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There is extensive evidence supporting the interplay between metabolism and immune

response, that have evolved in close relationship, sharing regulatory molecules and

signaling systems, to support biological functions. Nowadays, the disruption of this

interaction in the context of obesity and overnutrition underlies the increasing incidence

of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During

evolution, the interplay between metabolism and reproduction has reached a degree

of complexity particularly high in female mammals, likely to ensure reproduction only

under favorable conditions. Several factors may account for differences in the incidence

and progression of inflammatory-based metabolic diseases between females and males,

thus contributing to age-related disease development and difference in life expectancy

between the two sexes. Among these factors, estrogens, acting mainly through Estrogen

Receptors (ERs), have been reported to regulate several metabolic pathways and

inflammatory processes particularly in the liver, the metabolic organ showing the highest

degree of sexual dimorphism. This review aims to investigate on the interaction between

metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling

in counteracting the development and progression of non-alcoholic fatty liver disease

(NAFLD), a canonical example of metabolic inflammatory-based liver disease showing

a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation

of hepatic metabolism and inflammation may provide the basis for the development of

sex-specific therapeutic strategies for the management of such an inflammatory-based

metabolic disease and its cardio-metabolic consequences.
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INTRODUCTION

Liver Metabolism and Inflammation: Two Sides of the Same Coin
The liver is one of the most complex organs in the body, performing a multitude of functions,
including the macronutrient metabolism, glucose, lipid and cholesterol homeostasis, protein and
amino acidmetabolism, detoxification and drugmetabolism (1). The liver is also an immunological
organ, being responsible for the production of acute phase proteins, complement components,
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cytokines and chemokines, and contains large, diverse
populations of resident immune cells (2). Under physiological
conditions, the liver is constantly exposed to dietary and gut-
derived bacterial products with inflammatory potential and
is engaged in tissue remodeling, all process requiring a tight
regulation of the inflammatory response to maintain tissue
and organ homeostasis and to redistribute the energy resources
during the rising of an inflammatory response (3–5).

A close and coordinated regulation of metabolic and immune
responses has been conserved through evolution, with lower
and higher organisms sharing common ancestral structures and
common key regulatory molecules and signaling systems (6).
However, the integration between metabolic and inflammatory
pathways have been set up in the context of nutrient limitations
and have not evolved and adapted to the current habits and
lifestyles, where overnutrition and the reduced physical activity
lead to chronic disturbance of metabolic homeostasis and to
aberrant immune responses (4, 7). The metabolic overload
and the lack of metabolic homeostasis typical of obesity and
obesity-associated metabolic diseases trigger a sustained and
chronic inflammatory response, that, by converse, can disrupt
systemic metabolic functions, thus fostering a vicious cycle
that favors the progression of metabolic diseases (4). In the
liver, the inability to resolve inflammation may lead to chronic
pathological inflammation and to a disrupted tissue homeostasis,
which can promote hepatic steatosis, fibrosis, cirrhosis, and liver
failure (3, 5, 8–10).

Although the higher prevalence of obesity among female
population, women result to be somewhat protected from the
obesity-associated cardio-metabolic consequences, such as non-
alcoholic fatty liver disease (NAFLD), at least until menopause
(11). The reason of that likely relies on the tight regulation of
metabolic and inflammatory processes that may have reached its
maximum degree of complexity in the liver of female mammals,
where the regulation of hepatic metabolism is under the control
of sexual hormones, estrogens in particular, and is subjugated to
the reproductive needs (12–15). In view of the tight link between
energy homeostasis and reproduction, liver diseases show a sex-
specific prevalence (16, 17) and are associated with reproductive
dysfunctions in women (14, 18). Nowadays, changes in dietary
and lifestyle habits as well as the increased lifespan of women, that
spendmore than 1/3 of their lives in post-menopause, can explain
the increased incidence in female population of cardio-metabolic
diseases, which are previously considered male-prevalent (16,
19, 20). In this view, research programs aimed to unravel the
role of estrogen signaling in the regulation of metabolic and
inflammatory processes may have a significant impact on the
design of new therapies that can counteract the development of
NAFLD and the associated cardio-metabolic consequences in a
sex-specific fashion.

NAFLD, a Canonical Example of Metabolic
Inflammatory-Based Liver Disease
Showing a Sex-Specific Prevalence
With respect to young, fertile women, men and post-menopausal
women show an increased incidence of metabolic and

inflammatory-based liver diseases (14, 18, 21). Among them,
a canonical example is NAFLD, a syndrome characterized by
excessive triglyceride (TG) accumulation within hepatocytes
(22), that has reached epidemic proportions and represents an
increasing public health issue due to its emerging association
with several extra-hepatic diseases (23, 24), cardiovascular
diseases (CVDs) in particular (25, 26). Indeed, cardiovascular
mortality represents the commonest cause (45%) of death in
NAFLD patients, followed by cancer (36%) and then liver-related
mortality (7%) (27).

NAFLD is closely linked with peripheral insulin resistance and
hepatic insulin resistance (28–30), a condition where insulin fails
to suppress hepatic glucose production (HPG, which accounts
for 90% of endogenous glucose production) but promotes lipid
synthesis leading to hyperglycemia, hypertriglyceridemia and
hepatic steatosis (31). Therefore, there is a significant correlation
between HPG and the extent of liver fat in NAFLD patients (32)
as well as between NAFLD and other metabolic insulin-resistant
disorders such as type 2 diabetes mellitus (T2DM) (33, 34) and
sarcopenia (35). Notably, women show an improved glycemic
control, a greater peripheral and hepatic insulin sensitivity and a
reduced HPG with respect to men (36–38), likely a consequence
of a sex-dimorphic regulation of glucose homeostasis (39),
to which the hepatic signaling of sexual hormones strongly
contributes (40, 41), thus leading to a different susceptibility to
NAFLD between the two sexes.

In the liver of NAFLD patients, TG accumulation it is due to
increased de novo lipogenesis (DNL) (42, 43), increased delivery
of fatty acids (FAs) to the liver (42, 44), and decreased lipid
clearance consequent to impaired FA oxidation and lower lipid
secretion (45, 46). Hepatocellular damage and fat-derived factors
mediate the local activation of a pro-inflammatory response by
hepatocytes and non-parenchymal cells, including Kupffer cells
(KCs) and hepatic stellate cells (HSCs) (4, 47–49), that promote
the recruitment of other immune cells, including neutrophils,
T-lymphocytes and, mainly, macrophages (50).

The impaired mitochondrial oxidation (42, 51) and the up-
regulation of both peroxisomal β-oxidation (52) and microsomal
ω-oxidation (53) of FAs lead to chronic oxidative stress and
result in the generation of reactive oxidative species (ROS)
within the hepatocytes (42, 45). In addition to mitochondria—
that are considered the most relevant source of ROS—and to
peroxisomes and microsomes, the endoplasmic reticulum stress
and enzymes as NADPH oxidase (NOX), cytochrome P450
2E1 (CYP2E1), cyclooxygenases, and lipoxygenases also produce
ROS (54). According to the most valuable theories (22), the
production of lipotoxic lipid intermediates and the excessive
production of ROS further trigger a pro-inflammatory response
that contributes to the progression of NAFLD to non-alcoholic
steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular
carcinoma (HCC) (46, 55, 56). Pro-inflammatory cytokines
released by immune cells intensify the inflammatory process, that
hinders the liver to orchestrate a proper tissue regeneration by
replacing the hepatocytes subjected to cell death or apoptosis,
as occurs under physiological conditions (57). Possibly as an
unsuccessful effort against liver injury and tissue regeneration,
HSCs become activated and differentiate into myofibroblasts,
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that, in turn, express actin and diverse types of collagen,
leading to extracellular matrix deposition and fibrosis and liver
degeneration (58–60).

In the presence of increased flux of free fatty acids (FFAs) and
of chronic, low-grade inflammation, the liver acts as both a target
of and a contributor to systemic chronic inflammation, triggering
or boosting the progression of NAFLD and several extra-hepatic
diseases (23), including atherosclerosis (61–63), cardiovascular
diseases (62–64), chronic kidney disease (65), osteoporosis (66),
and inflammatory bowel disease (67).

From Metabolism to Liver Injury: Role of
Obesity and Nutrients in NAFLD
Development
Although several factors might contribute to hepatic steatosis,
including genetic and epigenetic factors (68, 69), obesity
represents the main trigger of NAFLD development and
progression. However, independently of energy intake, also the
macronutrient composition of the diet can be associated with
NAFLD/NASH development (70). Different epidemiological
studies have, therefore, demonstrated that dietary habits may
directly promote NAFLD/NASH, by modulating hepatic TG
accumulation and antioxidant activity and, indirectly, by
affecting insulin sensitivity and the postprandial TG metabolism
(70). Several studies have identified the overconsumption of fats
(saturated fats and trans-fats, in particular) and sugars (fructose,
in particular) as the main nutritional mediators of NAFLD
development (71–73), while the role of proteins and amino acids
in NAFLD etiology has been less investigated and still raises
controversies (70).

Obesity
The rising trends in obesity has been linked with the increase in
the incidence and severity of NAFLD, with an estimated global
prevalence of 25–30% worldwide, rising up to 90% in morbidly
obese patients (26, 74). In obese NAFLD patients, ∼60% of
hepatic FAs are derived from FFAs released by the adipose tissue
as a consequence of an enhanced lipolysis and taken up by the
liver via the increased uptake mediated by CD36 (cluster of
differentiation 36) (75–77). To a less extent, hepatic lipid deposits
derive from dietary FAs (∼15%) and from increased synthesis
of new lipids (∼25%) from ingested carbohydrates that reach
to a greater extent the liver due to the insulin resistance of the
muscle (43, 75, 78). The exposure of hepatocytes to high lipid and
carbohydrate levels promotes lipotoxicity and glucotoxicity, that,
in turn, lead to mitochondrial defects, endoplasmic reticulum
stress and oxidative stress (45, 79). The ectopic accumulation of
lipid toxic intermediates triggers the activation of inflammatory
pathways, cellular dysfunction, and lipoapoptosis, all features
favoring NAFLD progression and liver injury (22, 80, 81).

Obesity also affects the liver through the unbalanced secretion
of adipokines, exerting different effects on insulin resistance,
hepatic steatosis, inflammation and fibrosis (82). For example,
the obesity-associated reduction of adiponectin levels promotes
insulin resistance and hepatic steatosis, while the increased levels
of leptin foster hepatic inflammation (82). In the adipose tissue
of obese people, the infiltration and activation of immune cells

(macrophages, B-lymphocytes, T-lymphocytes and neutrophils)
that produce pro-inflammatory cytokines (e.g., interleukin 1β,
IL-1β; interleukin 6, IL-6; tumor necrosis factor-alpha, TNF-
α) impair the dynamic antagonism between adipokines and
cytokines and facilitate the progression of steatosis, inflammation
and fibrosis (82).

Under obesogenic-like conditions, in addition to adipose
tissue, the impaired regulation of metabolic process and
signaling pathways in other tissues showing a strong interplay
with the liver, including the skeletal muscle (83–85) and the
gut-microbiota (86, 87), can further negatively affect the hepatic
metabolic homeostasis and boost the progression of NAFLD.

In addition to genetic factors (88, 89), estrogen signaling
strongly contributes to sex differences in obesity and associated
cardio-metabolic consequences such as NAFLD (20, 21, 39, 90–
93).With respect to pre-menopausal women, lean and obese men
tend to accrue more visceral fat, that, having a greater lipolytic
potential than subcutaneous adipose tissue, strongly contributes
to increased FFA flux to the liver, where FFAs mediate insulin
resistance and NAFLD pathogenesis (94, 95). After menopause,
there is a redistribution of fat toward visceral depots and a lower
inhibition of adipose lipolysis, all changes that fuel the FFA
flux to the liver and increase the risk of developing NAFLD in
post-menopausal women (92, 94).

Sex-specific and estrogen-mediated differences in obesity-
induced NAFLD are ascribable also to impaired regulation
of metabolic process in extrahepatic tissues showing a cross-
talk with the liver, such as the adipose tissue and the skeletal
muscle, that under obesogenic conditions display increased
insulin resistance and increased inflammation that might further
aggravate the hepatic dysmetabolism (96–106).

Dietary Sugars
Over the past century, the increased intake of added sugars,
fructose in particular, is associated with increased incidence
of hepatic steatosis and liver inflammation (107–109). Unlike
glucose, ingested fructose by-passes the rate-limiting step of
glycolysis and is preferentially metabolized by the liver, where
it stimulates hepatic DNL acting mainly through SREBP1c
(sterol regulatory element-binding protein 1c) and ChREBP
(carbohydrate responsive element-binding protein), inhibits
the mitochondrial β-oxidation of long-chain FAs, induces
endoplasmic reticulum stress, and promotes TG formation
and hepatic steatosis (73, 110, 111). Owing to the molecular
instability of its five-membered furanose ring, fructose promotes
protein fructosylation and formation of ROS, yielding to
hepatocellular damage and to the development of a pro-
inflammatory response (73).

Even after a single meal, fructose strongly up-regulates an
inflammatory cascade through increased hepatic JNK (c-Jun N-
terminal kinase) activity and induces hepatic insulin resistance,
all effects occurring specifically in hepatocytes (112). Recent
reports suggest that fructose can also induce liver inflammation
by acting directly on inflammatory cells, where it drives the
production of pro-inflammatory cytokines (IL-6 and IL-1β) that
further promotes an aberrant lipid metabolism (107, 109, 112,
113). The high intake of fructose can also lead to gut microbiota

Frontiers in Endocrinology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 572490

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Della Torre Estrogen Signaling and NAFLD

dysbiosis and contribute to inflammation, insulin resistance and
NAFLD progression (114).

The consequences of extended fructose consumption on liver
health are different between the two sexes, with males being more
responsive to fructose and showing higher hepatic postprandial
DNL and higher prevalence of NAFLD compared to females
(115–117). These differences can likely be a direct consequence
of the sex-specific modulation of glucose metabolism (39, 118)
and of the specific relevance of estrogen signaling in regulating
hepatic glucose metabolism and in promoting insulin sensitivity
(119–121), acting also through FGF21 (fibroblast growth factor
21) signaling (122, 123). Accordingly, high fructose intake
exacerbates the progression of NAFLD in ovariectomized (OVX)
female mice by enhancing liver cell destruction, macrophage
accumulation, and progression of fibrosis, all negative effects that
can be reverted by 17β-estradiol supplementation (121).

Dietary Fatty Acids
The increased intake of dietary FAs is strongly associated with
obesity and the development of obesity-associated metabolic
diseases, such as NAFLD (124–127). Dietary regimens enriched
in fats contribute to increase the hepatic pool of FAs, where
they promote DNL and the generation of lipotoxicity through
a sustained oxidation (128). Dietary FAs influence NAFLD
pathogenesis also by modulating the gene transcription of
specific enzymes and regulating various metabolic pathways
involved in lipid metabolism (129, 130). Modern western
diets are particularly enriched in saturated and trans FAs that
are particularly detrimental for hepatic health, because they
induce insulin resistance and fatty liver and promote liver
injury by altering the composition of plasma cell membrane,
thus impairing cellular homeostasis and amplifying the already
sustained inflammatory signaling, that, in turn, boosts insulin
resistance and apoptosis (127, 128, 131, 132). Conversely, diets
enriched in ω3 polyunsaturated FAs (ω3 PUFAs), such as
the Mediterranean diet (133), may be particularly effective
in counteracting the early stages of NAFLD (134), limiting
insulin resistance, oxidative stress, DNL and TG deposition in
the liver (135, 136) and preventing the development of liver-
associated cardio-metabolic diseases (137). ω3 PUFAs exert
anti-inflammatory actions by preventing the alteration of cell
membrane phospholipid composition and the disruption of lipid
rafts, by inhibiting the activation of NF-κB (nuclear factor-
kappa B), by reducing expression of inflammatory genes and
by activating PPARγ (peroxisome proliferator-activated receptor
γ) (138).

With respect to the female counterparts, men and male
rodents show a higher propensity of developing hepatic
steatosis/NAFLD that derives from the combination of increased
FA import, DNL, and storage of lipids within the liver and
lower dietary FA oxidation and secretion (91, 139). By comparing
control and LERKO (liver-specific Estrogen Receptor alpha KO)
mice, a recent study demonstrates that the liver ability of females
to cope with the excess of dietary lipids strongly relies on the
activity of hepatic ERα, that confers to females a higher metabolic
flexibility (91).

Different dietary fatty acid regimens can also change the
composition and the ratio of FAs in liver plasma cell membrane
in gender-specific manner, another mechanism that can further
explain the sex-specific incidence of NAFLD (140).

Furthermore, maternal high-fat diet can promote and even
program hepatic steatosis/NAFLD and liver inflammation of
offspring in a sexually dimorphic manner by altering gut
microbiota (141) that has been shown relevant for the
achievement of hepatic sexual dimorphism (142).

Dietary Amino Acids
While the hazardous effects of high-carbohydrate and high-fat
diets upon hepatic structure/function are well-recognized, the
potential effects of dietary regimens enriched in proteins and
amino acids (AAs) on hepatic health are partly clarified and still
raise controversies. Indeed, while several studies show a beneficial
role exerted by high-protein diets in reducing body weight and
in reverting hepatic steatosis, other studies suggest that high-
protein diets can instead promote the development of NAFLD
(143). The reasons of these contradictory effects on liver health
can be ascribable to differences in dietary regimens (e.g., diet
composition and protein source) and on the functional status of
the liver (143).

Among AAs, branched chain amino acids (BCAAs: leucine,
isoleucine, and valine), that account for 20% of total protein
intake (144), exert beneficial effects on hepatic health as they
alleviate hepatic steatosis and liver injury and prevent hepatic
fibrosis and the development of HCC in NASH mouse models
(145, 146). By contrast, elevated circulating BCAAs are strongly
associated with several metabolic disorders, including obesity and
insulin-resistant metabolic diseases (147, 148). NAFLD patients
show a low hepatic content of BCAAs, that changes with the
progression of the pathology, likely as a consequence of impaired
expression of hepatic BCAA-degrading enzymes (149, 150).
Furthermore, a recent study demonstrates that plasma BCAA
levels display sex-dimorphic changes with increasing severity
of NAFLD, independently of BMI, insulin resistance and age
(151), suggesting a sex-specific regulation of BCAA metabolism
and/or a sex-specific role of BCAAs in NAFLD development,
as supported by pre-clinical studies (91). Indeed, although their
causative or associative role has not yet clarified, among AAs
and several other metabolites, BCAAs result the pathway most
affected in the liver of a mouse model of diet-induced obesity
(91). Notably, the decrease in AAs and, especially, in BCAAs
correlates with increased lipid deposition in the liver of male, but
not female mice; in fact, when exposed to an excess of dietary
lipids, female mice, contrary to males, preserve the hepatic AA
homeostasis, an effect associated with the ability to counteract
liver lipid deposition (91), suggesting that the metabolism of
BCAAs might have a key role in driving hepatic steatosis in a
sex-specific fashion. The female-specific ability to preserve BCAA
homeostasis and counteract liver lipid deposition is dependent
on hepatic ERα, as it is lost in LERKO female mice (91), and it is
likely a consequence of an higher metabolic flexibility conferred
by hepatic ERα, that, in the female liver, adapts the hepatic
metabolism to hormonal status and to nutrient availability,
amino acids in particular (13, 15, 152, 153).
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Sex Differences in NAFLD Onset,
Development and Progression
NAFLD is more common in men, in whom it has a 2.0–
3.5-fold higher prevalence than in fertile women; however,
after menopause the incidence of NAFLD increases significantly
to reach the levels seen in men, owing to the putative
protective effect of estrogens (14, 17, 154). Indeed, gender-
specific prevalence of NAFLD is related to age: while men
commonly display an increasing prevalence of NAFLD during
adulthood from young to middle-age, the prevalence of NAFLD
in women occurs ∼10 years later than in men, rising after the
age of 50 years, peaking at 60–69 years, and declining after 70
years (16). This last trend indicates that the increased incidence
of NAFLD in aging women relies more on the lack of estrogens
than on aging per se, even though aging may exacerbate the
progression of NAFLD by negatively impacting on metabolic
(155) and inflammatory processes (156). According to this view,
young oophorectomized women (157) as well as young women
suffering of other reproductive dysfunctions characterized by
altered estrogen levels (such as Polycystic ovary syndrome,
PCOS) (14, 158) show increased incidence of NAFLD with
respect to young fertile women.

Even if the exact etiology of NAFLD in post-menopausal
women is still unclear, the association of NAFLD with the
cessation of ovarian activity and with other ovarian dysfunctions
such as PCOS (159) suggests that estrogens protect against
its development and progression. Notably, with respect to
their control counterparts, pre-menopausal, post-menopausal,
and PCOS women with NAFLD exhibit a significantly lower
concentration of serum 17β-estradiol, which is the principal
active estrogen (158). Accordingly, hormone replacement
therapy (HRT) reduces the risk of developing NAFLD for post-
menopausal women (16, 160).

In pediatric populations, NAFLD prevalence is higher in boys
than in girls (161), even though sex differences are less relevant
with respect to adult population, suggesting that the achievement
of complete sexual differentiation is required to accomplish the
sex-specific prevalence and features of such a pathology. Such
a hypothesis is sustained by several studies showing a strict
association between puberty and features of NAFLD (162) and
between earlier age at menarche and the prevalence of NAFLD
later in life (163–165).

Although the prevalence of NAFLD is undoubtfully higher
in men than women, less clear is the sex-specific incidence
of liver injury associated with NAFLD progression to NASH
and fibrosis. In fact, some studies suggest that women have
a lower risk of developing NASH and fibrosis (166–169),
while others do not find differences between the two sexes
(170, 171) or, even, indicate that women are more susceptible
than men to an inflammatory-driven degeneration of NAFLD
toward more harmful conditions (172–176). Most of these
studies, however, has several limitations and important potential
bias, as they do not differentiate between pre- and post-
menopausal women or do not often consider the timing/duration
of menopause, which may give confounding and contradictory
results (12). By converse, consistent with the hypothesis that

estrogens exert beneficial effects on liver health, menopause,
premature menopause and prolonged estrogen deficiency have
been independently associated with significant fibrosis in women
with NAFLD (177, 178).

NAFLD incidence is increased in obese people suffering of
other obesity-associated cardio-metabolic diseases; nevertheless,
several mechanistic and longitudinal studies have indicated that
NAFLD is an independent risk factor for atherogenesis (179–
181) and CVDs (23, 63, 182–184) apart from other metabolic
disorders. Although still debated, the causal relationship
independent of other metabolic risk factors seems to rely on the
systemic inflammatory milieu initiated in part by liver-secreted
cytokines and molecules (23, 63). In addition to enhanced
inflammation, a growing body of evidence indicates that, along
with NAFLD progression, the alteration of cholesterol and
lipoprotein metabolism (185–187) and the excessive generation
of ROS may lead to the accumulation of oxidized low-
density lipoprotein (ox-LDL) in the liver (188–190) and to
macrophages transformation into foam cells, which is a hallmark
of atherosclerosis.

Given such a correlation between NAFLD and CVDs, it is
not surprising that, while in the general population women
are less prone to CVDs under the age of 50 years, after
menopause, women lose this protection and show a higher
risk of developing NAFLD and cardio-metabolic associated
consequences (191–193).

Sex Differences in the Regulation of
Metabolism and Inflammation in the Liver
Sex-specific prevalence, progression and outcomes of hepatic
diseases and their associated co-morbidities might be considered
the resultant of sex differences typifying the male and female
liver phenotype.

The liver is the major metabolic organ in mammals with
the highest degree of sexual dimorphism (194, 195). Most of
the sex differences in liver gene expression are dictated by
the temporal pattern of circulating growth hormone (GH),
which is sex dependent (highly pulsatile in males and more
continuous in females) (196, 197) and under gonadal control
(198–200). GH regulates the sexually dimorphic patterns of
a large number of liver-expressed genes, including various
plasma and urinary proteins, cytochromes P450 (CYPs, which
contribute to sex differences in sex steroid hormonemetabolism),
enzymes devoted to steroid and foreign compound metabolism,
and various receptors and signaling molecules involved in a
broad range of physiological processes (194, 197, 201, 202).
GH pattern carries out its sexual differentiating action of liver
functions through multiple intracellular signaling pathways,
including the transcription factor signal transducer and activator
of transcription 5b (STAT5b) (203–205), hepatocyte nuclear
factors 3β, 4α and 6 (HNF3β, HNF4α, HNF6) (206, 207) as well
as their signaling cross-talk (208–210). GH dimorphic action
on hepatic gene expression is also dependent on sex-specific
regulation of DNA methylation and chromatin structure (197,
205, 211–215), resulting in major changes in sex-based liver
functions. The hepatic responsiveness to GH dimorphic action
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changes during development (216–218) and remains dynamic
during adult life (205, 217), charging the liver of the possibility to
adapt its functions to the needs of the organism throughout life.

GH and its signaling pathway, acting mainly through insulin-
like growth factor-I (IGF-I), regulate lipid metabolism in the liver
(219) and play an important role in antagonizing NAFLD, by
directly reducing DNL in the hepatocytes and by inactivating
HSCs, therefore limiting fibrosis (220). According to this,
GH deficiency in adults and in obese children is associated
with increased prevalence of NAFLD and NASH, while GH
replacement therapy improves these conditions (220, 221). In
mice, the liver-specific ablation of the GH receptor (GHR)
increases lipid uptake and DNL, resulting in hepatic steatosis that
cannot be reverted by IGF-1 treatment (219).

GH and its signaling may have a key role also in the
liver disease progression, by regulating excessive inflammation
and allowing liver regeneration (222). By converse, during
inflammation, the liver can become resistant to GH actions,
through mechanisms involving proinflammatory cytokines
such as IL-6, TNF-α, and IL-1β (223–226), thus worsening
metabolic alterations.

In addition to the well-known dimorphic activity of GH,
hepatic sexual dimorphism depends on several other factors,
including genetic (213, 215) and epigenetic (227, 228) factors, diet
(141, 229, 230), circadian rhythm (231, 232), gutmicrobiota (142)
and sexual hormones (12, 152, 233).

In spite of the fact that our knowledge of the entity
of hepatic sexual dimorphism under physio-pathological
conditions remains very limited (12), several evidences,
including the sex-specific prevalence, incidence, progression and
outcomes of hepatic diseases such as NAFLD (17, 234, 235),
indicate that, among the factors contributing to hepatic
sexual dimorphism, estrogens and their receptors recover a
key role.

Estrogens can regulate sex differences in the liver through
direct and indirect mechanisms, that are both affected by and
able to prevail over sex-based genetic background and sexual
hormone-dependent regulatory activities. Estrogen activity can
contribute to the sexual dimorphism of the liver directly (21, 91,
152, 236, 237) and indirectly, by regulating GH action, both in the
central nervous system and locally (198, 233, 238–240). Several
experimental models with impaired/lost estrogen signaling
support the involvement of estrogen dependent pathways in the
regulation of hepatic metabolism, also in a sexually dimorphic
fashion (14, 91, 152, 153, 241).

Estrogen-mediated contribution of hepatic sexual
dimorphism likely arises from different metabolic costs of
reproduction and from higher metabolic flexibility acquired and
perfected through evolution by the female liver of mammals to
adapt the hepatic metabolism to nutrient availability to sustain
the energy needs of reproductive function (12, 13, 152, 242).
In view of these evidences, although androgens and androgen
receptor (AR) contribute to the sex-based hepatic phenotype
in a direct or indirect fashion, by acting on GH dependent
pathways (200, 215, 233, 243) and by regulating the accessibility
of DNA to several transcription factors through chromatin
remodeling (244, 245), this review will focus in particular on the

role of estrogen signaling in the regulation of metabolic-driven
inflammatory process at the basis of NAFLD development
and progression.

NAFLD and Liver Inflammation
In NAFLD, the increased flux of FFAs, the generation of
lipotoxicity and oxidative stress and insulin resistance concur in
activating JNK and NF-κB signaling pathways, resulting in the
increased production of pro-inflammatory cytokines, including
IL-6 and TNF-α (4, 48, 49, 246). JNK is a member of mitogen
activated protein kinases, which activation in fatty liver is
associated with insulin resistance, activation of apoptosis and
development of NASH (247–249). JNK pathway is differentially
regulated between males and females during liver injury (250,
251), likely through an estrogen- and ERα-mediated inhibition
of lipotoxicity-induced hepatic mitochondrial oxidative stress
and, in turn, of JNK signaling pathway, thus avoiding the over-
regulation of pro-inflammatory and pro-apoptotic process (252).

NF-κB is a transcription factor involved in innate and adaptive
immune responses playing an essential role in the regulation
of inflammatory signaling pathways in the liver. Under normal
conditions, NF-κB is sequestered in the cytoplasm by the binding
with IκB proteins; in response to stimulation by pathogenic
stimuli, the degradation of the NF-κB inhibitor α (IκBα) allows
the translocation of NF-κB to the nucleus, where it induces the
expression of target genes encoding inflammatory mediators,
such as TNF-α and IL-6 (4, 253). Persistent activation of the
NF-κB pathway in the liver leads to a chronic inflammatory
state and to insulin resistance, that further promote the
development of NAFLD and NASH (81, 254). NF-κB and its
downstream signaling pathway are under the inhibitory control
of estrogen signaling (255–257), a regulation that accounts
for sex- and menopause-associated over-regulation of hepatic
inflammatory process and for the progression of NAFLD toward
more harmful conditions such as NASH, fibrosis and HCC
(16, 49, 230, 258, 259).

Homeostatic inflammation is tightly regulated bymechanisms
acting to resolve inflammation in order to avoid excessive
inflammation and pathological consequences. In the liver, the
propagation or the resolution of inflammation mostly relies
on the polarization abilities of KCs (the resident macrophages)
and of the recruited macrophages (260, 261). Once activated
by exogenous or endogenous danger signals, macrophages
undergo pro-inflammatory or anti-inflammatory and reparative
phenotype, respectively promoting or attenuating hepatic
steatosis and liver injury in NAFLD (50, 258, 260, 261). As occurs
in other physio-pathoplogical contexts (262, 263), estrogens
might promote the skewing of pro-inflammatory macrophages
toward anti-inflammatory macrophages and accelerate the
resolution of inflammation and the tissue repair in the liver, thus
contributing to limit NAFLD progression in pre-menopausal
women with respect to men and post-menopausal women (258).
Accordingly, a longer duration of estrogen deficiency increases
the risk of developing fibrosis among post-menopausal women
with NAFLD (177) as well as in OVX female mice fed with
HFD (264).
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Although the FA-induced activation of NOD-like receptor
(NLR) NLRP3 inflammasome, which promotes IL-1β
production, has been implicated in the progression of NAFLD
to NASH (265–267), the potential role of estrogens in directly
modulating NLRP3 inflammasome in the progression of NAFLD
to NASH has been very poorly investigated (268) and remains
unclear. By converse, estrogens suppress HCC through the ERβ-
mediated upregulation of the NLRP3 inflammasome (269), likely
contributing to the sex differences in HCC prevalence (270).

Liver Regeneration and Inflammation
Inflammation triggers many chronic and degenerative diseases,
but it also aims to eliminate damaged cells and initiate tissue
repair and regeneration, through highly conserved mechanisms
(271). Tissue repair and regeneration is particularly important
for the liver, especially in response to injury, an ability essential
for the maintenance of the hepatic metabolic functions (57).

The process of liver repair and regeneration relies on the
proliferative capacity of existing mature hepatocytes in response
to environmental cues and can be divided in two phases:
a “priming phase,” where inflammatory mediators (e.g., IL-
6, TNFα) trigger the inflammation-induced regeneration, and
a “proliferation phase,” where mitogens (including hepatocyte
growth factor, HGF; transforming growth factor-α, TGF-α;
epidermal growth factor, EGF) and auxiliary mitogens (including
bile acids; endothelial growth factor, VEGF; insulin-like growth
factor system, IGF system; estrogens) carry out the proliferation
of hepatocytes, also through the interaction with the liver-
resident immune cells (272–275).

Among inflammatory mediators, IL-6 plays a key role in the
liver regeneration, as it is responsible for activating ∼40% of
the genes that are immediately activated by transcription factors
following partial hepatectomy (276, 277). According to that, mice
lacking IL-6 show reduced hepatocyte proliferation, that can be
restored with IL-6 administration (275). In addition to IL-6, also
TNF-α is involved in the priming phase of liver regeneration,
which requires the expression of inducible nitric oxide synthase
(eNOS) to block the potential pro-apoptotic effect of TNFα
signaling and trigger liver regeneration (5, 275). IL-6 and
TNFα are released mainly by KCs, thus promoting hepatocyte
proliferation. The KCs activation is mediated through the NF-
κB signaling pathway triggered either by lipopolysaccharide
(LPS)/Toll-like receptor4 (TLR4) signaling or by the components
of the complement system like C3a and C5a (274, 275). While
KC depletion is associated with impaired liver regeneration,
the depletion of other liver-resident immune cells such as
NK (natural killer) cells enhances liver regeneration due to
reduced production of TNFα and IFNγ (interferon-γ), a negative
feedback mechanism aimed at regulating the process of liver
regeneration (5).

Males and females differ for their ability to regenerate the
hepatic tissue in response to injury, with male animals showing
a time-delay in the recovery process associated with a higher
recruitment of monocytes (278), a difference that depends on
both, estrogen and androgen signaling pathways (279–281). In
regenerating livers, estrogens act mainly through ERα (281, 282),
but also through ERβ (279), with ERα and ERβ orchestrating

cell proliferation and differentiation, respectively. The relation
between estrogens and IL-6 could be particularly complex, being
IL-6 able to influence estrogen levels and, therefore, estrogen-
dependent modulation of liver regeneration process (275).

A recent study demonstrated that estrogen and ERα might
play an important role also in the accumulation of fats in the liver
by modulating CD36 during the early phase of liver regeneration,
when fatty acids, triglycerides and cholesterol are required for
the proliferation of hepatocyte and for the formation of new cell
membrane (283).

The Lack of Estrogen Signaling Impairs the
Regulation of Hepatic Metabolism and
Inflammation: Lessons From Estrogen
Deficient and Knockout Mice
Estrogen Deficiency in Females
The relevance of estrogen signaling in the regulation of female
hepatic metabolism and inflammation has been investigated
in several pre-clinical studies recapitulating the effects of
estrogen deficiency observed in post-menopausal women
(14, 18, 169, 284, 285).

In the liver of ovariectomized (OVX) female mice, the lack
of estrogens leads to hepatic insulin resistance, to enhanced
DNL and FA import, and to reduced FA oxidation and
secretion, resulting in increased body weight and fat mass and
in fatty liver (14, 21, 153, 286, 287). In OVX females, the
administration of estrogens improves insulin sensitivity and
suppresses gluconeogenesis via the transcription factor FOXO1
(Forkhead Box O1) (288), prevents hepatic fat deposition by
inhibiting DNL (153, 289), facilitates the VLDL (very low
density lipoprotein)-mediated export of lipids from the liver
by increasing hepatic VLDL-TG production and expression
of microsomal triglyceride transfer protein (21, 290, 291) and
sustains the β-oxidation of FAs by inducing expression of PPAR-
α (peroxisome proliferator-activated receptor α) and FGF21
(123, 289).

Although estrogen replacement has been shown effective
in reducing hepatic steatosis (123, 153, 287, 289, 291),
however, the administration of constant amount of estrogens
or SERMs (selective estrogen receptor modulators) partially
restores a proper regulation of hepatic metabolism (123,
292). The reason for that likely resides on the fact that
the administration of constant amount of estrogens does
not reproduce the physiological oscillation of estrogen levels
typical of the reproductive cycle and, therefore, fails to
reproduce the cyclic activation of hepatic ERα, which is
responsible for a tuned modulation of hepatic metabolism in
females (15, 153, 292).

Moreover, estrogens may have a significant impact on
hepatic metabolism depending on their route of delivery. For
example, while transdermal estradiol reduces plasma TGs by
increasing the rate of VLDL-TG clearance without affecting
VLDL-TG production (293, 294), oral delivery of estradiol
increases VLDL production and plasma TGs, indicating the
liver the most responsible of estrogen’s effects on increasing
VLDL-TGs (21).
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The lack of estrogens is associated with increases in
lipotoxicity, pro-inflammatory cytokines (e.g., TNFα, IL-
1β, and IL-6) and oxidative stress and with decreases in
anti-inflammatory cytokines (e.g., IL-10, interleukin 10) and
antioxidant defense, all changes that can be reverted or, at least,
mitigated by HRT (295–297). When exposed to high intake of
dietary lipids, the liver of OVX female mice displays increased
expression of Mcp-1 (monocyte chemoattractant protein-1)
and Ccr2 (monocyte chemokine receptor 2) that trigger the
recuitment of macrophages and promote hepatic fibrosis,
endoplasmic reticulum stress and apoptosis, all changes that are
improved by estradiol treatment (264).

Estrogen Deficiency in Males
Even in the liver of males, estrogen action is relevant for
the regulation of glucose homeostasis, insulin sensitivity, lipid
metabolism, and in the prevention of hepatic steatosis (298,
299). Estrogen deficiency in men with mutations in the gene
codifying for aromatase (CYP19A1, the enzyme converting
testosterone in estrogen) show impaired glucose and lipid liver
metabolism (300, 301). Aromatase KO (ArKO) mice display
increased adiposity, glucose intolerance and insulin resistance
in both sexes (302); in male ArKO mice, increased insulin
resistance is primarily due to increased hepatic gluconeogenesis
through the induction of G6Pase (glucose 6-phosphatase) and
Pepck (phosphoenolpyruvate carboxykinase) expression (299).
By contrast, only ArKO males, but not females, show impaired
lipid and lipoprotein metabolism and develop hepatic steatosis
(302, 303). The administration of estrogens reverses the hepatic
steatosis, by reducing the expression of genes involved in DNL
(e.g., Fasn, fatty acid synthase; Acaca, acetyl-CoA carboxylase
α; Scd-1, stearoyl-CoA desaturase-1) and fatty acid uptake
(e.g., Adrp, adipocyte differentiated regulatory protein) (302,
304) and by restoring the expression of enzymes involved in
FA oxidation (e.g., Cat, catalase; Mcad, medium-chain acyl-
CoA dehydrogenase) (305). Although the precise mechanism
of estrogen action in the liver of males have not been fully
elucidated, studies performed in KO mice suggest that estradiol
mediats PPARα signaling in protecting against hepatic steatosis
(306, 307).

Estrogen deficiency in ArKO males is also responsible
for increased hepatic mitochondrial apoptosis and altered
permeability of the mitochondrial membranes, that are restored
by supplementation of 17β-estradiol (308).

ERα in Females
Estrogens can mediate their biologic effects in the female liver
acting mainly through the estrogen receptor α (ERα, the isoform
most expressed at the hepatic level) (15, 152) through a number
of mechanisms, including the regulation of gene transcription
by the direct binding to specific estrogen responsive elements
(ERE) or by the tethering with other DNA-binding factors and
by non-genomic action through membrane-associated ERα (15,
153, 309–313).

While the lack of ERβ does not affect hepatic phenotype
(314), the role of ERα in the regulation of hepatic metabolism
and inflammation has been highlighted by several studies

performed with total body (ERαKO) and liver-specific (LERKO)
ERα knockout mice (311). ERαKO mice mostly recapitulate
the metabolic phenotype of OVX animals, with increased
body weight, visceral adiposity, glucose production, insulin
resistance, and hepatic steatosis associated with increased
hepatic inflammatory signaling (21, 314–316). Differently from
control mice, ERαKO mice are not able to antagonize the
induction of cytokines in consequence to a pro-inflammatory
stimulus, indicating that ERα protects the liver against liver
inflammation (317).

The LERKO mouse represents a useful tool to elucidate the
specific relevance of ERα in the liver, especially in the hepatocytes,
as this mouse model has been obtained by crossing mice
expressing floxed ERα with mice expressing Cre-recombinase
under the control of albumin promoter, that it is specifically
expressed in the hepatocyte cells (13). Although improperly,
LERKO can be considered as liver-specific ERα KO mice, being
hepatocytes the most abundant cell type in the liver (57) and
being ERα the receptor for estrogens most expressed in the
hepatocytes (152, 241).

Compared to control counterparts, LERKO females show
an impaired regulation of genes relevant in the regulation of
hepatic lipid and lipoprotein metabolism during estrous cycle
progression (15), with aging and after ovariectomy (153). As a
consequence, LERKO females show increased deposition of lipids
in the liver and an impaired regulation of lipoprotein synthesis,
leading to a reduced cholesterol efflux to the liver, impaired
hepatic cholesterol clearance, high circulating cholesterol levels
and increased susceptibility to atherosclerosis (15, 237).

Additional studies have confirmed the role of ERα in
preventing hepatic steatosis by showing that liver-specific
knockdown of ERα is sufficient to induce hepatic steatosis
through a mechanism that seems to involve the regulation
of small heterodimer partner (SHP), a transcription factor
important in the regulation of hepatic metabolic processes and
in the protection against hepatic inflammation (318, 319).

The livers of LERKO mice exhibit a greater expression of
genes involved in the inflammatory process (e.g., Tnfα; Il-
1β; interleukin-12 beta, Il-12β; Ccr2) and collagen deposition
(sequestosome1, Sqstm1; vimentin, Vim; serpine1, Serpine);
according to that, LERKO females display portal infiltration of
mononuclear leukocytes and portal or centrilobular collagen
deposition in the liver (15).

The action of the hepatic ERα is particularly relevant when
mice are subjected to excess of dietary lipids: with the lack of
hepatic ERα, LERKO females result no more protected against
the excess of dietary lipids and accumulate lipids in the liver (91),
a condition resembling what happens in OVX mice and post-
menopausal women (14). However, differently from control OVX
females, estrogen treatment fails to prevent lipid deposition in the
liver of LERKO females, further stressing the specific relevance
of hepatic ERα in the regulation of female hepatic metabolism
(287, 320).

Also transgenic mice in which the expression of ERα is limited
to the cytoplasm develop hepatic steatosis (312), suggesting that
the protective effects of estrogens on liver health can be mediated
by both, classical and non-nuclear mechanisms (321, 322).
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ERα in Males
Similar to females, ERαKO male mice develop insulin resistance,
impaired glucose tolerance, increased adiposity and marked
hepatic steatosis (314, 315, 323). Despite its reduced expression
compared to females (15, 152), also in males the liver-specific
disruption of ERα signaling leads to altered expression of genes
involved in carbohydrate and lipid metabolism (241, 324–326).
Hepatic ERα plays a key role in the maintenance of hepatic
metabolism, by suppressing hepatic gluconeogenesis and by
decreasing DNL through its direct binding to the promoters
of genes involved in gluconeogenesis (e.g., Pepck, G6Pase) and
lipid metabolism (e.g., Fasn, Acaca) (241) and through the
modulation of FOXO1 phosphorylation (326). As a consequence
of the lack of ERα-dependent regulatory activity, LERKO males
display elevated hepatic glucose production (HGP), liver insulin
resistance, increased hepatic lipogenesis and liver lipid deposition
(241, 326).

Recent studies suggest that hepatic ERα is required for the
estrogen-mediated programming of the hepatic metabolism of
males, contributing to hepatic sexual dimorphism (152) and
accounting for the sex-specific metabolic response to diets
enriched in lipids (91). In the liver of males, ERα is required
also for optimal immune-metabolic function, as its lack causes
increased expression of several inflammatory genes (327).

GPER
In addition to membrane localized ERs, estrogens can signal
through G-protein coupled Estrogen Receptor (GPER, also called
Gpr30), a cell surface receptor which role in the regulation of liver
metabolism has recently emerged (328–330). After the binding
with estrogens, GPER activate multiple non-genomic pathways,
as well as the transcriptional programs through the regulation of
target genes (331–334) in diverse cell types and tissues, including
the liver (335).

GPER has been functionally implicated in several
physiological and pathological process (335) and, in particular,
in the regulation of metabolism (328, 332, 336–338) and immune
response (339–341). In the liver, GPER plays a role in modulating
lipid metabolism, in lowering circulating lipid levels and in
reducing inflammation (20), as confirmed by several pre-clinical
and clinical studies. Individuals carrying a hypofunctional
genetic variant of GPER show increased plasma LDL cholesterol;
according to that, the activation of GPER induces the expression
of the LDL receptor (LDLR) in HepG2 liver cells (342). A recent
study demonstrates that GPER mediates the estrogen-dependent
reduction of LDLR degradation by preventing the internalization
of PCSK9 (proprotein convertase subtilisin/kexin type 9), thus
resulting in a higher LDL uptake by liver cells and, consequently,
to lower circulating LDL cholesterol (343).

In OVX female mice, the activation of GPER lowers the levels
of circulating lipids, reduces the expression of lipogenic and
pro-inflammatory genes, and increases the expression of genes
involved in lipid oxidation in the liver (329). In a KO mouse
model, the lack of GPER leads to increased lipid accumulation
in the liver and decreased circulating HDL levels in females, but
not males (344), highlighting a sex-specific role of GPER in the
metabolic homeostasis (329).

GPER signaling is associated with the immune and anti-
inflammatory response, as revealed by its role in counteracting
a variety of pathological conditions, including diabetes and
obesity (330, 338, 345), atherosclerosis (346, 347), asthma (348),
neuroinflammation (349, 350), and cancer (97, 351). In the liver,
the lack of GPER enhances immune cell infiltration, fibrosis,
and the production of inflammatory factors, such as IL-6, IL-1β,
and TNFα in a mouse model of HCC (351). The activation of
GPER signaling is effective in reducing the expression of IL-6, but
not the viability and proliferation of hepatoma cells, suggesting
that GPER action against hepatic tumorigenesis occurs through
the regulation of inflammatory response rather than the direct
modulation of tumor growth and invasion (351).

Although these studies suggest a direct involvement of GPER
in the regulation of metabolism and inflammation in the liver,
especially in females, it cannot be excluded that the hepatic effects
due to the lack of its signaling are the results of a more complex
interaction among metabolic tissues. Indeed, mice lacking GPER
show increased adiposity, decreased insulin sensitivity, defective
glucose/lipid homeostasis, and inflammation (337, 338, 352),
all features that might indirectly affect the hepatic metabolism,
pointing to the need of liver-specific GPER models to clarify the
specific role of GPER in the hepatic tissue.

Estrogens and Key Cell Types in Liver
Metabolism and Inflammation
The liver is composed of several cell types, each of them having
unique functions in the regulation of metabolism and immune
response and showing interactions with the other cell type, thus
cooperating at multiple levels in the regulation of the hepatic
function. The major cell types contributing to the main liver
functions are hepatocyctes, Kupffer cells, hepatic stellate cells,
liver sinusoidal endothelial cells, and cholangiocytes.

Hepatocyctes
Hepatocyctes represent the most abundant cell type in the liver
(accounting for 80% of liver mass) and are involved in several
functions, including lipid and carbohydrate metabolism (353),
protein synthesis (354), detoxification and drug metabolism
(355, 356), and the secretion of coagulation and complement
factors (353, 354, 357). In the hepatocytes, estrogens, mainly
acting through ERα, limit gluconeogenesis (241, 288) preventing
increased HGP and insulin resistance (288), limit the uptake
of FFAs, inhibit DNL (153) and promotes FA oxidation
(289) and export (287), thus preventing lipid deposition in
the liver and the generation of lipotoxicity and ROS (252)
that trigger a pro-inflammatory response acting as the driver
of NAFLD progression and liver degeneration (81, 247).
Estrogen signaling facilitates the resolution of inflammation by
inhibiting the production of pro-inflammatory cytokines (264),
regulates apoptotic process (358, 359), and promotes liver cell
regeneration (279–282), thus limiting or preventing liver injury.
As recapitulated by studies performed in OVX and LERKO
females, the lack of the regulatory activity of estrogens in the
hepatocytes favors the development and progression of NAFLD
and, likely, of the associated cardio-metabolic diseases (e.g.,
atherogenesis) (16).
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Kupffer Cells (KCs)
Kupffer cells (KCs) represent one-third of the non-parenchymal
cells in the liver and account for 80–90% of tissue macrophages
present in the body, acting as immune sentinels (360). KCs are
important members of the innate and adaptive immune systems,
serving as a first line of defense against bacteria, microbial debris
and endotoxins derived from the gastrointestinal tract. Once
activated, KCs trigger an inflammatory response by producing
a panel of pro-inflammatory cytokines, including TNF-α, IL-
1β, and IFN-γ, and provide to the clearance of phagocytosable
particles (361). Given their role in the regulation of inflammatory
and innate responses, KCs are considered as potential targets for
the treatment of liver diseases, including NAFLD (360, 362, 363).
Male and female KCs are different from a morphological (364)
and functional point of view (258), contributing to sex differences
in liver inflammation and regeneration (280) and in the
prevalence and progression of NAFLD (17, 258), ALD (alcoholic
liver disease) (365) andHCC (259, 366). Estrogens result involved
in the sensitization of KCs to toxic stimuli (367) and in driving
the pro/anti-inflammatory polarization of KCs, that exerts a
key role in the resolution or progression of inflammation,
thus counteracting or promoting the development of liver
diseases (50, 368, 369). The estrogen-dependent regulation of
cytokine production by KCs is predominantly mediated via ERα

(370, 371), resulting the isoform most expressed in these cell
types (372).

Hepatic Stellate Cells (HSCs)
Although comprising only 5% of the liver cells, hepatic stellate
cells (HSCs) play a central role in liver metabolism, especially
in retinol metabolism and lipid storage (373). In healthy liver,
HSCs are quiescent and store 80% of total liver retinol, that
is released depending on its extracellular status. In injured
liver, HSCs become activated and transform into myofibroblasts;
activated HSCs lose their retinols and produce a considerable
amount of extracellular matrix, thus leading to liver fibrosis
(59). Although sex differences in the morphological expression
of male/female HSCs has not been observed (364), several
studies have demonstrated that estrogen inhibits the activation
of HSCs and reduces liver fibrosis (374, 375), suggesting that
estrogen signaling might account for the sex-specific prevalence
of hepatic fibrosis. Although the molecular mechanism has not
been fully clarified, estrogens seem to act through ERβ (376)
and GPER (377), given that ERα is not expressed in these
cells (378).

Liver Sinusoidal Endothelial Cells (LSECs)
Liver sinusoidal endothelial cells (LSECs), which comprise∼50%
of liver non-parenchymal cells, are highly specialized endothelial
cells containingmany small pores or fenestrations, which provide
open channels that facilitate the transfer of substrates between the
blood and the liver parenchyma and regulate lipoprotein traffic to
and from the hepatocytes (379, 380). Their unique morphology
gives to LSECs a high endocytic capacity, enabling them to
act as effective scavengers and promote the clearance of lipids
and macromolecules and small particulates from the blood. The
impairment of their function is associated with the development

of extra-hepatic pathologies, including atherosclerosis (380).
LSECs exert a key role in the innate and adaptive immunity,
promoting the presentation of antigens and favoring the removal
and clearance of circulating antigens and viruses (381). In
addition to their roles as pathogen recognition and antigen-
presenting cells, LSECs also have a critical role in the recruitment
of leukocytes into liver tissue, thus influencing the composition of
hepatic immune population. The balance between tolerance and
effector immune responses driven by LSECs might promote the
resolution or the progression of the immune response, eventually
leading to several chronic liver diseases, including NAFLD,
cirrhosis, fibrosis, liver failure and HCC (381, 382).

In LSECs, estrogens, even by modulating the levels and
the nuclear occupancy of ER (372), enhance the production
of nitric oxide (NO) and regulate the hepatic sinusoidal
microcirculation (383, 384), likely explaining the higher
incidence of liver cirrhosis with portal hypertension in
men and post-menopausal women than pre-menopausal
women (385).

Cholangiocytes
Cholangiocytes are the epithelial cells lining the intrahepatic
and extrahepatic bile ducts; these cells participate in bile
production and secretion and, although to a less extent
than hepatocytes, have a role in the liver development,
regeneration and repair (386, 387). Cholangiocytes can be
activated by a variety of insults, including infections, cholestasis,
and xenobiotics (386), leading to increased proliferation and
to pro-fibrotic and pro-inflammatory secreted factors (388),
that can favor the development of cholangiopathies and
cholangiocarcinoma (389–392).

Cholangiocytes are targets of estrogen action: by acting
through both ERα and ERβ and by activating either genomic
or non-genomic pathways, estrogens play a key role in
the regulation of proliferative and secretory activities of
cholangiocytes (393, 394). The lack of estrogens in OVX females
decreases the expression of ERs (2.5-fold for ERα and 35-
fold for ERβ), leading to reduced cholangiocyte proliferation
and bile duct mass; conversely, the administration of 17β-
estradiol during bile duct ligation in OVX rats induced a
normalization of bile duct mass, cholangiocyte proliferation,
and apoptosis (395). Also in males, estrogens exerts a major
role in stimulating cholangiocyte proliferation by preventing the
increase of cholangiocyte apoptosis and loss of cholangiocyte
proliferation (396). Notably, the altered expression and/or
activation of ERα and ERβ is often associated with a high risk
of primary biliary diseases (397–399).

Impaired bile flow leads to cholestasis, a pathology
characterized by elevated levels of bile acid in the liver
and serum followed by hepatocyte and biliary injury, that
shows an increased incidence in women receiving estrogen for
contraception or hormone replacement therapy, or in susceptible
women during pregnancy. Although the molecular mechanisms
involved in cholestasis remain controversial, recent findings
suggest that estrogens may influence its course by directly
modulating the patho-physiology of cholangiocytes, which are
the primary target of damage in this disease (393).
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FIGURE 1 | Overview of estrogen action through ERα, ERβ and GPER in counteracting NAFLD development and progression in women. Estrogens favor fat

distributionr to subcutaneous deposits, inhibit adipose tissue lipolysis and reduce the uptake of FFAs, thus limiting the flux of FFAs to the liver. Estrogens limit

dietary-induced DNL and facilitate the export of lipids as VLDL-TG. Estrogens promote the FA β-oxidation and prevent the activation of a sustained alternative FA

oxidation that triggers lipotoxicity and the generation of ROS that, in turn, activate a pro-inflammatory response. Hepatocellular damage and fat-derived factors

mediate the local activation of a pro-inflammatory response by hepatocytes, KCs and HSCs, that promote the degeneration of hepatic tissue and the recruitment of

extra-hepatic immune cells that boost the inflammatory response and worsen the metabolic alterations. DNL, de novo lipogenesis; E2, estrogens (mainly

17β-estradiol); FAs, fatty acids; FFAs, free fatty acids; FAO, fatty acid oxidation; Hep, hepatocytes; HSCs, hepatic stellate cells; KCs, Kupffer cells; ROS, reactive

oxygen species; TG, triglycerides; VLDL, very-low density lipoprotein.

Although each cell type plays a specific role in the liver and
expresses a unique gene (400) and proteomic profile (401), only
the cooperation among different cell types enables the liver to
achieve its functions (402), a consideration that should be taken
into account when performing in vitro studies, in which the
cross-talk among liver cell types is lost or partially reproduced
(403, 404). In this view, although challenging, the recent advances
in the generation of human liver organoids might represent a
potential, more reliable tool for the in vitro analysis of liver-
specific biological processes and for disease modeling and drug
screening at near-physiological conditions (405).

CONCLUSION

The data summarized in this review outline the role of
estrogens and their receptors in antagonizing the metabolic
and inflammatory alterations that trigger and boost NAFLD

development, thus determining its sex-dependent prevalence and
its lower incidence in fertile females (Figure 1, Table 1).

Estrogen-mediated effects likely arise from higher metabolic
flexibility gained and perfected through evolution by the female
liver to adapt the hepatic metabolism to the reproductive
function (12, 13, 152, 242). Playing the liver the most relevant
role in the accomplishment of energy requirements, during
evolution the hepatic metabolism has been sharpened, in a
sex-specific fashion, to reach an accurate interconnection of
regulatory mechanisms aimed to sustain the energy needs of
reproductive functions that are greatly different between the two
sexes. The dynamic regulation of hepatic metabolism should
have acquired a maximum degree of complexity in the liver
of females that, compared to males, have to be more flexible
in adapting their hepatic metabolism to the different, more
variable, reproductive stages (reproductive cycle progression,
pregnancy, lactation) that entail different energy requirements.
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TABLE 1 | Summarizing the relevance of estrogen signaling, ERα, ERβ, and GPER in the sex-specific regulation of metabolic and inflammatory pathways relevant in

NAFLD development and progression.

Process/pathway Regulation by estrogens Mediators Sex/Gender differences References

ERα ERβ GPER

Hepatic glucose metabolism � � � (39–41)

Hepatic glucose production (HPG) � � � (36–38)

Hepatic insulin sensitivity � � � (20, 120–123)

Hepatic FFA uptake � � (91, 303)

Hepatic de novo lipogenesis � � � (91, 116, 303)

Hepatic FA oxidation � � � (91, 139, 303)

VLDL-TG export � � (91)

Hepatic lipid storage and deposition � � � � (91, 115–117, 303,

304, 329, 344)

Hepatic AA metabolism � � � (91, 151, 152)

Hepatic JNK activation � � � (251, 252)

Hepatic NF-κB activation � � � (255–257)

Macrophage polarization (from pro-

to anti- inflammatory phenotype)

� � � � (258)

Liver regeneration � � � � (278, 279, 281, 282)

Subcutaneous fat distribution � � � (92, 94, 95, 406)

Adipose tissue lipolysis � � � (92, 94, 406)

The female liver had to develop and mold mechanisms able
to sense and modulate efficiently the hepatic metabolism
accordingly to the hormonal rhythm of estrogen fluctuations
during the reproductive cycle and in other reproductive stages
(pregnancy, lactation). In this view, in the liver of female
mammals, estrogen signaling has therefore acquired a tight
control on the hepatic metabolism through a sequence of well-
tuned and intertwined events that have been perfectly tuned to
secure reproduction only in favorable energy conditions and to
support the energy needs of the different reproductive stages
(14, 153, 235).

The high metabolic dynamicity conferred by estrogens to
female liver contributes to prevent and limit the surge and
progression of metabolic and inflammatory alterations in the
liver, a mechanism underlying the increased incidence of
NAFLD associated with the decline in liver metabolic flexibility
after menopause.

The effects of estrogens and their receptors on the regulation
of liver metabolism and inflammation may be direct or indirect,
acting—for example—through other transcription factors and
nuclear receptors (NRs) (407) with relevant and sex-specific
activities in the liver (408) and in the NAFLD pathogenesis
(409–411). Such an interplay might be particularly complex and
regulated in the female liver: in view of its action in the regulation
of reproductive process, ERα might have acquired in the female
liver a regulatory role over these signaling pathways to adapt
liver metabolism and inflammation to hormonal and nutritional
status to accomplish the metabolic adaptations required to
support the energy needs of reproduction. According with this
idea, the lack of estrogens impairs the regulation of some
NR signaling, including PPARα (289, 412) and glucocorticoid
receptor (GR) (413), exerting pivotal roles in the regulation of

hepatic metabolism and inflammation (414–416), thus favoring
NAFLD development.

Despite the extensive, although probably underestimated,
awareness on hepatic sex differences, the molecular mechanisms
determining the sex-specific incidence of liver pathologies such
as NAFLD are far to be unraveled. This knowledge has been
prevented and affected by several limitations that stem from: (a)
the paucity of available data on both sexes coming from pre-
and clinical studies in which females are often underrepresented
(12, 417); (b) the inability to enroll females in clinical studies
(418–420); (c) the limited and, in some cases, misleading
conclusions reached by experimental designs that did not take
into account the relative contribution of genetic and hormonal
backgrounds and exclude the sexual hormones as potential
confounding factors (12, 417); (d) the lack of proper research
tools helpful in investigating the genetic and/or hormonal factors
relevant for the hepatic sexual dimorphism or the inability to
use the available research tools in the best way (421, 422); (e)
the fragmentary and still incomplete view coming from several
studies that often do not share common protocols or lack of
significance for the low number of the samples analyzed (422,
423); (f) the low, still insufficient commitment dedicated to
dissemination of the results obtained from sex/gender research,
such as educational programs addressed to health professionals
(researchers, clinicians, scientific training programs, health
institutions, etc.) and to society in general (419, 423–425);
g) the still limited policies aimed at promoting sex/gender
research programs (426–428). All these aspects contribute to our
limited understanding of the nature and relevance of hepatic
sexual dimorphism, thus preventing, so far, the development of
more efficacious, sex-specific therapies against liver pathologies
such as NAFLD, which incidence is greatly increasing in EU
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and accounts for e35 billions only in Germany, France, Italy,
and United Kingdom (234, 429). Furthermore, the partial
unawareness of the relevance of hepatic sexual dimorphism in the
liver physio-pathology is a contributing cause to the development
of associated cardio-metabolic diseases, such as atherogenesis
and CVDs (430, 431). Similarly, the lack of sex-specific
pharmacological treatments (that should differ in terms of
molecules, dose, timing and risk of adverse drug reaction between
the two sexes) leads often to drug-induced hepatotoxicity,
representing the main cause of withdrawal of drugs from the
market and the main reason of liver transplants (17).

In this view, a deeper understanding of the mechanisms
underlining the sex-specific incidence of NAFLD and the role
of estrogen signaling pathways will likely yield the basis for
the design of more personalized hepatic therapies that would

significantly improve the quality of life of a large section of
our society as well as of men and women which experience
impaired/lost hormonal signaling (i.e., due to gonadal failure,
aging, exposure to endocrine disrupting chemicals).
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