary immunization. One reason is because we explicitly
aim to focus on the last period of the first epidemic wave and the potential risks
due to undiagnosed infected, therefore we assume that even in case of temporary
immunization, the rate of re-infections would be not particularly relevant in that
time frame. Another reason is that at present, to the best of our knowledge, the
possible temporary immunization for COVID-19 patients is still a hypothesis
investigated by medical researchers and epidemiologists.

3 Model Execution

The model is run through multi-agent simulations [9, 22] and makes use of an ar-
tificial random network representing contacts. The basic execution of the model
is described in Algorithm 1. Each iteration represents a time step in simulation
time. At every time step, each node is selected in random order and, if in state
S its state is checked with respect to peers, or if in other states, according to
time periods specific of states II, MI, AI, and C. The probability of a node S to
become infected depends on infected peers II, MI and AI, independently (µ is
the reduction factor to account for possibly reduced viral dose of II and MI).

3.0.1 Initialization and Parameters Fitting

Figure 2 describes the model initialization with actual transitions and proba-
bilities. Table 2 presents a description of transition probabilities and of their
values. The list of base settings for simulations is in Table 3.

Infection propagation is modeled starting with a general transmission prob-
ability empirically evaluated with respect to each one of reference scenarios (i.e.,
10%, 30%, or 50% infection attack rate). This general transmission probability
represents the infectivity of a full viral dose, which is present in individuals
developing acute symptoms (AI compartment). The transmission probability is
reduced for individuals in different conditions, namely incubating the infection
and with mild symptoms.

We first found the settings for the 10%, 30%, and 50% scenarios. The popu-
lation considered for simulation results was N=1000 (we also run sample simu-
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Algorithm 1 Time-discrete multi-agent model execution

Require: Adjacency matrix (Ai,j), selecting random seeds, attributing the TII , TMI

, TAI , TC|MI and TC|AI to each nodes according to defined distributions
for t in Timesteps do

for i in Ai,j do
At each time step t, for all nodes in Ai,j , run the model according to the current
node’s state
Case S:
if Nodei in state S then

for j in Ai,j = 1 do
if Nodej in state AI then

Change state to II with probability P(S,II)
end if
if Nodej in state (II,MI) then

Change state to II with probability µP(S,II)
end if

end for
end if
Case II:
if Nodei in state II then

Remain in II for TII(i) = gamma(α1,mean1/α1) steps
if rand[0, 1)] < MI/(MI +AI) then

Change state to MI
else

Change state to AI
end if

end if
Case MI:
if Nodei in state MI then

Remain in MI for TMI(i) = norm(TMI) steps
When TMI(i) expires:
if rand[0, 1)] < P (MI,C) then

Change state to C
else

Change state to R
end if

end if
Case AI:
if Nodei in state AI then

Remain in AI for TAI(i) = gamma(α2,mean2/α2) steps
When TMI(i) expires, change state to C

end if
Case C:
if Nodei in state C then

if Nodei(t− 1) changed state from MI then
Remain in C for TC|MI(i) = norm(TC|MI) steps

else if Nodei(t− 1) changed state from AI then
Remain in C for TC|AI(i) = norm(TC|AI) steps

end if
end if
Case R:
if Nodei in state R then

Remain in R
end if

end for
end for
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Table 2: State transition probabilities and values used in simulations.
Probability Description Values

P(S) p. to remain susceptible. It is fitted
empirically according to the scenario
considered, 10/30/50% total infected
resulting at the end of the epidemic
with respect to the whole population.
P (S) = 1 − P (S, II).

0.99 (10% scenario); 0.98 (30% sce-
nario); 0.97 (50% scenario).

P(S,II) p. to get infected (transmission rate).
Empirically evaluated. P (S, II) = 1−
P (S).

0.01 (10% scenario); 0.02 (30% sce-
nario); 0.03 (50% scenario)

P(II) p. to remain in incubation state. The
probability is defined as the probabil-
ity distribution over the time range
TII .

For each node gamma(TII), with TII

in [2,14], as estimated in (19), with k
= 3 and mean = 8.

P(II,MI) p. to move from the incubation state
II to the MI state. This is the main
unknown of the study.

Simulations have been run with differ-
ent values for the pair MI:AI=(0.8:0.2,
0.6:0.4, 0.4:0.6, 0.2:0.8).

P(II,AI) p. to move from the incubation state
II to the AI state.

See P(II,MI) values.

P(MI) p. to remain in state MI. The proba-
bility is defined as the probability dis-
tribution over the time range TMI .

For each node, norm(TMI), with TMI

in [2,7], as estimated in (19).

P(MI,C) p. to move from MI to C. It measures
the odds of an MI individual to be di-
agnosed and thus isolated.

The worst case scenario is to con-
sider P(MI,C)=0, meaning no MI is
detected and isolated. We also consid-
ered other values, i.e., 0.2, 0.5 and 0.8,
to account for increasing proportions
of MI being detected and contained.

P(MI,R) p. to recover for a MI individual.
The probability depends to P(MI) and
P(MI,C).

When TMI steps expire, the node
in MI move to R (unless previously
moved to C). P (MI,R) = 1 −
(P (MI) + P (MI,C)).

P(AI) p. to remain in state AI before be-
ing moving to C. The probability is
defined as the probability distribution
over the time range TAI .

For each node, norm(TAI), with TMI

in [2,7], as estimated in (19).

P(AI,C) p. to move from AI state to C. It de-
pends only on the value of P(AI).

When TAI steps expire, the node in AI
move to C. P (AI,C) = 1 − P (AI)

P(AI,R) p. to recover for an MI individ-
ual without being diagnosed and con-
tained. We assume this case as non-
existent.

P (AI,R) = 0.

P(C) p. to remain in C state. The eval-
uation of this probability is different
for nodes arrived in state C from MI
or from AI, being the time intervals
completely distinct for the two cases.
The probability then is defined as the
probability distribution over two time
ranges TC|MI and TC|AI .

For each node, norm(TC|MI), with
TC|MI in [2,5] if the node was pre-
viously in state MI, or norm(TC|AI),
with TC|AI in [14,30] if the node was
previously in state AI. The time ranges
are defined from medical reports and
(19).

P(C—MI,R) p. to recover from C state being MI.
It depends on the value of P(C) eval-
uated with respect to TC|MI .

For each node, when TC|MI steps ex-
pire, the state changes from C to R.

P(C—AI,R) p. to recover from C state being AI.
It depends on the value of P(C) eval-
uated with respect to TC|AI .

For each node, when TC|AI steps ex-
pire, the state changes from C to R.

P(R) p. to stay in R state, our final state. P (R) = 1.0.
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Text boxes represent the settings of the corresponding transitions.
In some cases, they are indicated as a probability distribution over a
time period (e.g., gamma(TII)), as lists of alternative values that
have been tested (e.g., 0.01, 0.02, and 0.03 for the transmission
probability of Susceptible individuals), or as complements (e.g., 1-
R—MI/C—MI, meaning the corresponding list 0.0, 0.2, 0.5, 0.8).
For simplicity, for state S, and edges AI-C and C-R, the value has
been omitted, because only two outgoing edges are present.

Figure 2: Model initialization.

Table 3: Base simulation settings.
Parameter Values

Network size 1000
Seed nodes 5
Time steps 150
Probability of transmission (full viral
dose)

0.01 (10% Scenario), 0.02 (30% Scenario), 0.03 (50% Sce-
nario)

Reduction factor (reduced viral dose) µ = 0.5
Latency time time steps=[2,14], mean=8
Infectious time - Acute Infected time steps=[2,7], mean=3
Infectious time - Mild Infected time steps=[2,7], mean=4.5
Isolation period - Acute Infected time steps=[14,30], mean=22
Isolation period - Mild Infected time steps=[2,5], mean=3.5
Acute Infected : Mild Infected 0.2, 0.4, 0.6, 0.8
Mild Infected Contained : Not Con-
tained

0.0, 0.2, 0.5, 0.8
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lations with N=10000 and N=100000 and found that results were qualitatively
similar). Empirically, we found that the best fitting values for the transmission
probability (i.e., P(S,II) in the state transition diagram) were (0.01, 0.02, 0.03)
respectively for the three scenarios. Seed nodes used in simulations have been
five, a number representing a good trade-off in order to reduce the number of
invalid trials without relevant effects to the average number of infected nodes.
A trial was considered invalid, thus discarded, if it produced less than 1/5 of
infected nodes with respect to the average proportion defined for the specific
scenario, and we considered the settings sufficiently accurate when the average
total number of infected nodes calculated over all valid trials was ±3% of the
proportion (attack rate) required by the scenario. For states II and AI, we
adopted a time-to-event observation model with a gamma distribution of the
time TII and TAI an individual remains in each of those states. For states MI
and C, instead, we assumed a normal distribution of time TMI and TC . Pa-
rameters for gamma and normal distributions, as well as of the lengths of these
periods of time have been derived from [27] (in a different study [31], both the
probability distribution and the incubation period have received a different esti-
mation, we took [27] as our reference study being based on a larger sample). In
all figures, each data point was averaged over at least 150 valid trials. Table 3
summarizes the parameters and settings for simulations.

Model configurations have been studied to fit publicly available data of Ital-
ian cases (national time series, Lombardy region, Bergamo and Lodi provinces)
and World cases (New York City and national time series of China, Iran, and
Spain). As a result, we found that the 10%, 30%, and 50% scenarios, with adap-
tations hereafter discussed, are well-suited to provide an approximate, while re-
alistic, representation of the epidemic growth rates. Details about specific time
periods and model fitting are presented in Figure 3.

4 Results

4.1 30% Scenarios

In the first group of simulations, for each scenario we compared the network
behavior with a majority of MI individuals with respect to the opposite case
of a larger proportion of AI individuals. With these simulations, our aim is to
show how a large proportion of MIs may produce a distinct behavior during the
epidemic with respect to the opposite case. In particular, this specific behavior
may result in a risk scenario during the final phase of the epidemic. We show
how the effect changes with different proportions of AI and MI.

First, we analyze results for the 30% Scenario (see Figure 4), which sits
between the lower 10% Scenario, perhaps an estimate that some countries are
already approaching, with the epidemic still far from being terminated, and
the 50% Scenario. Results shows that in all cases with MI larger than AI, in
the final phase of the epidemic, there is a substantial difference between the
density of MI and of AI. By assuming the same criteria of [29] to consider an
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Italian cases: Days: 24/02-18/03/2020; Source: Civil Protection Department [13].
World cases: China - Days: 22/01-15/02/2020; Source: The Humanitarian Data Ex-
change (HDE) [38]. Iran - Days: 20/02-15/03/2020; Source: HDE. New York City -
Days: 15/03-08/04/2020; Source: The New York Times [39]. Spain - Days: 03/03-
28/03/2020; Source: HDE.

Figure 3: Best fitting configurations with respect to Italian and World cases.
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epidemic as contained if there are fewer than 500 cases in the 500,000-person
community (¡1 per 1000), the difference between AI and MI could surpass one
order of magnitude, with the larger difference corresponding to more unequal
proportions between AI and MI (i.e. in Figure 4 panels A, B, and C, the AI
curve reaches the threshold of 1/1000 at approximately the 110 intercept on
the x-axis). It is not until the end of the duration of the simulation that the
MI reaches the threshold of 1/1000. In practical terms, we could probably
assume that the difference between AI and MI behavior could correspond to
a period of some weeks, during which, based on official statistics of diagnosed
infected, the epidemic would be mistakenly considered as contained. This is the
risky situation that we want to highlight with this work. On the contrary, the
dynamics of AI and MI is equivalent or with AI terminating later than MI, for
cases with a majority of AI (i.e. Figure 4 panels D and E). From a risk analysis
perspective, the case of the previous SARS epidemic with few asymptomatic
cases, is structurally different from the mostly accepted hypothesis regarding
the current one. The possibility of unaccounted dangerous conditions for the
insurgence of a novel uncontained outbreak did not naturally arise during the
2002-2003 SARS but, instead, there is this possibility for COVID-19. Clearly,
this observation regards the natural dynamic behavior, as modeled here. It does
not consider the effectiveness of public health authorities decisions. For these
tests, we have worked under the assumption that MI individuals have a viral
load reduced by approximately 50% with respect to AI, as reported in past
and recent studies [29, 27]. Correspondingly, the probability for a Susceptible
individual to get infected when in contact with a MI person has been reduced
in our model (Reduction factor in Table 3). However, this assumption seems
still debated in the literature. In [40], the viral load between symptomatic and
asymptomatic infected persons has been measured as similar.

4.2 Other Scenarios

Figure 5 and Figure 6 present the 10% Scenario and the 50% Scenario, which,
together with the 30% Scenario discussed in Figure 4, complete the overview
of the studied scenarios. These two additional cases qualitatively confirm what
already discussed for the 30% Scenario:

• the risk scenario due to the unknown rate of MI might arise for MI larger
than AI;

• the larger the proportion of MI with respect to AI, the less suitable is C
as an approximation of MI.

With respect to the different prevalence among scenarios, what could be
observed is that the larger prevalence (i.e. 50% Scenario) produces a higher
number of infected, but on the other side, the dynamics naturally tends to
accelerate with a shortened average time to extinction of all compartments.
The accelerated behavior is reflected in the higher density of the R class that
accompanies the corresponding higher density of infected II, AI, and MI classes.
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Each data point has been averaged over 150 trials. Panels A, B, and C: Results for
configuration with a proportion of MI greater than AI (i.e., respectively for A, B,
and C, AI:MI = 10:90, 20:80, 40:60). Panels D and E: Cases with the proportion
of AI greater than MI (i.e., AI:MI = 60:40, 80:20 for E and D). Panel A, top-right
inset: The aggregate dynamics of compartment R and S. Panel A, bottom-left inset:
Detailed representation of compartment R’s dynamic separated into the subgroup of
those recovering from MI (RMI), and those recovering from AI (RAI).

Figure 4: 30% Scenario, results for different proportions of AI:MI.
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The aggregate dynamics of R in the different scenarios could be observed in
the top-right inset of panel A of Figure 5 and Figure 6. In the bottom-left
inset of panel A, instead, it could be observed the details of the dynamics of
compartment R, separated into those recovering from MI (RMI), and those
recovering from AI (RAI). Again, the MI compartment dominates the overall
system dynamics. We remark the fact that the acceleration of the dynamics
represents a natural tendency of the system, it does not consider the practical
consequences of a steeper and larger increase of infected, which could easily
produce cascade effects on the emergency facilities and medical infrastructures,
or the introduction of stricter social distancing measures.

4.3 Special Cases

4.3.1 No Viral Load Reduction for Incubating and Mild Infected

In this first special case, we consider the hypothesis that there is no reduction of
the viral load for incubating and mild infected cases with respect to individuals
developing full symptoms, as measured in [40]. Figure 7 shows the results of
simulations with this variant for the 30% Scenario (Reduction factor µ = 1.0).
The effect is mixed and reveals a particular behavior that naturally arises in
another case too, and could be counterintuitive. With a higher transmission
probability of the MI class, the total number of infected increases, as well as the
proportion of MIs.

The combination of the two seemingly lead to worsening all aspects of the
epidemic. However, also the overall dynamics accelerates. Figure 7 shows the
comparison between the variant with equal transmission probability (color) and
the original results from Figure 4 (grey). What emerges as a general property,
is that the accelerated behavior, in theory, makes the risk of the final phase less
severe, because all compartments tend to decade faster and closer in time. This
is a representation of the theoretical benefit of a faster, unmitigated epidemic,
with respect to a delayed slower dynamics. In practice, that theoretical benefit
clashes with at least two fundamental factors of epidemic containment. First,
the practical, possibly tragic effects of an uncontrolled epidemic on hospital
facilities, medical supplies, and the capability of the emergency response process
to deal with the epidemic. Secondly, a slower dynamics permit to gain time to
learn to public health authorities and to test unknown characteristics of the
epidemic. However, it should be helpful to have a clear representation of the
fact that a slower epidemic dynamics is not necessarily better than a faster one.
With regard to other scenarios, they confirm the possible presence of the risk
due to undetected MIs in the final phase of the epidemics, proportionally larger
the more MIs are present in the population. It also confirms the changes on the
dynamics due to an increasing number of infected, with the 50% Scenario faster
than 10% and 30% scenarios, and thus less prone to the risk posed by MIs.
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Figure 5: 10% Scenario, results for different proportions of AI:MI.
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Figure 6: 50% Scenario, results for different proportions of AI:MI.
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Each panel presents a comparison between the case with equal transmission proba-
bility for II, MI, and AI (color) and the original results from Figure 4 (grey). The
inset in panel A and panel E show the variation in the density of Recovered for the
two configurations: Equal transmission probability has µ = 1.0; reduced II and MI
transmission have µ = 0.5. The different rate of recovery is the complementary effect
of the accelerated dynamics.

Figure 7: Equal probability of transmission for MI and AI (30% Scenario).
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4.3.2 Transmission from Contained Cases

A second variant was studied by considering the possibility of infection trans-
mission also for individuals in state C. In our model, this means that a person in
state S could turns into II also because of peers in the contact network in state
C. This variant is a broad approximation of the spreading of infection in isolated
conditions like in hospitals or quarantined houses. Such a scenario represents
one of the most critical aspects for epidemic management and its modeling has
been the subject of specific studies [18, 24]. Here, we want to qualitatively
study how a change in this assumption would affect the overall dynamics. The
parameter setting in this case has been particularly hypothetical due to the
lack of reliable figures for the COVID-19 epidemic. Anecdotally, it appears as
non-negligible with respect to the total [21], therefore we have tentatively set
the reduction factor µ = 0.1, meaning that the probability of spreading the in-
fection from state C is one tenth of that from state AI. Results are presented in
Figure 8 and they reveal a limited impact on the overall dynamics. An increase
in the number of infected cases could be observed, distributed accordingly to the
proportions between compartments. Therefore, the case of infection spreading
in contained facilities could be certainly critical, but probably not because of
a particular sensitivity of the natural dynamics. This further emphasizes the
current lack of data and points to the need of a specific, detailed treatment of
this case.

4.4 Sensitivity of Parameter Estimates

Several tests on model sensitivity with respect to parameter estimates have
been run. Specifically, estimates regarding time periods, with associated proba-
bility distribution, have been considered. These parameters represent how long
an individual remains in state II, AI, and MI before moving to the next state.
These are typical epidemiological estimates that we have taken from the current
COVID-19 research, comparing different samples and regions. The time frames
from the onset of acute symptoms (AI) to containment (C), and form the onset
of mild symptoms (MI) to spontaneous recovery (R) seem well-established by
epidemiologists with small variability between different studies. For this reason,
we concentrate the sensitivity analysis on the infectious period while incubating
the disease. For that parameter, which in our model represents the infectious
time frame while in incubating state, evidence is still limited. According to the
findings of [26], the assumption of [27], and the model fitting real data of Fig-
ure 3, we have estimated that parameter with a gamma distribution bounded
between 2 and 14 time steps with mean equals to 8 (shape factor equal to 3)
(gamma(TII) in Figure 2). In particular, we tested both the case of shorter
time frames (i.e. period between 2 and 5 time steps, with means equals to 3)
and the case of same period but smaller mean (i.e. period between 2 and 14
time steps, with mean equals to 3). Figure 9 shows the result for the case of
time frame in [2,5] time steps and mean=3, compared with the original set-
ting; the 30% Scenario configuration is the base line. As expected, a reduction
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For an individual in state S, the probability to be infected by a peer in state C is
assumed to be 1/10 of the probability to be infected by a peer in state AI. Panels
Top: Comparison of results with a probability of transmission of state C (color) or no
transmission (grey). Panels Bottom: Dashed line: no trans. from C; Solid line: trans.
from C.

Figure 8: Probability of transmission of state C (Reduction factor µ = 1.0).
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in absolute values of infected cases could be observed, deriving from the fact
that, with a shorter time frame and smaller mean, an individual in II has fewer
chances to infect S peers. What was unanticipated is the evident acceleration
of the dynamics, whose extent is not linearly dependent on the reduction of the
number of infected. The result has been replicated with different configurations
and it mostly depends on the mean. This case is interesting because it repre-
sents another exhibit of the accelerated dynamic effect discussed before. For a
dynamic of this kind, the risk posed by the MI compartment at the end of the
epidemics naturally disappears and the C compartment is always a safe proxy
for evaluating the reduction of the unknown MI cases. However, this type of
dynamics, we have verified to fail to fit the data of the COVID-19 and, for this
reason, we deemed it as not useful for the risk analysis.

4.5 Mitigating Strategies

Finally, we analyze possible strategies for managing the final phase risk. As
already anticipated in the presentation of previous tests, a risks driven by the
uncertain MI class arise when its dynamics outlives those of the other observable
classes, namely AI and C. On the contrary, risks decrease when observable
classes have a dynamic close to that of MI and therefore could be considered
a good proxy. As we have seen from results, in practice it is always the C
class, not the AI, to be the candidate for approximating the behavior of MI.
As a consequence, a mitigation strategy, with respect to the natural dynamics
studied in this work and for configurations with a large majority of MI with
respect to AI, could be to force the dynamics of the C class to get sufficiently
close to that of the MI class. More specifically, this means to act on the dynamic
model in order to push a sufficiently large proportion of MI to move into the
C class, instead of naturally terminating in R. In practical terms, this means
being able to identify MI cases with test or screening campaigns and restrict
them. Figure 10 shows the results of these tests. Panel A is the case with no
MI moving to C, and could be confronted with panels B-D with an increasing
proportion of MI moving to C. As expected, the effect is that MI and C behaviors
tend to come closer, with MI decreasing and C increasing. It could be observed
that it exists a certain proportion of MI ending up in C that makes the two
curves almost completely overlapping in the final phase of the epidemic wave
(see Figure 10 panel C), while for larger proportions, the C curve exceeds the MI
(Figure 10 panel D). As we have already seen, the number of infected AI appears
to be a poor proxy for evaluating MI in all conditions with MI greater than AI.
Alternatively, it could be interesting to analyze under what conditions the class
C, which we assume to be observable from official reports, could approximate
the unknown MI. From Figure 10 panel E, the relevant information is whether
the C/MI rate falls close to, above, or below the intercept at y = 1, respectively
meaning that:

• C/MI ≈ 1: the behaviors of C and MI are alike, therefore C could possibly
be an acceptable approximation of MI;
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Panels Top: Comparison of results with a short TII and reduced mean (color,
TII = (2, 5), mean=3) with original configuration (grey, TII = (2, 14), mean=8).
Panels Bottom: Solid line: Short time period, reduced mean; Dashed line: Original
configuration.

Figure 9: Results for short infectious incubation time period and smaller mean.
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• C/MI >> 1: the C class will extinguish after the MI has extinguished,
then C is a safe predictor of MI;

• C/MI << 1: when the C extinguishes, the MI class has still (possibly
numerous) active cases, therefore C is not a safe predictor of MI.

Model simulations of the 30% Scenario show that C is a good proxy for MI when
a relevant proportion of MI is diagnosed and move to C (MI to C = 50% and
80%). This indicates that it is possible to effectively define a strategy to curb
the risk posed by unknown MI cases. The possibility exists to consider C as
the observable compartment suitable for risk management planning, and then
wait for the recovery time needed to extinguish compartment C. On the other
hand, these results show that it is not necessarily a safe choice to consider C
as a good approximation of MI. It depends on the specific epidemic behavior
(attack rate), it may depend on how reliable is the estimate of the proportion
of MI to AI, and it could depend on the effectiveness of the identification of
MI cases. This last possibility is probably the more practical to realize through
testing and screening campaigns. Similar analyses performed on the 10% and
50% scenarios have confirmed these conclusions.

5 Discussion

Returning to the initial research question (i.e., under which conditions, as a
result of the natural evolution of the model, in the final phase of an epidemic
wave the undetected infectious cases could represent a high risk situation?),
we have presented some tentative answers that, on the one side, could help
to inform public health authorities in their decision process, and on the other,
have perhaps considered the problem from a different angle with respect to
epidemiological studies. In particular, epidemiological models of COVID-19, so
far, have almost always been defined to produce forecasts of the epidemic on
different time frames. They are typically very rich in compartments and modeled
features, both for possible transmission paths and for mitigation strategies. The
richness of a prediction model, however, sometimes falls short in revealing more
general characteristics of a dynamic network. That is one aspect for which our
work offers a contribution: To restrict the scope of the analysis on the final phase
of the epidemic wave and propose a systemic analysis based on some peculiar
features that have been suggested for COVID-19 epidemic.

The scenarios and variations that we have discussed show that the uncer-
tainty that still persists on the actual epidemic dynamics may produce unfa-
vorable conditions for pragmatic decisions by public health authorities and this
is a risk that should be carefully considered. On the other hand, we have also
seen that the uncertainty is not unmanageable. Instead, if efforts are directed
to obtain solid estimates of some properties, such as the proportion of MI over
the population of infected, or the rate of identification and containment of MI,
both descriptive and prediction models could greatly improve.
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Panel A: System dynamics with no MI ending up into C; Panels B, C, and D: In-
creasing proportions of MI becoming C (i.e., MI to C = 20%, 50%, and 80%). The
horizontal dotted line at intercept 1.0 on the y-axis represent the ideal threshold for
C dynamics to behave as MI. In proximity of this threshold, we could consider that C
could be a suitable proxy for MI. Below this threshold, it means that C cases (observ-
able, by definition) tend to lag behind MI cases (not observable, by definition), thus the
risk situation may arise. Instead, above the threshold (e.g., MI to C = 50% or 80%),
it means that MI dynamics tends to lag behind C, which represents a structurally safe
condition for managing risks in the final phase of the epidemic.

Figure 10: Additional results of C/MI (similarity of C with respect to MI) for
increasing proportions of MI ending up in C (MI to C) for configuration AI:MI
= 20:80 under the 30% Scenario.
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A second important aspect that informed our work was the risk analysis
approach. The goal in this case was to identify structural conditions that make
a decision in a certain situation (i.e., the final phase of the epidemic wave with
the expected social pressure for lifting restrictions) better off or worse off with
respect to important uncertain factors and unknowns. To this aim, as we have
discussed, factors influencing the epidemic dynamics could be evaluated in dif-
ferent ways. [12] observed that the effects of lifting early the lockdown are better
manageable if the proportion of asymptomatic is large, because they will not
clog hospital capacity. A possible ambiguity that could then arise from similar
prediction approaches is to consider asymptomatic cases as highly relevant for
the initial growth phase and instead less critical for the decreasing one. In our
analysis, instead, we have seen that the interplay between the infectious classes
MI, AI, and C could most often produce the conditions for a high risk in the
final phase when the MI class is the large majority. Considering both type of
consequences, derived from rich epidemiological models and from systemic ones,
and finding the best trade-off between them in public health decisions is one of
the most difficult problem that public health authorities have to tackle with.

6 Conclusions

In this paper, we focused on a systemic analysis of some features of the current
COVID-10 pandemic. In particular, we studied the natural dynamics possi-
bly emerging in the final phase of the epidemic wave, discussing the conditions
that produce risk scenarios for public health authorities in their decision to lift
isolation measures. The unfortunate prospect could be made possible by the
combination of two factors: the unusual large number of undetected (asymp-
tomatic or mildly ill) cases [3], and, secondly, how people and public health
authorities will behave at the end of the epidemic wave, when the perceived
risk would rapidly decline and a mounting pressure to remove social distancing
measures and reopen circulation in public places will be inevitable. In that
situation, the risk is that susceptible individuals and covert infected ones could
mix again in an uncontrolled way, and for public health authorities and govern-
ments it would be arduous to maintain increasingly unpopular social distancing
measures.

We studied several scenarios and special cases, showing that two general
properties emerges: that the risk scenario due to the unknown rate of un-
detected cases might arise when those cases largely outnumber detected and
contained cases; and that it is possible, under certain condition, to safely ap-
proximate the dynamics of the unknown class with that of an observable one
like the contained cases. Furthermore, we analyzed some relevant implications
of an accelerated epidemic dynamics with respect to a slower one. However, the
theoretical perspective of the natural system dynamics should be complemented
with a practical, operational analysis of the consequences.

With our findings, we aim at highlighting the benefits that could possibly
come from epidemic models and scenario simulations to public health authorities
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facing difficult decisions of crisis management in the last phase of the epidemic
wave. One critical issue that the COVID-19 epidemic seems to reveal is the
uncertainty regarding its actual characteristics, apparently baffling even experi-
enced epidemiologists. It is this uncertainty level, in our opinion, that calls for
risk analysis to be developed together with traditional epidemiology analysis.
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Hollingsworth. How will country-based mitigation measures influence the
course of the covid-19 epidemic? The Lancet, 395(10228):931–934, 2020.

[5] Julien Arino, Fred Brauer, Pauline van den Driessche, James Watmough,
and Jianhong Wu. Simple models for containment of a pandemic. Journal
of the Royal Society Interface, 3(8):453–457, 2006.

[6] Sarah Boseley. Coronavirus ’could infect 60% of global population if
unchecked’. The Guardian, 2020.

[7] Fred Brauer. Some simple epidemic models. Mathematical Biosciences &
Engineering, 3(1):1, 2006.

[8] Fred Brauer. Compartmental models in epidemiology. In Mathematical
epidemiology, pages 19–79. Springer, 2008.

[9] Elizabeth Bruch and Jon Atwell. Agent-based models in empirical social
research. Sociological methods & research, 44(2):186–221, 2015.

[10] Andrew D Cliff and Peter Haggett. A swash–backwash model of the single
epidemic wave. Journal of geographical systems, 8(3):227–252, 2006.

[11] Mark DM Davis, Niamh Stephenson, Davina Lohm, Emily Waller, and Paul
Flowers. Beyond resistance: social factors in the general public response to
pandemic influenza. BMC public health, 15(1):436, 2015.

26



[12] Laura Di Domenico, Giulia Pullano, Chiara E. Sabbatini, Pierre-Yves
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