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Abstract. In order to quantify higher–order correlations of the galaxy cluster distribution we use a complete
family of additive measures which give scale–dependent morphological information. Minkowski functionals can
be expressed analytically in terms of integrals of n–point correlation functions. They can be compared with
measured Minkowski functionals of volume limited samples extracted from the Reflex survey. We find significant
non–Gaussian features in the large–scale spatial distribution of galaxy clusters. A Gauss–Poisson process can be
excluded as a viable model for the distribution of galaxy clusters at the significance level of 95%.
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1. Introduction

The spatial distribution of galaxy clusters poses impor-
tant constraints on cosmological models. The abundance
of clusters and especially its evolution with redshift is very
sensitive to parameters of the cosmological models (see
e.g. Kitayama & Suto 1997; Borgani et al. 1999; Bahcall
2000; Kerscher et al. 2001a). To quantify the large–scale
structures traced by the galaxy clusters we have to go be-
yond the number density.

Scenarios describing the formation of structures in
the Universe start with a mass density field showing
only small deviations from the mean density. Inflationary
scenarios suggest that these density fluctuations can be
modeled as a Gaussian random field completely speci-
fied by its mean value and the power spectrum or two–
point correlation function (e.g. Kolb & Turner 1990).
In the initial stages of structure formation the linear
approximation is often used to evolve these fluctuations
preserving their Gaussian nature and increasing their
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amplitude only (see e.g. Peebles 1980). With growing
over–density the nonlinear couplings become more and
more important leading to a non–Gaussian density field.
Also the process of galaxy formation may introduce non–
Gaussian features if the “biasing” is non–linear (see e.g.
Scoccimarro 2000). Typically one argues that on large
scales, the evolution is still in the linear regime, and one
expects that the smoothed density field is proportional to
the initial Gaussian field. However, structures like walls
and filaments were observed in the galaxy distribution on
large scales (Huchra et al. 1990; Shectman et al. 1996).
These non–Gaussian features appear at a low density con-
trast and are therefore hard to detect. The sensitivity of
the Minkowski functionals, even if only a small number of
points is available, allows us to quantify the non–Gaussian
morphology of these structure on large scales. Walls and
filaments were predicted by analytical and numerical work
based on the Zel’dovich approximation (Zel’dovich 1970;
Arnol’d et al. 1982; Doroshkevich et al. 1996) and related
approximations (Kofman et al. 1992; Bond et al. 1996).
N–body simulations could verify that these structures are
generic features of the gravitational collapse for Cold Dark

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20011063

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20011063


2 M. Kerscher et al.: Non–Gaussian morphology from the Reflex cluster catalogue

Matter (CDM) like initial conditions (Melott & Shandarin
1990; Jenkins et al. 1998).

Since observations supply us with the positions of
galaxies and galaxy clusters in space, our methods will
use this point distribution directly. No smoothing is in-
volved. Therefore we have to give a clear definition what
a “Gaussian” point distribution, the Gauss–Poisson pro-
cess, is. Some of the statistical properties of random fields
directly translate to similar statistical properties of point
distributions, but also important differences show up. The
equivalence of the Gauss–Poisson process with a simple
Poisson cluster process, allows us to simulate a “Gaussian”
point distribution (Kerscher 2001). With these simula-
tions we will perform a Monte–Carlo test to determine
the significance of the non–Gaussian features in the cluster
distribution.

Statistical measures provide important tools for the
comparison of the large–scale structure in the Universe
with theoretical models. The discriminative power of this
comparison depends chiefly on the statistical measure.
The most frequently employed measure was and still is
the two–point correlation function, or the power spec-
trum. Both are nowadays an imperative in the analysis
of any galaxy or cluster catalogue: for the Reflex clus-
ter catalogue see Collins et al. (2000) and Schuecker et al.
(2001). They give important information on the fluctu-
ation spectrum of matter. However, they appear to be
blind to morphological features. Indeed, completely differ-
ent spatial patterns and point distributions could display
the same two–point correlation function, i.e., no direct
conclusions about the morphology of the structure can be
drawn from an analysis with these two–point measures
(Baddeley & Silverman 1984; Szalay 1997; Pan & Coles
2000; Kerscher 2001). Higher–order correlation functions
immediately come to mind if one wants to go beyond the
two–point correlation function. And indeed three–point
correlations were detected in the distribution of galaxy
clusters (Toth et al. 1989). However, there is a concep-
tual problem since n–point functions (n ≥ 3) depend on
3(n−1)−3 parameters even for isotropic and homogeneous
point distributions. Already for the three–point correla-
tion function we are not aware of a study where its depen-
dence on all three parameters was estimated. Clearly, in-
tegral information is mandatory and necessary. This may
be accomplished e.g. for the three–point function by aver-
aging over the shape of triangles, or by considering the
(factorial) moments of counts in cells (see e.g. Peebles
1980; Szapudi & Szalay 1993). Another effort to go beyond
the two–point correlation function comprises the perco-
lation analysis (Shandarin 1983). Also the genus, closely
related to the Euler characteristic, is often employed to
quantify deviations from a Gaussian density fields (see e.g.
Hamilton et al. 1986; Melott 1990 and references therein).

For the construction of statistical methods, sensitive to
the large–scale structures, additivity is a heuristic princi-
ple which can guide us how to define useful measures which
do not depend on all these parameters. Additivity yields
robust, local decomposable measures. The mathematical

discipline of integral geometry (see e.g. Hadwiger 1957)
supplies us with a suitable family of such descriptors,
known as Minkowski functionals. These measures embody
information from every order of the correlation functions,
are numerically robust even for small samples, and yield
global as well as local morphological information. The
Minkowski functionals are additive measures which allows
us to calculate them efficiently by summing up their lo-
cal contributions although they depend on all orders of
correlation functions. The application of Minkowski func-
tionals in statistical physics and cosmology are reviewed
by Mecke (2000) and Kerscher (2000), respectively.

Samples of galaxy clusters are based mainly on opti-
cal observations, where the clusters are selected as galaxy
over–densities in the two–dimensional maps on the ce-
lestial sphere (cf. Abell 1958; Abell et al. 1989; Dalton
et al. 1997; and Gal et al. 2000). Projection effects seem
to have a non–negligible effect on the statistical analy-
sis of these optically selected cluster samples (Katgert
et al. 1996; van Haarlem et al. 1997). Only in recent
years X–ray selected cluster samples have been com-
pleted. Since the X–ray luminosity is proportional to the
baryonic density squared, over–densities are more em-
phasized. Consequently, the contamination of the cata-
logue by chance alignments due to projections is reduced
(Böhringer et al. 2001). Assuming a virial relation, the
X–ray luminosity of the galaxy cluster can be related to
its mass.

2. Morphology of large scale structure

Minkowski functionals have been introduced to cosmol-
ogy as a tool to quantify the morphology of large–scale
structures by Mecke et al. (1994) where also a first anal-
ysis of the distribution of galaxy clusters based on the
Abell et al. (1989) sample with a redshift compilation by
Postman et al. (1992) was presented.

With Minkowski functionals we quantify the morphol-
ogy of a sufficiently well behaved compact body K ⊂ R3

by assigning it a number Mν(K) ∈ R. The Minkowski
functionals are motion invariant

Mν(gK) = Mν(K), (1)

where g = (x,Θ) are the movements in three dimensions,
i.e. translations x and rotations Θ. As already emphasized
the additivity property

Mν(K ∪K ′) = Mν(K) +Mν(K)−Mν(K ∩K ′) (2)

serves as the construction principle of these measures. All
the Minkowski functionals have a straightforward inter-
pretation in terms of geometrical and topological quanti-
ties as summarized in Table 1. Minkowski functionals are
distinguished from other geometric measures by the theo-
rem of Hadwiger (1957), which states that there are only
four independent scalar functionals in three–dimensional
space, which are motion invariant, additive, and continu-
ous for convex bodies. Hence, every additive geometrical
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Table 1. Minkowski functionals Mµ and the normalized
Minkowski functionals Φµ (Eq. (8)) in three–dimensional space
expressed in terms of more familiar geometric quantities.

geometric quantity µ Mµ Φµ

Volume V 0 V V/( 4π
3 r

3N)

Surface area A 1 A/8 A/(4πr2N)

Integral mean curvature H 2 H/(2π2) H/(4πrN)

Euler characteristic χ 3 3χ/(4π) χ/N

Fig. 1. Dilated points: spheres of varying radius attached to
the galaxy cluster from the Reflex sample L12 (see Table 2).

measureM(K) which does not depend on the position and
orientation of the body K in three–dimensional space, can
be written as a linear combination of the four Minkowski
functionals:

M(K) =
3∑
ν=0

cνMν(K). (3)

Beisbart et al. (2001) discuss the vector valued extensions
of the Minkowski functionals.

The cluster distribution provides us with a point set
X = {xi}Ni=1 in three–dimensional space. One may think
of X as a skeleton of the large–scale structures in the
Universe. Since there are only four numbers of the MFs
in three dimensions, compared to a correlation function,

it is necessary to define morphological functions Mµ(r).
The proper technique to do this for general random spa-
tial structures are (erosion) dilation operations (see Fig. 1,
and Serra 1982). In case of point patterns this tech-
niques reduces to fixing balls Br of radius r at each point.
With Minkowski functionals we quantify the geometry and
topology of union set of these balls Ar =

⋃N
i=1 Br(xi).

The radius r is employed as a diagnostic parameter. In
such a way, we obtain scale–dependent integral infor-
mation on higher–order correlations of the distribution
of galaxy clusters and not only two–point correlation
functions of the large–scale distribution. Erosion/dilation
techniques combined with additive Minkowski functionals
have been successfully applied in many areas, including
condensed matter physics (Mecke 2000), geology (Arns
et al. 2001a,b), and digital image analysis (Serra 1982,
1988).

2.1. The Boolean grain model

The simplest model of a random point distribution is the
Poisson process. By attaching grains to each of the points,
in our case balls of radius r, we arrive at the Boolean
grain model. Mecke & Wagner (1991) presented a method
to calculate mean volume densities of the Minkowski func-
tionals for this model. We repeat their arguments, since its
extension allows us to calculate the Minkowski functionals
of correlated grains in Sect. 3.1.

Iterating the additivity relation (2) one obtains for the
union Ar =

⋃N
i=1Br(xi) of N spheres Bi = Br(xi) of

radius r and center xi the inclusion–exclusion formula

Mν(Ar) =
∑
i

Mν(Bi)−
∑
i<j

Mν(Bi ∩Bj)

+ . . . (−1)N+1Mν(B1 ∩ . . . ∩BN ). (4)

Generally, a point process in a domain Ω with vol-
ume |Ω| is specified by a sequence of product densities
%n(x1, . . . ,xn) with the mean number density % ≡ %1(x1).
%n(x1, . . . ,xn)dV1 . . .dVn is the probability of finding n
points in the volume elements dV1 to dVn. The volume
density mν(Ar) of the νth Minkowski functional per unit
volume for the augmented coverage Ar are then obtained
from the inclusion–exclusion formula (4) in the form

mν

(
Ar; {%n}

)
=

∞∑
n=1

(−1)n+1

n!|Ω|

∫
Ω

dΓn Mν

(
n⋂
i=1

Br(xi)

)
%n(Γn) (5)

where we introduced, for convenience, the variable Γn =
(x1, . . . ,xn) with the integration measure

∫
Ω dΓn =∏n

i=1

∫
Ω

dxi. Obviously, the Minkowski functionals em-
body information from every order n of the n–
point densities %n(x1, . . . ,xn). If the product densi-
ties %n(x1, . . . ,xn) = %n were independent of position
(Poisson distribution of density % = N/|Ω|), the integrals
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in Eq. (5) can be performed using the fundamental kine-
matic formula (Blaschke 1936; Santaló 1976)∫
G

dg Mν(K ∩ gK ′) =
ν∑
µ=0

(
ν
µ

)
Mµ(K)Mν−µ(K ′). (6)

Equation (6) describes the factorization of the Minkowski
functionals of the intersection K∩K ′ of two bodies K and
K ′ if one integrates over the motions g = (x,Θ), i.e. trans-
lations x and rotations Θ of K ′. For Poisson distributed
spheres Br of radius r one obtains the mean values of the
Minkowski functionals per unit volume (Mecke & Wagner
1991; Stoyan et al. 1995)

mν(Ar; %) =
∂ν

∂tν

{
1− exp

[
− %

d∑
µ=0

tµ

µ!
Mµ(Br)

]}∣∣∣∣∣
t=0

(7)

and particularly in three dimensions the normalized
Minkowski functionals

Φν(r) =
mν(Ar)
Mν(Br) %

(8)

read with η = 4π
3 r

3%:

Φ0(r; %) = (1− e−η)/η,

Φ1(r; %) = e−η,

Φ2(r; %) =
(

1− 3π2

32
η

)
e−η,

Φ3(r; %) =
(

1− 3η +
3π2

32
η2

)
e−η.

(9)

2.2. The REFLEX cluster sample

The construction of the Reflex cluster sample is de-
scribed in detail by Böhringer et al. (2001) and the statis-
tics of the cluster distribution is described by Collins
et al. (2000) for the two-point correlation function and in
Schuecker et al. (2001) for the density fluctuation power
spectrum. The survey area covers the southern sky up to
the declination δ ≤ 2.5o avoiding the band of the Milky
Way, |bII| ≤ 20o and the regions of the Magellanic clouds.
The total survey area is 13 924 deg2 or 4.24 ster. Tests in-
cluding the number counts (logN logS–function), the co-
moving densities, 〈V/Vmax〉 tests, and comparisons to sim-
ulations, described in the above mentioned papers, show
that the selection function is well documented.

The X–ray detection of the clusters is based on the
second processing of the RASS (ROSAT All Sky Survey,
Voges et al. 1999) exploiting a primary (MPE internal)
source detection list comprising 54 076 sources in the
Reflex area down to a detection likelihood of L ≥ 7 (see
Voges et al. 1999). For all these sources the X–ray param-
eters are reanalysed by the growth curve analysis method
as described by Böhringer et al. (2000) which provides
a flux measurement with significantly less discrimination
against extended X–ray sources than provided by the stan-
dard analysis of the RASS. The results of this reanalysis

Fig. 2. Luminosity–redshift distribution of Reflex clusters
of galaxies (points) and the applied ranges for the extraction
of volume–limited subsamples. The redshift and luminosity in-
tervals of the respective volume–limited subsamples L05, L12,
L20, and L30 are marked by continuous, short–dashed, long–
dashed, and dotted lines. The subsamples are described in
Table 2. Note that for conventional reasons the X–ray lumi-
nosities are given in units of H0 = 50 km s−1 Mpc−1.

are used to produce a flux–limited sample of RASS sources
with a nominal flux Fx ≥ 3 × 10−12 erg s−1 cm−2 in the
energy band (0.1–2.4 keV).

The cluster candidates are finally identified or re-
moved from the sample as non–cluster sources by a de-
tailed documentation of the X–ray and optical source
properties, literature information, and spectroscopic
information including redshift measurements obtained by
follow–up observations within the frame of an ESO key
program. Further tests of the sample completeness based
on a search for clusters among the significantly extended
X–ray sources and a search for X–ray emission from clus-
ters cataloged by Abell et al. (1989) independent of the
RASS source detection supports the completeness esti-
mate of >90% for a flux–limit of 3× 10−12 erg s−1 cm−2.
The high completeness concerning the optical identifica-
tion makes the data set an effectively X–ray selected sam-
ple of galaxy clusters. The final cluster sample includes
452 clusters and there are three objects left in the list
with uncertain identifications and redshifts. These three
objects are excluded here in the further analysis.

For the determination of MFs complete volume–
limited subsamples are needed. The Reflex cluster sam-
ple is per construction X–ray flux–limited so that the
fraction of luminous clusters increases with redshift (see
Fig. 2). Volume–limited distributions are selected by intro-
ducing upper redshift and lower luminosity limits (vertical
and horizontal lines in Fig. 2). In order to reduce possible
(error migration) effects which might occur at the flux–
limit (e.g., Eddington 1940) the upper redshift limits are
set slightly below the formal redshift limit, especially for
large luminosities where the effects could be largest.
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Table 2. The volume–limited cluster samples used in our
investigations consisting out of N clusters closer than R with
X–ray luminosity higher than Lmin. The constraint %C2 will be
explained in Sect. 4.

Sample R Lmin N % %C2

[Mpc/h] [erg/s] [h3 Mpc−3]

L05 180 0.5× 1044 74 8.9 × 10−6 3.2

L12 260 1.2× 1044 95 3.8 × 10−6 2.2

L20 330 2.0× 1044 86 1.7 × 10−6 0.6

L30 385 3.0× 1044 62 0.8 × 10−6 0.3

The completeness of the different volume–limited sub-
samples is illustrated in Fig. 3 in Schuecker et al. (2001)
which includes the subsamples denoted by L05 to L30
in Table 2. Similar volume–limited samples as listed
in Table 2 have been used by Collins et al. (2000) in
their analysis using the two–point correlation function.
Comoving distances have been calculated according to the
Mattig formula with Ω = 1, h = 0.5, and Λ = 0. The
flat redshift–independent distribution of comoving clus-
ter number density suggests the absence of large incom-
pleteness effects of the subsamples in the redshift range
0 ≤ z ≤ 0.15. We thus expect no significant artificial fluc-
tuations introduced by incompleteness effects on scales up
to comoving radial distances of R < 400h−1 Mpc.

2.3. Minkowski functionals of the REFLEX clusters

To study the morphology of the large–scale distribution of
galaxy clusters we consider a series of volume–limited sam-
ples from the Reflex cluster catalogue (Böhringer et al.
2001). The volume densities mµ of the Minkowski func-
tionals were calculated using the minus–sampling bound-
ary correction, based on partial Minkowski functionals
as suggested by Mecke et al. (1994) (for details see
Schmalzing & Diaferio 2000). The survey is bounded by
δ < 2.5◦ and |b| > 20◦, but also several regions in the
small and large Magelanic clouds were excluded from the
sample (for details see Böhringer et al. 2001). To estimate
their influence on the Minkowski functionals of the sam-
ples we filled these regions with random points with the
same number density. The comparison in Figs. 3–6 shows
nearly identical results for filled or unfilled regions in the
Magelanic clouds.

The overall features seen in the Minkowski functionals
of the Reflex clusters are similar to the one observed
in the Abell/ACO cluster sample of Plionis & Valdarnini
(1991) as analyzed by Kerscher et al. (1997). We are lim-
ited by the smaller sample size and the boundary cor-
rection used. Only few galaxy clusters contribute to the
Minkowski functionals for large radii. Therefore we are
not able to trace the large–scale structure to the limit
where the sample volume is filled by the union set of
balls. Additionally to the Minkowski functionals of the

Fig. 3. Minkowski functionals of the volume–limited sample
L05 (solid line) compared to the Minkowski functionals of a
Poisson process with the same number density (dotted line,
gray shaded one–σ area). The numerically determined mean
is in perfect accordance with Eq. (9). The dashed one–σ area
is obtained by filling the excluded area around the small and
large Magelanic clouds with randomly distributed points of the
same number density as the rest of the sample.

clusters the results for a Poisson process with the same
number density inside the sample geometry is shown in
the Figs. 3–6. Increasing the depth of the volume–limited
samples from L05 to L30 the Minkowski functionals show

Fig. 4. Minkowski functionals of the volume–limited sample
L12. Same conventions as in Fig. 3.



6 M. Kerscher et al.: Non–Gaussian morphology from the Reflex cluster catalogue

Fig. 5. Minkowski functionals of the volume–limited sample
L20. Same conventions as in Fig. 3.

Fig. 6. Minkowski functionals of the volume–limited sample
L30. Same conventions as in Fig. 3.

a clear trend from strong clustering towards only small
differences from the Poisson distribution. Increasing the
depth of the volume–limited samples we allow for clus-
ters with higher X–ray luminosity. Considering the am-
plitude of the two–point correlation function, galaxy clus-
ters with higher X–ray luminosity should show stronger
correlations (Kaiser 1984; Bardeen et al. 1986). However,
in the deeper volume–limited samples, with the more lu-
minous clusters, also the number density decreases. The
sparseness of the point distribution competes with the

increased amplitude of the two–point correlation function.
Indeed, for quite general conditions, a point distribution
converges towards a Poisson process under thinning, i.e.
under randomly deleting points (e.g. Daley & Vere-Jones
1988, Sect. 9.3). For the Minkowski functionals the behav-
ior in sparse samples may be explained by considering the
expansion of the normalized Minkowski functionals Φµ in
terms of η = %(4π/3)r3 around zero (see also Kerscher
et al. 2001b). Based on the expansion (5) of MFs in terms
of n–point densities one gets to the lowest order in η

Φµ(Ar) =

1− η 3
2r3

∫ 2r

0

ds s2 Iµ(r; s)
(

1 + ξ2(s)
)

+O(η2) . (10)

The functions

I0(r; s) = 1− 3
2
s

2r
+

1
2

(
s

2r

)3

,

I1(r; s) = 1− s

2r
,

I2(r; s) =1− s

2r
+
(
π

4
− 1

2
arccos

s

2r

)(
1−
(
s

2r

)2) 1
2

,

I3(r; s) = Θ(2r − s)

(11)

resemble the Minkowski functionals Iν(r; |x|) =
Mµ(Br(0) ∩ Br(x))/Mµ(Br) of the intersection of
two spheres of radius r and distance |x|. Θ(q) is the
step function equal zero for q < 0 and one for q > 0. In
Eq. (10) the integral and its pre–factor give a dimen-
sionless geometric number depending on the correlation
function ξ2(s) and the measure Mµ. Terms proportional
to ηn include intersections of n spheres weighted by the
n–point densities. Only the two–point correlation function
is important for small η, but the Minkowski functionals
become increasingly more sensitive to higher–order
correlations with larger η. For very small η we essentially
arrive at a Poisson process as numerically verified by
Kerscher et al. (1998). A small η may be obtained either
with a small radius r of the spheres, or, as in our case, by
a low number density %.

Now let us describe the features in the MFs in more
detail. The strong clumping in the distribution of galaxy
clusters is causing the lowered values of the volume den-
sities mµ of the Minkowski functionals compared to the
Poisson values. In a clustered point distribution, the
spheres in the union set Ar =

⋃N
i=1Br(xi) overlap signifi-

cantly already for small radii. This is leading to a reduced
density of the volume m0, surface area m1, and integral
mean curvature m2. The density of the Euler characteris-
tic m3 decreases since for small radii mainly the number
of connected objects is counted – no tunnels and cavities
have formed yet. A tunnel through the body Ar gives a
negative contribution of minus one to the Euler charac-
teristic. In the sample L20 we observe the zero crossing of
the Euler characteristic indicating that an interconnected
network of tunnels, a sponge–like, bi–continuous “cosmic
web” has formed for radii around 35 h−1 Mpc.

In the deeper samples L20 and L30 the volume density
m0 shows a tendency towards increased values compared
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to a Poisson process. With our estimator for the MFs, we
successively shrink the sample proportional to r, where
r is the radius of the spheres Br. Therefore, we mainly
probe the central region of the sample for large r. The in-
creased m0 is caused by gradients in the number density %
of the Reflex cluster sample, specifically the local under–
density of clusters out to approximately 100 h−1 Mpc (see
Schuecker et al. 2001; and for galaxies Zucca et al. 1997).

There is no easy relation between the scale s of fluctu-
ations in the number density as probed by ξ2(s) and the
radius r of the spheres used in the MF analysis. As can
be seen from Eqs. (5) and (15) weighted integrals over all
scales contribute to the MFs at a given radius r. However,
with the radius r of the spheres Br we probe the geom-
etry and topology of the cluster distribution in a scale–
dependent way. The radius r can be regarded as a geomet-
rical scale, e.g. the radius rp of the first zero of the Euler
characteristic m3(Arp) = 0 is an estimate of the perco-
lation threshold for our system of mono–disperse spheres
(Mecke & Wagner 1991). At this scale rp the large–scale
structure elements (walls, filaments, clusters) form a per-
colating network.

3. Higher–order correlations in point distribution

3.1. Minkowski functionals for correlated grains

As for the Poisson process (Mecke & Wagner 1991, and
Sect. 2.1) one may calculate the Minkowski functionals
of correlated grains, in our case spheres centered on a
clustered point set (Mecke 1994; Schmalzing et al. 1999;
Mecke 2000). Our main analytic result Eqs. (15) and (16)
expresses the Minkowski functions Mν(r) in terms of cen-
tered correlation functions which allows a direct compar-
ison of measured functions with a Gaussian model where
higher correlations are set to zero.

The expression (5) may be used to calculate the
Minkowski functionals for correlated grains given the n–
point densities %n(x1, . . . ,xn) of the point distribution.
An alternative and sometimes more convenient expression
for the densities mν(Ar) than Eq. (5) can be obtained in
terms of the cumulants, the connected or centered correla-
tion functions ξn(Γn) with ξ1(x1) = 1. For the two–point
correlation function we have

ξ2(r) + 1 = ξ2(x1,x2) + 1 =
%2(x1,x2)

%2
, (12)

with r = |x2 − x1|, and in general

%n(Γn) = %n
∑
{P}

|P|∏
i=1

ξpi(Γpi). (13)

Thus, the product densities %n of order n is given by a
sum over all possible partitions P of the coordinates Γn =
(x1, . . . ,xn) into |P| parts of pi elements. Each vector
xj ∈ Γn occurs exactly once as an argument xj ∈ Γpi of
a cumulant ξpi(Γpi) on the right side, i.e.,

∑|P|
i=1 pi = n.

Using the additivity relation (2) and the kinematic for-
mula (6) of the Minkowski functionals one can follow the
derivation in Mecke & Wagner (1991) so that one imme-
diately obtains the expression for the intensities (Mecke
1994)

mν

(
Ar; {ξn}

)
=

∂ν

∂tν

{
1− exp

[
− %

d∑
µ=0

tµ

µ!
Mµ(r; %, {ξn})Mµ(Br)

]}∣∣∣∣∣
t=0

(14)

due to the factorization of the integral in Eq. (5) (compare
with Eq. (7)). The normalized specific Minkowski func-
tionals

Mν(r; %, {ξn}) =
∞∑
n=1

(−%)n−1

n!

×
∫
Ω

dΓn
Mν

(⋂n
i=1Br(xi)

)
Mν(Br)|Ω|

ξn(x1, . . . ,xn) (15)

describe the deviation from a Poisson process (compare
Eq. (7)). For Poisson distributed spheres with vanish-
ing cumulants ξn(Γn) = 0 one recovers Mν = 1. The
specific Minkowski functionals depend on the radius r,
the product density %, and all of the correlation func-
tions ξn(x1, . . . ,xn). In particular, one obtains for the
normalized Minkowski functionals in three dimensions
(η = 4π

3 r
3%)

Φ0(r; %, {ξn}) =
(

1− e−ηM0

)
/η

Φ1(r; %, {ξn}) = M1e−ηM0

Φ2(r; %, {ξn}) =
(
M2 −

3π2

32
ηM

2

1

)
e−ηM0

Φ3(r; %, {ξn}) =
(
M3 − 3ηM1M2 +

3π2

32
η2M

3

1

)
e−ηM0 ,

(16)

which can be compared to the analogous result (7) for
Poisson distributed grains. The dependence on higher–
order correlation functions enters only into a finite number
of relevant coefficientsMν . The universal polynomial form
of the mean values (16) is related to the additivity (2) of
the Minkowski functionals due to the decomposition into
specific terms Mν . We also define the deviations

δMν(r) =
(
1−Mν(r)

)21−ν

η
(17)

from the uncorrelated Poisson values M
(P)

ν (r) = 1 with
δM

(P)

ν (r) = 0.
We tried to use the specific Minkowski functionals Mν

or δMν to compare the cluster distribution with our mod-
els. However, due to the nonlinear dependence of the Mν

on the measured Φν , the relative errors are significantly
enlarged, compared to the errors of the Φν . The discrimi-
natory power of the Φν ’s is lost. This may be understood
in detail by solving Eq. (16) for the Mν and inserting an
error Φ̃ν(r) = Φν(r) + ∆Φν(r) for the measured values
of the Minkowski functionals Φν . Expanding in powers of
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∆Φν one gets ∆Mν ∝ e−ηM0 for any Mν . The errors of
the specific functionals increase exponentially for large η.
It is clear that the Φν are the preferable choice in the
comparison of data with the models, but for the analyti-
cal calculations the Mν and δMν are more appropriate.

3.2. The Gauss–Poisson process

The notion of a Gaussian random field is well understood
in cosmology (e.g. Bardeen et al. 1986): considering the
density contrast δ(x) = ρ(x)/ρH − 1 the two–point cor-
relation function ξδ2(r) = E[δ(0)δ(r)] together with the
mean mass density ρH specifies the statistical properties
of the mass density field completely (E is the average over
several realizations of the random field). The higher cor-
relation functions ξδn all equal zero. In the following we
will show how to construct a “Gaussian” point distribu-
tion. A detailed discussion, examples, and extensions to
higher–order processes is presented in Kerscher (2001).
The defining property of this Gauss–Poisson point process,
similar to the Gaussian random field, is that the higher–
order correlation functions of the point set vanish: ξn = 0
for n > 2. Due to the discrete nature, and the demand
for a positive number density %, some constraints on the
two–point correlation function ξ2 as well as the number
density % emerge.

In general, a point process may be specified by its
probability generating functional (p.g.fl.) G[h] where h(·)
are suitable functions (see e.g. Daley & Vere-Jones 1988,
Sect. 7.4; G[h] = R[h] as defined by Balian & Schaeffer
1989). The p.g.fl. is the point process analogue of the prob-
ability generating function of a discrete random variable
(Kendall & Stuart 1977). The expansion of G[h] in terms
of the (connected) correlation functions ξn reads:

logG[h+ 1] =
∞∑
n=1

%n

n!

×
∫
Rd

dx1 · · ·
∫
Rd

dxnξn(x1, . . . ,xn)h(x1) · · ·h(xn). (18)

If we truncate this expansion after n = 1 we arrive at the
p.g.fl. of the Poisson process. A truncation after n = 2, i.e.
ξn = 0 for n > 2, defines the Gauss–Poisson point process:

logG[h+ 1] = %

∫
Rd

dx1 h(x1)

+
%2

2

∫
Rd

dx1

∫
Rd

dx2 ξ2(|x1 − x2|) h(x1)h(x2). (19)

The Gauss–Poisson point process (Newman 1970; Milne
& Westcott 1972) is stochastically fully specified by its
two–point correlation function ξ2(r) and the number den-
sity %. However, % and ξ2(r) may not be chosen arbitrarily.
Milne & Westcott (1972) showed that the Gauss–Poisson
process is only well–defined if two constraints are satisfied.
In Appendix A we give a detailed derivation.

A simplified version of the constraint (A.4) is

%

∫
A

dy ξ2(|y|) ≤ 1. (20)

This tells us that sitting on a point of the process on av-
erage at most one other point in excess of Poisson dis-
tributed points is allowed. The constraint (A.5) implies

ξ2(r) ≥ 0 for any r, (21)

hence only clustering point distributions may be modeled
as a Gauss–Poisson process.

Clearly the question arises, what is wrong with the
simple picture that we start with a Gaussian random field
and “Poisson sample” it to obtain the desired point dis-
tribution. The answer is that a Gaussian random field is
an approximate model for a mass density field only if
the fluctuations are significantly smaller than the mean
mass density. Otherwise negative mass densities (i.e. nega-
tive “probabilities” for the Poisson sampling) would occur.
Only in the limit of vanishing fluctuations a Poisson sam-
pled Gaussian random field becomes a permissible model.
However, in this limit we are left with a pure Poisson
process.

3.3. Simulating the Gauss–Poisson process

As discussed by Daley & Vere-Jones (1988) any Gauss–
Poisson process equals a rather simple type of Poisson
cluster processes (for details see Kerscher 2001). A Poisson
cluster processes is a two–stage point process. First we dis-
tribute parent points y (the supercluster centers) accord-
ing to a Poisson process with number density %p and then
we attach to each parent a second point process (the su-
percluster). In this specific example the supercluster con-
sists only of one or two points with probability q1(y) and
q2(y), respectively. We have q1(y) + q2(y) = 1 and the
first point is the supercluster center itself. The probabil-
ity density f(|x − y|) determines the distribution of the
distance |x − y| of the second point x to the superclus-
ter center with

∫
dxf(|x|) = 1. The p.g.fl. of this Poisson

cluster process is given by

logG[h+ 1] =
∫
Rd

dx1%p(1 + q2(x1))h(x1)

+
∫
Rd

dx1

∫
Rd

dx2%pq2(x1)f(|x1 − x2|)h(x1)h(x2), (22)

which equals the p.g.fl. (19) for the Gauss–Poisson pro-
cess for % = %p(1 + q2) and ξ2(r) = 2%−%p

%2 f(r) (Daley &
Vere-Jones 1988 Sect. 8.3, Kerscher 2001). Hence, every
Gauss–Poisson process is a Poisson cluster process of the
above type, and vice versa. For a Gauss–Poisson process
it is necessary that the parent points, in our case the su-
percluster centers, are distributed according to a Poisson
process. Any deviation from a pure Poisson process, ei-
ther in the direction of clustering or regularity, implies the
presence of higher–order correlation functions in the dis-
tribution of the galaxy clusters. There are indications that
the distribution of galaxies or galaxy clusters shows some
regularity on large scales (Broadhurst et al. 1990; Einasto
et al. 1997). Hence, an unambiguous detection of such
large scale regularity in the upcoming large redshift sur-
veys would also strengthen our findings of non–Gaussian
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features on large–scale (see below). However, regular fea-
tures on large scales are not necessary for higher–order
correlations to be present.

We may generate realizations of the Gauss–Poisson
process for a given number density % and two-point cor-
relation function ξ2(r), fulfilling the constraints (A.4)
and (A.5). With C2 =

∫
Rd dx ξ2(|x|) and

∫
Rd dx f(|x|) =

1 we can calculate the quantities needed in the simula-
tion: f(r) = ξ2(r)/C2, q2 = %C2

2−%C2
, q1 = 1 − q2, and

%p = %(1 − %C2/2). The constraint (20) implies C2% ≤ 1.
The simulation is carried out in two steps:

– First we generate the parents (the supercluster cen-
ters) according to a Poisson distribution with number
density %p;

– For each supercluster center y we draw a uniform ran-
dom number q in [0, 1]. If q < q1, then we keep only
the point y. If q ≥ q1 then additionally to the point y
we chose a random direction on the unit sphere and
a distance d with the probability density f and place
the second point according to them.

To get the correct point pattern inside the sample window,
one also has to use supercluster centers outside the window
to make sure that any possible secondary point is included
in the sample inside the window.

As an illustration of this procedure we calculate the
two–point correlation function ξ2 from the sample L20.
The ξ2 together with the number density satisfy the con-
straint (20) (see Table 2): %C2 < 1. We use this empirical
ξ2 as an input to the simulation algorithm outlined above.
Figure 7 illustrates that these simulated Gauss–Poisson
sets are indeed able to reproduce the observed two–point
correlation function. Even the dip of ξ2 at 20 h−1 Mpc,
is well reproduced by the simulated point sets. By con-
struction no higher–order correlations are present in the
simulated point sets in the mean.

3.4. Minkowski functionals of a Gauss–Poisson process

In the following the Minkowski functionals for a Gauss–
Poisson process will be given. Truncating after the second
term in Eq. (15) one obtains the correlated average of the
specific Minkowski functionals

Mν(r; %, ξ2) = 1− 2ν−1η δM
(GP)

ν (r; ξ2), (23)

δM
(GP)

ν (r; ξ2) =
1

2νM0(Br)

∫
B2r(0)

dx ξ2(|x|) Iν(r; |x|)

with the volume M0(Br) of a sphere of radius r. From
Eq. (23) and using the expressions for Iν(r; s) given in
Eq. (11) we can calculate the normalized Minkowski func-
tionals of the Gauss–Poisson process according to Eq. (16).
For example we obtain

Φ0(r; %, ξ2) =
(
1− e−ηM0

)
/η,

with

M0 = 1− η 4π
2M0(Br)

∫ 2r

0

ds s2ξ2(s)
(

1− 3
2
s

2r
+

1
2

( s
2r

)3)
,

Fig. 7. The two–point correlation function ξ2(r) estimated
from the L20 sample (solid line) is shown together with ξ2(r)
estimated from 200 realizations of a Gauss–Poisson process
with the same ξ2 and number density as for the observed clus-
ters (short dashed line, shaded one–σ area). The long dashed
line is for ξ2(r) = (30/r)1.83.

and similar expressions for Φ1, Φ2, and Φ3.
The expansion (10) to linear order in η ∝ r3% allows

us to describe the MFs only for small radii or low num-
ber densities. For a Gauss–Poisson process both Iµ and η
appear non–linearly in Eq. (16) via Eqs. (5), (23), (23).
Contrary to the approximation (10) which is only valid for
η � 1, the Minkowski functionals of the Gauss–Poisson
process, are valid for all η. A Gauss–Poisson process does
not imply the linearity of the MFs in Iµ and η.

For a Poisson distribution with ξ2(r) = 0 one obtains

M
(P )

ν (r) = 1 , δM
(P )

ν (r) = 0 , (24)

i.e., one recovers Eq. (9). Assuming an algebraic scaling
form

ξ2(s) =
(s0

s

)γ
(25)

for the centered two–point correlation function one ob-
tains with γ < 3 the general result

δM
(GP)

ν (r) = Aν(γ)
( s0

2r

)γ
(26)

with the amplitudes

A0(γ) =
24

3− γ −
36

4− γ +
12

6− γ ,

A1(γ) =
12

3− γ −
12

4− γ ,

A2(γ) =
6

3− γ −
6

4− γ + 3

π/2∫
0

dy y cos2 y sin2−γ y,

A3(γ) =
3

3− γ ·

(27)
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In the limiting case γ → 0 (with % → 0) one recovers
the result A0 = A1 = A3 = 1 and A2 = 1

2 + 3π2

64 for the
averaged Minkowski functionals

Aν = 2−ν
∫

dx
Mν(Br(0) ∩Br(x))
Mν(Br)M0(Br)

(28)

of the intersection of two overlapping spheres with dis-
tance |x| and radius r (see kinematic formula (6)).

One has to be careful in the interpretation of Eq. (27),
since a scale–invariant two–point correlation function (25)
with γ < 3 does not satisfy the constraint (20), as required
for the existence of a Gauss–Poisson process. A cut–off, i.e.
ξ2(s) = 0 for s > rc, has to be imposed below some ra-
dius rc to guarantee the constraint (20). The maximal al-
lowed rc is depending on the number density through (20).
As can be seen directly from Eq. (23), the scaling behav-
ior (26) as well as the amplitudes Aν in Eq. (27) are still
correct for 2r < rc. Only on larger scales additional terms
depending on the cut–off will emerge. In such a scale in-
variant Gauss–Poisson process the specific MFs δMν(r)
should show the general scaling form (26) which may be
used to test for an algebraic two–point correlation func-
tion ξ2(r).

The actual measured specific MFs still depend on
the density % and all of the correlation functions
ξ(n)(x1, . . . ,xn). The deviations of the measured MFs
from the expressions (23) for a Gauss–Poisson process will
be used as a measure for the relevance of higher–order cor-
relations among the points (see Sect. 4).

To facilitate future applications we will also quote the
Minkowski functionals of a Gauss–Poisson process in two
dimensions (Mecke 1994). With η = πr2% the reduced
Minkowski functionals (compare Eq. (16) for three dimen-
sions)

Φ0(r; %, {ξn}) = (1− e−ηM0)/η

Φ1(r; %, {ξn}) = M1e−ηM0

Φ2(r; %, {ξn}) = (M2 − ηM
2

1)e−ηM0 ,

(29)

with the specific Minkowski functionals given by Eq. (15).
For a Gauss–Poisson process the specific Minkowski func-
tionals are given by the Eq. (23), the volume M0(Br) =
πr2 of a disc of radius r, and the functions

I0(r; s) = 1− 2
π

(
arcsin

s

2r
− s

2r

(
1−

( s
2r

)2) 1
2
)

I1(r; s) = 1− 2
π

arcsin
s

2r

I2(r; s) = Θ(2r − s).

(30)

If the correlation function decays algebraicly ξ(r) =
(s0/r)γ , r = |x1 − x2|, with an scaling exponent γ and
a correlation length s0 one finds for the intensities of the
Minkowski measures (16) for homogeneously distributed

discs Br of radius r in two dimensions the amplitudes
(Mecke 1994)

A0(γ) =
8

2− γ − 2g(γ)− f(γ),

A1(γ) =
4

2− γ − g(γ),

A2(γ) =
2

2− γ ,

(31)

with the functions

f(γ) =
4√
π

Γ
(

3
2 −

γ
2

)
Γ
(
3− γ

2

) , (32)

and

g(γ) =
8
π

1∫
0

dy y1−γ arcsin(y). (33)

One also recovers the result Aν = 1 in the limit γ → 0
(with % → 0) for the averaged Minkowski functionals of
the intersection of two discs defined in Eq. (28). In gen-
eral a cut–off in the scale invariant correlation function is
needed to make this model well–defined. See the comments
above.

4. Non–Gaussian morphology of the galaxy
cluster distribution

In this section we compare the Minkowski functionals de-
termined from the cluster distribution with the Minkowski
functionals of a Gauss–Poisson process. In Sect. 3.2 we
showed that the number density % and the two–point cor-
relation function ξ2(r) have to fulfill constraints in order to
allow them to serve as the ingredients for a Gauss–Poisson
point process. The constraint (A.5) implies ξ2(r) ≥ 0 for
all r. There are indications from the analysis of the flux–
limited Reflex catalogue that the two–point correlation
function of the cluster distribution becomes negative on
scales of 40–50 h−1 Mpc (Collins et al. 2000). The vio-
lation of constraint (A.5) already tells us that the cluster
distribution exhibits non–Gaussian features even on such
large scales. Due to the limited number of clusters and
the smaller extent of samples we can not detect this zero
crossing unambiguously in the volume–limited samples we
analyzed. To obtain a well–defined model of the two–point
correlation function we impose a cut at rc = 48 h−1 Mpc
with ξ2(r) = 0 at r > rc.

Another more stringent constraint is Eq. (A.4) which
may be cast into the form

%

∫
R3

dy ξ2(|y|) = % C2 ≤ 1. (34)

As can be seen from Table 2, the smaller volume–limited
samples L05–L12, with their higher number density clearly
violate this constraint. Hence, already by inspecting the
two–point correlation function ξ2 in conjunction with the
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number density % we can conclude that there are non–
negligible higher–order correlations in the point distribu-
tion of galaxy cluster in the samples L05 and L12.

In Sect 3.3 we showed how to simulate a Gauss–Poisson
process for a given two–point correlation function ξ2 and
%. The violation of the constraint (34) prohibits the sim-
ulation of a Gauss–Poisson process corresponding to the
samples L05 and L12. However for the samples L20 and
L30 the constraint (34) is satisfied (see Table 2) and we
may generate realizations of a Gauss–Poisson process with
the same number density and the same two–point cor-
relation function, as estimated from these samples, (see
Sect. 3.2 and especially Fig. 7). Both constraints (20)
and (21) are only necessary conditions for the existence
of a Gauss–Poisson process. Still higher–order correlations
may be present in the cluster distribution. We calculate
the Minkowski functionals of these Gauss–Poisson sam-
ples and compare them with the Minkowski functionals
of the observed cluster distribution. Since correlations of
any order enter the Minkowski functionals (see Eq. (5) or
Eqs. (15) and (16)), deviations of the Minkowski func-
tionals of the cluster distribution from the Minkowski
functionals of the Gauss–Poisson process indicate the
presence of higher–order correlations even in these deep
samples. To facilitate the comparison we use the normal-
ized Minkowski functionals

Φν(r) =
mν(Ar)

Mν(Br) %(r)
· (35)

To get unbiased estimates of the MFs we employ a bound-
ary corrected estimator where we shrink the observational
window W (r) with increasing radius r of the spheres
(Mecke et al. 1994; Schmalzing & Diaferio 2000). As
an estimate of the number density inside W (r) we use
%(r) = N(r)/|W (r)| with N(r) the number of points in-
side the shrunken window with the volume |W (r)|.

In Fig. 8 the results of our comparison are shown,
where the Φµ’s are plotted against η = %(4π/3)r3. We
used the empirical two–point correlation function to gen-
erate the realizations of the Gauss–Poisson process inside
the sample geometry of the Reflex cluster catalog. The
shaded one–σ area with the short dashed line in the center
was estimated from one hundred realizations. The initial
slope of the MFs of the cluster distribution (solid line) is
well approximated by the expression (10). But already for
fairly small η this linear approximation breaks down. As
discussed in Sect. 3.4 a Gauss–Poisson process does not
imply the linearity of the MFs in η, which is readily ob-
served in Fig. 8. It is necessary to compare the measured
values of Mν(r) with Eq. (16) which is available in the
analytic form only because of additivity. So our heuristic
argument in the beginning (to look for additive integral
information on higher correlations) turns out to be use-
ful in deriving analytic results which are necessary for the
comparison with measured values. Over the whole range of
scales probed, the normalized volume Φ0 and surface area
Φ1 of the cluster samples are consistent with the Gauss–
Poisson process. However, both the normalized integral

Table 3. The rank of the cluster sample L20 within the as-
cending list of one hundred ordered distances dkν . A rank larger
than 95 indicates rejection with significance of 95%.

ν 0 1 2 3

rank 26 52 97 96

mean curvature Φ2 and the normalized Euler characteris-
tic Φ3 are lowered with respect to the Gauss–Poisson pro-
cess, clearly outside the one–σ range. The deviations are
especially prominent for radii larger than 30 h−1 Mpc.
This is a firm indication that higher–order correlations
are necessary to account for the shape and topology of
the cluster distribution for such large scales, given by the
radii of the spheres.

In Fig. 8 also the MFs of a Gauss–Poisson process with
a scale invariant two–point correlation function ξ2(r) =
(s0/r)γ are shown (see Eqs. (26), (27) and (16)). The ex-
ponent is γ = 1.83 as determined by Collins et al. (2000)
and s0 = 30 h−1 Mpc. These parameters give a reason-
able fit to the wiggly two–point correlation function de-
termined from volume–limited sample L20 (Fig. 7). The
normalized volume Φ0, surface area Φ1 and integral mean
curvature Φ2 of a Gauss–Poisson process with this scale
invariant ξ2 follow closely the corresponding quantities de-
termined from the Gauss–Poisson process using the two–
point correlation function from the data. A significant dif-
ference between the two Gaussian models shows up only
in the Euler characteristic Φ3.

To quantify the deviation of the distribution of galaxy
clusters from a Gauss–Poisson process we perform a non–
parametric significance test (Besag & Diggle 1977; Stoyan
2000). Using M = 10 equidistant radii ri in the range from
30 h−1 Mpc to 45 h−1 Mpc we define the “distance”

dkν =
1
M

M∑
i=1

(
Φkν(ri)− ΦGP

ν (ri)
)2

(36)

between the normalized Minkowski functionals Φkν of
the sample labeled with k and the mean value ΦGP

ν of the
Gauss–Poisson process calculated from one hundred real-
izations inside the same sample geometry as the Reflex

samples and using the empirical % and ξ2. Additional to
the distances dL20

ν of the cluster sample L20, we also cal-
culate the distances dkν for k = 1 . . . 99 realizations of
the Gauss–Poisson process (these 99 realizations are inde-
pendent from the realizations used to calculate the mean
ΦGP
ν ). We order these distances including dL20

ν ascending.
If dL20

ν is under the five highest distance values, we may ex-
clude a Gauss–Poisson process with a significance of 95%
(see the comments by Marriott 1978 concerning the signif-
icance level). The beauty of this Monte–Carlo significance
test is that we neither make assumptions about the distri-
bution of the Reflex clusters, nor about the distribution
of the errors of the MFs in the model.
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Fig. 8. The reduced Minkowski functionals Φµ of the volume–limited sample L20 (solid line, see also Fig. 5) compared to
the Minkowski functionals of a Gauss–Poisson process (short dashed line, shaded one–σ area) with the empirical two–point
correlation function as input (see Fig. 7). The long dashed line is obtained from the scale invariant model (see Eq. (26)) with
s0 = 30 h−1 Mpc, γ = 1.83 and the amplitudes A0 = 6.8, A1 = 4.73, A2 = 2.70, and A3 = 2.56 according to Eq. (27). The
mean Minkowski functionals of a Poisson process are shown as a dotted line. The errors for the Poisson process (not shown)
are smaller than the errors from the Gauss–Poisson process.

In Table 3 the rank of the cluster sample L20 within
the ordered list of distances is given. As expected from
the visual impression in Fig. 8 the volume Φ0 and the
surface area Φ1 are consistent with the expectation from
a Gauss–Poisson process. Both the integral mean curva-
ture Φ2 and the Euler characteristic Φ3 allows us to reject
the hypotheses that the cluster distribution stems from a
Gauss–Poisson process at a significance level of 95%. This
result is stable against extending or shrinking the radial
range. One may also use the overall mean number den-
sity % of the full sample in Eq. (35) instead of %(r).

We implemented this Monte–Carlo test using the em-
pirical two–point correlation function as input to the simu-
lations of the Gauss–Poisson process. For a scale–invariant
ξ2(r) = (30 h−1 Mpc/r)1.83 the normalized Euler charac-
teristic Φ3 according to Eq. (26) seems to be in agree-
ment with the observed MFs. However, the family of MFs
provides us with a consistency check, still the integral
mean curvature Φ2 from the scale invariant model and
the data are differing, illustrating the relevance of higher–
order correlations. Hence, also a Gauss–Poisson process
with a scale–invariant correlation function is inconsistent
with the data.
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Fig. 9. The reduced Minkowski functionals Φµ of the volume–limited sample L30 (see also Fig. 6). The same conventions as in
Fig. 8 apply.

We conducted a similar analysis for the cluster sample
L30 (see Fig. 9). Again Φ0 and Φ1 fall within the one–σ
range of the Gauss–Poisson process. The Φ2 and Φ3 only
marginally stand out. As discussed in Sect. 2.3 this sam-
ple hardly allows for a discrimination from the Poisson
process, which can be explained by Eq. (10) and the sig-
nificantly lowered number density. Nevertheless the same
tendency can be observed as for the sample L20 although
the statistics does not allow a discrimination.

5. Summary

The Reflex cluster catalogue is well suited for study-
ing the large–scale structure of the Universe. The de-
tection of the clusters is based on their X–ray flux, al-
lowing the construction of a flux–limited sample. X–ray

selected cluster catalogues are not impaired by projection
effects. Moreover, the flux–limit, together with the well
documented selection effects allows the extraction of clean
volume–limited samples.

We calculated Minkowski functionals of a series of
volume–limited samples, extracted from the Reflex clus-
ter catalogue. The comparison with the MFs of Poisson
distributed points revealed similar features as detected
in the Abell/ACO cluster sample (Kerscher et al. 1997).
Although the number of clusters in the samples is always
less than one hundred, MFs allow for a sensitive and dis-
criminatory analysis. The stability of the results obtained
from this small number of points can be attributed to the
additivity property of the MFs, which served as a con-
struction principle.
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Our aim was the quantification of non–Gaussian fea-
tures in the large–scale distribution of clusters, therefore
we first gave a precise definition of a Gaussian point
distribution, the Gauss–Poisson process. Contrary to a
Gaussian random field, constraints for number density and
the two–point correlation function arise. In the smaller
volume–limited samples L05 and L12 these constraints
are violated. Hence, a Gauss–Poisson process with the
observed density and two–point correlation function does
not exist. This is an indirect detection of higher–order
correlation functions. Higher–order correlation functions
are needed to allow for the increased variance. Clearly,
the relevance of these higher–order correlations has to be
checked independently, e.g. using the MFs. Due to the
decreasing number density of galaxy clusters the deeper
volume–limited samples L20 and L30 comply with the
constraints. A Gauss–Poisson process based on the ob-
served correlation function becomes feasible as a model.
MFs summarize the influence of the two–point correlations
and higher–order correlations on the morphology of large–
scale structure. They include correlations of any order in
an integral way. We calculated the MFs for a general corre-
lated point set. Detailed results were given for the Gauss–
Poisson process. To quantify higher–order correlations in
the cluster distribution we compare the analytical known
MFs known for the Gauss–Poisson process with the ac-
tual observed MFs of the cluster distribution. Two of the
four MFs, the volume and the surface area, are consis-
tent with the Gaussian model. However a clear detection
of non–Gaussian features at large scales was possible with
the integral mean curvature and the Euler characteristic.

The definition of the Gauss–Poisson process directly
lead to a method for simulating Gaussian point distri-
butions. With such simulated point distributions we per-
formed a non–parametric Monte–Carlo test. The main re-
sult is that we can exclude a Gauss–Poisson process as a
viable model for the distribution of galaxy clusters at the
significance level of 95%.

Non–Gaussian features seen in the distribution of
galaxy clusters may be already imprinted on the initial
density field (see e.g. Linde & Mukhanov 1997), or may
be a result of topological defects (see e.g. Shellard &
Brandenberger 1988). We would like to point out that
also explanations facilitating Gaussian initial conditions
are possible. Introducing a threshold and considering only
peaks in a Gaussian density field Bardeen et al. (1986)
could show that the point distribution of the peaks has
non zero higher–order correlations ξn 6= 0 for n > 2. Still
the importance of the higher–order correlations on large
scales comes as a surprise within this model. On physical
grounds, the peak biasing picture may only serve as a first
approximation. Evolving a Gaussian density field in time
using the linear approximation leads to larger and larger
regions with a non–physical negative mass density. Only
the non–linear evolution of the density field can remedy
these shortcomings, allowing on the one hand for high den-
sity peaks with an over–density of several hundreds, and
on the other hand allowing voids with a negative density

contrast always larger than minus one. At the peaks of
this non–linear evolved density fields one may assume the
clusters to reside. As already discussed in the introduc-
tion non–Gaussian features in the large–scale distribution
of mass, like walls and filaments, are predicted both by
the Zel’dovich and related approximations as well as by
N–body simulations, both based on Gaussian initial con-
ditions. These structures in the mass distribution, perhaps
amplified by a biasing mechanism, can be associated with
the non–Gaussian structures observed in the large–scale
distribution of Reflex galaxy clusters. Our results sug-
gest that within these scenarios, using Gaussian initial
conditions, it is necessary to consider non–linear models
to describe the observed large–scale structures.
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Appendix A: The constraints

In this Appendix we recall the derivation of the constraints
on the number density % and ξ2(r) for the Gauss–Poisson
process as presented by Milne & Westcott (1972) (see also
Kerscher 2001).

Consider k compact disjoint sets Aj , and let nj =
N(Aj) be the number of points inside Aj . The probability
generating function of the k-dimensional random vector
(n1, · · · , nk) is then

Pk(z) = Pk(z1, . . . , zk) = E
[ k∏
j=1

z
nj
j

]
. (A.1)

Together with a continuity requirement the knowledge of
all finite–dimensional probability generating functions Pk
determines the p.g.fl. G[h] (see Eq. (18)) and the point
process completely (e.g. Westcott 1970). Setting

h(x) = 1−
k∑
j=1

(1− zj)1lAj (x), (A.2)

one obtains the probability generating function of these
finite–dimensional distributions from the probability gen-
erating functional of the point process: Pk(z) = G[h].
Here 1lA(x) is the indicator–function of the set A, with
1lA(x) = 1 for x ∈ A and zero otherwise.

Since Pk(z) is a probability generating function of a
random vector, it is positive and monotonically increasing
in each component zi, hence logPk(z) is non–decreasing.
Inserting Eq. (A.2) into the probability generating func-
tional of the Gauss–Poisson process (19) one immediately
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obtains

∂ logPk(z)
∂zl

= %|Al|

+%2
k∑
j=1

∫
Al

dx
∫
Aj

dy ξ2(|x− y|)(zj − 1) ≥ 0 (A.3)

for any zj ≥ 0, where |Al| is the volume of the set Al. We
chose zj = 1 for all j 6= i and set the remaining zi either
to zi = 0 or zi � 1. Then the following two constraints
emerge:

%

|Ai|

∫
Ai

dx
∫
Aj

dy ξ2(|x− y|) ≤ 1, (A.4)∫
Ai

dx
∫
Aj

dy ξ2(|x− y|) ≥ 0, (A.5)

for any subset Ai, Aj of R3. Milne & Westcott (1972)
showed that these two conditions are necessary and suffi-
cient for the existence of the Gauss–Poisson process.

With Ai as an infinitesimal volume element centered
on the origin and Aj equal to some volume A the first
constraint (A.4) implies the simplified constraint (20).
Considering two volume elements Ai = dVi and Aj = dVj ,
then Eq. (A.5) implies Eq. (21).
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