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Abstract
Aims SARS–CoV-2 causes severe respiratory syndrome (COVID-19) with high mortality due to a direct cytotoxic viral effect 
and a severe systemic inflammation. We are herein discussing a possible novel therapeutic tool for COVID-19.
Methods Virus binds to the cell surface receptor ACE2; indeed, recent evidences suggested that SARS–CoV-2 may be 
using as co-receptor, when entering the cells, the same one used by MERS–Co-V, namely the DPP4/CD26 receptor. The 
aforementioned observation underlined that mechanism of cell entry is supposedly similar among different coronavirus, that 
the co-expression of ACE2 and DPP4/CD26 could identify those cells targeted by different human coronaviruses and that 
clinical complications may be similar.
Results The DPP4 family/system was implicated in various physiological processes and diseases of the immune system, and 
DPP4/CD26 is variously expressed on epithelia and endothelia of the systemic vasculature, lung, kidney, small intestine and 
heart. In particular, DPP4 distribution in the human respiratory tract may facilitate the entrance of the virus into the airway 
tract itself and could contribute to the development of cytokine storm and immunopathology in causing fatal COVID-19 
pneumonia.
Conclusions The use of DPP4 inhibitors, such as gliptins, in patients with COVID-19 with, or even without, type 2 diabetes, 
may offer a simple way to reduce the virus entry and replication into the airways and to hamper the sustained cytokine storm 
and inflammation within the lung in patients diagnosed with COVID-19 infection.
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Introduction

The novel beta-coronavirus 2019 (SARS–CoV-2) has 
recently emerged as a threat for human kind, causing severe 
respiratory syndrome (COVID-19), associated with other 
systemic complications (i.e., intestinal infections, renal and 
heart failure) and with a relative high mortality [1]. This 
pathology has emerged from Wuhan City, in the China 
region of Hubei, and then spreading in Europe, Asia and 
USA [1]. This new pandemia follows the severe acute coro-
navirus respiratory syndrome of 2002–2003 (SARS–CoV), 
observed in the Guangdong Province of China and the 
Middle East respiratory syndrome coronavirus of 2012 
(MERS–Co-V), mainly affecting the Arabian peninsula [1].

Coronaviruses tropism is primarily determined by the 
ability of the spike (S) entry glycoprotein to bind to a cell 
surface receptor. It is well reported now that SARS–CoV-2 
may use angiotensin-converting enzyme 2 (ACE2), the same 
receptor of SARS–CoV, to infect humans [2]. However, 
recent evidences demonstrated that SARS–CoV-2 binds to 
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DPP4/CD26 when entering into cells of the respiratory tract 
[3]. It appears that the interaction between SARS–CoV-2 
spike glycoprotein and the human DPP4/CD26, also known 
as dipeptidyl peptidase-4 (DPP4), is a key factor for the 
hijacking and virulence [3]. Interestingly, another recent 
study clearly reported a correlation between DPP4 and 
ACE2, suggesting that both membrane proteins are relevant 
in the pathogenesis of virus entry [4]. The co-expression 
of ACE2 and DPP4/CD26 as receptors of spike glycopro-
teins could hypothesize that different human coronaviruses 
(CoVs) target similar cell types across different human tis-
sues and explain the presence of similar clinical features in 
patients infected with different CoVs. In another case, it was 
shown that DPP4 acted for CoV co-receptor, thus suggesting 
a potential similar mechanism of entry for SARS–CoV-2 [5].

Dipeptidyl peptidase-4 (DPP4), also known as CD26, is 
a widely expressed serine membrane-anchored ectopepti-
dase that exists on the surface of different cell types and 
cleaves dipeptides from the N-terminus, where a proline 
residue is in a penultimate position [6]. Besides its catalytic 
activity, DPP4 also acts as a binding protein and a ligand of 
extracellular factors and a large number of molecules can 
be cleaved by DPP4. This peptidase transmits intracellular 
signals through a small intracellular tail that cleave proline 
and more rapidly alanine and glycine [7, 8]. In particular, 
post-translational N-terminal hypersialylation may be impli-
cated in DPP4 trafficking and virus aggressivity [9, 10] and, 
as already demonstrated in MERS–Co-V and porcine res-
piratory coronavirus, could involve the N-glycan binding 
interfaces of DPP4 [11].

Clinical and experimental research over the past 30 years 
has clearly suggested that the DPP4/CD26 pathway is 
involved in various physiological processes and diseases of 
the immune system [12]; not surprising for a molecule as 
CD26 that was originally described as a surface marker of 
T lymphocytes [13]. DPP4/CD26 transmembrane glycopro-
tein is not only expressed by various cells of the immune 
system, but also by epithelial and endothelial cells of sys-
temic vasculature, by the endothelial cells of venules and 
capillaries, by the kidney, small intestine, lung, pancreas, 
spleen and heart, by the vascular smooth muscle cells, and 
by monocytes and hepatocytes and is soluble in the plasma 
[6, 7, 14]. In rats, lung appeared to be organ with the second 
highest expression of DDP4/CD26 [15]; in particular, lung 
parenchyma, interstitium and pleural mesothelia were shown 
to be relative rich in DPP4 protein and are the lung area most 
affected by the CoVs-related injuries [16, 17]. The relation 
between DPP4/CD26 expression and site of CoVs-related 
injuries is overall well demonstrated in MERS–Co-V infec-
tion, where DPP4 could directly influence the kinetic of lung 
inflammation and may act itself as a proinflammatory sign-
aling molecule [16, 18]. In COVID-19, although lacking of 
extensive pathological data, it appeared to be confirmed the 

aforementioned dynamic of correlation between DPP4/CD26 
localization and site of lung inflammation [3]. Interestingly, 
both MERS–Co-V and SARS–CoV-2 predominantly infect 
lower airways and may cause acute respiratory distress syn-
drome (ARDS) and irreversible fatal pneumonia [17, 19, 
20]. Furthermore, both SARS–CoV and MERS–Co-V are 
characterized by an important cytokine storm, with a simi-
lar immunopathology [21]. Virus infection and replication 
cause delayed interferon response, severe inflammatory 
monocyte macrophage and neutrophil infiltration and uncon-
trolled flood of proinflammatory cytokines and chemokines 
[22]. Moreover, there are evidences of diffuse vascular 
leakage, endothelial and epithelial apoptosis and of a dif-
fuse microangiopathy with ischemic and thrombotic lesions 
that induce alveolar edema and collapse [22]. This may be 
a dramatic link between COVID-19 and diabetes, because 
the latter are more susceptible to abnormal coagulation and 
fibrinolysis, to impaired tissue remodeling and to multiorgan 
fibrosis and failure [23–27]. Taken together, all these find-
ings clearly indicated that the aggressive impact of CoVs 
(SARS–CoV, MERS–Co-V and COVID-19) on tissues and 
organs is preferentially modulated, or least co-modulated, 
by DPP4/CD26 [28] and that DPP4/CD26 inhibition could 
antagonize this mechanism. DPP4/CD26 system modulation 
may be one of the new approaches to be employed for the 
pharmacologic treatment of COVID-19. The large amount 
of data available on the use of DPP4 inhibitors could support 
us to give a new strategic direction in COVID-19 treatment 
[6, 12, 29–33]. The pharmacological possibility to inhibit 
DPP4/CD26 activity by using commercial DPP4 inhibitors 
or gliptins (e.g., sitagliptin, linagliptin, vildagliptin and oth-
ers) may represent a valid weapon to block the host CD26 
receptor, thus disabling SARS–CoV-2 way to enter T cells 
[3, 34]. Along this line of investigation, we recently started 
at Sacco Hospital in Milan and at San Matteo Hospital in 
Pavia, the clinical trial SIDIACO (sitagliptin in diabetic 
patients with COVID-19). SIDIACO is a case–control study, 
in which we will compare the clinical response of diabetic 
patients infected by COVID-19 during a 10 days course 
treatment with 100 mg Sitagliptin.

Several data suggested that the latter immune pharma-
cological activity of DDP4 seems to be independent of its 
catalytic activity [35] and for this reason unaffected by the 
use of inhibitors of the enzymatic activity of DPP4 [36]. 
Other scientific evidences supported that the use of DPP4/
CD26 inhibitors may act to antagonize airway inflamma-
tion [37]. DPP4 inhibition by gliptins may antagonize 
SARS–CoV-2 virulence and multiorgan acute and chronic 
damage by means of several additive mechanisms that 
involve: (1) reduction of cytokines overproduction [12, 
30, 38, 39]; (2) downregulation of macrophages activity/
function [40]; (3) enhancement of GLP-1 anti-inflamma-
tory activity [41, 42], particularly in those aged patients 
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with COVID-19 [43]; (4) stimulation of direct pulmonary 
anti-inflammatory effects [44, 45].

In summary, we hypothesize (Fig. 1) that DPP4/CD26 
inhibition with gliptins, and particularly with those with 
more highly selectivity for DPP4 [46, 47], could represent 
a new strategy to support the treatment of COVID-19 in 
patients with or without diabetes.
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Fig. 1  Working hypothesis on the possible role of DPP4 inhibition (DPP4i) with gliptins to antagonize COVID-19 virulence and immunopathol-
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