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Abstract. Chain Graph Models (CGs) are a widely used tool to describe the con-
ditional independence relationships among a set of variables. One of the advantages
lies in the possible use undirected and directed arcs to link vertices representing vari-
ables in the graph. There are four ways to read off the conditional independencies
from a chain graph. Each way differs from the other in the way of interpret the
missing (un)directed arcs, (see Drton 2009). Different problems can be address with
different CGs, however often it is not clear which type of CGs is the best in order to
describe the multivariate system of relationships underlying the selected variables. In
this work, we propose a learning algorithm, based on a Monte Carlo procedure, that
consider the system of independencies underlying all four CGs and select the type
and the graph which optimize a score function. When we handle with categorical
variables, we take advantage of the marginal models (Bergsma and Rudas, 2002) to
parametrize the joint and marginal probability distribution of the variables. Unlikely,
Bergsma and Rudas, 2002 showed that particular combinations of conditional inde-
pendences have no a smooth parametrization. Nicolussi and Colombi, 2013 and 2017,
provide the condition according to (any type of) CG admits a smooth parametriza-
tion. In the learning procedure we consider only the smooth CGs, that is they admit
a smooth parametrization. This approach is implemented to study the poverty status
and particularly how this one can be affected from a group of selected variables. We
took advantage of the cross-section data sets of Hungarian Household. This analysis
highlighted a strong effect of the considered social variables on the poverty status.
Keywords: Chain Graph models; categorical data; learning procedure; poverty sta-
tus.

1 Introduction

In social studies, there is increasing attention to multivariate models that can
capture and describe multiple aspects in a simple way. In particular, it is
worthwhile to observe how one or more study variables are affected by other
factors. It is also plausible to think that different relationships link the vari-
ables studied (i.e. symmetrical, asymmetrical, or causal). Chain Graph models
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well represent complex conditional independence assumptions through a par-
ticular graph, so-called Chain Graph (CG). Moreover, they well shape both
direct and indirect associations. One of the most advantages of these models
lies in their immediacy of the representativeness. Indeed, in the graph, each
vertex depicts a variable, and the arcs depict association between the two vari-
ables represented by the nodes. In particular, each undirected arc pretends
for the symmetric association, and each directed arc denotes an effect accord-
ing to the direction of the arrow. In this work, we consider the four types of
Chain Graph models presented in the literature, each of which able to depict
peculiar connections, [11]). Section 1.1 is addressed to introduce this topic.
In literature, it is widespread to shape Undirected Graph models for discrete
variables with log-linear parameters to expound the associations among these
variables, [14]. Unfortunately, log-linear parameters can not describe differ-
ent kinds of relationships in the same models, and these parameters are left
in favor of the more general Marginal models, [4]. Bergsma and Rudas (2002)
introduced these models to model several 4dependences among a set of discrete
variables. For this reason, the Chain Graph Models for discrete variables use
marginal models, adding the visual tool to describe the system of relationship
between variables, [17], [18], [26], [21]. The potential of these models on social
and economic studies is shown by Nemeth and Rudas 2013 [19], [20], [22]. This
work aims to highlight whether and how other selected variables can cause in-
come inequality and, more specifically, the poverty status. We take advantage
of the Household Monitor survey of TARKI for the Hungarian study. In lit-
erature, many works study these two data-sets under the poverty issue. Most
of these work on cross-section data use among other classical log-linear mod-
els to describe the multivariate system of relationship, see, for instance, [13],
[16], [6], and [23]. In this work, we also replied to some results known in the
literature. The paper follows this structure. In Sections 1.1 and 1.2, we give a
brief introduction to Chain Graph models and Marginal models. In Section 2,
we propose a learning procedure for the final graph. Finally, in Section 3, we
expound the study data sets and the used methodology step by step, and we
show the results of the analysis of the data set are explained. Furthermore, in
Section 4, we added a brief conclusion to summarize the output of the analysis.

1.1 Chain Graph Models

Different multivariate analysis to model the relationships among a set of vari-
ables exist in literature. Graphical models take advantage of the visual im-
pact that does easily interpretable complex associations. A CG is a graph
that includes both directed and undirected arcs while excluding any direct or
semi-directed cycle. A CG can be decomposed into so-called chain compo-
nents, ordered according to the direction of the arrow. Each component is an
undirected sub-graphs that contains only undirected arcs, while the vertices in
different components are linked to each other by directed arcs. CG Models use
chain graphs to represent a system of conditional independencies in a collec-
tion of variables. Each variable would be represented as a vertex. In contrast,
arcs would represent symmetrical or asymmetrical relationships between them
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concerning whether the arc is directed or not so that the lack of an arc repre-
sents conditional independence. There are four types of CG Models available
in the literature for data analysis, which differ in the way to explain the in-
dependence statements (see [11]). However, only three of these have suitable
features to describe some problems. In this work, we consider only these three.
The CG models proposed by [15] and [12], hereafter LWF CGMs, unifies the
directed and undirected graphs approach. The CG models proposed by [1]
(AMP CGMs) describe the dependence structures among regression residuals.
These two models interpret the lack of an undirect arc conditionally to the
other variables in the same component. On the other hand, the CG models
proposed by [8] and [25] (MR CGMs) marginalize over these last variables and
are suitable to describe multivariate regression systems. Further, LWF CGMs
interpret the lack of a direct arc conditionally to the other variables in the
same component, while AMP CGMs and MR CGMs marginalize over these
last variables. For more profound dissertations about these models and their
application, see [19].

1.2 Marginal log-linear parameterization

Log-linear parameters are a useful tool to handle with categorical variables
but they are not able to depict conditional independence restrictions involving
subsets of variables. Since often the inherent independencies of a CG model
concern subsets of variables, we need a most flexible tool, such as marginal
log-linear parameters. Marginal log-linear parameters are standard log-linear
parameters defined within subsets of contingency tables obtained by marginal-
izing over one or more variables, [4]. Bergsma and Rudas (2002) show that by
building the parameters according to two specific properties (of hierarchy and
completeness) the asymptotic properties of parameters hold.
Let consider for instance a set of two variables A and B collected in a con-
tingency table of dimension naXnb with probability πij where i = 1, . . . , nA,
j = 1, . . . , nB . Let furthermore consider {A;AB} as marginal sets. Then the
marginal log-linear parameters are given by:

ηAA =
{

log
(
πi+

π1+

)}
i=2,...,nA

ηABB =
{

log
(
π1j

π11

)}
j=2,...,nB

ηABAB =
{

log
(
π11πij

πi1π1j

)}
i=2,...,nA;j=2,...,nB

(1)

where η?• denotes the vector of log-linear parameters concerning the variables
• in the marginal distribution ?. The symbol + in the probability π denotes
the marginalization over the variables in that position.
There are many ways to aggregate the probabilities in the log-linear parame-
ters, the widely diffuse is the baseline criterion, such as in the formula 1, that
compares each probability with the probability of the so-called “reference” cat-
egory, in our case the first one.
However, a more meaningful criterion to describe ordinal variables is the so-
called global criterion that compares the cumulative probabilities with the
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retro-cumulative probabilities. For instance, the logits of an ordinal variables
A evaluated in the marginal A is

ηAA =

{
log

(
π(A>aj)

π(A≤aj)

)}
j= ...,nA−1

(2)

where nA is the level number of the variable A. For more details see [2]. System
of independencies can be easily represented by setting to zero specific parame-
ters defined in particular marginal distributions. In this way, each missed arc
(directed or undirected) in the chain graph corresponds to a set of marginal log-
linear parameters constrained to zero. In particular, given three variables A, B
and C, to describe the sentence A is independent by B given C (denoted with
A ⊥ B|C ) the parameters ηABCAB and ηABCABC must be constrained to zero. For
more detail, see [4]. The definition of the marginal sets is crucial for represent-
ing different independencies at the same time. Rudas et al. 2010 showed how
to define the marginal sets corresponding to the LWF CGMs and MR CGMs,
[26]. Nicolussi and Colombi, 2017 showed how to define the set of marginals
corresponding to a subset of AMP CGMs, [21].

1.3 Learning procedure

In order to select the CG models (the system of conditional relationships) best
performing the data, we take advantage of a Bayesian learning algorithm, that
is a variant of the posterior distribution over graphical models. The algorithm
requires the evaluation of the marginal likelihood, which can be approximated
through a maximum likelihood estimation of the Bayesian Information Crite-
rion score (BIC), and the assignment of a prior probability to the graph. We
carry out three parallel learning procedures one for any assumption of under-
lying CGM. At the end we chose the best fitting model among the resulting
models from the three procedures, according to the BIC.
The used procedure is based on the algorithm proposed by [5] and it is described
in Algorithm 1. Once chosen one graphical model among the ones described
above, we set G0 equal to the graph without missing arcs.

2 Poverty study

2.1 Data and methods

The results presented in this work are gained from the cross-sections House-
hold Monitor survey carried out by TARKI Social Research Center (Monitor-
TARKI) during 2012. It counts 4838 statistical units, each of which has a
weight that takes into account the gender, the age, the highest education level
of the subject and the reference person of the household, the settlement type,
and the number of the household members. The survey considers each fam-
ily member as a statistical unit. Furthermore, we computed the household
equivalence income as the sum of household income weighed by the number of
household members. The final contingency table with the collected data has
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Algorithm 1 Learning procedure
Gt = G0

while the number of times we choose, consecutively, the graph G0 is less than two
times the number of possible edges of the model or graph has been tested against
all the other possible graphs (less than an edge). do

Randomly select one edge (γ, δ) ∈ (V \E)
if if the edge is present in Gt then

remove it
else

add it
end if
calculate the score of Gt: score(Gt)
calculate the probability P = min[(score(Gt)− score(G0)); 1]
set G0 = Gt with probability P .
return G3

end while

59 on 192 empty cells.
This work aims to describe the system of relationships among factors that we
use as an indicator of wealth and social inequality. In particular, the main fac-
tor in analyzing is poverty status (P). This factor refers to the household, which
is defined poor whether the equivalent income of a household is less than 60%
of median national income. The Employment (E) - evaluated as work intensity-
the Status of the Flat (F) and the Type of household (T) were considered as
social factors. Finally, the Gender (G) of the subject was considered. Below,
we list the variables with their categories

P : Poverty [No, Yes];
E : Employment [0; 0.01-0.49; 0.50-0.99;1];
F : Status in the Flat [owner; rent; other];
T : Type of household [One person; Couple or other without children; Lonely

parent with children; couple or other with children];
G : Gender [Male, Female].

Within the cells of the contingency table, we collect the personal weights (W)
instead of the classical frequencies. In order to model the variables with the CG
models we consider three groups of variables (three chain components): Ana-
graphical (G), Social (E, F and T) and Wealth (P), and we investigate which
model is suitable for well describing the relationships among these factors. The
choice of the grouping the variables supposes symmetric relationship between
the variables within the same component and asymmetric, causal, relationship
between variables in different components.

We test all these models by constraints to zero specific log-linear parameters
in selected marginal distributions. According to most of CG models taken into
account, it is sufficient to use (G); (E,F,T,G),(P,E,F,T,G) as a hierarchical
partial ordered list of marginal sets. However, some independencies require
addition marginal sets such as (P,E,F,T), (E,G), (F,G) and (T,G), see for
more detail [26], [21]. To describe the dependence relationships between the
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factors we chosen the baseline logit for the categorical variables and global logit
for the ordinal variable (E). In order to select the best fitting model we adopt
the procedure displayed in Algorithm 1. All analysis are carry out with the
statistical software R ([24]) with the help of packages hmmm, ([7]), igraph ([9])
and gRbase ([10]).

2.2 Results

Fig. 1. Chain graph representing the best fitting model

Figure 1 shows the chain graph model which best represents the structure
of independence among the factors. Indeed, the three learning procedures lead
to the same graph implying the same independence statements. In particular,
the graphical model represented in Figure 1 presumes that the gender does
not affect the status of poverty given the three social factors considered - P ⊥
G|TEF - and it does not affect even the work intensity and the status of the
flat of the household, given by the type of household -EF ⊥ G|T -. In Table
2.2, we reported the parameterization associated to the CG in Figure 1. Here,
in the first row, we listed the constrained parameters, in correspondence of the
marginal distribution where they are defined. Instead, in the second row, we
reported the free parameters. The chosen model presents a likelihood ratio
statistic of 145, 7348 which leads to an acceptable p-value of 0, 070 if we
consider as the degree of freedom the 122 constrained parameters.
The following tables report the estimate free parameters concerning the two-
order effects, conferred to the arcs of the graph in Figure 1. Higher absolute
values of these parameters denote strong association. With the Wald test, we
evaluated whether the parameters are singularly significant, different from zero.
The symbols ∗, ∗∗, or ∗ ∗ ∗ denote the significance at the 0.05, 0.01, and 0.001,
respectively. Table 2 reports the parameters ηGTFEGT concerning the only arc
(directed) starting from the gender (G). Each parameter is compared with the
reference category. The influence of gender (G) on the type of household (T)
is not statistically significant, but in the whole model we can not omit this link
even if it is weak.

Table 3, 4 and 5 report the parameters describing the component of social
variables TFE. The association between T and F is described in Table 3. Except
for the parameter associated to the modalities ?rent? of F and ?couple or other
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Marginal G GTFE TFEP GTFEP

Effect set to zero GE; GF; GTE; FEP; TFP; GP;GTP;GFP; GEP;
GFE; GTF; TFEP GTFP; GTEP;

GTFE GFEP; GTFEP

Free effect G T; E; TF; P; TP; FP;
TE; GT; FE; EP; TEp

Table 1. Likelihood Ratio Statistic: 145,7348; df 122 (63) p-value 0,070397 (
1.669027e-08)

GT t2 t3 t4
F -0,35 0,25 -0,37

Table 2. Monitor-TARKI survey: ηGTFE
GT based on baseline logits for both variables.

The reference category is t1=single with no children for the type of household (T) and
Male for the gender (G). The other categories are: F=Female, t2=Couple or other
without children, t3=lonely parents with children, t4=couple or other with children.

without children? of T, the other parameters are not statistically significant.
This parameter denotes that the couples without children with a propensity
to a rental house are e?1.88 = 0.153 times the lonely subjects without children
with a propensity to a rental house. However, the connection T−F is stronger
than the G→T (the absolute values of parameters in Table 3 are greather than
the ones in Table 2 ).

F-T t2 t3 t4
f2 -1,88* -23,62 1,06
f3 -19,71 0,18 -0,27

Table 3. Monitor-TARKI survey: ηGTFE
TF based on baseline logits for both variables.

The reference category is ?single with no children? for the type of household (T)
and ?owner? for the flat (F). f2=?renter?, f3=?other?, t2=?couple or other without
children?, t3=?lonely parents with children?, t4=?couple or other with children?.

In Table4 are listed the parameters concerning the association between the
work intensity of the household (E) and the type of household (T). This asso-
ciation is statistically significant and the parameters grow to the increasing of
work intensity. The first parameter denotes that the propensity to work (work
intensity greater than zero) in the couples without children is about e0.92 = 2.51
times the same in the single without children. This ratio grows when the hours
of work grow except in the case of couples with children where the trend is
opposite. The connection is always positive but the modality ?couple or other
with children? which presents a negative trend.

The parameters in Table 5 describe the arc between the variables F and
E. The connection between these two variables is weak and mainly negative in
the last modalities. In the component of social variables the most substantial
connection lies between the work intensity and the type of household (E ? T).
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E-TT t2 t3 t4

> 0 0,92*** 0,51* -0,35
> 0, 49 1,34*** 0,65* -0,85*
> 0, 99 2,31*** 0,71*** -0,94****

Table 4. TARKI survey: ηGTFE
TE based on baseline logits for T and global logit for E.

The reference category is t1: ?single with no children? for the type of household (T).
The other categories are t2=?couple or other without children?, t3=?lonely parents
with children?, t4=?couple or other with children?.

f2 -1,03 0,43 -1,44
f3 -0,28 -1,19 -0,07

Table 5. Monitor-TARKI survey:ηGTFE
FE based on baseline logits for F and global

logit for E. The reference category is ?owner? for the type of Flat (F). f2=?renter?,
t3=?other?.

The last three tables in (6) refer to the directed arcs from the social variables
T, F, and E to the poverty indicator P. The variable that strongly affects the
poverty index is reasonably the work intensity. In particular, the propensity
to be poor of employed people (E > 0) is e−1.7 = 0.18 times the propensity
to be poor of unemployed people (E ≤ 0). This gap increases by growing the
work intensity. Indeed, the last parameter means that the the propensity to
be poor in subjects with full-time job (is about e−2.81 = 0.06 times the subject
having work intensity at most equal to 0.99. Even the type of household has
a strong and significant influence on poverty. These parameters suggest that
the propensity to be poor for a couple or other without children (T=t2) is
e?1.12 = 0.33 times with respect to the single without children. This trend
changes when we consider a family with children. For instance, the couples or
other with children (T=t4) have about 3.49 times more possibility than a single
without children to be poor. Finally, there is a lack of statistical evidence that
the type of contract flat (F) affects the poverty index.

TP Yes
t2 -1,12 ***
t3 0,37
t4 1,25***

FP Yes
f2 0,81
f3 1,06

EP Yes
> 0 -1,7 ***

> 0, 49 -2,07
> 0, 99 -2,81***

Table 6. Monitor-TARKI survey: ηTFEP
TP , ηTFEP

FP and ηTFEP
EP based on baseline

logits for both T, F and P and global logit for E. The reference category is owner
for the type of Flat (F), single without children for (T) and not poor for the poverty
index (P). The other categories are f2=rent, t3=other, t2=Couple or other without
children, t3=lonely parents with children, t4=couple or other with children.
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3 Conclusion

The analysis of the Hungarian study from TARKI survey (2012), Hungarian
shows that the gender of the subject (G) does not affect the poverty (P) fixed
the type of household (T), the work intensity (E), and the status of flat (F).
Further, all the social variables (respectively, work intensity, the status of flat
and type of household) affect the poverty status. In detail, there is an effect of
gender only on the type of household and the effects of all the social variables E,
F, and T on the poverty status (P). The work intensity shows the strongest link
with the poverty and highlights a trade-off between poverty and work intensity.
The other significant connection is between the type of household and poverty.
In this case, the estimated model shows that singles without children are more
likely to be poor than a couple without children but are less likely to be poor
than lonely parents or couples with children.
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