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ABSTRACT  

Background & Aims 

A common genetic variant near MBOAT7 (rs641738C>T) has been previously 

associated with hepatic fat and advanced histology in non-alcoholic fatty liver 

disease (NAFLD), however, these findings have not been consistently 
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replicated in the literature. We aimed to establish whether rs641738C>T is a 

risk factor across the spectrum of NAFLD and characterize its role in the 

regulation of related metabolic phenotypes through meta-analysis. 

Methods 

We performed meta-analysis of studies with data on the association between 

rs641738C>T genotype and: liver fat, NAFLD histology, and serum ALT, 

lipids, or insulin. These included directly genotyped studies and population-

level data from genome-wide association studies (GWAS). We performed 

random effects meta-analysis using recessive, additive, and dominant genetic 

models. 

Results 

Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies 

were included in the meta-analysis. rs641738C>T was associated with higher 

liver fat on CT/MRI (+0.03 standard deviations [95% CI: 0.02 - 0.05], 

pz=4.8x10-5) and diagnosis of NAFLD (OR 1.17 [95% CI 1.05 - 1.3], pz=0.003) 

in Caucasian adults. The variant was also positively associated with presence 

of advanced fibrosis (OR 1.22 [95% CI: 1.03 - 1.45], pz=0.021) in Caucasian 

adults using a recessive model of inheritance (CC+CT vs. TT). Meta-analysis 

of data from previous GWAS found the variant to be associated with higher 

ALT (pz=0.002) and lower serum triglycerides (pz=1.5x10-4). rs641738C>T 

was not associated with fasting insulin and no effect was observed in children 

with NAFLD. 

Conclusion 

Our study validates rs641738C>T near MBOAT7 as a risk factor for the 

presence and severity of NAFLD in individuals of European descent. 
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LAY SUMMARY 

Fatty liver disease is a common condition where fat builds up in the liver, 

which can cause liver inflammation and scarring (including ‘cirrhosis’). It is 

closely linked to obesity and diabetes, but some genes are also thought to be 

important. We did this study to see whether one specific change (‘variant’) in 

one gene (‘MBOAT7’) was linked to fatty liver disease. We took data from 

over 40 published studies and found that this variant near MBOAT7 is linked 

to more severe fatty liver disease. This means that drugs designed to work on 

MBOAT7 may be useful for treating fatty liver disease. 

 

 

 

Conflict of interest:  Connor Emdin reports personal fees from Navitor 

Pharma and Novartis. 

 

HIGHLIGHTS 

● Meta-analysis of 42 studies (>1 million participants) for the role of 

rs641738C>T near MBOAT7 on NAFLD 

● rs641738C>T positively associated with liver fat, ALT, fibrosis, and 

HCC 

● rs641738C>T negatively associated with serum triglycerides 

● Consistent associations found in studies of Caucasian populations only 
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INTRODUCTION 

Since the first genome-wide association study (GWAS) of liver fat[1], more 

than 20 genetic single nucleotide variants (SNVs) have been associated with 

non-alcoholic fatty liver disease (NAFLD)[2]. These studies have deepened 

our understanding of the condition, its heritability, and its relationship with 

cardio-metabolic disease. 

 

Rs641738C>T near MBOAT7 (membrane bound O-acyltransferase domain 

containing 7) was initially identified as a genome-wide significant risk variant 

for alcohol-related cirrhosis (odds ratio=1.35, p=1.03 × 10−9) [3], though not 

replicated in a more recent analysis[4]. It has since been implicated in the 

pathogenesis of NAFLD[5], hepatocellular carcinoma[6], as well as in fibrosis 

development in chronic hepatitis B/C[7,8], and primary sclerosing 

cholangitis[9]. However, unlike variants in PNPLA3, TM6SF2, and 

HSD17B13, it was not identified at genome-wide significance for liver fat or 

ALT[1,10,11]. 

 

Rs641738 is located a few hundred base pairs downstream of the 3’ 

untranslated region of MBOAT7, which belongs to a family of genes that code 

for specific acyl donors and acceptors[12]. MBOAT7 encodes 

lysophosphatidylinositol acyltransferase 1 (LPIAT1), which contributes to the 

regulation of free arachidonic acid in cells[13,14]. Rs641738C>T is associated 

with lower hepatic expression of MBOAT7 at both the mRNA[15] and protein 

levels[5]. Given its role in inflammatory lipid pathways, most mechanistic work 

relating to rs641738 has focused on MBOAT7[16]. 
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In NAFLD, the rs641738C>T variant was first demonstrated to be associated 

with increased hepatic fat content and severity of fibrosis in individuals of 

European descent[5]. Proton magnetic resonance spectroscopy data from 

2,736 individuals showed a modest increase in hepatic fat in those with TT-

genotype (4.1%) compared to those with CT- (3.6%) or CC-genotype (3.5%, 

p=0.005). Follow-up studies of European subjects corroborated the initial 

findings, and suggested a role in development of hepatocellular 

carcinoma[17,18]. However, these results were not replicated in adults of 

other ancestries[5,19–21] or in children[22]. 

 

In addition, bi-allelic loss of function mutations in MBOAT7 cause autosomal 

recessive mental retardation 57 (OMIM #617188) and no liver phenotype has 

been reported in these patients to date[14,23]. However, rare likely 

pathogenic (coding) variants in MBOAT7 are associated with HCC in 

NAFLD[24]. 

 

In summary, the association between rs641738C>T and hepatic fat content, 

as well as its effects on severity of NAFLD, remain unclear. Moreover, the 

broader metabolic effects of this SNV, including its association with markers 

of insulin resistance and dyslipidaemia have not been assessed. 

Understanding the broader metabolic effects of rs641738C>T is important if 

MBOAT7  were to be investigated as a drug target in NAFLD. 
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Here, we conducted a large meta-analysis to determine if rs641738C>T 

influences the development or stage of NAFLD and related traits. 
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METHODS 

Data sources and study selection 

Two data sources were included in the meta-analysis: (i) studies which looked 

at the effect of the variant on traits of interest by genotyping the variant; and 

(ii) look-up from GWAS of traits of interest. 

Studies were sourced through: Medline, Embase, HuGe Navigator, Web of 

Science, bioRxiv, and medRxiv. The search terms used were: “(MBOAT7 or 

membrane-bound-o-acyltransferase) or (rs641738 or rs626283) or (TMC4)”. 

In addition, HuGe Navigator Phenopedia was searched using terms related to 

liver disease (Supplementary Methods). There were no restrictions on date or 

language. The search was completed on 28th July 2020. Reference lists of 

publications were also reviewed. 

A separate search was conducted for all potentially relevant GWAS through: 

GWAS Catalogue[25], Phenoscanner[26], Type 2 diabetes knowledge 

portal[27], and Cardiovascular disease knowledge portal[28] (Supplementary 

Methods). 

After removal of duplicates, titles and abstracts were screened for eligibility 

independently by two authors (investigators), with inclusion/exclusion criteria 

applied to potentially eligible full texts. 

 

HuGENet guidelines[29] were followed throughout and MOOSE reporting 

guidelines[30] were used. This study was prospectively registered on 

PROSPERO Database of Systematic Reviews (CRD42018105507) available 

from: 
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http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018105

507 

 

Inclusion and exclusion criteria 

Studies were included if genotyping of rs641738C>T (or rs626283G>C 

[R2>0.98 in European and American populations[31]] / rs2576452C>T 

[R2=0.92 in Guzman et al. [32]], which are in strong linkage disequilibrium with 

rs641738C>T) was conducted and data on one of the outcomes of interest 

were reported. Narrative review articles, in vitro studies, and investigations 

involving animals, fish, and invertebrates were excluded. Studies which 

investigated liver disease of other aetiologies were also excluded. There was 

no restriction on ethnicity or ancestry. Types of studies eligible for inclusion 

were: case-control, cohort, genome-wide association studies, systematic 

reviews, and meta-analyses. Pre-print and abstract publications were not 

eligible for inclusion. Several studies reported on the same cohort (or patient 

sample) in more than one article. In these instances, data only from the larger 

of the overlapping cohorts were included in analyses. A full list of overlapping 

cohorts and articles is in Supplementary Table 1. 

 

Data collection 

Details on the recruitment of controls and cases were obtained from each 

study and, where necessary, clarified by discussion with the study’s authors. 

In particular, it was noted when cases and controls were not recruited from 

the same population or clinics. 
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Hepatic steatosis or NAFLD (as diagnosis) was evaluated as a dichotomous 

variable where radiological (liver ultrasound, controlled attenuation parameter 

[CAP, with cut-off >248dB/m], CT, MRI) or histological assessment were 

used. Hepatic fat content was collected as a continuous variable from CT, 

MRS, MRI, PDFF. Non-invasive assessment of hepatic fat content was also 

assessed using semi-quantitative scoring in the Fenland cohort, as previously 

described[33], and using CAP. 

Individual participant-level histology data were extracted according to the 

NASH Clinical Research Network scoring system[34] and, where not 

otherwise diagnosed by a pathologist’s assessment, NASH was defined using 

the Fatty Liver Inhibition of Progression (FLIP) algorithm[35]. The above data 

were collected for each genotype separately (CC, CT, and TT). 

Participant demographics and characteristics meta-data were collected from 

each study, including: sex, age, ethnicity, presence of type 2 diabetes, body 

mass index (BMI). Where possible, individual patient-level data was obtained. 

The authors of 59 studies were contacted for additional data or clarification, of 

whom 49 replied. Data from 11 potentially relevant studies could not be 

included, which are listed in the Supplementary Methods. 

Additional details regarding cohorts with genome-wide data, the Avon 

Longitudinal Study of Parents and Children (ALSPAC) [36–38]data extracted 

from the UK BioBank, quality assessment, and statistical analysis is found in 

the Supplementary Methods. 
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RESULTS 

Database search identified 1167 articles (Supplementary Fig. 1), of which 44 

articles were included: 42 primary studies (Supplementary Tables 2-4), one 

systematic review and one meta-analysis (Supplementary Table 5).  

In total, 1,066,175 individuals (5,711 children) were included in the meta-

analysis. Most studies were in adults (32/42, 76%) and in individuals from 

predominantly Caucasian populations (26/42, 62%). Of the 42 included 

studies, 14 studies (9,688 participants, hereof 584 children) reported data on 

liver histology. 

 

Studies were generally of high quality, though in five studies[11,22,39–41] 

(four in adults and one in children) the control group was recruited from a 

different population or sample to the cases (Supplementary Table 3). 

 

One previous meta-analysis was included[42], which used data from 5 case-

control studies to assess the effect of rs641738C>T on diagnosis of NAFLD. 

The meta-analysis included 2,560 cases and 8,738 controls and found no 

evidence of an association between this variant and diagnosis of NAFLD 

(Supplementary Table 5). One previous systematic review[43] found positive 

associations between rs641738C>T in adults of Caucasian, Hispanic, and 

African American descent with limited data in children (Supplementary Table 

5). 

 

Liver fat, NAFLD, and severe steatosis in adults 
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Seven studies (29,679 participants) reported data on hepatic fat as a 

continuous variable assayed by CT or MRI. On meta-analysis, rs641738C>T 

was associated with higher liver fat in studies in Caucasian populations using 

an additive model of inheritance, with a per T-allele change of β 0.034 (95% 

CI 0.018, 0.051), pz=4.8x10-5) standard deviations in inverse-normalized liver 

fat (Figure 1), whilst no consistent effect was observed in non-Caucasian 

populations. A similar trend was observed using a dominant model of 

inheritance in studies of Caucasian populations: mean difference in hepatic fat 

+0.18% ((95% CI 0.2, 0.34), pz=0.04, Supplementary Table 6). 

 

Given the difference in sensitivity and specificity of modalities used to assess 

liver fat, a sub-analysis by modality of imaging was performed. No significant 

differences were observed between studies using CT, MRI, or MRS for 

quantification of liver fat (Supplementary Figure 2). 

 

A similar trend was observed using CAP and semi-quantitative ultrasound to 

assess steatosis severity in 12,224 adults (β 0.02 (95% CI -0.002, 0.04), , 

pz=0.08, Supplementary Figure 3). 

 

Data from a range of diverse modalities was used to assess the effect of this 

variant on diagnosis of NAFLD, to reflect real-world diagnostic practice. 

rs641738C>T was associated with NAFLD as a trait (OR 1.15 (95% CI 1.05, 

1.26), pz=0.002) using a recessive model of inheritance (Figure 2) but not 

using additive or dominant models (Supplementary Table 7). The effect was 

only observed in studies of Caucasian populations (OR 1.17 (95% CI 1.05, 
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1.3), pz=0.003). Sub-group analysis by modality of diagnosis found the 95% 

confidence intervals for all modalities overlapped, except for MRI-PDFF, 

which had only one study (Supplementary Figure 4).  The association 

remained after excluding four studies where there was a lack of similarity 

between cases and controls (OR 1.19 (95% CI 1.07, 1.33), pz=0.0017) using a 

recessive model of inheritance. 

 

However, Egger’s test suggested evidence of study distribution (publication) 

bias (p=0.013) and when using the Trim and Fill method to account for this 

bias, the positive association remained but was attenuated (OR 1.11 (95% CI 

1.01, 1.23), pz=0.037, Supplementary Figure 5). 

 

In patients with NAFLD, data from eight studies (6,206 participants) 

rs641738C>T was not significantly associated with the presence of severe 

steatosis (S1-2 vs. S3) on liver biopsy (OR 1.08 (95% CI 0.78, 1.5), Pz=0.64, 

Table 1 & Supplementary Figure 6). 

 

Histological NASH in adults 

Data from nine studies (7,719 participants) found that rs641738C>T was not 

associated with the presence of NASH on biopsy in adults (OR 1.24 (95% 

0.96, 1.36), pz=0.128 Supplementary Figure 7). 

 

Fibrosis in adults 

Liver biopsy data on presence of advanced fibrosis was available from eight 

studies (7,692 adults). Our primary outcome, presence of advanced fibrosis in 
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adults (stage F0-2 versus stage F3-4), showed a borderline positive 

association with rs641738C>T in Caucasian populations (OR 1.22 (95% 1.03, 

1.45), pz=0.021)(Figure 3). In addition, two studies used ICD-codes 

(International Statistical Classification of Diseases and Related Health 

Problems) in the UKBB cohort to identify individuals with NAFLD and 

advanced fibrosis or cirrhosis[44,45]. Both found positive associations below 

genome-wide significance: for example, using an additive model of 

inheritance Emdin et al. found the association between rs641738C>T and 

cirrhosis as β 1.22 (SE 0.06, P=0.03), using an additive genetic model. 

 

Data from nine studies (8,389 participants), found that presence of any 

fibrosis (F0 versus F1-4) was also borderline positively associated with 

rs641738C>T overall (OR 1.27 (95% 1.04, 1.54), pz=0.018) as well as in non-

Caucasian populations as a sub-group (Supplementary Figure 8). 

 

Development of hepatocellular carcinoma 

Four cohorts (2,328 participants, 228 cases of NAFLD-HCC) reported on 

development of HCC in patients with NAFLD. rs641738C>T was associated 

with increased odds of HCC in NAFLD only when using a dominant model 

(CC vs. CT+TT) of inheritance (OR 1.64 (95% CI 1.18, 2.27), pz=0.003, Figure 

4). 

 

Effect on alanine aminotransferase (ALT) 

Data from GWAS using log-transformed ALT (609,794 participants) were 

available for meta-analysis to investigate the role of rs641738C>T on ALT. 
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The variant showed a positive association with ALT (β 0.004 (95% CI 0.002, 

0.007), pz=0.002), which on sub-analysis was observed in Caucasian 

populations but not in non-Caucasian populations (Figure 5 & Supplementary 

Table 7). 

 

Additionally, in the UKBB cohort, rs641738C>T was associated with a small, 

but statistically significant (P=2.0x10-8) increase in un-transformed ALT: 

0.18 IU/L higher ALT per T-allele in this variant (Supplementary Table 8). 

 

In the remaining cohort and case-control studies included in the meta-analysis 

(15,208 adults), rs641738C>T was not found to be significantly associated 

with a change in ALT, for example mean difference using a recessive model 

(CC+CT vs. TT) +0.32 IU/L (95% CI -0.06, 0.7), pz=0.08, Supplementary 

Table 9) in Caucasian populations. 

 

Effect on serum lipids and insulin  

Data from GWAS using log-transformed serum triglycerides (850,241 

participants) found that rs641738C>T was associated with lower triglycerides 

(β -0.01 (95% CI -0.018, -0.006), pz=1.5x10-4), which on sub-analysis was 

observed in Caucasian populations but not in non-Caucasian populations 

(Supplementary Fig. 9). Similar findings were obtained from meta-analysis of 

cohort and case control studies, particularly using an additive model (β -0.03 

(95% CI -0.05, -0.01), pz=0.00091.), Supplementary Table 9). 
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Data from GWAS (852,409 participants) found rs641738C>T to be positively 

associated with total cholesterol , in Caucasian populations (β 0.007 (95% CI 

0.003, 0.01), pz=2.1x10-4), which was not observed in non-Caucasian 

populations (Supplementary Fig. 10). A borderline positive association was 

also observed between rs641738C>T and high-density lipoprotein (HDL) 

cholesterol (β 0.009 (95% CI 0.001, 0.02), pz=0.02), Supplementary Table 7). 

There was no effect on fasting insulin levels found in population-level GWAS 

(β 0.009 (95% CI -0.03, 0.04), pz=0.64), Supplementary Table 7). However, a 

negative association was observed using data from cohort and case-control 

studies with a dominant genetic model (mean difference -1.4 pmol/L (95% CI -

2.1, -0.65), pz=0.004), Supplementary Table 9). 

 

Effect of rs641738C>T on paediatric NAFLD 

Data from ten studies (5,711 children) was used in the meta-analysis. 

rs641738C>T was not significantly associated with the diagnosis of NAFLD, 

liver fat content, stage of liver histology, or serum biochemistry 

(Supplementary table 10). 

 

Meta-regression shows interaction between rs641738C >T and type 2 

diabetes  

Finally, we aimed to determine whether baseline participant characteristics 

influenced the association of rs641738C>T on histological outcomes using 

meta-regression. There was a negative association with presence of type 2 

diabetes and effect size for NASH vs. NAFL (β -1.8 (standard error 0.65), 

p=0.006, Supplementary Figure 11A). A similar negative trend with type 2 
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diabetes was observed for severe steatosis (S1-2 vs. S3, β -2.6 (standard 

error 1.5), p=0.08) and presence of fibrosis (F0 vs. F1-4, β -1.5 (standard 

error 0.8), p=0.06, Supplementary Table 11). In addition, effect size for any 

fibrosis was greater in cohorts with an older mean age (β 0.05 (standard error 

0.02), p=0.014, Supplementary Figure 11D). 
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DISCUSSION 

Identification of genetic variants associated with NAFLD has the potential to 

inform pre-clinical research and our understanding of hepatic metabolism. In 

this meta-analysis we have validated rs641738C>T near MBOAT7 as a risk 

factor for the full spectrum of NAFLD in Caucasian adults. 

 

A two-stage GWAS initially identified rs641738C>T as a genome-wide 

significant locus for alcohol-related cirrhosis[3]. MBOAT7 was a potentially 

interesting target as an enzyme involved in (phospho)lipid metabolism, 

conceptually similar to other SNVs at GWAS-significance in alcoholic and 

non-alcoholic liver disease, namely TM6SF2 and PNPLA3. Later studies 

found the variant to influence the full spectrum of fatty liver disease, from 

steatosis to NASH, to fibrosis, cirrhosis and HCC[5,17]. However, these 

associations have not been consistently replicated in the literature[19]. We 

conducted a meta-analysis to firmly establish the association of rs641738C>T 

with the presence and severity of NAFLD, and associated metabolic traits. 

 

Main findings 

We found that rs641738C>T was associated with higher liver fat content, 

higher ALT, and with higher odds of NAFLD diagnosis, fibrosis, and HCC, 

particularly in Caucasian adults and in the homozygous ‘TT’ genotype. The 

effects sizes of rs641738C>T reported here are small compared to those of 

PNPLA3 p.I148M and TM6SF2 p.E167K, the two strongest steatogenic 

variants[46]. Also, the magnitude of change in alanine aminotransferase is 

small relative to that associated with variants in PNPLA3, HSD17B13, 
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MTARC1, and TM6SF2. This may account for the absence of this variant (or 

others near MBOAT7) from GWAS for NAFLD in the general 

population[1,10,11,45,47] the effect size (and associated p-value) was too 

small to be identified as significant genome-wide. The marginal positive effect 

on hepatic triglyceride content may suggest this variant acts through 

alterations in the composition of hepatic lipid, as well as quantity[17]. This is 

consistent with pre-clinical data on lipotoxicity, where the composition of 

hepatic fats influence development of NASH. On the other hand, a recent 

Mendelian randomization study using these variables as instruments to 

assess causality of fatty liver in determining fibrosis has shown the effect of 

steatosis highly correlates with fibrosis in all the genetic variables indicating 

that quantity of lipid rather than quality may be more important[48]. Functional 

studies are needed to understand the relationship between quality/quantity of 

fat and hepato-toxic/-protective mechanism in causing progression of disease. 

 

The function of this variant is still relatively poorly understood and there is 

conflicting evidence as to whether rs641738C>T is associated with changes in 

hepatic expression of MBOAT7. Results from the GTEx Consortium show a 

strong negative association with T-allele[15], which is supported by data from 

Schadt et al.[49]. MBOAT7 protein expression correlated with mRNA in liver 

biopsies from Mancina et al.[5] but this finding was not replicated by Sookoian 

et al.[19]. MBOAT7 encodes LPIAT1, a 6 transmembrane domain protein 

involved in acyl-chain remodelling of membranes that influence intracellular 

membrane composition and circulating phosphatidylinositols[50]. Further, 

recent metabolite profiling data implicates MBOAT7 as the causal gene for 
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this SNV[51]. Moreover, TMC4 was found with a low expression in the liver[5] 

that is consistent with no mechanistic data supporting its role in NAFLD.  

 

The hypothesis that MBOAT7 is the causal gene underlying the association 

with liver disease at the locus is supported by the observation that mice 

deficient for MBOAT7 have altered hepatic concentrations of polyunsaturated 

phosphatidylinositol[50]. Similarly, metabolite data from humans is strongly 

suggestive that rs641738C>T reduces MBOAT7 function[52]. In addition, two 

independent groups have found that loss of MBOAT7 (but not TMC4) 

increases the severity of NAFLD in mice fed a high-fat diet[53,54].  

 

These analyses suggest that rs641738C>T impacts the severity of NAFLD 

through a recessive model of inheritance, though some analyses (e.g. liver fat 

and ALT) were suggestive of a role using an additive genetic model. Other 

genetic variants are known to impact on all-cause mortality in a recessive 

manner, notably variants that perturb HFE[44]. Further mechanistic work is 

required to understand the extent to which the haplo-insufficient state affects 

hepatocyte function. 

 

We found no evidence of an effect of rs641738C>T on insulin resistance: the 

key driver of hepatic steatosis, as determined by unaltered fasting insulin 

concentrations. GWAS meta-analyses of type 2 diabetes have implicated 

p.I148M in PNPLA3 and p.E167K in TM6SF2 as significant risk loci (albeit 

with very modest effect size as compared to their effects on liver disease)[55] 

and Mendelian randomization studies indicate a causal role in determining 
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insulin resistance mediated by the degree of liver damage[48,56]. Similarly, 

these two variants are associated with reduced risk of coronary artery 

disease; whilst our analysis did find lower serum triglycerides to be associated 

with this variant it has not been associated with lower rates of cardiovascular 

disease[57]. However, we did observe a negative association between effect 

size and prevalence of diabetes on meta-regression, potentially suggesting 

that this variant has the greatest effect in less insulin-resistant individuals. 

 

A strength of this meta-analysis is the large number of individuals with liver 

biopsy-derived phenotypic data as well as use of population-based GWAS 

data. The larger number of included studies and participants is likely to 

account for the different conclusions reached in this study compared to the 

previous meta-analysis by Xia et al.[42]. 

 

Limitations and quality of evidence 

An important practical consideration is the population frequency of this variant 

in different ethnicities. The mean allelic frequency of the effect (T) allele is 

highly variable: from 0.24 in East Asians compared to 0.53 in those of South 

Asian ancestry[58]. Moreover, the majority of studies included in this meta-

analysis used self-reported ethnicity, rather than genetic ancestry. 

 

Though this analysis did include data from individuals of multiple ethnicities 

(and genetic ancestries) we only found evidence of an effect of this variant in 

Caucasian individuals. This is consistent with the initial discovery and it is 

likely that rs641738C>T is a proxy for the true causal variant. However, due to 
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differences in patterns of linkage disequilibrium, we cannot exclude the 

possibility that a different nearby locus is associated with liver-related 

phenotypes in individuals of other genetic ancestries. 

 

A limitation of using meta-analysis for a single variant is the lack of adjustment 

for population stratification. When further genome-wide data are available, a 

formal GWAS meta-analysis may be able to address this. 

 

We found significant differences between adult and paediatric histological 

analyses. Whilst there were fewer clinical events (e.g. with advanced fibrosis) 

in children, the analyses did not show a trend congruous with those in adults. 

Paediatric NAFLD has a different histological phenotype to that of adults (with 

prominent periportal inflammation) and it is therefore plausible that this is a 

true lack of association in children with NAFLD. 

 

Data from multiple diagnostic or imaging modalities were combined in several 

analyses. Though we observed minimal heterogeneity between modalities, 

these techniques have differing accuracy for diagnosis of steatosis, which has 

the potential to affect results. The sub-group analysis of hepatic fat by 

modality suggested a marginally greater effect size in studies using MRS, 

which is regarded as a highly sensitive technique. There is potential that 

through inclusion of other modalities (e.g. CT) we have underestimated the 

effect size associated with this variant. 
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The magnitude of effect observed across all associations is small in 

comparison to other well-established variants. The clinical relevance of 

rs738409C>G in PNPLA3 has been validated with hard end-points[59] but 

large cohorts will be required to prospectively demonstrate the clinical risk 

associated with this variant near MBOAT7. 

 

Though there was minimal heterogeneity across included studies, there was 

evidence of publication bias but the effect on diagnosis of NAFLD appeared to 

persist after attempting to account for this. Also of note, the numbers of 

individuals with NAFLD and HCC were comparatively low, also limiting the 

power to assess for an association of this variant with non-cirrhotic HCC, as 

has been previously reported[6]. The HCC analysis was also unique in only 

demonstrating an effect in the dominant, rather than recessive, model of 

inheritance. Further work in this area may improve the accuracy of effect 

estimates. 

 

Conclusions 

rs641738C>T near MBOAT7 is positively associated with liver fat, ALT, and 

histological severity in Caucasian adults with NAFLD, but negatively 

associated with serum triglycerides and with relatively small effect sizes 

throughout. These data validate this locus as significant in the pathogenesis 

of NAFLD.  

 

ABBREVIATIONS  
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ALSPAC, Avon Longitudinal Study of Parents and Children; ALT, alanine 

aminotransferase; BMI, body mass index; CAP, controlled attenuation 

parameter; CT, computed tomography; GWAS, genome-wide association 

study; HFE, homeostatic iron regulator protein; HOMA-IR, homeostatic model 

assessment of insulin resistance; HSD17B13, 17β-Hydroxysteroid 

dehydrogenase type 13; MBOAT7, membrane bound O-acyltransferase 

domain containing 7; MTARC1, Mitochondrial amidoxime reducing component 

1; OR, odds ratio; MRI-PDFF, magnetic resonance imaging-proton density fat 

fraction; MRS, magnetic resonance spectroscopy; PNPLA3, patatin-like 

phospholipase domain containing protein 3; SNV, single nucleotide variant; 

TM6SF2, transmembrane 6 superfamily member 2; TMC4, transmembrane 

channel-like 4; UKBB, UK BioBank. 
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Tables 

 

Outcome  Genetic 

model 

Sub-

analysis 

No. of 

studies 

Heterogeneity  Effect summary  

I2 pQ OR 

[95% 

CI] 

pZ 

NAFLD 

diagnosis 

(control vs 

NAFLD) 

Recessive Overall 17 0.25 0.17 1.15 

(1.05, 

1.26) 

0.0018 

NAFLD 

diagnosis 

(control vs 

NAFLD) 

Recessive Non-

Caucasian 

5 0 0.46 1.1 (.9, 

1.34) 

0.343 

NAFLD 

diagnosis 

(control vs 

NAFLD) 

Recessive Caucasian 12 0.38 0.09 1.17 

(1.05, 

1.3) 

0.0033 

Severe 

steatosis (S1-2 

vs S3) 

Recessive Overall 8 0.67 0 1.08 

(.78, 

1.5) 

0.642 

Severe 

steatosis (S1-2 

vs S3) 

Recessive Non-

Caucasian 

1 NA NA 1.11 

(.39, 

3.16) 

0.852 

Severe Recessive Caucasian 7 0.72 0 1.08 0.676 
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steatosis (S1-2 

vs S3) 

(.76, 

1.54) 

NASH (NAFL vs 

NASH) 

Recessive Overall 9 0.33 0.15 1.14 

(.96, 

1.36) 

0.128 

NASH (NAFL vs 

NASH) 

Recessive Non-

Caucasian 

3 0 0.58 1.24 

(.81, 

1.9) 

0.324 

NASH (NAFL vs 

NASH) 

Recessive Caucasian 6 0.53 0.06 1.14 

(.93, 

1.41) 

0.213 

Any fibrosis (F0 

vs F1-4) 

Recessive Overall 9 0.52 0.03 1.27 

(1.04, 

1.54) 

0.0183 

Any fibrosis (F0 

vs F1-4) 

Recessive Non-

Caucasian 

2 0 0.82 2.14 

(1.2, 

3.84) 

0.0105 

Any fibrosis (F0 

vs F1-4) 

Recessive Caucasian 7 0.51 0.06 1.19 

(.99, 

1.45) 

0.068 

Advanced 

fibrosis (F0-2 vs 

F3-4) 

Recessive Overall 8 0 0.65 1.2 

(1.02, 

1.42) 

0.027 

Advanced 

fibrosis (F0-2 vs 

Recessive Non-

Caucasian 

2 0 0.64 .96 (.5, 

1.85) 

0.911 
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F3-4) 

Advanced 

fibrosis (F0-2 vs 

F3-4) 

Recessive Caucasian 6 0 0.5 1.22 

(1.03, 

1.45) 

0.0206 

HCC (NAFLD-

HCC vs NAFLD 

no-HCC) 

Recessive Overall 4 0 0.95 1.4 (.99, 

1.98) 

0.056 

  

 

Table 1.  Summary of results in adults from meta-analyses for  

dichotomous outcomes . Meta-analyses were performed using random 

effects with subgroup analysis for Caucasian and Non-Caucasian populations. 

Additive, recessive, and dominant genetic models were tested for all 

outcomes. Results using a recessive model of inheritance (CC+CT vs. TT) are 

shown for all outcomes, except for HCC, where a dominant model (CC vs. 

CT+TT) is shown. Due to use of three genetic models, critical p-value for 

effect summary is pz<0.017. Full results (with all genetic models) are in 

Supplementary Table 5. CI, confidence interval; HCC, hepatocellular 

carcinoma; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic 

steatohepatitis; OR, odds ratio. 

  

Jo
urn

al 
Pre-

pro
of



 

45 
 

FIGURE LEGENDS 

 

Fig. 1. The effect of rs641738C>T on liver fat.  Data from 29,679916 

individuals with CT, or MRI, or MRS liver fat. rs641738C>T positively 

associated with liver fat in Caucasian populations, where data represents 

standard deviation change in normalized liver fat per T-allele. CI, confidence 

interval; UKBB, UK BioBank. 

 

Fig. 2. rs641738C>T is associated with higher odds of diagnosis of 

NAFLD . Data from 52,17333,263 adults (11,3019,713 cases and 

40,87223,550 controls) with radiologically or histologically defined steatosis 

for presence versus absence of NAFLD. CI, confidence interval; LBC, Liver 

Biopsy Cohort; OR, odds ratio. 

 

Fig. 3. The effect of rs641738C>T on presence of ad vanced fibrosis in 

adult patients with NAFLD . Data from 7,6926,211 adults (1,214828 cases 

and 6,4785,383 controls) with biopsy-proven NAFLD comparing advanced 

fibrosis (F3-4) versus F0-2, using a recessive model of inheritance (CC+CT 

vs. TT). CI, confidence interval; LBC, Liver Biopsy Cohort; OR, odds ratio. 

 

Fig. 4. rs641738C>T is associated with higher odds of NAFLD-HCC . Data 

from 2,328 adults with NAFLD assessing for the presence versus absence of 

HCC, using a dominant model of inheritance (CC vs. CT+TT). 
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Fig. 5. rs641738C>T is positively associated with a lanine 

aminotransferase (ALT) in Caucasian populations in genome-wide 

association studies (GWAS) . Meta-analysis of GWAS summary statistics 

from 609,794 participants for the association between rs641738C>T on 

logarithmically-transformed ALT using linear regression. CI, confidence 

interval; UKBB, UK BioBank. 
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Study

Random effects model
Heterogeneity: I2 = 0%, p = 7.25e−01
Residual heterogeneity: I2 = 0%, p = 6.58e−01
Test for overall effect: z = 4.38 (p = 1.20e−05)

Ethnicity = Non−Caucasian

Ethnicity = Caucasian    

Random effects model

Random effects model

Heterogeneity: I2 = 31%, p = 2.36e−01

Heterogeneity: I2 = 0%, p = 8.31e−01

Test for effect in subgroup: z = 0.95 (p = 3.40e−01)

Test for effect in subgroup: z = 4.06 (p = 4.83e−05)

Guzman 2018
Dongiovanni 2018 (Hispanic)
Dongiovanni 2018 (Black)

Seidelin 2020
Speliotes 2011
UKBB 2019
Luukkonen 2020
Dongiovanni 2018 (Caucasian)
Caussy 2019

Total

  148
  465
 1328

 7511
 4244
14440
  557
  882
  104

−0.2 −0.1 0 0.1 0.2

Hepatic fat on CT/MRI

Beta (95% CI) per T−allele

Beta

0.04

0.04

0.03

−0.14
0.04
0.07

0.02
0.03
0.04
0.04
0.06
0.08

95% CI

[ 0.02; 0.05]

[−0.04; 0.12]

[ 0.02; 0.05]

[−0.36; 0.09]
[−0.07; 0.16]
[ 0.00; 0.14]

[−0.01; 0.05]
[−0.01; 0.08]
[ 0.02; 0.06]

[−0.08; 0.16]
[−0.02; 0.15]
[−0.06; 0.22]

Weight

100.0%

7.5%

92.5%

0.5%
1.8%
5.2%

24.1%
11.6%
50.1%

1.8%
3.6%
1.3%Jo
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al 
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of



Study

Recessive model − overall effect
Heterogeneity: I2 = 25%, τ2 = 0.0072, p = 1.67e−01
Residual heterogeneity: I2 = 29%, p = 1.29e−01
Test for overall effect: z = 3.12 (p = 1.83e−03)

Ethnicity = Caucasian    

Ethnicity = Non−Caucasian

Recessive model − overall effect

Recessive model − overall effect

Heterogeneity: I2 = 38%, τ2 = 0.0106, p = 9.03e−02

Heterogeneity: I2 = 0%, τ2 = 0, p = 4.60e−01

Test for effect in subgroup: z = 2.94 (p = 3.28e−03)

Test for effect in subgroup: z = 0.95 (p = 3.43e−01)

Abeysekera 2019
Donati 2017
DiStefano 2015
Anstee 2020
Mann 2020
Dongiovanni 2018 (LBC)
Luukkonen 2020
Dongiovanni 2018 (Caucasian)
Di Costanzo 2018
Karajamaki 2019
Caussy 2019
Krawczyk 2016

Kawaguchi 2018
Sookoian 2018
Dongiovanni 2018 (Hispanic)
Dongiovanni 2018 (Black)
Koo 2020

TT

116
244
296
307
450
351
 73
 65
 52
 47
  9

 17

 41
 60
 26
 46
 19

CT+CC

 480
 828
1078
1176
1851
 680
 317
 240
 166
 197
  21
  60

 860
 312
 193
 277
 346

NAFLD
TT

 476
  62
  98

3460
1572

  31
  56
  91
  38
  89
   8
   0

 372
  41
  28

 109
   2

CT+CC

 1847
  222
  379

14321
 7061

   84
  347
  486
  189
  602
   66
    7

 7299
  221
  218
  896
   94

No NAFLD

0.1 0.2 0.5 1 2 5 10

Odds Ratio

Odds of NAFLD

OR

1.15

1.17

1.10

0.94
1.06
1.06
1.08
1.09
1.40
1.43
1.45
1.56
1.61
3.54
4.34

0.94
1.04
1.05
1.37
2.58

95%−CI

[1.05;    1.26]

[1.05;    1.30]

[0.90;    1.34]

[0.75;    1.18]
[0.77;    1.45]
[0.82;    1.37]
[0.95;    1.23]
[0.97;    1.23]
[0.91;    2.15]
[0.98;    2.09]
[1.02;    2.06]
[0.98;    2.49]
[1.09;    2.38]
[1.21;   10.32]

[0.01; 1583.86]

[0.67;    1.30]
[0.67;    1.60]
[0.59;    1.85]
[0.94;    1.98]
[0.59;   11.28]

Weight

100.0%

83.2%

16.8%

10.0%
6.2%
8.4%

17.6%
19.1%

3.7%
4.6%
5.2%
3.2%
4.4%
0.7%
0.0%

5.8%
3.7%
2.3%
4.8%
0.4%
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Study

Recessive model − overall effect
Heterogeneity: I2 = 0%, τ2 = 0, p = 0.65
Residual heterogeneity: I2 = 0%, p = 0.60
Test for overall effect: z = 2.21 (p = 0.027)

Ethnicity = Caucasian    

Ethnicity = Non−Caucasian

Recessive model − overall effect

Recessive model − overall effect

Heterogeneity: I2 = 0%, τ2 = 0, p = 0.50

Heterogeneity: I2 = 0%, τ2 = 0, p = 0.64

Test for effect in subgroup: z = 2.31 (p = 0.021)

Test for effect in subgroup: z = −0.11 (p = 0.911)

Anstee 2020
Strnad 2018
Donati 2017
DiStefano 2015
Dongiovanni 2018 (LBC)
Luukkonen 2020

Kawaguchi 2018
Koo 2020

TT

83
22
54
21
40
 3

10
 3

CT+CC

303
 74

156
 60

112
  3

218
 52

F3−4
TT

223
121
118
375
280
 39

 23
 18

CT+CC

 872
 455
 437
1410
1083
 196

 440
 388

F0−2

0.1 0.5 1 2 10

Odds Ratio

Odds of advanced fibrosis

OR

1.20

1.22

0.96

1.07
1.12
1.28
1.32
1.38
5.03

0.88
1.24

95%−CI

[1.02;  1.42]

[1.03;  1.45]

[0.50;  1.85]

[0.81;  1.42]
[0.67;  1.87]
[0.89;  1.86]
[0.79;  2.19]
[0.94;  2.03]

[0.98; 25.82]

[0.41;  1.88]
[0.35;  4.37]

Weight

100.0%

93.6%

6.4%

33.7%
10.2%
19.8%
10.5%
18.4%

1.0%

4.7%
1.7%Jo
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Study

Recessive model − overall effect
Heterogeneity: I2 = 0%, τ2 = 0, p = 0.95
Test for overall effect: z = 1.91 (p = 0.056)

Reichert 2019
Donati 2017 (Italian)
Donati 2017 (UK)
Kawaguchi 2018

TT

 5
37
 5
 4

CT+CC

14
94
15
54

HCC
TT

  9
207
 62
 33

CT+CC

 26
735
276
752

No HCC

0.5 1 2

Odds Ratio

Odds of NAFLD−HCC

OR

1.40

1.03
1.40
1.48
1.69

95%−CI

[0.99; 1.98]

[0.29; 3.68]
[0.93; 2.11]
[0.52; 4.24]
[0.58; 4.94]

Weight

100.0%

7.4%
71.3%
10.9%
10.4%
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Study

Random effects model
Heterogeneity: I2 = 0%, p = 0.71
Residual heterogeneity: I2 = 0%, p = 0.63
Test for overall effect: z = 3.07 (p = 0.002)

Ethnicity = Caucasian    

Ethnicity = Non−Caucasian

Random effects model

Random effects model

Heterogeneity: I2 = 34%, p = 0.18

Heterogeneity: I2 = 0%, p = 0.97

Test for effect in subgroup: z = 2.08 (p = 0.038)

Test for effect in subgroup: z = 0.91 (p = 0.364)

Prins 2017
Chambers 2011
Middelberg 2011
UKBB 2019 (Non−British White)
Chen 2020
UKBB 2019 (British white)

UKBB 2019 (East Asian)
Moon 2019
UKBB 2019 (South Asian)
Kanai 2018
Gurdasani 2019
UKBB 2019 (African)
Young 2019

Total

  9731
 61089
 11693
 23327
 19598
316157

  1046
  6949
  7184

134182
  9401
  5882
  3555

−0.04 −0.02 0 0.02 0.04

Alanine 
 aminotransferase

Beta (95% CI) per T−allele

Beta

0.0041

0.0042

0.0036

−0.0005
0.0032
0.0040
0.0044
0.0090
0.0092

−0.0473
−0.0003

0.0003
0.0045
0.0077
0.0097
0.0232

95% CI

[ 0.0015; 0.0067]

[ 0.0002; 0.0082]

[−0.0042; 0.0113]

[−0.0056; 0.0046]
[−0.0014; 0.0078]
[−0.0217; 0.0297]
[−0.0139; 0.0228]
[−0.0116; 0.0296]
[ 0.0043; 0.0142]

[−0.1495; 0.0559]
[−0.0208; 0.0202]
[−0.0316; 0.0321]
[−0.0044; 0.0135]
[−0.0679; 0.0833]
[−0.0291; 0.0485]
[−0.1665; 0.2113]

Weight

100.0%

88.7%

11.3%

25.7%
31.3%

1.0%
2.0%
1.6%

27.2%

0.1%
1.6%
0.7%
8.4%
0.1%
0.4%
0.0%
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