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Identifying inhibitors of epithelial–mesenchymal plasticity
using a network topology-based approach
Kishore Hari1, Burhanuddin Sabuwala2, Balaram Vishnu Subramani3, Caterina A. M. La Porta 4,5, Stefano Zapperi 4,6,
Francesc Font-Clos4,6 and Mohit Kumar Jolly 1✉

Metastasis is the cause of over 90% of cancer-related deaths. Cancer cells undergoing metastasis can switch dynamically between
different phenotypes, enabling them to adapt to harsh challenges, such as overcoming anoikis and evading immune response. This
ability, known as phenotypic plasticity, is crucial for the survival of cancer cells during metastasis, as well as acquiring therapy
resistance. Various biochemical networks have been identified to contribute to phenotypic plasticity, but how plasticity emerges
from the dynamics of these networks remains elusive. Here, we investigated the dynamics of various regulatory networks
implicated in Epithelial–mesenchymal plasticity (EMP)—an important arm of phenotypic plasticity—through two different
mathematical modelling frameworks: a discrete, parameter-independent framework (Boolean) and a continuous, parameter-
agnostic modelling framework (RACIPE). Results from either framework in terms of phenotypic distributions obtained from a given
EMP network are qualitatively similar and suggest that these networks are multi-stable and can give rise to phenotypic plasticity.
Neither method requires specific kinetic parameters, thus our results emphasize that EMP can emerge through these networks over
a wide range of parameter sets, elucidating the importance of network topology in enabling phenotypic plasticity. Furthermore, we
show that the ability to exhibit phenotypic plasticity correlates positively with the number of positive feedback loops in a given
network. These results pave a way toward an unorthodox network topology-based approach to identify crucial links in a given EMP
network that can reduce phenotypic plasticity and possibly inhibit metastasis—by reducing the number of positive feedback loops.
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INTRODUCTION
Metastasis, therapy resistance, and tumor relapse remain unsolved
clinical challenges and major causes of cancer mortality1. During
metastasis, cells navigate many bottlenecks: local invasion,
intravasation, survival in circulation in matrix-deprived conditions,
extravasation, and eventually colonization of the distant organ.
Only a few (<0.02%) cells survive this cascade of events and are
capable of initiating metastasis. Recent studies have identified
phenotypic plasticity—the ability of cells to reversibly switch
phenotypes in response to their ever-changing environmental
conditions—as a hallmark of cancer metastasis2. Similarly,
phenotypic plasticity enables a small proportion of cancers cells
to transiently acquire an adaptive drug-refractory phenotype
which may contribute to tumor relapse3. Therefore, identifying the
mechanisms of phenotypic plasticity is essential for any major
breakthroughs in cancer treatment.
Phenotypic plasticity is considered to be an adaptation strategy

to survive in variable environmental conditions4. Recently, the
contributions of phenotypic plasticity in driving metastasis and
therapy resistance have been realized more prominently, espe-
cially due to the lack of any unique mutational signature being
identified for cancer metastasis so far2, and the frequent
emergence of resistance against targeted therapy3. Phenotypic
plasticity, referred to as “the architect who never sleeps”5, can
have various dimensions—metabolic plasticity6,
epithelial–mesenchymal plasticity7, plasticity between cancer
stem cell (CSC) and a non-CSC state8–10, and plasticity between
drug-sensitive and drug-resistant/tolerant state11 among others.

Cancer cells continually exploit phenotypic plasticity to adapt to
their ever-changing environment by maximizing their fitness
during cancer progression, metastasis, therapy resistance and
eventually tumor relapse12. Moreover, phenotypic plasticity can
amplify the non-genetic heterogeneity within tumors, thus
increasing the number of “exit options” for cells in response to
drugs, thereby increasing the versatility of the tumor cell
population13. Thus, targeting phenotypic plasticity provides a
unique opportunity to both curb cancer metastasis and to
improve the efficiency of existing therapeutic strategies.
A canonical example of phenotypic plasticity is

epithelial–mesenchymal plasticity (EMP), which involves partial
and/or complete epithelial–mesenchymal transition (EMT) and/or
mesenchymal-epithelial transition (MET). EMT and MET are
embryonic developmental programs which are often adopted
by cancer cells during metastasis14. EMT can fuel the dissemina-
tion of stationary cancer cells through reduced cell-cell adhesion
and apico-basal polarity and increased migration and invasion.
Conversely, MET may enable the disseminated cells that exit the
bloodstream to survive in a different environment by regaining
cell-cell adhesion and proliferation to eventually colonize that
organ. EMT and MET were earlier thought of as binary processes
(i.e. switching between epithelial and mesenchymal phenotypes),
but recent in vitro, in vivo and in silico evidence strongly suggests
that they are not “all-or-none” processes, and cells can stably
reside in one or more hybrid E/M phenotypes, thus enabling
various manifestations of EMP14. EMP can not only drive
metastasis, but also influence the resistance to various
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chemotherapeutic drugs and targeted therapies. It can also alter
the tumor microenvironment to be immunosuppressive, even-
tually leading to overall poor survival of patients across cancer
types15,16. Therefore, preventing the ability of cells to reversibly
switch among these epithelial (E), mesenchymal (M), and hybrid E/
M (H) phenotypes can have a significant clinical impact.
Most current preclinical and clinical efforts attempt to restrict

EMP in only one direction—EMT or MET. Such efforts are likely to
facilitate the transition in the opposite direction (i.e. MET or EMT
respectively) and can possibly increase the frequency of hybrid E/
M phenotypes which can be the “fittest” for metastasis17. Hence,
these interventions may increase the metastatic load instead,
depending on the phenotypic distribution of disseminated cells.
Blocking EMP in both directions can overcome these potential
side effects. Moreover, restricting EMP bidirectionally can also limit
the ability of a clonal population to generate and/or maintain non-
genetic heterogeneity18. Non-genetic heterogeneity can enable
“bet-hedging” during the evolution of drug resistance19, as well as
the co-existence of phenotypically distinct subpopulations of
epithelial and mesenchymal cells that can communicate and
cooperate among themselves to aggravate metastasis20,21. Thus,
blocking EMP bidirectionally, or in other words “fixing cells at a
given position on the epithelial–mesenchymal axis to prevent
access to the range of states that might be required to facilitate
different stages of the metastatic cascade”22, is likely to blunt the
metastatic and drug-resistance potential of cancer cells much
stronger than restricting only EMT or only MET.
Identifying ways to inhibit EMP requires a detailed mechanistic

understanding of its dynamics. Experimentally, EMP can be
tracked through recent advances such as live-cell imaging
reporter constructs or single-cell RNA-seq and/or mass/flow
cytometry13. Another approach to characterize the dynamics of
EMP is by developing mechanism-based mathematical models of
networks that have experimentally been identified to regulate
EMT and/or MET. Many such mathematical models have helped
gain useful insights into the dynamics of EMP and have driven the
experiments to decode (a) how cells attain one or more hybrid E/
M phenotype, (b) how reversible is EMP in both directions (E to M
vs. M to E), and (c) whether cells take same or different paths en
route EMT or MET23. However, none of these models investigated
the possibility of identifying mechanisms to block EMP
bidirectionally.
Here, we investigate the dynamics of various regulatory

networks implicated in EMP and identify robust network
topology-based design principles of EMP, using two different
but complementary modeling formalisms—a discrete, parameter-
independent method: asynchronous Boolean24 and a continuous,
parameter-agnostic method: RACIPE (Random Circuit Perturba-
tion)25. Our results show that the phenotypic distributions that can
be obtained through an EMP network depend majorly on network
topology but are largely independent of specific kinetic para-
meters for each link in the network. We also pinpoint a set of
network perturbations that can reduce EMP, and observe a
unifying theme amongst them: a reduced number of total positive
feedback loops embedded within an EMP network led to curtailed
EMP. Therefore, our approach unravels the common operating
principles of various EMP regulatory networks and offers a
systematic framework to identify network perturbations to restrict
EMP based on this network topology-based dynamical trait.

RESULTS
RACIPE and Boolean models have similar phenotypic distributions
for EMP networks
Boolean frameworks lack kinetic parameters and treat a gene to
be discretely ON (1) or OFF (0), thus focusing on a coarse-grained
view of how various interactions in a network can give rise to the

repertoire of dynamical behaviors26. RACIPE, on the other hand,
generates an ensemble of continuous mathematical models (sets
of coupled ordinary differential equations) with randomly chosen
kinetic parameters for a given network topology and clusters the
steady state solutions to identify the robust dynamical features of
a given network. In other words, while a Boolean framework is
parameter-independent, RACIPE can be thought of as a
parameter-agnostic one.
Therefore, the similarities in dynamical traits of a network

simulated via Boolean and RACIPE frameworks can unravel the
extent to which the network topology drives the network
dynamics, without much reliance on the specific choice of kinetic
parameters. Across various EMP networks and the perturbations
made in those, we have compared the outputs of these two
modeling frameworks in terms of phenotypic distributions, and in
ranking the effect of various perturbations in diminishing EMP
(Fig. 1a).
We have investigated 6 different networks reported in EMP

literature; these networks vary from 3 nodes to 8 nodes and 7
edges to 16 edges (Fig. 1b). First, we calculated the phenotypic
distributions (i.e. stable steady state frequency distributions)
obtained via RACIPE and Boolean models. To facilitate the
comparison of Boolean and RACIPE models, we have discretized
the output of RACIPE (as described in “Methods” section). First, we
determined the sample size of parameter sets to be chosen for
RACIPE, and the number of initial conditions for Boolean models,
using a quantitative convergence analysis. N= 10,000 was chosen
as the optimal number of parameter sets for RACIPE, and as the
optimal number of initial conditions for Boolean analysis, based on
observed standard deviation in steady state distributions obtained
from RACIPE and Boolean models (Fig. 2a, S1a).
For the miR-200/ZEB/ SNAIL/GRHL2 network (hereafter called as

‘GRHL2 network’; 4 nodes, 7 edges), a maximum of 23= 8 stable
steady states are possible (value of each node= 0 or 1; SNAIL is an
input to the circuit), in discretized RACIPE and Boolean framework.
From Boolean analysis, we obtained four stable states for this
network across different numbers of initial conditions chosen.
Two out of these four states were more prominent—(ZEB= 0,
miR-200= 1, GRHL2= 1) and (ZEB= 1, miR-200= 0, GRHL2= 0)—
than the others (Fig. 2a). These two states can be construed as
epithelial (high miR-200 and GRHL2, low ZEB) and mesenchymal
(low miR-200 and GRHL2, high ZEB) phenotypes as observed
experimentally27,28. Discretized analysis of RACIPE results also
identifies these four stable steady states with similar relative
frequency as seen in the case of Boolean model, and 3 other states
with relatively less frequencies (Fig. 2a). Put together, these results
suggest that epithelial and mesenchymal phenotypes are the two
most commonly expected phenotypes from the dynamics of
GRHL2 network.
GRHL2 and OVOL1/2 are reported to play similar roles in

inducing MET and/or inhibiting EMT29–31. Thus, epithelial (ZEB= 0,
miR-200= 1, OVOL= 1) and mesenchymal (ZEB= 1, miR-200= 0,
OVOL= 0) phenotypes are seen consistently as the most
predominant ones in the RACIPE and Boolean model results for
the SNAIL/miR-200/ZEB/OVOL network as well (Fig. S1a). Since
GRHL2 can self-activate32 and OVOL can self-inhibit33, we studied
networks with GRHL2 self activation (referred to as GRHL2wa) and
with and without OVOL self-inhibition (OVOL and OVOLsi
respectively) (Fig. 1b). In both Boolean and RACIPE, we observed
that epithelial and mesenchymal states were the highest
frequency phenotypes across these 3 cases (Fig. S1b–d).
For the SNAIL/miR-200/ZEB/OCT4/miR-145 network (hereafter

referred to as “OCT4” network; 5 nodes, 10 edges), a maximum of
24= 16 stable steady states are possible (value of each node= 0
or 1; SNAIL is an input to the circuit). Boolean analysis across
different numbers of initial conditions identified six out of the 16
possible states as stable steady states. The most predominant
phenotypes were (ZEB= 0, miR-200= 1, miR-145= 0, OCT4= 0)
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and (ZEB= 1, miR-200= 0, miR-145= 1, OCT4= 1), which can be
mapped on to epithelial and mesenchymal states correspond-
ingly. Results obtained via RACIPE analysis are qualitatively
consistent with those from Boolean model; with some additional
but less frequent states identified via RACIPE (Fig. S1b). Similar
consistency is observed when comparing the phenotypic dis-
tributions for SNAIL/miR-200/ZEB/miR-34/NRF2/KEAP1 network
(hereafter called as “NRF2 network”; Fig. S1g).
Next, for each of these different EMP networks, we quantified

the difference between the phenotypic distributions obtained via
RACIPE and Boolean models, using an information theory metric
known as the Jensen–Shannon divergence (JSD). JSD measures
the dissimilarity between two given probability distributions and
varies between 0 and 134; the larger the JSD, the more dissimilar or
further apart are the two frequency distributions (Fig. 2b). JSD for
Boolean vs. RACIPE solutions for the EMP networks modelled here
varies between 0.05 and 0.27 (Figs 2c–e; S1e–f; S1h), suggesting a
good quantitative agreement between the two methods. Thus,
these results indicate that the phenotypic distributions enabled by
these EMP networks are largely a feature of the underlying
network topology rather than of specific kinetic parameters.

Quantifying the effect of edge perturbations on phenotypic
distributions of EMP networks via JSD
To characterize the effects of network topology on phenotypic
distributions further, we made changes to the topology in the
form of single-edge perturbations and quantified the impact of
these edge perturbations on the phenotypic distributions

obtained from various EMP networks. An edge perturbation can
be one of the following: (a) deleting an edge, (b) adding a
(hypothetical) edge, and (c) changing the sign of an edge (i.e. from
activation to inhibition or vice versa). For a network with N nodes
and E edges, there can be E edge deletions, 2(N2− E) additions,
and E changes in edge sign. Thus, for the “wild-type” (WT) SNAIL/
miR-200/ZEB/GRHL2 network, 31 such perturbations are possible
(Table S1), each of which will generate a new network topology.
For every perturbation, we simulated the new network using both
RACIPE and Boolean models and obtained the two corresponding
phenotypic distributions. For the 32 distributions (31 perturbed+
1 “wild-type”) obtained via Boolean models, we then calculated
the JSD between every two phenotypic distributions to identify
perturbations that can drastically alter the phenotypic landscape.
The network where the link from ZEB to GRHL2 was changed from
inhibition to activation/excitation (ZEB-GRHL2_2-1) had the highest
JSD from all remaining 31 networks (Fig. 3a). RACIPE models, in
addition to ZEB-GRHL2_2-1 identified another perturbation which
stood out relative to others—the deletion of the inhibitory link
from ZEB to miR-200 (Zeb-miR200_2-0) (Fig. 3b). Similar analysis for
the NRF2 network using Boolean analysis identified two key
perturbations while RACIPE analysis identified two additional ones
(Fig. S2a).
Further, we compared JSD between perturbed and “wild-type”

networks, calculated via RACIPE and Boolean analysis (Figs 3c–e,
S2b). While the values of JSD were different for Boolean and
RACIPE methods, a positive correlation was observed between the
JSD values across all six EMP networks considered here. Moreover,
the strongest perturbation obtained via both methods showed

Fig. 1 Dynamical approaches to investigate EMP. a Schematic of network analysis strategy. The top part of the figure depicts RACIPE
methodology of sampling random parameter sets (matrix P) and for each parameter set (each row in the matrix), randomly sampling multiple
initial conditions to obtain steady states space and the phase space, i.e, information about monostable vs multi-stable parameter regions or
phases. The bottom part of the figure depicts Boolean simulation method where for a given network, multiple initial conditions are randomly
chosen and steady state space is obtained through asynchronous update. The center square depicts various possible topological
perturbations done to the networks. b EMP networks analysed in the study, namely, GRHL2 (top-left, 4 nodes, 7 edges), OVOL (top-center, 4
nodes, 9 edges), OCT429 (top-right, 5 nodes, 10 edges), NRF246 (bottom-left, 8 nodes, 16 edges), GRHL2wa (bottom-center, 4 nodes, 8 edges) and
OVOLsi29 (bottom-right, 4 nodes, 8 edges).
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concordance (highlighed by the arrows in Figs 3c–e and S2b).
These results further emphasize the role of network topology in
phenotypic distributions generated by EMP networks.

Correlation between JSD and phenotypic plasticity is not
consistently significant across EMP networks
Next, we investigated whether the perturbed networks which are
farthest from the “wild-type” network (i.e., having the highest JSD)
are the ones with reduced phenotypic plasticity as well.
Phenotypic plasticity is the ability of cells to sample multiple
phenotypes and to switch from one phenotype to another,
spontaneously or under external factors. The definition of
phenotype in the present context can either be a stable steady
state identified by mathematical simulations of EMP networks or a
biological cell-state obtained by classifying the steady states
based on marker expression levels. Hence, we define phenotypic
plasticity in two different ways using RACIPE output. For every
randomly chosen parameter set, RACIPE simulates the system with
multiple, randomly chosen, initial conditions. For some parameter

sets, all chosen initial conditions converge to one stable state,
while in others, multiple steady states (multistability) may be
allowed. Thus, plasticity score 1 (PS1) is defined as the fraction of
parameter sets that enable multistability (Fig. 4a). The definition of
plasticity score 2 (PS2) is more biology-centric. We first define the
“phenotype” of a given steady state based on the discretized
expression levels of canonical epithelial and mesenchymal
markers—miR-200 and ZEB, respectively27,35,36. This allows for
the identification of various phases (combinations of co-existing
steady states), such as the co-existence of epithelial and
mesenchymal states {E,M} for instance. PS2 is the fraction of
parameter sets which allow multiple phenotypic states, i.e. multi-
stable phases (Fig. 4a). For a given network, we calculated PS1 and
PS2 scores for the ‘wild-type’ and perturbed topologies; a
comparison of these two metrics revealed a strong positive
correlation across all six networks (Figs 4b; S3a). The perturbed
networks had both increasing as well as decreasing effect on
phenotypic plasticity (Figs 4b; S3a).

Fig. 2 Comparing the outcomes of discrete (Boolean) and continuous (RACIPE) modelling frameworks. a Quantitative convergence of the
state frequency landscape for different number of initial conditions in Boolean analysis (left) and different number of parameter sets randomly
sampled from the parameter space for RACIPE (right) respectively. Error bars represent the mean ± SD of the corresponding frequencies
obtained by n= 3 independent simulations. b Demonstration of JSD between two given probability distributions; JSD ranges from 0 to 1. c, d,
e Comparison of phenotypic frequency distributions for different EMP networks, as obtained from Boolean and RACIPE.
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Further, we checked whether the topologies with the highest
JSD from the ‘wild-type’ network led to a decrease or an increase
in PS2 scores. We did not observe any significant overlap of the
network topologies with the highest JSD vs. those with the
highest or the lowest PS2 scores. This lack of trend was seen
across all six networks considered (Fig. 5a). Further, a scatter plot
between JSD from the “wild-type” network and fold-change in
PS2 scores relative to the “wild-type” was plotted. While some
networks showed a negative correlation, others had no significant
correlation between these two metrics (Figs 5b; S3b) Similar
results were obtained for analysis done using PS1 scores for these
perturbed networks (Fig. S3c). Together, these observations
suggest that JSD is not a good predictor of change in phenotypic
plasticity.

Number of positive feedback loops in EMP networks correlates
positively with phenotypic plasticity
Next, we revisited the network topologies with the highest JSD
from the “wild-type” network to identify any topological
signatures and observed that all of them were disrupting an
overall positive feedback loop in the “wild-type”. Here, the
“overall” sign of a loop is defined by the product of signs of
edges (positive for activation, negative for inhibition) that form a
cycle/loop; thus, a mutually inhibitory loop between two
molecular players is effectively a positive feedback loop. In the
GRHL2 network, the deletion of ZEB to miR-200 inhibitory link
(ZEB-miR200_2-0) disrupted the mutually inhibitory loop between
ZEB and miR-200. Similarly, converting the inhibitory link from ZEB
to GRHL2 to being excitatory (ZEB-GRHL2_2-1) disrupted the
mutually inhibitory feedback loop between ZEB and GRHL2 (Fig.

3a). In the NRF2 network, converting the inhibitory link from ZEB
to E-cadherin to being excitatory (ZEB-Ecad_2-1) disrupted the
mutually inhibitory loop between ZEB and E-cadherin, and
converting the inhibitory link from miR-200 to NRF2 to excitatory
(miR200-NRF2_2-1) disrupted the overall positive feedback loop
formed by miR-200, KEAP1, NRF2 and SNAIL (Fig. S2a).
Previous analysis for simpler two-node networks has shown that

mutually inhibitory and mutually excitatory loops (hence, both
being overall positive loops) can lead to multistability which may
drive phenotypic plasticity37,38. Such networks are typically
observed underlying the cell-fate decisions during embryonic
development39. Similar observations have been made for miR-
200/ZEB feedback loop in driving trans-differentiation through
EMP35,40. Therefore, we further inquired whether phenotypic
plasticity can be correlated with the total number of positive
feedback loops in a given network. We counted the number of
positive feedback loops/cycles for all “wild-type” and perturbed
topologies for all six EMP networks (see “Materials and Methods”
for description). First, taking GRHL2 network as a case study, we
showed that decreasing the number of positive feedback loops by
one (WT− 1) reduced phenotypic plasticity (Fig. 6a), while the
reverse was true when the number of positive feedback loops was
increased by one (WT+ 1, Fig. 6a).
Next, we compared the number of positive feedback loops in

each perturbed network with the corresponding plasticity score,
using one-way ANOVA. Indeed, the mean plasticity score is higher
for the groups of networks with higher number of positive
feedback loops; this trend is observed across all six EMP networks
in a statistically significant manner for both plasticity metrics—
PS1, PS2 (Figs 6b; S4a–b), suggesting a correlation between the
number of positive feedback loops in an EMP network, and its

Fig. 3 Quantifying the effect of single-edge perturbations on network behaviour landscapes. a, b Heatmap of the JSD between steady
state distributions of all perturbations for the GRHL2 network from each other, obtained from a Boolean and b RACIPE. Color bar shows the
value of JSD. Each number (1–32) represents a particular perturbed network except for number 2, which represents “wild-type” (Table S1). The
perturbation highlighted in red has highest JSD from WT and most other perturbations. c–f Scatter plots of JSD between the steady state
distributions of a perturbed network from WT as obtained via RACIPE vs. as obtained via Boolean. Each dot in a plot represents a perturbed
topology for the EMP networks—c GRHL2, d OVOL, e OCT4, and f NRF2. The strongest perturbation identified by both Boolean and RACIPE is
highlighted by the arrow. Spearman correlation coefficients (ρ) are reported; ***p < 0.001.
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ability to give rise to phenotypic plasticity. We also observed that
the total number of feedback loops (i.e., positive feedback loops
+ negative feedback loops) in the networks themselves did not
exhibit any significant and consistent effect on plasticity, further
emphasizing the role of positive feedback loops specifically
(Fig. S5).
To test whether this observed correlation between plasticity

scores and the number of positive feedback loops is specific to the
network topology studied, we generated randomized topologies
for each given network by swapping the edges in a given network
(Fig. 6c). This procedure preserves the in-degree and out-degree
of each node in the network but can change the distribution of
excitatory or inhibitory links arriving at (in-degree) or originating
from (out-degree) a given node. Thus, for a given EMP network,
such randomization can generate various network topologies with
varying number of net positive feedback loops. For each
randomized network topology, we calculated PS1 and PS2.

Reinforcing our results to perturbed networks, we observed a
positive trend between plasticity and positive feedback loops (Figs
6d; S4c, d), strengthening our hypothesis that the number of
positive feedback loops in a given EMP network is a good
predictor of phenotypic plasticity.

JSD, positive feedback loops, phenotypic plasticity and scalability
of the corresponding trends
While the plasticity scores correlated positively with the number of
positive feedback loops, there was heterogeneity in plasticity
scores for a set of network topologies having the same number of
positive feedback loops (Figs 6b, d; S4), indicating the presence of
other factors in addition to positive feedback loops that determine
phenotypic plasticity. Because a weak and inconsistent negative
correlation was observed between JSD and plasticity scores

Fig. 4 Metrics for quantifying phenotypic plasticity for the case of single-edge perturbations. a Two definitions of plasticity: PS1 (top-right)
is defined as the fraction of multi-stable parameter sets identified by RACIPE. PS2 (bottom) is calculated after ZEB and miR200 expression
levels are used to classify steady states obtained from each parameter set (denoted by different colors) into Epithelial (E)—(high miR-200, low
ZEB)/Hybrid (H)—(high miR-200, high ZEB)/Mesenchymal (M)—(low miR-200, high ZEB) phenotypes. Parameter sets are then characterized as
monostable or multi-stable based on the phenotypic states they sample. PS2 is defined as the fraction of parameter sets giving rise to multiple
phenotypes. b Scatter plot of PS1 vs. PS2 for different EMP networks - WT (colored red) and perturbed (colored blue; single-edge perturbed:
edge deletion, edge nature change and edge additions) ones. Spearman correlation coefficients (ρ) are denoted; ***p < 0.001.

Fig. 5 Correlation between JSD and phenotypic plasticity across EMP networks. a Venn diagrams showing the extent of overlap among the
perturbed networks that have the highest JSD from the “wild type” network and those with the highest or lowest fold change in plasticity
scores (PS2). EMP networks shown are (from left to right): GRHL2, OVOL, NRF2 and OCT4. b Scatter plots for respective EMP networks. Each
blue dot in a scatter plot is a perturbed network topology corresponding to that EMP network. Spearman correlation coefficient (ρ) are
denoted; ***p < 0.001.
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(Figs 5; S3b, c), we asked if JSD can contribute to explaining
heterogeneity in plasticity.
For each network topology obtained by perturbing or

randomizing the corresponding EMP network, we projected the
plasticity score on a 2-D plot of its JSD from the wild-type and the
number of positive feedback loops (Figs 7a, c; S6). These plots
convey that JSD did not resolve the heterogeneity in plasticity
scores of network topologies with the same number of positive
feedback loops. To quantify this observation, we discretized JSD
into ranges of values and calculated the correlation between
positive feedback loops and plasticity for a range of JSD and
correlation between JSD and plasticity for a fixed number of
positive feedback loops.
The categorized JSD values maintained the lack of consistent

correlation with plasticity (Fig. 7b, d) as seen earlier (Figs 5; S3b, c).
The lack of correlation was not ameliorated by grouping of the
network topologies by the number of positive feedback loops for
either perturbed or randomized topologies. The correlation
coefficient varied from −1 to 1 even within a given EMP network
with many instances being statistically insignificant (Fig. 7e, g). On
the other hand, when these network topologies were segregated
based on JSD, plasticity scores and number of positive feedback
loops were positively correlated across most ranges of the JSD
values and across the six EMP networks (Fig. 7f, h). Together, these
results strongly support positive feedback loops as good predictor
of phenotypic plasticity and suggest that phenotypic frequencies
may not be useful in measuring phenotypic plasticity.

To test the scalability of these results, we analysed two larger
EMP networks: EMT_RACIPE25 (22 nodes, 72 edges, Fig. 8a) and
EMT_RACIPE224 (26 nodes, 101 edges Fig. 8b), and all single-edge
deletions and edge nature change (activation to inhibition and
vice-versa) perturbations (n= 144 and 202 respectively) for these
networks. Given the network complexity, it becomes increasingly
challenging to uniquely associate mathematically observed stable
steady states with biological phenotypes. Hence, we used the
generic definition of phenotypic plasticity (PS1). Similar to the
smaller networks, the correlation observed between change in the
number of positive feedback loops due to single-edge perturba-
tions and the corresponding fold change in plasticity from WT was
positive and significant (Fig. 8d, g). Similarly, the correlation
between JSD and plasticity was weak and insignificant (Fig. 8c, f).
Furthermore, the 2-D plots projecting plasticity scores onto JSD (x-
axis) and change in positive feedback loops (y-axis) showed no
distinct patterns (Fig. 8e, h), supporting the conclusion that JSD
cannot reliably predict changes in phenotypic plasticity.
Owing to the huge number of positive feedback loops in these

two networks, we were able to observe a saturation in the effect of
the number of positive feedback loops on plasticity. Interestingly
in these larger circuits, single-edge perturbations are capable of
disrupting hundreds of positive feedback loops. The maximum
number of positive loops disrupted by a single edge is ~1750 in
EMT_RACIPE and ~3000 in EMT_RACIPE2, which account for more
than 50% positive feedback loops in wild-type topology.
Furthermore, two perturbations were observed in both networks
that reduce the positive feedback loops by half or more (pointed

Fig. 6 Effect of positive feedback loops on phenotypic plasticity in EMP networks. a Demonstration of change in plasticity on altering the
total number of positive feedback loops in GRHL2 network. Frequency of multi-stable parameters (PS2) increases as compared to WT upon the
addition of positive feedback loop (GRHL2-miR200-ZEB-GRHL2) to the network (WT+ 1) and reduces upon reduction of positive feedback
loops by changing the GRHL2-ZEB-GRHL2 cycle to negative feedback (WT− 1). b Boxplots of PS2 vs. number of positive feedback loops for all
the perturbed networks for GRHL2 and NRF2 networks. c Demonstration of network randomization (the in-degree and out-degree of each
node is preserved; however, the number of inhibitory/excitatory nodes arriving at or emerging from a node are not necessarily conserved). d
Same as B, but for randomized network topologies. p-value range for one-way ANOVA test are mentioned on the plots.
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by red arrows), but only one of them significantly reduces
plasticity. These observations, together with the observation that
in smaller networks, multiple networks with the same number of
positive feedback loops can have different levels of plasticity
(Figs 6; S4) point towards additional network topological features
that may contribute to determine the phenotypic plasticity
resulting from EMP networks.

DISCUSSION
Our ability to target phenotypic plasticity is limited by the
understanding of its dynamics in tumors and the identification of
tumor-specific molecular mechanisms driving it. While various
transcriptional and epigenetic networks have been uncovered
underlying phenotypic plasticity; how do these networks give rise
to the co-existence of various drug-tolerant states, and the
contribution of these different states to the minimal residual
disease remains elusive41. Recent surge in our understanding of
the dynamics of EMP has elucidated how the underlying EMP
regulatory networks can give rise to various phenotypes/cell states
along the spectrum of EMP, and how these different sub-
populations may co-exist in a tumor and collaborate to drive
tumor aggressiveness42. Nonetheless, targeting EMP in the clinic
to observe a major reduction in metastasis still remains a
challenge, because of lack of understanding of the precise
spatio-temporal regulation of EMP involved during metastasis.
Inhibiting one arm of EMP—say EMT—might actually promote
MET and help colonization; and inhibiting MET may facilitate more
dissemination7. Moreover, inhibiting only EMT or MET may drive
the cells into one or more hybrid E/M phenotypes that are

considered to be the “fittest” for metastasis13. Therefore, while
targeting EMP is important for restricting metastasis and therapy
resistance, how to achieve that remains an unsolved challenge.
Our results present a computational platform to identify specific

inhibitors for EMP using a network-level approach. We have
simulated various networks identified to underlie EMP using
different modeling strategies, to dissect the design principles
underlying those networks; and suggest how perturbing those
networks may prevent the ability of cells to switch back and forth
among the E, M, and hybrid E/M phenotypes. Our analysis predicts
that reducing the total number of positive feedback loops in the
EMP network can restrict plasticity. A recent experimental study
offers preliminary validation of this prediction, where disrupting
the miR-200/ZEB mutually inhibitory (hence, an overall positive
feedback) loop via CRISPR led to significantly reduced metastasis
in vivo40. This feedback loop has been identified as a key regulator
of EMP through extensive experimental and computational
analysis27,35,36. Mathematical modeling for this loop has predicted
how clonal cells responding to the same EMT-inducing signal can
display different phenotypes due to the emergent multistability
(the co-existence of multiple steady states/phenotypes), a predic-
tion which was validated experimentally via single-cell analysis of
EMP40. Various other EMP networks that have been mathemati-
cally studied have included various other direct or indirect positive
feedback loops such as ZEB1/GRHL228, ZEB1/ESRP143, ZEB1/miR-
119944, or miR-34/SNAIL45.
Different modeling frameworks have been used to investigate

the dynamics of EMP, depending on the size of network. While
small-sized networks have typically been modelled via continuous
approaches9,35,46–49, larger networks have been modelled via

Fig. 7 Correlation between JSD, plasticity, and number of positive feedback loops. a PS2 for every randomized network for OCT4 module
plotted as a function of its JSD from the WT network and number of positive feedback loops. Colorbar shows PS2 scores. b Boxplot for
PS2 scores vs. range of JSD values for all networks plotted in a. p-value corresponds to one-way ANOVA test. c, d Same as a, b but for NRF2
module. e For each EMP module, all randomized networks are sub-categorized based on number of positive feedback loops. Each cell denotes
correlation coefficient between JSD from WT and plasticity score fold change, wherever applicable (i.e. number of samples corresponding to
that network and feedback loop count >3. The white boxes (NaN) represent the cases with number of samples <3). Spearman correlation
coefficient shown using color bar; significance represented as : *p < 0.05, **p < 0.01, ***p < 0.001. f For each EMP module, all randomized
networks are classified based on range of JSD values. Each cell denotes correlation coefficient between plasticity score fold change and
number of positive feedback loops. g, h Same as e, f but for perturbed networks of each EMP module.
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discrete Boolean approaches due to lack of available kinetic
parameters24,44,50,51. While continuous models provide a more
quantitative mapping of system dynamics but require many
kinetic parameters that can become experimentally intractable,
Boolean modeling approaches provide a good estimate of
qualitative behavior of a biochemical system without requiring a
large set of parameters52, but are limited in terms of characterizing
dynamic properties such as phenotypic plasticity and state
transition rates. Thus, various efforts have been made to compare
the dynamics of Boolean vs. continuous models and to integrate
their strengths, particularly for capturing steady state distributions
for smaller biological networks53–55.
Here, we compare the phenotypic distributions obtained for

various EMP networks using Boolean formalism24 and using
RACIPE25. While Boolean tries to capture the phenotypes that can
non-parametrically be observed in a network; RACIPE, by
simulating networks for a large number of parameter sets, tries
to capture the effect of parameteric variability observed in cell
populations from one or multiple individuals on the phenotypes.
Both methods infer network behavior as a function of the
topological information, unbiased by any specific parameter set.

Hence, the qualitative and semi-quantitative agreement seen for
Boolean and RACIPE models, across six EMP networks, enable us
to understand the dynamics of EMP driven by network topology
instead of specific kinetic parameter sets in a given cell/
population. Furthermore, we could identify perturbations to the
network topologies that affetced the phenotypic distributions
significantly across parameter sets. Thus, our method to identify
network-topology-based predictions to inhibit EMP may provide
an avenue to overcome a major bottleneck in targeted therapy—
inter-individual variability in response. Moreover, through gen-
erating a larger number of randomized networks where the in-
degree and out-degree of each node in the network was
preserved, we showed that the phenotypic distributions and
plasticity scores (PS1, PS2) obtained are specific to the particular
topology of the networks regulating EMP. These results suggest
evolutionary design principles of EMP networks that may have
been optimized to induce EMP as/when needed during develop-
ment/tissue regeneration, and stably maintain homeostatic
differentiated phenotypes.
Intriguingly, the change in phenotypic plasticity, defined by

both the plasticity scores does not correlate with JSD of

Fig. 8 Analysis of 22 and 26 node networks. a, b The 22 node EMP network (EMT_RACIPE) and 26 node EMP network (EMT_RACIPE2). c–e
EMT_RACIPE (22 node, 72 edges). c Scatter plot between PS1 and change in total number of positive feedback loops of all the perturbations. d
Scatter plot between PS1 and JSD of all perturbations from WT. e Scatter plot of JSD from WT and change in positive feedback loops for each
perturbed network. Color code denotes absolute value of PS1 for a given perturbed network topology. f–h Same as c–e but for EMT_RACIPE2.
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phenotypic distributions. One possible reason underlying this
perceivably confounding result can be that the JSD only computes
the distance between two steady state distributions; it does not
capture information about whether the phenotypes can switch
among themselves. (Spontaneous) phenotypic switching is
facilitated by multi-stable phases, i.e. the co-existence of more
than one stable steady state, for a given parameter set. Our results
that the number of positive feedback loops in a given network
determines the extent of phenotypic plasticity is reminiscent of
reported connection between positive feedback loops and
plasticity in other aspects of cancer too, where mutually inhibitory
loops between two “master regulators” drive phenotypic switch-
ing56–59. Future efforts should aim at identifying which links(s) in
the network to disrupt to cause maximal change in plasticity,
because not every positive feedback loop may be equally likely to
lead to multi-stability60,61. Moreover, for networks with the same
number of feedback loops, the plasticity scores varied over a
range, thus, identifying other predictors of plasticity based on
network topology will be valuable. As an attempt to identify such
complementary predictors, we investigated if JSD coupled with
number of feedback loops can lead to isolate networks with
highest plasticity, but no clear improvement in the trend was
observed, eliminating JSD as a predictor of plasticity either
individually or in combination with feedback loops.
Our results for the 22 and 26-node EMP network via RACIPE

identified edge deletions that can reduce the positive feedback
loops by half and have a significant impact on the plasticity. As
more comprehensive networks representing the underlying
biology are studied, RACIPE becomes too computationally
expensive, and hence network theory-based measures to identify
the feedback loop that, when disrupted, can have maximal effect
in curbing plasticity would be valuable for future therapeutic
applications.
It should be noted that while the existence of greater than or

equal to two stable states is essential for phenotypic switching, we
need to take into account the relative stability of these states,
which determines the cellular transition rates from one state to
another. In the context of EMP, hybrid epithelial mesenchymal
states are known to be relatively less stable as compared to pure
epithelial or pure mesenchymal states and hence are highly
plastic62. Hybrid phenotypes are also associated with increased
metastatic potential17,63. Thus, future efforts to restrict EMP
bidirectionally should consider these state-specific traits to
identify and rank various possible interventions to the EMP
network topology.
Most of the targeted therapies in oncology target on disrupting

a node in the network. Inevitably, most cells can identify “escape”
routes by navigating various dimensions of the phenotypic
plasticity landscape. Our results present an alternative and
unorthodox mechanism to restrict the emergence of metastasis
and drug resistance—breaking the feedback loops, i.e. targeting a
link instead of a node, involved in phenotypic plasticity. Disrupting
these feedback loops—the cornerstone of phenotypic plasticity—
can restrict the ability of cancer cells to adapt to various
therapeutic attacks and limit tumor aggressiveness.

METHODS
RAndom CIrcuit PErturbaiton (RACIPE)
RACIPE25,64 is a tool that simulates transcriptional regulatory networks
(TRNs) in a continuous manner. Given a TRN, it constructs a system of
Ordinary Differential Equations representing the network. For a given node
T and a set of input nodes Pi and Nj that activate and inhibit T, respectively,
the corresponding differential equation is given as Eq. (1).

dT
dt

¼ GT �
Y

i

HSþðPi ; Pi0T ; nPi ;T ; λPi ;T Þ
λPi ;T

�
Y

j

HS�ðNj ;Ni
0
T ; nNj ;T ; λNj ;T Þ � kT � T

(1)

Here, T, Pi and Nj represent the concentrations of the species. GT and kT
denote the production and degradation rates, respectively. Pi0T is the
threshold value of Pi concentration at which the non-linearity in the
dynamics of T due to Pi is seen. n is termed as hill-coefficient and
represents the extent of non-linearity in the regulation. λ represents the
fold change in the target node concentration upon over-expression of
regulating node. Finally, the functions HS+ and HS− are known as shifted
hill functions35 and represent the regulation of the target node by the
regulatory node (Eq. (2)).

HSþ=�ðB; B0A; nB;A; λB;AÞ ¼
B0A

nB;A

B0A
nB;A þ BnB;A

þ λ � BnB;A

B0A
nB;A þ BnB;A

(2)

Note that, for high values of the regulatory node concentration, HS+/−

approaches λ.
For the model generated in this way, RACIPE randomly samples

parameter sets from a pre-defined set of parameter ranges estimated
from BioNumbers65. The ranges as reported by Huang et al.64 are listed in
Table 1.
At each parameter set, RACIPE integrates the model from multiple initial

conditions and obtains steady states in the initial condition space. The
output, hence, comprises of the collection of parameter sets and
corresponding steady states obtained from the model. For the current
analysis, we used a sample size of 10,000 for parameter sets and 100 for
initial conditions. The parameters were sampled via a uniform distribution
and the ODE integration was carried out using Euler’s method of numerical
integration. Validation of the choice of the number of initial conditions and
the integration methods is given in supplementary text (Fig. S7).

Boolean simulations
For discrete analysis of our networks, the Boolean algorithm devised by
Font-Clos et al.24 was used. The nodes are updated asynchronously
according to a majority rule such that the state of a node is set to 1 if the
sum of activations to the node is more than the sum of inhibition and set
to 0 if inhibition is more than activation. If inhibition and activations are
equal, nodes are not updated. Steady state is said to have reached if the
state of the network does not change over time-steps. The input for this
formalism is a set of 10,000 initial conditions, which are randomly sampled
from all possible states of the system and corresponding steady states.

Discretization of RACIPE output and calculating the state
frequency
For a given network with i= [1, n] nodes, the steady state expression levels
of the nodes were normalized (Eqs. (3) and (4)).

Ein ¼ ðlogÞ 2 Ei
f i

� �
(3)

f i ¼ gi
ki

Y

j

λij (4)

Where, for the ith node, Ein is the normalized expression level, Ei is the
steady state expression level, fi is the normalization factor, gi and ki are
production and degradation of the ith node corresponding to the current
steady state and λij are the fold change in expression of i due to node j=
[1, n]. The normalized expression levels of all steady states are then

Table 1. Parameter ranges used by RACIPE.

Parameters Minimum Maximum

Production rate (G) 1 100

Degradation rate (k) 0.1 1

Fold change (Inhibition λ) 0.01 1

Fold change (Activation λ) 1 100

Hill coefficient n 1 6

Threshold The ranges depend on inward
regulations—half
functional rule
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converted into z-scores by scaling about their combined mean (Eq. (5)).

Zi ¼ Ein � Ein
σin

(5)

where Ein is the combined mean and σin is the combined variance.
The z-scores are then classified based on whether they are negative or

positive into 0 (low) and 1 (high) expression levels, respectively. Each
steady state of the network is thus labelled with a string of 1’s and 0’s,
discretizing the continuous steady state levels. We then calculate the total
frequency of each discrete state by counting the occurrence in all the
parameter sets. For parameter sets with n steady states, the count of each
steady state is taken as 1/n, invoking the assumption that all the states are
equally stable.

Quantitative convergence
To estimate the optimal sample size of parameter sets for RACIPE and that
of initial conditions for Boolean models, all networks were simulated at
different sample sizes in triplicates and the mean an variance of the steady
state frequency distribution was calculated. In all, 10000 was estimated as
the ideal sample sizes for both methods as it was the smallest sample size
for which the variance in steady state frequencies was minimum and the
mean of the same was consistently similar to that of higher sample sizes.

Jensen–Shannon divergence to measure distance between
phenotypic distributions
To quantify the difference between two phenotypic distributions, an
information theory metric, known as the JSD34 was used, calculated for any
two discrete frequency distributions P(x) and Q(x) as:

JSDðPjjQÞ ¼ 1
2
DðPjjMÞ þ 1

2
DðQjjMÞ (6)

where M ¼ 1
2 ðP þ QÞ and D denotes the Kullback-Leibler divergence (Eq.

(7)).

DðPjjQÞ ¼
X

x2κ
PðxÞlog PðxÞ

QðxÞ
� �

(7)

The metric, JSD, varies between 0 and 1 when the base 2 logarithm is used
for calculation, with 0 indicating identical distributions and 1 indicating no
overlap between the two distributions.The JSD calculations were done
using the JSD function from philentropy package in R 3.6.

Calculating the number of positive feedback loops in a network
We estimated the number of feedback loops in the networks using the
networkx module in Python 3.7, where a feedback loop is defined as a path
traversed along the edges of a network that originates and ends at the
same node. We then combine the nature of edges in each feedback loop
to determine whether the given feedback loop is positive or negative. For
example, in the OCT4 network (Fig. 1b), ZEB-miR200-ZEB is a positive
feedback loop, as it goes through 2 inhibitory edges. On the other hand,
ZEB-miR145-OCT4-miR200-ZEB is a negative feedback loop, as the edges
involved are inhibition-inhibition-activation-inhibition, in that order.

Statistical tests
All correlation analysis was done using Spearman correlation method using
“cor” function in MATLAB R2018b (Mathworks). The corresponding
statistical significance values are represented by *s, to be translated as:
*p < 0.05, **p < 0.01, ***p < 0.001. One-way ANOVA test was performed
using anova1 function in MATLAB R2018b (Mathworks).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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