
From Raw Data to Agent Perceptions for
Simulation, Verification, and Monitoring

Michele BOTTONE a, Giuseppe PRIMIERO a, Franco RAIMONDI a,1,
Neha RUNGTA b

aDepartment of Computer Science, Middlesex University, London, UK
bNASA Ames Research Center, Moffett Field, CA, USA

Abstract. In this paper we present a practical solution to the problem of
connecting “real world” data exchanged between sensors and actuators
with the higher level of abstraction used in frameworks for multiagent
systems. In particular, we show how to connect an industry-standard
publish-subscribe communication protocol for embedded systems called
MQTT with two Belief-Desire-Intention agent modelling and program-
ming languages: Jason/AgentSpeak and Brahms. In the paper we de-
scribe the details of our Java implementation and we release all the code
open source.

Keywords. Intelligent environments, multiagent systems, modelling,
MQTT, publish-subscribe

1. Introduction

Software infrastructures for Intelligent Environments and, more in general, for
the Internet of Things, have been investigated by a number of authors [1,2,3,4].
To address the limited resources of devices in Intelligent Environments (think
of motion or temperature sensors), standard architectures for web services have
been adapted, such as in the case of CoAP [5] and, more recently, with the ASIP
programming model [6].

The underlying communication mechanism in these scenarios is typically the
topic-based publish-subscribe pattern [7]. In this pattern, entities that create mes-
sages (the publishers) are not aware of the potential receivers. Instead, they
“broadcast” messages, possibly through a broker. The receivers, on the other
hand, subscribe to messages, possibly through a broker. In topic-based publish-
subscribe architectures each message has a topic and subscribers only receive mes-
sages for the specific topic they are interested in. Accordingly, publishers need to
provide a topic for each message that is generated. The use of publish-subscribe
architectures in Intelligent Environments, coupled with appropriate service ab-
stractions, has been investigated by bridging this communication pattern with
REST services [8,9,10], allowing the development of large-case instances using a
range of resource-limited devices.

1Corresponding Author. Email: f.raimondi@mdx.ac.uk

Intelligent Environments 2016
P. Novais and S. Konomi (Eds.)

© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-690-3-66

66



In parallel with the development of “low-level” communication infrastruc-
tures, several approaches have investigated mechanisms to simulate, verify and
monitor Intelligent Environments at a much higher level of abstraction. In this
area, multiagent systems [11] are used to reason about the beliefs, desires, in-
tentions, knowledge and correct behaviour of (rational) agents. Examples in this
direction include the verification of domotics/e-health examples [12,13] and of
avionic scenarios involving the interaction of humans (pilots and air traffic con-
trollers) with automated systems [14,15,16]. The analysis performed at this level
of abstraction allows developers to reason about high-level interactions and re-
quirements, such as “if the pilot believes that the auto-pilot is going to disengage,
s/he should alert the co-pilot”.

There is currently a gap between the “low-level” communication mechanisms
and the “high-level”, abstract activities performed in the formalism of multiagent
systems. Some recent works [17,18] have addressed this issue by connecting the
software that is being executed on actual devices with modelling languages for
multiagent systems, thus enabling the verification of “high-level” models that
have a clear semantics in “low-level” models.

To address the issue of connecting different levels of abstraction, in this paper
we show how low-level messages in a publish-subscribe infrastructure can give
rise to perceptions in a multiagent system and, correspondingly, how agents’ ac-
tions can generate low-level messages. Our solution makes use of an intermediate
connector between the publish-subscribe communication layer and the modelling
framework for agents.

There are a number of open protocols for messages using the publish-subscribe
communication model that are meant to provide a lightweight, asyncronous alter-
native to HTTP in the context of cloud computing and the Internet of Things for
coordinating many separate environments with minimal configuration and over-
head, among them MQTT, XMPP, and AMQP. In contrast to the latter two,
which have support for extensions to more complex scenarios, APIs and domains,
MQTT is very efficient and simple to implement, and was specifically designed for
high-latency, resource-constrained devices with low bandwidth and power draw,
features that make it ideal for use in embedded systems. For these reasons, it
forms the communication backbone of our solution.

The rest of the paper is organised as follows: in Section 2 we provide an
overview of MQTT; in Section 3 we describe two modelling frameworks for mul-
tiagent systems (Brahms and Jason/AgentSpeak); we present our solution and
provide links to our open source software in Section 4.

2. An Overview of MQTT

The Message Queue Telemetry Transport (MQTT) is a lightweight protocol ini-
tially developed for wireless sensor networks [19] and running on top of TCP/IP
connections.

MQTT messages are characterised by a topic and by a Quality of Service
(QoS). A broker is required to dispatch messages from publishers to subscribers.
When a client connects to the broker, it is identified by an ID and it can per-

M. Bottone et al. / From Raw Data to Agent Perceptions 67



form the following actions: connect, disconnect, subscribe (to a topic), unsub-

scribe (from a topic) and publish a message under a certain topic and at a given

QoS. Topics are organised in a hierarchy: for instance, the message t1/t2/t3/t4

has t1 has main topic, t2 as subtopic, t3 as subsubtopic, etc.. Subscribers can

specify patterns using the symbols + (matching one occurrence of a topic) and #

(matching any number of topics). For instance, t1/#/t4 will match t1/t2/t3/t4,

but t1/+/t4 will not.

MQTT provides three levels of Quality of Service:

• Level 0: the message is sent at most once (either by the client or by the

broker), with no guarantee of delivery.

• Level 1: the message is sent at least once, until a confirmation is received.

• Level 2: the message is sent exactly once.

Several open source implementations are available, both for brokers and for

clients. In our experiments we have employed the on-line broker HiveMQ2 and

the associated on-line MQTT client3. The latter allows both subscription and

publishing of messages. A local broker can also be implemented using the Python-

based tool Mosquitto4.

For the purposes of this work we will assume that a broker is available and we

will employ the MQTT Java library Paho5, which “provides open-source client im-

plementations of MQTT messaging protocols aimed at new, existing, and emerg-

ing applications for Machine-to-Machine (M2M) and Internet of Things (IoT)”.

In particular, we employ version 1.0.2 of the jar library6. We refer to the bridge

code7 for the details of how to implement the MQTT publish-subscribe client and

listener. An overview of our bridging solutions is given in Figure 1.

Figure 1. Left: Jason bridge. Right: Brahms bridge.

2http://broker.hivemq.com
3http://www.hivemq.com/demos/websocket-client/
4http://mosquitto.org/
5http://www.eclipse.org/paho/
6https://repo.eclipse.org/content/repositories/paho-releases/org/eclipse/paho/

org.eclipse.paho.client.mqttv3/1.0.2/org.eclipse.paho.client.mqttv3-1.0.2.jar
7http://www.rmnd.net/MQTTBridges/

M. Bottone et al. / From Raw Data to Agent Perceptions68



3. Modelling Multiagent Systems

An agent is usually considered to be an entity with one or more of the follow-
ing properties: autonomy, social ability, reactivity, pro-activity [11]. As originally
observed by McCarthy in his seminal paper [20], single and multiagent systems
are used in a number of areas in Computer Science because humans have a natu-
ral attitude to ascribe mental qualities to complex systems to better understand
and model their behaviour. Intelligent Environments are a prototypical domain
for multiagent systems, as complex systems such as a robot in a domestic envi-
ronment could be easily characterised by means of its (and of the surrounding
humans) beliefs, intentions and desires (BDI). A number of BDI frameworks ex-
ist: in the following subsections we introduce Brahms [21] and AgentSpeak/Ja-
son [22]. We have chosen these two examples because they are representative of
two approaches to BDI architectures: Jason/AgentSpeak is essentially a rule-based
system that makes use of the notion of planning; Brahms, on the other hand, is
a Java-like modelling environment closer to the possible implementation logic of
complex scenarios.

3.1. Jason/AgentSpeak

The underlying structure for AgentSpeak [22] is the concept of a reasoning cycle:
an agent has beliefs, based on what it perceives and communicates with other
agents; beliefs can produce desires, intended as states of the world that the agent
wants to achieve; the agent deliberates on its desires and decides to commit to
some; desires to which the agent is committed become intentions, to satisfy which
the agent executes plans that lead to action. The behaviour of the agent (i.e.,
its actions) is thus explained or caused by what it intends (i.e., the desires it
decided to pursue). Ideally, within the BDI architecture, agents should react to
changes in their environment as soon as possible while keeping their proactive
(i.e., desires-oriented) behaviour.

AgentSpeak(L) [22] is an abstract declarative programming language for im-
plementing BDI agents with Prolog-like instructions, which can be extended to fit
specific needs. Its syntax defines agent programs as a set of logical beliefs, rules
and plans, and is formally defined in the following way.

For S a finite set of symbols including predicates, actions, and constants, and
V a set of variables, one can define vectors of terms in first-order logic:

• If b is a predicate symbol and t a term, we define b(t) to be a belief atom.
• if bA(t) and bB(t) are belief atoms, where A and B can be conjunctions,

disjunctions or negations of belief literals, then the rule bA(t) : − bB(t)
describes how the latter is inferred from the former.

• If g(t) is a belief atom, then !g(t) and ?g(t) are goals, !g(t) denoting an
achievement goal and ?g(t) a test goal.

• If p(t) is a belief atom or goal, then +p(t) and −p(t) are triggering events
with + and − denoting respectively the addition and deletion of a belief
to be held or goal to be achieved.

• If a is an action symbol and t a term, then a(t) is an action.

M. Bottone et al. / From Raw Data to Agent Perceptions 69



• If e is a triggering event, c1, . . . , cm are beliefs and q1, . . . , qn are goals or
actions, the rule e : c1, . . . , cm ← q1, . . . , qn defines a plan, with c1, . . . , cm
its context and q1, . . . , qn its body.

Jason [23] programming revolves around plans, which are the closest thing
there is to a function or method in a declarative language. Actions in the body of
an expression are executed in sequence as a consequence of the triggering of the
plan, which can consist of belief addition and removal, requests to achieve and
unachieve (sub)goals, or built-in or user-defined internal actions that change the
environment or the agent’s mental state over time. In Jason, ground literals are
also extended by strong negation, annotations, and message passing.

Jason extends the AgentSpeak syntax into a flexible, extensible Java-based,
open-source development environment and interpreter, which is easily customis-
able. In particular, Jason allows for the definition of bespoke environments ex-
tending a base Environment class in Java. We exploit this characteristic in the
next section to interact with an MQTT infrastructure.

3.2. The Brahms Modelling Language

Brahms [21] is a Java-like, BDI-based modelling language for agents, with a spe-
cific target to model human-machine interactions. The Brahms language allows
for the representation of situated activities of agents in a geographical model of
the world. Situated activities are actions performed by the agent in some physical
and social context for a specified period of time. The execution of actions is con-
strained (a) locally, by the reasoning capabilities of an agent and (b) globally, by
the agents’ beliefs of the external world, such as where the agent is located, the
state of the world at that location and elsewhere, located artefacts, activities of
other agents, and communication with other agents or artefacts. The objective of
Brahms is to represent the interaction between people, off-task behaviours, multi-
tasking, interrupted and resumed activities, informal interactions and knowledge,
while being located in some environment representative of the real world.

Brahms models are described using a Java-like syntax that allows for inher-
itance. At each clock tick the Brahms simulation engine inspects the model to
update the state of the world, which includes all of the agents and all of the
objects in the simulated world. Agents and objects have states (factual proper-
ties) and may have capabilities to model the world (e.g., a display is modelled as
beliefs, which are representations of the state of the environment). Agents and
objects communicate with each other; the communications can represent verbal
speech, reading, writing, etc. and may involve devices such as telephones, radios,
displays, etc. Agents and objects may act to change their own state, beliefs, or
other facts about the world. Brahms can be extended using Java activities, which
are activities defined by the modeller using the Java programming language. We
employ this feature in the following section to bridge Brahms with MQTT.

4. From MQTT to Multiagent Systems (and Back)

In Section 2 and Section 3 we have introduced, respectively, a low-level com-
munication infrastructure and a high-level modelling, simulation and verification

M. Bottone et al. / From Raw Data to Agent Perceptions70



1 public class MQTTEnvironment extends Environment implements

MqttCallback {

2

3 public void init(String [] args) {

4 // [...]

5 try {

6 client = new MqttClient(MQTT_BROKER , "

JasonMQTTEnvironment");

7 client.connect ();

8 // [...]

9 client.setCallback(this);

10 client.subscribe("TOPIC /#");

11 } catch (Exception e) {

12 e.printStackTrace ();

13 }

14 }

15

16 public void messageArrived(String topic , MqttMessage message)

throws Exception {

17 // [...]

18 addPercept(Literal.parseLiteral(parse_message(topic ,message)));

19 // [..]

20 }

21 }

Figure 2. Jason - MQTT bridging environment.

environment that can be applied to Intelligent Environments. In this section we
present an approach to facilitate the interaction between these two levels.

4.1. Connecting MQTT with Jason

Jason is an example of multiagent framework in which modellers have access to the
execution engine in such a way that the environment (and thus, the beliefs of the
agents) can be modified by means of Java code. Specifically, a new Environment
can be created by subclassing the Jason class Environment.java. Figure 2 reports
excerpts from the implementation of a bridge between a MQTT infrastructure
and Jason. The new class MQTTEnvironment subclasses the default Environment
class and extends the initialisation method (line 3) with the connection to a
MQTT broker and the subscription to appropriate topics (lines 9 and 10). The
key method here is messageArrived on line 16: this method is invoked when
a message arrives from the broker. The message is parsed appropriately with
the method parse_message (not reported here) and a new percept is created in
Jason (line 18). This percept may result in a new belief in an agent and give
rise to new intentions. The code for this example is available at http://www.

rmnd.net/MQTTBridges/. This environment has been employed to monitor the
trustworthiness of a monitoring infrastructure for an air conditioning system, as
described in [24], scaling to several hundreds of sensors.

Similarly, the Environment can be extended in a very simple way with new ac-
tions that can be invoked by agents when they want to publish a MQTT message.
We refer to the code available online for additional details.

M. Bottone et al. / From Raw Data to Agent Perceptions 71



4.2. Connecting MQTT with Brahms

Brahms is a prototype of a framework in which developers are not allowed to
modify the state of agents directly. This means that it is not possible to create new
beliefs automatically whenever a new MQTT message is received. To address this
issue we have created an intermediate store for MQTT messages, which should be
run in parallel with Brahms. Even if beliefs cannot be created automatically, as
described above Brahms can be extended with Java actions that can be invoked by
agents. Our idea is to use these actions to query the external store. The latter, in
turn, acts as a buffer between the MQTT broker and the (asynchronous) actions
of Brahms’ agents.

Figure 3 reports excerpts of our implementation (the full code is available at
http://www.rmnd.net/MQTTBridges). Notice that, differently from the case of
Jason described above, this code now runs independently from Brahms and it is
not an extension of any of the Brahms classes. Similarly to the Jason Environ-
ment, the class MQTTStore implements the interface MqttCallback to be able to
subscribe to messages (line 1). This new store starts a TCP socket (defined in
line 3, standard constructor code omitted but available online). The constructor
method starting at line 9 establishes a connection with the broker and subscribes
to appropriate topics. Also, it creates an empty list of MQTT messages. Messages
received from the broker and corresponding to the appropriate topic are added
to this list using the method messageArrived (lines 25 to 28). The method run

is the method invoked by the TCP server whenever a new connection is made to
this class. Essentially, this is the method invoked by Brahms Java activities to
send and receive messages. To send a message, a Brahms activity needs to pro-
vide a topic and an actual message. When a Brahms activity requests the stored
messages, the content of the list mQTTMessages (line 6) is returned and the list
is emptied. This approach makes the class MQTTStore a buffer between the bro-
ker and the Brahms running instance, given that it is not possible to implement
MqttCallback directly in Brahms.

We are currently using this approach to simulate and verify an avionic sce-
nario in which human pilots and air traffic controllers are modelled and verified
in Brahms, while traffic originating from Unmanned Aerial Vehicles (UAVs) is
implemented using standard sensors and actuators communicating with MQTT.
Our extensions allows Brahms to interact directly with UAVs using their actual
code. This allows us to perform detailed simulations and verification, using the
approach described in [25].

5. Conclusions

The correctness and reliability of Intelligent Environments is paramount if they
have to operate for and in cooperation with humans. As described above, a num-
ber of approaches have addressed the problem of verification for Intelligent Envi-
ronments using multiagent systems. These approaches, however, operate at a level
of abstraction that is difficult to relate automatically with the actual protocols
used to control sensors and actuators.

M. Bottone et al. / From Raw Data to Agent Perceptions72



1 public class MQTTStore implements MqttCallback {

2

3 ServerSocket incomingSocket;

4 private MqttClient mQTTClient;

5 // Incoming MQTT messages are stored here

6 LinkedBlockingQueue <String > mQTTMessages = null;

7 // [...]

8

9 public MQTTStore () {

10 // [...]

11 mQTTClient = new MqttClient(BROKER_ADDRESS , CLIENT_NAME);

12 mQTTClient.connect ();

13 mQTTClient.setCallback(this);

14 mQTTClient.subscribe(SUBSCRIBED_TOPIC+"/#");

15 // [..]

16 mQTTMessages = new LinkedBlockingQueue <>();

17 // [...]

18 }

19

20 public void run() {

21 // Here: wait for connections and return the

22 // list of MQTT messages received

23 }

24

25 @Override

26 public void messageArrived(String topic , MqttMessage message) {

27 mQTTMessages.add(topic+"�"+new String(message.getPayload ()));

28 }

29 }

Figure 3. Brahms - MQTT bridging environment.

In this paper we have described an approach to create a connection between
these two levels. In particular, we have shown how the MQTT protocol used as
a standard in many applications for the Internet of Things can be connected to
BDI-based frameworks for multiagent systems. We have shown how to embed
MQTT in Jason/AgentSpeak, a Prolog-like modelling language and supporting
environment. This solution has allowed us to monitor the correct behaviour of an
air conditioning system using the high-level rules described in [24]. We have also
developed a second mechanism based on a TCP-based message store that can be
used for multiagent frameworks that do not allow a direct interaction with MQTT.
This is the case for the Brahms framework discussed above, but we remark that
our store is generic and can be used by other multiagent system infrastructures.
The use of Brahms has allowed us to simulate and verify an avionic scenario
involving high-level models of pilots and air traffic controllers, and also UAVs
operating using MQTT. We have released the full source code of our bridges with
the hope that it will be used by the community of researchers in the area of
reliable Intelligent Environments.

We are currently working at adapting our approach to other multiagent mod-
elling frameworks, in particular NetLogo and Repast Simphony, and at incorpo-
rating efficient abstraction techniques based on symbolic execution for the verifi-
cation step.

M. Bottone et al. / From Raw Data to Agent Perceptions 73



References

[1] L. Atzori, A. Iera, and G. Morabito. The Internet Of Things: A Survey. Computer
Networks, 54(15):2787–2805, 2010.

[2] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung. A Survey on the
IETF Protocol Suite for the Internet of Things: Standards, Challenges, and Opportunities.
Wireless Communications, IEEE, 20(6):91–98, 2013.

[3] J. Kim, J. Lee, J. Kim, and J. Yun. M2M Service Platforms: Survey, Issues, and Enabling
Technologies. Communications Surveys & Tutorials, IEEE, 16(1):61–76, 2014.

[4] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. Interacting with the SOA-
based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of
Web Services. Services Computing, IEEE Transactions on, 3(3):223–235, 2010.

[5] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP),
2014.

[6] G. Barbon, M. Margolis, F. Palumbo, F. Raimondi, and N. Weldin. Taking Arduino
to the Internet of Things: The ASIP Programming Model. Computer Communications,
89-90:128–140, 2016.

[7] K. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Systems. SIGOPS
Oper. Syst. Rev., 21(5):123–138, November 1987.

[8] M. Collina, G. E. Corazza, and A. Vanelli-Coralli. Introducing the QEST broker: Scaling
the IoT by bridging MQTT and REST. In Personal Indoor and Mobile Radio Commu-
nications (PIMRC), 2012 IEEE 23rd International Symposium on, pages 36–41. IEEE,
2012.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

[10] T. Sheltami, A. Al-Roubaiey, A. Mahmoud, and E. Shakshuki. A publish/subscribe mid-
dleware cost in Wireless Sensor Networks: a review and case study. In Electrical and Com-
puter Engineering (CCECE), 2015 IEEE 28th Canadian Conference on, pages 1356–1363.
IEEE, 2015.

[11] M. J. Wooldridge. An Introduction to MultiAgent Systems (2nd Ed.). Wiley, 2009.
[12] R. Stocker, L. Dennis, C. Dixon, and M. Fisher. Logics in Artificial Intelligence: 13th Eu-

ropean Conference, JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings,
chapter Verifying Brahms Human-Robot Teamwork Models, pages 385–397. Springer,
Berlin, Heidelberg, 2012.

[13] M Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. Koay, and K. Dautenhahn.
Formal Verification of an Autonomous Personal Robotic Assistant. Formal Verification
and Modeling in Human-Machine Systems, 2014.

[14] N. S. Rungta, G. Brat, W. J. Clancey, C. Linde, F. Raimondi, C. Seah, and M. Shafto.
Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and
Automated Systems. In Proceedings of the 3rd International Conference on Application
and Theory of Automation in Command and Control Systems, ATACCS ’13, pages 27–37,
New York, NY, USA, 2013. ACM.

[15] R. Stocker, N. S. Rungta, E. Mercer, F. Raimondi, J. Holbrook, C. Cardoza, and
M. Goodrich. An Approach to Quantify Workload in a System of Agents. In Proceed-
ings of the 2015 International Conference on Autonomous Agents and Multiagent Sys-
tems, pages 1041–1050. International Foundation for Autonomous Agents and Multiagent
Systems, 2015.

[16] T. Chen, G. Primiero, F. Raimondi, and N. S. Rungta. A Computationally Grounded,
Weighted Doxastic Logic. Studia Logica, pages 1–25, 2015.

[17] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres. Formal Verification of
Autonomous Vehicle Platooning, 2016.

[18] S. Bucheli, D. Kroening, R. Martins, and A. Natraj. From AgentSpeak to C for Safety
Considerations in Unmanned Aerial Vehicles. In C. Dixon and K. Tuyls, editors, Towards
Autonomous Robotic Systems - 16th Annual Conference, TAROS 2015, Liverpool, UK,
September 8-10, 2015, Proceedings, volume 9287 of Lecture Notes in Computer Science,
pages 69–81. Springer, 2015.

M. Bottone et al. / From Raw Data to Agent Perceptions74



[19] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. MQTT - A publish/subscribe protocol
for Wireless Sensor Networks. In Communication Systems Software and Middleware and
Workshops (COMSware) 2008. 3rd international conference on, pages 791–798. IEEE,
2008.

[20] J. McCarthy. Ascribing Mental Qualities to Machines. In M. Ringle, editor, Philosophical
Perspectives in Artificial Intelligence, pages 161–195. Humanities Press, 1979.

[21] W. J. Clancey, P. Sachs, M. Sierhuis, and R. Van Hoof. Brahms: Simulating Practice for
Work Systems Design. International Journal of Human-Computer Studies, 49(6):831–865,
1998.

[22] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge. Programming Multi-Agent Systems in
AgentSpeak Using Jason (Wiley Series in Agent Technology). John Wiley & Sons, 2007.

[23] J.F. Hübner and R.H. Bordini. Jason. http://jason.sourceforge.net.
[24] M. Bottone, G. Primiero, F. Raimondi, and V. De Florio. A model for trustworthy or-

chestration in the Internet of Things. In Proceedings of Intelligent Environments 2016,
2016.

[25] J. Hunter, F. Raimondi, N. S. Rungta, and R. Stocker. A Synergistic and Extensible
Framework for Multi-agent System Verification. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages 869–
876, Richland, SC, 2013. International Foundation for Autonomous Agents and Multiagent
Systems.

M. Bottone et al. / From Raw Data to Agent Perceptions 75


