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REVIEW ARTICLE
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ABSTRACT
The expected future demand for highly nutrient animal food products will push the animal pro-
duction system to search for new sources of high-quality protein feedstuffs. In this scenario, eco-
nomic and environmental issues will have to be considered while reducing the competition
with the plant-based human food chains. Legume grains and some oilseed cakes, by-products
from the oil industry, are the main protein sources for ruminants and terrestrial monogastrics
such as pigs and poultry. Their relevant role will hold in the next decades, but it is necessary to
increase the diversification of sources that can be grown profitably throughout the world,
including European countries. Microalgae are a promising source of protein and other nutrients
for animal feeding. However, an amazing richness of biologically active substances makes these
organisms very interesting as feed ingredients, as their role go far beyond the supply of
nutrients. Due to the limited usage of microalgae as human foodstuffs or food ingredients, low
competition between microalgae-based feed and food chains is predictable. This review aims to
synthesise current knowledge on minor pulses and other protein-rich plant products and micro-
algae, as alternative ingredients to the conventional animal protein sources, focussing on their
production, availability, and nutritional values. Points of strength, weakness, opportunity and
threat related to the use of these protein sources in animal feeding are separately analysed
through a SWOT approach to underlie future needs in terms of research and/or technological
development that could help valorise these nutrient sources as feed ingredients.
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Introduction

The projected increase from 2005 to 2050 in the glo-
bal demand for animal products (meat and milk) has
been estimated to be between 48 and 57%
(Alexandratos and Bruinsma 2012), whereas animal
protein demand will grow even more. The meat pro-
duction from poultry, swine, beef, and dairy products
should double, whereas fish production should almost
triple by 2050. Such an increase in livestock

production will generate an increase in feed supply,
estimated to be more than 1.3 billion tons of dry mat-
ter. In 2018, the global animal feed production was
estimated at 1.103 billion tons, corresponding to a
value of more than US$400 billion. The EU 28 contrib-
uted for 277 million tons, a lower quantity in compari-
son to the values registered for Asia-Pacific region
(394.9 million tons) but higher than values registered
for North America (198.9 million tons); China, the
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United States, Brazil, Russia, India, Mexico, Spain and
Turkey together produced 55% of the world’s feed
production (Alltech 2019).

Proteins are the most expensive and more limiting
ingredients in feed formulation. In the EU, roughage
(grass and silage maize) is the main source of feed
protein, representing 45% of the total feed, while oil-
seed meals and cereals cover the 26 and 24%, respect-
ively. By considering the classification of feed based
on the protein content in LowPRO feed (less than 15%
of protein content), MiddlePRO feed (15–30% of protein
content), HiPRO feed (30–50% of protein content) and
SuperPRO feed (with over 50% protein content), the EU
Feed Protein Balance sheet shows self-sufficiency rate
for 97, 75, 29 and 92%, respectively. Overall, about 80%
of the total EU use of feed sources has EU origin and
dependency lays on imports for the HiPRO category of
feed sources (https://ifif.org/global-feed/statistics/). As a
precaution after the Bovine Spongiform Encephalopathy
outbreak, the EU banned the use of processed animal
proteins (PAPs) such as meat meal, meat and bone
meal, poultry meal, etc. in animal feeds (Reg (EC) 999/
2001; European Commission 2001). This led to an
increase of the use and cost of the plant protein sour-
ces. The ban was partially lifted (Reg (UE) 56/2013;
European Commission 2013) when PAPs were reintro-
duced for aquafeeds. After about 20 years, the European
Union is considering lifting this ban also for poultry and
pigs. This would undoubtedly ease the cost of protein-
rich feedstuffs. At the global level, the main source of
protein for feed until now has been the soybean meal,
derived by the oil extraction process. Due to the unsus-
tainability of the utilisation of soybean products for
feeding animals instead of feeding humans, the
approach adopted so far threatens the food supply of
future generations and the objective of the recent and
future research will be to find new feeds, new ingre-
dients for feed and new protein sources for animal pro-
duction, not in competition with humans.

Poultry, swine and ruminant sectors absorb the 42,
27 and 19% of the total compound of the feed pro-
duction, respectively (Alltech 2019), even though rumi-
nants, poultry and pigs supply the 45, 31 and 20% of
animal proteins for humans, respectively (Mottet
et al. 2017).

Currently, aquafeeds represent a limited percentage
(4%) of the global feed production, but this sector will
expand considerably by 2050 being the second only
to the poultry one (Hua et al. 2019). The number of
commercial aquafeeds amounted to 49.7 million tons
in 2015 and it is estimated to increase to 87.1 million
tons in 2025 (Hua et al. 2019). However, this

forecasting is considered an underestimate not includ-
ing the farm-made feeds (Tacon and Metian 2015).
Another aspect worthy of consideration is the higher
digestible protein content that characterises aquafeeds
compared to the feed for terrestrial livestock, ranging
from 30 to more than 50% according to species and
life stage (Craig 2017; Yarnold et al. 2019). The poten-
tial of plant-derived proteins must, in the case of
aquaculture, also take into account possible scarce
palatability and the presence of anti-nutritional factors,
and the very variable, and sometimes sub-optimal,
protein levels. The option offered by the plant-derived
proteins represents an opportunity to maintain the
evolution trend of aquaculture despite the stagnant
supply and the increase of the price of fishmeal, that
is the major and the optimal high protein feedstuff for
aquafeeds (Kim et al. 2019). To balance food, feed and
biofuel industries requests, novel protein sources for
feeding farmed animals, characterised by high sustain-
ability are mandatory.

In this review current knowledge on minor pulses
and other protein-rich plant products and microalgae,
as alternative ingredients to the conventional animal
protein sources, are synthesised focussing on their
production, availability, and nutritional values. In add-
ition, through a SWOT analysis, points of strength,
weakness, opportunity and threat of the use of these
protein sources in animal feeding are separ-
ately analysed.

Protein-rich plants

Global availability of minor protein-rich plants

Official data on the availability of protein-rich plants
and/or seeds are regularly updated by the Statistical
Division of the Food and Agriculture Organisation and
can be searched by using a web-based interface
(FAOSTAT). Unfortunately, not all the data regarding
production, yield and harvested area for plant species,
especially those high in proteins, are searchable such
as, for example, several protein sources belonging to
the ‘pulses nes’ category (Dolichos spp., Canavalia
spp., Psophocarpus tetragonolobus, Cyamopsis tetrago-
noloba, Stizolobium spp., Pachyrrhizus erosus) that are
reported jointly with no specifications about the
addressed market (i.e. food vs. feed). Among the pro-
tein-rich plants, legumes play a relevant role in farm
animal feeding both as seeds (grain legumes or
pulses) and as plants (fresh and conserved forages). In
this review, the only source of protein that can be
regarded as ‘concentrates’ will be considered further.
Overall, the global pulses production rose from 2007
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to 2017 with an average yearly increase of about 3.4
million tons. Also, the grain legumes production has
increased in Europe and in Italy as well and can be
seen as a reactive approach with respect to the
chronic deficit of plant-protein production at the EU
level (Martin 2014; Lienhardt et al. 2019). Beans
(Faseolus vulgaris), peas (Pisum sativum), and chick
peas (Cicer arietinum) represent approximatively two-
third of the total production of pulses at the world
level, while peas (dry) alone represents about 60% of
pulses production at the European scale (Table 1)
(Food and Agriculture Organization Statistics Division
2019). Only vetch (Vicia spp.) farming has registered a
negative trend production at both world and
European level as well as the beans and lupins
(Lupinus spp.) production in Italy. The increased world
interest in producing cowpeas (Vigna sinensis, Dolichos
sinensis) and pigeon pea (Cajanus cajan) does not
seem to have gained similar favour by the European
farmers and, in the case of pigeon peas, by the Italian
ones. This behaviour can be partially understood as far
as the pigeon peas have a rather low yield (0.77 t/ha,
averaged world yield) (Food and Agriculture
Organization Statistics Division 2019) which, probably,
make unsustainable its cultivation in Europe. As
regards the pseudo-cereals, unfortunately, there are
no official data on the world production of amaranth
grain (Amarantus caudatus) separately from other cer-
eal-like plants of the class ‘cereals nes’ (Food and
Agriculture Organization 1994). The average area culti-
vated, the average seed production (Food and
Agriculture Organization Statistics Division 2019), the
estimated availability of crude proteins based on yield
factors available in the literature (Bahkali et al. 1998;

Sammour 1999; Heuz�e et al. 2015) and trends from
2007 to 2017 of pseudo-cereals and oil-bearing seeds
outline that the production increase is partially due to
the increase of acreages, such as for quinoa, and par-
tially depends on increased yields, such as for linseed
(Table 2). Among the oilseeds, above soybean, sun-
flower and colza, linseed and sesame represent the
main sources of recoverable crude proteins, both at
global and at European scale (Table 2). It is worth to
note that the acreage of safflower crop at the
European scale passed from 0.4 in 2007 to 154 thou-
sand hectares in 2017, that lead to estimates of about
20,000 tons of recoverable proteins (Table 2).

Composition and nutritive value of pulses and
other plant protein sources and by-products

Overall, in the formulated feeds the amino acid profile
of grain legumes, which by definition are the seeds of
legumes in a dry state, is complementary to that of
cereals even though, usually small amounts of essen-
tial amino acids, as methionine and lysine, must be
added or supplemented to obtain a balanced diet.
Chickpea (C. arietinum) is a good source of protein (up
to 29% of dry matter, DM; lysine about 7% of crude
proteins, CP) and energy for both ruminants and
monogastric (Mustafa et al. 2000; Pulse Australia
2017), supporting milk, meat and/or egg production
(Bampidis and Christodoulou 2011). Even though the
chickpea proteins are rich in lysine, sulphur-containing
amino acids and threonine are typically low. Two
chickpea grain cultivars (22.5–23.5% CP on DM) were
used to formulate alternative diets for pigs by substi-
tuting the 75% of the soybean, SBM (43.6% CP on
DM) included in the control diet (Visitpanich et al.

Table 1. Production of main pulses (1000 t) and relative trends at World, European and Italian geographical level in the
2007–2017 period (Food and Agriculture Organization Statistics Division 2019).

FAO
Codea

2007 2012 2017 Diff., %, 2007–2017

FAO item World Europe Italy World Europe Italy World Europe Italy World Europe Italy

176 Beans (dry) 21737.9 337.1 12.1 24449.5 467.3 11.8 31405.9 1104.3 11.2 44.5 227.6 �7.3
187 Peas (dry) 9106.0 2655.9 40.6 10563.8 3328.7 24.0 16205.4 7084.8 48.5 78.0 166.8 19.5
191 Chickpeas 9690.3 75.8 6.3 11519.4 117.9 11.2 14776.8 560.4 33.5 52.5 639.6 432.9
181 Broad beans (dry) 3892.7 607.6 93.0 4494.8 817.0 96.0 4840.1 990.6 92.8 24.3 63.0 �0.2
201 Lentils 3225.1 33.4 1.3 4491.1 80.9 1.8 7590.8 275.6 3.7 135.4 725.0 176.5
195 Cow peas (dry) 5332.3 24.1 8357.1 23.8 7407.9 26.8 38.9 11.1
197 Pigeon peas 3602.6 3973.2 6807.6 89.0
211 Pulses, nes 3215.3 736.3 4209.7 1017.3 4.5 4233.0 842.6 4.9 31.7 14.4 8.4
210 Lupins 778.0 192.8 5.0 1325.8 228.8 4.7 1611.0 442.5 4.7 107.1 129.6 �5.2
205 Vetches 981.1 494.6 8.0 945.0 343.4 8.6 920.5 415.0 9.1 �6.2 �16.1 13.9
203 Bambara beans 105.6 162.0 179.5 69.9

Total pulses 61666.9 5157.5 166.3 57923.1 4932.3 154.2 95978.5 11742.5 208.4 55.6 127.7 25.3
a176: Phaseolus vulgaris, P. lunatus, P. angularis or Vigna angularis, P. aureus, P. mungo or Vigna mungo, P. coccineus, P. calcaratus, P. aconitifolius, P. acuti-
folius, V. radiate, V. aconitifolia; 187: Pisum sativum, P. arvense; 191: Cicer arietinum; 181: Vicia faba var. equina, V. faba var. major, V. faba var. minor;
201: Lens esculenta, Ervum lens; 195: Vigna sinensis, Dolichos sinensis; 197: Cajanus cajan; 211: Other pulses that are not identified separately because of
their minor relevance at the international level (Dolichos spp., Canavalia spp., Psophocarpus tetragonolobus, Cyamopsis tetragonoloba, Stizolobium spp.,
Pachyrrhizus erosus); 210: Lupinus spp.; 205: Vicia sativa; 203: Voandzeia subterranea or Vigna subterranean. For empty cells, data were not reported
FAO: Food and Agriculture Organization.
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1985). No significant differences between treatments
and control were observed as far as growing perform-
ances and slaughter yields. Trypsin and chymotrypsin
inhibitor contents differ between genotypes and may
negatively affect the nutritional value of this pulse for
monogastric species (Bampidis and Christodoulou
2011) though heat treatments can mitigate the impair-
ment of nutrients absorption. More in general, grain
processing can improve the nutritive quality of chick-
peas used in pig feeding. Christodoulou et al. (2005)
showed that substituting partially or totally the SBM
(42.4% CP on DM) with extruded chickpea (23.9% CP
as fed) up to 300 g/kg in diets for growing pigs did
not result in a significant difference in terms of body
weight gain, FCR and carcase yields, nor they were
able to find any significant treatment-to-sex inter-
action. In comparison with processed chickpea, raw
grains (100 g/kg; 22.9% CP as fed) gave the poorest
results in terms of body weight gain and daily feed
consumption (Christodoulou et al. 2005). In the diet
for young turkeys (1–70 days of age), raw chickpea

seeds (22.9% CP on DM) up to 240 g/kg have been
tested as a partial substitute to SBM (Ciurescu et al.
2020). These authors did not report significant differ-
ences among experimental groups as far as the feed
intake, FCR, carcase, breast, and legs yields, but the
bodyweight gain resulted significantly increased up to
5.94 kg (vs. the value of 5.76 kg in the control group)
in chickpea fed birds for 70 days. Chickpea are avail-
able as Desi and Kabuli varieties, the latter one being
richer in starch and with lower fibre content. Desi and
Kabuli chickpeas, tested as protein sources in farmed
fish diets, showed high CP apparent digestibility for
Nile tilapia (0.882), but ranked lower (0.906–0.911) in
comparison with other grain legumes such as pea and
white lupin when fed to rainbow trout at 300g/kg in
the diet (Magalh~aes et al. 2018). Protein pea (P. sativum)
is particularly suitable for feed formulation due to its
amino acid availability, low level of anti-nutritional fac-
tors and low tegument/endosperm ratio (Pulse Australia
2017); for these reasons, it is one of the legumes of
choice in the feed industry. The well balanced amino-

Table 2. Harvested area, crop production, and estimated yearly amount of the crude protein (CP) availability for buckwheat
(Fagopyrum esculentum), quinoa (Chenopodium quinoa), linseed (Linum usitatissimum), sesame (Sesamum indicum), and safflower
(Cartamus tintorius) (Food and Agriculture Organization Statistics Division 2019).

2007 2012 2017 Diff. 2007–2017 (%)

Crop World Europe World Europe World Europe World Europe

Buckwheat
Average cultivated area, 1000 ha 2739.37 1656.78 2491.91 1494.21 3940.53 1893.13 43.85 14.30
Average seed production, 1000 tons 2378.85 1472.75 2262.98 1318.00 3827.75 2045.10 60.91 38.90
Average seed yield, tons/ha 0.87 0.89 0.91 0.88 0.97 1.08 11.87 21.60
Crude protein content, CP, g/kg DMa 126.00 126.00 126.00 126.00 126.00 126.00
CP availability from the crop, 1000 tonsa 272.76 168.87 259.47 151.12 438.89 234.49 60.91 38.90

Quinoa
Average cultivated area, 1000 ha 76.80 172.20 173.20 125.50
Average seed production, 1000 tons 59.10 97.40 146.70 148.20
Average seed yield, tons/ha 0.77 0.57 0.85 10.10
Crude protein content, g/kg DMb 152.00 152.00 152.00
CP availability from the crop, 1000 tonsb 8.18 13.47 20.30 148.20

Linseed
Average cultivated area, 1000 ha 1977.20 240.70 2456.60 725.00 2778.00 735.10 40.50 205.40
Average seed production, 1000 tons 1658.20 201.50 2024.70 498.70 2794.30 799.00 68.50 296.50
Average seed yield, tons/ha 0.84 0.84 0.82 0.69 1.01 1.09 19.90
Crude protein content, g/kgc 350.00 350.00 350.00 350.00 350.00 350.00
CP availability from the crop, 1000 tonsc 528.10 64.20 644.90 158.80 890.00 254.50 68.50 296.50

Sesame
Average cultivated area, 1000 ha 7126.50 0.30 8536.20 0.30 9983.20 0.60 40.10 97.10
Average seed production, 1000 tons 3631.00 0.20 5406.90 0.40 5534.90 0.60 52.40 198.60
Average seed yield, tons/ha 0.51 0.69 0.63 1.13 0.55 1.05 8.80 52.50
Crude protein content, g/kg DMd 255.00 255.00 255.00 255.00 255.00 255.00
Average CP recovery from meal, 1000 tonsd 842.60 0.00 1254.70 0.10 1284.40 0.10 52.40 198.60

Safflower
Average cultivated area, 1000 ha 753.90 0.40 968.60 16.40 840.80 154.60 11.50 3551.20
Average seed production, 1000 tons 617.50 0.20 606.90 9.10 741.50 105.90 20.10 51055.10
Average seed yield, tons/ha 0.74 0.48 0.80 0.56 0.83 0.69 12.20
Crude protein content, g/kg DMe 211.00 211.00 211.00 211.00 211.00 211.00
Average CP recovery from meal, 1000 tonse 118.60 0.00 116.50 1.70 142.40 20.30 20.10 51055.10

CP: crude proteins; DM: dry matter.
aAir dry basis (Farrel 1978).
bData on Dry Matter (DM) basis and Crude Protein from De Bruin (1964).
cAdopting a DM content of 906 g/kg (Heuz�e et al. 2017a) and a minimum Crude Protein (CP) content of 350 g/kg DM (Sammour 1999).
dProximate composition data from Bahkali et al. (1998).
eAdopting an average dry matter content of 910 g/kg and an average crude protein (CP) content of 211 g/kg DM (Heuz�e et al. 2015).
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acid profile is limited by a deficiency in methionine and
other sulphur amino acids even though the protein is
particularly rich in arginine (Spielmann et al. 2008).
Tannins and trypsin inhibitors can impair the nutritional
value of pea, but they have been much reduced by
genetic selection and are at a very low level in current
varieties (Mihailovic et al. 2005). Standardised ileal
digestibility of pea proteins in pigs is about 82%, but
the ileal digestibility of lysin is somewhat higher than
the threshold of 85% (Mihailovic et al. 2005). Compared
to soybean protein isolate and SMB, the standardised
ileal digestibility of lysin (96%) and threonine (88%) of
pea protein isolate in pigs did not differ and no differ-
ences in total tract CP digestibility (96%) were found
(Mathai et al. 2017). In poultry, the digestibility of pea
protein is quite high reaching the 84% threshold
(Mihailovic et al. 2005), and the addition of peameal in
diets for broilers can improve the carcase quality and
the lipid profile, without adverse effects on growth per-
formance (Laudadio and Tufarelli 2010). The replace-
ment of 20% of SBM protein with pea protein increased
the beta and gamma globulin contents of boiler blood
suggesting potentially interesting effects on the birds’
immunity (Bingol et al. 2016). The digestibility of field
pea and other pulses (Desi and Kabuli chickpeas, faba
bean and white lupin) as alternative protein sources
have been tested in rainbow trout and Nile tilapia by
Magalh~aes et al. (2018). At the protein pea (24.9% CP on
DM) inclusion level of 300g/kg in the diet for rainbow
trout, the apparent digestibility coefficients for the dry
matter, crude protein, and gross energy were the high-
est (0.773, 0.933 and 0.819, respectively). In Nile tilapia,
only the CP apparent digestibility (0.879) resulted higher
than in the other legume grains. The lupins (blue,
L. angustifolius; white, L. albus; yellow, L. luteus) have CP
contents ranging from 28.9% to 38.3% with a lipid con-
tent spanning the 5.4–9.4% range on DM basis (Pulse
Australia 2017). However, the rather low levels of
methionine and lysine partially impair their biological
value. In addition, they have teguments typically rich in
cellulose and moderate amounts of polyphenolics
(Ronchi et al. 2010). For these reasons, they have limited
nutritional value for monogastric, especially for poultry.
Due to such limitation, dehulling sounds are the prime
seed treatment of choice for including lupins in feed for
non-ruminant farmed animals and fish. A linear relation-
ship was observed for the apparent digestibility of dry
matter, gross energy, and crude protein with increasing
dehulled blue lupin meal (49.2% CP on DM) inclusion up
to 30% in feed for rainbow trout (Glencross et al. 2007).
Lupin hulls, that represent about 15–30% of the seed
weight, can be also effectively used for ruminants and

for other farmed animals. Due to the low lignin content
(Brillouet and Riochet 1983), the use of lupin hulls is
well established as a feedstuff for ruminant species
(White et al. 2007; Bramley et al. 2012). However, lupin
hulls can be used in the place of other by-products in
pseudo-ruminant species. A diet including 50 g/kg of
white lupin hulls (78.1% Neutral Detergent Fibre, NDF
and 63.9% Acid Detergent Fibre, ADF, as fed) and the
same amount of barley has shown to substitute wheat
bran (100 g/kg) of a control diet for growing rabbits
(from 31 to 71 days of age) with no adverse effects on
the average growth rate (52.8 g/day), average daily
feed intake (157.5 g/day) and feed conversion ratio,
FCR (2.99) (Volek et al. 2013). The faba bean (Vicia
faba var. minon) has a lower nutrient content than the
different varieties of lupine and more fibre than a pea.
However, the high digestibility of its components
means that its metabolisable energy for pigs, chickens
and ruminants is alike to that of peas and lupins
(Pulse Australia 2017). Despite the interesting compos-
itional values of faba bean, a total substitution of SBM
with it in diets for slow-growing chickens reared under
the organic method did not give bird survivorship and
growing results comparable to those obtained with
SBM, suggesting that only a partial substitution should
be considered for chicken, especially in the first rear-
ing period (i.e. 1–60 days) (Dal Bosco et al. 2013).
Except for a lower fat content and slightly higher pH
value of the breast, no differences were recorded by
these authors for chemical and technological proper-
ties of chicken breast and drumstick. Also for laying
hens diets, faba beans, raw (30.2% CP on DM) or
expander-processed (28.5% CP on DM) in substitution
of SBM (53.8% CP on DM) at 100 g/kg inclusion levels,
gave no comparable results, but at a lower inclusion
level (50 g/kg diet) faba beans can be considered
acceptable for the egg production rate, egg mass pro-
duction, feed consumption and FCR (Koivunen et al.
2014). Partial replacement of SBM (50.6% CP on DM)
with fermented or raw faba beans (28.2 and 27.4%CP
on DM) did not improve the growth performance of
young turkeys in an 8-weeks feeding trial (Dra_zbo
et al. 2018). Similar results were reported also in pigs
(Partanen et al. 2003) and the limitation of the appar-
ent ileal digestible threonine and tryptophane in faba
bean including diets and/or the occurrence of vicine
and convicine (Dal Bosco et al. 2013) have been
evoked as the major causes of poor growth results. As
for the lupins and pea, the removal of the tegument
significantly improves the nutritive value of these
pulses for monogastric, and the integuments can be
used in ruminant diets. Total substitution of SBM (48%

ITALIAN JOURNAL OF ANIMAL SCIENCE 1209



CP, 78.3 g/kg diet) with dehulled/micronized faba bean
(36% CP, 130 g/kg diet) has been tested by Tufarelli
and Laudadio (2015) in a 12-weeks growing trials on
120-day-old guinea fowls with promising results con-
cerning growing performance, yield and compositional
traits of fowl meat.

Minor pulses such as the common vetch (Vicia sat-
iva) as well as the bitter vetch (V. narbonensis), the red
peas (Lathyrus cicera and L. sativus) and the ervil (Vicia
ervilia) do not adapt to the feeding of monogastric
due to their poor palatability and the content of anti-
nutritional compounds but are considered alike to the
pea for feeding the ruminants. Overall, their availabil-
ity is very limited and detailed statistics are lacking.
However, the common vetch grains are less costly (in
comparison with alternatives) and rich sources of pro-
tein and minerals for farmed animals, are of high
digestibility and have a high energy content, and can
be used to partially or totally replace soybean meal
(Huang et al. 2017). In dairy cows, wethers, and goats
the apparent digestibility of common vetch included
in the diets at about 290 g/kg was 0.81 (Guedes and
Dias da Silva 1996), 0.753 (Gonzal�ez and Andr�es 2003)
and 0.730 (Hadjipanayiotou et al. 1985), respectively.
Surprisingly, common vetch, included at 297 g/kg in
the diet for juveniles of silver perch, reached a rather
high crude protein apparent digestibility (0.848; Booth
et al. 2000). Collins et al. (2005) showed uncommon
results by feeding common vetch (var. Morava) to
growing pigs between 91 and 161 days of age. These
authors noted that when pigs were fed on a diet
including from 0 to 225 g/kg of common vetch (27.5%
CP as fed), no difference was observed for body
weight, growth rate, feed intake, and FCR up to the
119th day of age. Decreasing relationships were then
observed for inclusion level passing from 0 to 225 g/
kg diet possibly due to a buildup of cyanoalanine
toxin related to the increasing feed intake of older
pigs. These evidence suggest that vetch can be
administered to growing pigs at a higher inclusion
level (i.e. 225 g/kg diet) to younger animals than the
older ones (i.e. more than 119 days of age), for which
the inclusion level should be no more than 150 g/kg.

Other protein-rich promising plants are the pseudo-
cereals such as amaranth (Amaranthus spp.), quinoa
(Chenopodium quinoa) and buckwheat (Fagopyrum escu-
lentum), seeds that are relatively unimportant on a glo-
bal scale, can be significant contributors to the human
diet in certain regions (Fletcher 2016). They are a good
source of polyunsaturated fatty acids (PUFA) (Alvarez-
Jubete et al. 2009), particularly quinoa which contains
high linolenic acid (8.3%), and are also rich in minerals,

with Mg and Ca content, ranging from 203.4 to
279.2mg/100g DM and from 32.9 to 180.1mg/100g
DM, respectively (Alvarez-Jubete et al. 2009). A 100days
trial with diets containing 10% amaranth (foliage, raw or
heat-treated grains) (172.4–173.8 g/kg as CP) fed to
Large White� Landrace pigs for 100days in comparison
with a control diet including meat-and-bone meal
(183.2 g/kg as CP) was performed by Zral�y et al. (2004).
Better daily body weight gain (0.78 kg/day) and FCR
(2.45) were reported by these authors in pigs fed raw or
heat-treated amaranth grains, respectively, than amar-
anth foliage or animal proteins with no differences as
far as the clinical status and biochemical analysis of
blood plasma. It can be also expected that the high
contents of lipids, essential fatty acids, particularly lino-
leic acid and squalene may be effective in wholesome
pork production by modification of fatty acid compos-
ition (Zral�y et al. 2004). Good results for amaranth as a
substitute for animal protein (fish meal, FM) have been
obtained also in poultry. Pisarikova et al. (2012) assessed
the effect of amaranth raw grains (16.6% CP as fed; 8%
in the diet), heat-processed grains (17.3% CP as fed, 8%
in the diet) and dried foliage (11.3% CP as fed, 3% in
the diet) in male and female broiler performance, car-
case characteristic and meat quality in comparison with
the control diet including 3% of FM (64% CP, as fed).
After 42 days, no differences were recorded for meat
chemical composition, live weight and FCR. Minor
adverse effects on the male and female live weight
were found for diets including raw grains or amaranth
dried foliage, suggesting that heat-treatment can be a
suitable option for the use of amaranth grains as a
substitute of FM. Contrasting findings on the amaranth
inclusion in chickens’ feed with respect to the choles-
terol-lowering effect has been reported in the literature
(Popiela et al. 2013; Longato et al. 2017), but a reduc-
ing effect on the meat lipoperoxides for amaranth
inclusion up to 10% in broiler diet was observed by
Longatoet al. (2017).

Food industry by-products such as the dried distiller
grains with soluble (DDGS) are a good source of pro-
tein. Industrial processes, such as the one of starch
extraction from starchy vegetables (e.g. potato) and
the process for the production of bioethanol, can gen-
erate aqueous flows that contain good amounts of
protein (27–40%) (U.S. Grains Council 2018). However,
the values data on the chemical composition and
nutritional value of DDGS are highly variable depend-
ing on the raw materials and the manufacturing pro-
cess (Spiehs et al. 2002; U.S. Grains Council 2018).
Particularly DDGS wheat contains the highest crude
protein percentage (40.67%) while DDGS maize the
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lowest (27.2%), an intermediate crude protein percentage
was found in DDGS sorghum (31.5%) (U.S. Grains Council
2018). Research carried out in recent years has demon-
strated the possibilities of corn DDG as feed for beef and
dairy cattle, sheep, swine and poultry due to its interest-
ing content of crude protein (25–30% on DM), high cal-
orific value and mineral content (i.e. 0.43–0.83% on DM
as phosphorus) (Pecka-Kiełb et al. 2017).

Several oil-bearing plant species are commonly used
worldwide to obtain vegetable oils. Among them, lin-
seed (Linum usitatissimum), sesame (Sesamum indicum)
and safflower (Cartamus tintorius) are gaining interest
due to the technological and functional traits of their
oils. The derived partially defatted by-products, such as
meals, cakes, and expellers, are rich in crude proteins
(Table 3). Linseed meal is a good source of proteins and
of nitrogen-free extracts as well, with a low content of
ash. Sesame meal is another excellent protein source
with low crude fibre content, especially for partially

dehulled seeds. In particular, sesame meal contains high
levels of methionine, cystine and tryptophan, even
though it is rather deficient in lysine (Ravindran and
Blair 1992). In the ration for Awassy ewes up to 15% of
the diet DM, sesame meal was tested by Obeidat et al.
(2019) in substitution of the same quota of SBM. These
authors reported no difference for dry matter, crude
protein and fibre intakes and digestibility but increased
fat intake and digestibility was observed. An increase
milk production was also observed comparing sesame
meal vs. SBM fed ewes (1.27 vs. 1.00 kg/day, respect-
ively) along with an increased fat and protein yields and
a better feed-to-milk conversion (1.64 vs. 2.15, for 15%
sesame meal and 15% SBM in the diet, respectively).
The level of proteins in safflower meal strongly depends
on the hulls in the meal and the processing methods
(Hertrampf and Piedad-Pasqual 2000) (Table 3).

Protein from plant leaves is gaining interest as a
protein source for human and non-ruminant livestock.

Table 3. Proximate composition (% DM), energy (kcal/kg DM), other constituents, and amino acids content in oil extraction proc-
essed linseed (Linus usitatissimum), sesame (Sesamum indicum) and safflower (Cartamus tintorius).

Linseed
meal/expeller

Sesame meal Safflower meal/expeller

Whole Part. dehulled Whole Part. dehulled

Proximate composition
Dry matter, % 90.00a 92.40a 91.30a 91.2a

Crude protein 34.00b–35.00a 45.00a 40.00b 23.00a 40.00b–43.11
Fat 2.00a–6.02 4.80a 6.00b 1.40a 1.60a–6.02
Ash 6.20a–8.02 13.00a 12.00b 4.70a 6.00b–7.11
Crude Fibre 9.00b–9.21 6.70a 8.00b 31.40a 11.51a–15.02
NFE 37.60a–43.02 24.20a 34.00b 30.80a 28.00a–33.02

Energy
DE – cattle 15.00–16.23 16.60d

ME – cattle 11.60–12.63 12.50d 8.30e 11.70e

DE – pig 13.10a–15.74 8.1e–11.11 14.70a

ME – pig 14.30c 14.40d

DE – chicken 13.50a 14.40–14.71 6.70a 11.60a

ME – chicken 6.70b–7.11 9.50–9.91 8.36b 5.20f–5.41 7.50–8.42
ME – hens – 8.96
DE – rabbits 14.10a

DE – fish (rainbow trout) 17.70a

ME – fish (rainbow trout) 13.10a 12.80c

Other constituents
Ca, g/kg DM 3.80a–4.02 20.00b–23.31 3.00b

P, g/kg DM 8.00b–8.51 12.90a–13.02 8.00b

Phytic acid, g/kg DM 36.0b

Phytate P, g/kg DM 1.8b

Amino acids, g/100 g Na or g/100 g CPb

Arg 3.10a–9.82 4.80a–12.82 2.00a 3.40a–9.22
Cys 2.00b 2.20b 1.60b

Gly 5.70b 1.10a–5.62 3.00b

Hys 0.80a–2.22 2.8b 0.50a 1.00a–2.52
Ile 1.70–4.52 1.90a–3.82 0.50a 1.50a–4.22
Leu 2.20a–6.02 3.10a–7.62 1.30a 2.40a–6.22
Lys 1.20a–3.02 1.30a–3.82 0.70a 1.20a–3.22
Met 0.60a–1.92 1.30a–3.22 0.30a 0.60a–1.62
Phe 1.60a–4.82 2.10a–5.52 1.00a 1.80a–5.02
Thr 1.30a–4.02 1.60a–3.82 0.60a 1.30a–3.32
Trp 1.80b 0.70a–1.52 0.20a 0.50a–1.52
Tyr 2.90b 4.5b 3.00b

Val 1.80a–5.42 2.20a–4.82 1.10a 2.00a–5.52

DM: dry matter; NFE: nitrogen free extracts; DE: digestible energy; ME: metabolisable energy; CP: crude protein.
aData from Petersen et al. (1976); bData from Ravindran and Blair (1992); cData from Hertrampf and Piedad-Pasqual (2000); dData from Heuz�e, Tran,
Nozi�ere, et al. (2017); eData from Heuz�e, Tran, Bastianelli, et al. (2017); fData from Heuz�e et al. (2015).
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They are mainly composed of an enzymatic complex
called RUBISCO (ribulose 1,5-bisphosphate carboxyl-
ase/oxygenase) which plays a crucial role in the
photosynthetic process. RUBISCO is in the stroma of
the chloroplasts and can amount to 50% of the total
leaf protein. The composition of RUBISCO is quite con-
stant through various green leaf plants and represents
a rich source of essential amino acids (Edelman and
Colt 2016). Even though the high fibre content of
these potential sources would limit their use in
monogastric diets, discouraging any practical perspec-
tive in the feed industry, to date there are several
techniques for the physical separation of the protein
fraction from the fibrous ones, such as mechanic
pressing, water extraction, leaf/stem separation, as
well as other procedures can help to increase the pro-
tein recovery (steam injection, acid precipitation, ultra-
filtration and spry dying) for practical applications
(Bals et al. 2012). Leaf protein concentrates from red
clover (Trifolium pratense) and Italian ryegrass (Lolium
multiflorum) (Szymczyk et al. 1996) and from gliricidia
(Glyricidia sepium) were tested in chicken diets in com-
parison with SBM and FM. Red clover (defatted, 60.9%
CP on DM basis) and Italian ryegrass proteins (50.5%
CP on DM basis) mixed in a 1:1 ratio with SBM (pro-
tein basis) gave similar results to SBM alone (400 g/kg)
on the total live body weight gain of 0–4weeks
(757–798 g) and 5–8weeks (1143–1450 g) chicks.
Interestingly, all the leaf protein concentrates and red
clover (unextracted) increased the Vitamin A (up to
248.7 mg/g, wet basis) and carotene (20mg/g, wet
basis) contents in liver, in comparison with SBM fed
chickens (117.6mg/kg and below detection level, for
Vitamin A and carotene, respectively) (Szymczyk et al.
1996). Iso-protein replacement of FM protein with glir-
icidia leaf protein concentrate was evaluated in diets
for broilers by Agbede and Aletor (2003). Weight gain,
average feed consumption, and feed efficiency
declined as the level of leaf protein increased (from
1.81 to 7.24%) at the expense of FM protein but the
nitrogen retention of chicks fed on 1.81–5.43% leaf
proteins based diets was similar to those of chicks fed
FM diet. Growing performance, carcase traits and
haematological indices indicated that FM can be par-
tially substituted (up to 25%) by glyciridia leaf proteins
concentrates with no adverse effect on rearing per-
formance and product quality of broilers (Agbede and
Aletor 2003). Four isonitrogenous and isoenergetic
diets for sharp-snout sea bream (Diplopus puntazo)
containing increasing levels (0, 7, 14, and 21%) of
alfalfa protein concentrate (52–55% CP) partially sub-
stituting FM were tested by Chatzifotis et al. (2006).

The increasing inclusion of leaf proteins did not affect
the fish survival nor impact on the daily feed intake,
hepatosomatic index or visceral index. The 14% inclu-
sion did not differ from the control as far as the FCR
(1.45 vs 1.44, respectively), but the weight gain of fish
fed leaf protein resulted impaired in comparison to
the control. Partially contrasting results were obtained
in tilapia by Olvera-Novoa et al. (1990) who tested
diets in which FM (66.6% CP as fed, 500 g/kg in the
diet) was replaced from 15 to 55% by alfalfa leaf (cyto-
plasmatic) protein concentrates (69.2% CP, as fed).
These authors concluded that alfalfa cytoplasmatic
proteins replacing up to 35% of FM gave better results
in terms of growth rate than the 50% FM fed tilapia.

SWOT analysis

Strengths
Some seeds have been considered as novel attractive
products for animal nutrition, particularly during stress-
ful events, in relation to the positive effects on the
immune responses, and on the improvement of the
growth performance. Whole linseed supplementation in
the diet of periparturient ewes or cows can modulate
immune reactivity by influencing cytokine production
(Caroprese et al. 2015; -Didara et al. 2015). In the dairy
cow, supplementation with linseed can increase milk
yield and improve the fatty acids profile increasing the
PUFA fraction (Caroprese et al. 2010). Dietary inclusion
of linseed in monogastric animals is very effective in
increasing the PUFA fraction (mainly the FA of the n-3
series) in food-derived products. An example is the dou-
bling of n-3 FA in rabbit meat after an inclusion level of
extruded linseed. Also, quinoa seeds contain important
physiological functionalities, among which anti-microbial
and anti-inflammatory activities. Particularly, Marino
et al. (2018) found that quinoa seeds supplementation
can help lamb to cope with stressful events due to the
close link between stress responses and the immune
system and for improving meat tenderness. Under an
agro-ecological perspective, another strength point is
that the use of protein crops has also environmental
advantages because they fix nitrogen in soils reducing
the use of fertiliser. In addition, the use of by-products
as an alternative protein source could be an environ-
mentally sustainable practice for cattle husbandry.
McGinn et al. (2009) showed that the use of corn distill-
ers can reduce enteric methane loss from beef cattle.
Finally, the availability of new protein sources is crucial
to meet the growing demand both as food and for the
formulation of livestock feed.
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Weaknesses
Legume grains contain anti-nutritional factors (ANFs)
such as digestive enzyme inhibitors, lectins, tannins
and phytic acid which reduce the bioavailability of
nutrients, and saponins that increase intestinal perme-
ability, allowing toxins and gut bacteria to interact
with the immune system (Rebello et al. 2014). The
tegument of lupins is rich in cellulose and therefore
they have limited nutritional value for monogastric,
especially for poultry, but represent a source of digest-
ible fibre for ruminants. For this reason, the removal
of the tegument is recommended to improve the
degree of utilisation of the lupine by monogastric spe-
cies. The broad bean has a lower nutrient content
than the different varieties of lupine and more raw
fibre than the pea. Chickpea grains can represent an
alternative protein source to soybean meal and to
energy concentrates in animal feeding, thus, their
nutritional value can help to increase the sustainability
of livestock systems. However, its excellent nutritional
characteristics are accompanied by the occurrence of
some bioactive substances with anti-nutritional effects
(Singh 1988). Hence, research on methods for the
reduction of chickpeas ANFs is ongoing. As an
example, it has been shown that agronomic practices
such as the right choice of sowing time (i.e. winter
sowing against spring sowing) and high seeding rate
(i.e. high density, 110 seeds m�2 vs. low density, 70
seeds m�2) can reduce trypsin inhibitors (�4%, on
average) and/or a-galactosides (�9%, on average) in
two cultivars of Kabuli chickpea (Primi et al. 2019). On
the other hand, post-harvest treatments can play a
relevant role in lowering the ANFs content of grain
legumes. With special regard to the minerals, despite
the content in some protein sources, a not negligible
quota of them can be in the phytate form that
reduces the bioavailability for monogastric animals.
Phytase can be added to the diets for pigs (i.e. 0.1g/kg),
with promising results in terms of calcium and phos-
phorous digestibility (Reis de Souza et al. 2017).
Similarly, 0.2 g/kg diet of phytase added to chickpea-
containing diets for turkeys exerted some effects on
the P and Fe plasma levels and resulted beneficial for
the tibia mineralisation (Ciurescu et al. 2020). However,
the market price of chickpea, as well as that of lentils
(Lens culinaris), is generally higher than the price of
other grain feeds because it is mainly intended for
human consumption. As far as the leaf protein concen-
trates, the concentration methods could increase the
possibilities of use of these ingredients in animal nutri-
tion, but to date further developments are still needed
to make these processes suitable in practice also from

the point of view of the economic convenience (Bals
et al. 2012).

Opportunities
The use of alternative proteins source in livestock
nutrition is an opportunity linked to the current grow-
ing food protein demand and feed-food competition.
Particularly, alternative protein sources can be a valu-
able tool in lowering feed cost in animal production
and could offer a possibility for the development of a
specific market segment in the EU. In addition, the
‘alternative’ protein crops can adapt to pedoclimatic
conditions different from the place of origin. Some
protein-rich plants harvested mainly as grains, such as
the safflower, are showing interesting traits also as
protein-rich fodders (Landau et al. 2004; Danieli et al.
2011). These minor and often termed neglected crops
are often characterised by good plasticity to environ-
mental change that makes them extremely attractive
in defying new production systems. In the light of
increasing the environmental sustainability of the ani-
mal farming systems, some pieces of evidence suggest
that bioactive compounds, such as the polyphenolic
components of the legumes, can help in reducing the
emission of methane from rumen fermentation
(Guglielmelli et al. 2011; Calabr�o et al. 2012).

Threats
Factors that could limit the expansion of the use of
alternative protein crops are linked to (1) the price
unpredictability and the profitability of competition
cultivation and (2) the lack of planned strategies by
rural development programs to support protein crops.
A factor that can preclude a wide utilisation of chick-
pea as an alternative protein source in animal feeding
is the low yield, often worsen by outbreaks of
Ascochyta blight, a necrotic disease due to the fungus
Ascochyta rabiei. Research is ongoing to study the
effect of seeding practices (e.g. sowing date, seeding
rate) on the yield, as well as on the nutritive value of
different cultivars of chickpeas, but data acquired on
the field (Ruggeri et al. 2017) suggest the anticipated
sowing (in winter) as the best choice in the
Mediterranean area to maximise yield. Future invest-
ments in genetic and agronomic research could help
the diffusion of these grain legumes and other pro-
tein-rich plants as animal feeding crops. Proteins from
DDGS can deliver to the animal’s undesired biogenic
substances, such as mycotoxins if bioethanol is pro-
duced from low-quality grains. Positivity from 80% up
to 100% of samples to zearalenone and deoxynivale-
nol, two of the most representative Fusarium-toxins,
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was reported in DDGS sampled in North America and
Asia (Rodrigues and Naehrer 2012). For this reason, it
is highly recommendable that DDGS batches are
examined in reference laboratories for the presence of
mycotoxins before using (Pecka-Kiełb et al. 2017).

Future perspectives

There is a great demand for protein-rich feedstuffs in
Europe with a deficit of about 70% high-protein mate-
rials (Houdijk et al. 2013; Bouxin 2014), covered in
large part by imported soybean and soy-derived prod-
ucts. On the other hand, the cost-effectiveness of soy-
bean meal, that pushed its use in the formulation of
the diet of farm animals since 1960, is progressively
reduced because the price of this commodity con-
stantly rose and today forecasts go in the same direc-
tion (The World Bank 2020). These facts should ensure
good opportunities for the development of an inte-
grated farming system focussed on coupling livestock
farming to the cultivation of cereals and protein-rich
plants such as pulses, in rotation management
schemes (Watson et al. 2017). In addition, some recent
studies have shown that the environmental impact of
replacing soybean meal in livestock diets with on
locally cultivated pulses (Baumgartner et al. 2008;
Nemecek et al. 2008) and/or other protein-rich plant-
derived products (Sasu-Boakye et al. 2014) could be
mitigated. However, if the locally cultivated protein-
rich plants will become a real scenario for animal
farming in the next future, some main changes will
have to take place at the European level (Watson
et al. 2017): (i) increasing grain/protein yield and yield
stability, including varietal selection for tolerance to
drought and plant diseases; (ii) better assessment of
the economic relevance of pulses and other protein-
rich plant feedstuffs; (iii) the valorisation of the prod-
uct, giving adequate economic stimulus for farmers to
invest in protein-rich plants cultivation, including pub-
lic policy support; (iv) gaining market advantages from
the environmental improvements. In some of these
aspects, the scientific research (plant research and
breeding, agronomics, feedstuff processing, animal
feeding and nutrition) can give a valuable contribution
towards more sustainable animal production systems.
As a real example, recent Italian research has shown
how suitable agronomic strategies can improve the
protein content and nutritional value for pulses (Primi
et al. 2019) as well as for cereals (Rossini et al. 2018)
cultivated in the Mediterranean region.

Microbial biomasses

General aspects and availability of
microbial biomasses

The name Single Cell Protein (SCP) was coined for
yeasts, fungi, bacteria and microalgae to describe the
protein production from biomass, originating from dif-
ferent microbial sources. However, this term is limita-
tive in the case of microalgae since they are
characterised by a broad spectrum of other com-
pounds of relevant importance from a nutritive point
of view (peptides, carbohydrates, lipids, vitamins, pig-
ments, macro and microminerals) (Becker 2007).

Microalgae are microscopic unicellular organisms
capable to convert solar energy to chemical energy
via photosynthesis, although few species are hetero-
trophic. Microalgae are classified into diatoms
(Bacillariophyceae), green algae (Chlorophyceae) and
golden algae (Chrysophyceae) that are eukaryotic, and
blue-green algae cyanobacteria (Cyanophyceae), that
are prokaryotic. The most important phototrophic spe-
cies belong to the genera Arthrospira, Chlorella,
Dunaliella and Haematococcus. They can be used to
produce a wide range of biomolecules (astaxanthin,
lutein, b carotene, chlorophyll, phycobiliprotein, PUFA,
b-1,3-glucans, and pharmaceutical and nutraceutical
compounds) and are involved in several industrial
applications, as feed for livestock, poultry and farmed
finfish species. According to EU Regulation, the micro-
algae registered as animal feed or ingredients for ani-
mal feed are Spirulina maxima and Spirulina platensis
and the species of the genus Schizochytrium. The
microalgae can be added to the feed as a whole or
defatted algal meal, microalgae-based oils, or dried or
freeze-dried algae biomass. Microalgae have several
uses in aquaculture, for feeding molluscs, echino-
derms, and crustacean larvae as well as for the direct
feeding of the larval stage of some fish species or for
feeding live prey (rotifers) to fish larvae (Borowitzka
1998). The criteria of choice are highly selective, and
this is the reason of the restricted number of species
that are utilised in the aquaculture sector (Muller-
Feuga 2000) (gen. Chlorella, Isochrysis, Pavlova,
Phaeodactylum, Chaetoceros, Nannochloropsis,
Skeletonema, Thalassiosira, Haematococcus and
Tetraselmis) due to the characteristics that should be
met: ease of culture, lack of toxicity, nutritional value,
cell size and shape, digestibility. Microalgae exhibit
considerable metabolic plasticity and the possibility to
modulate their nutritional value by the manipulation
of culture conditions (such as medium nitrate concen-
tration, CO2 concentration, light intensity and the
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timing of harvest) represents a peculiarity that is
widely exploited to modulate their chemical-nutri-
tional properties. Other than carbohydrates, lipids and
carotenoids, high amounts of protein can also accu-
mulate and be extracted from microalgae. Protein-rich
microalgae biomass has been used successfully to par-
tially replace fishmeal in the aquaculture industry and
as a source of protein and biomolecules in livestock.
Some species of microalgae can produce as many pro-
teins (2.5–7.5 tons/Ha/year) as other rich sources of
proteins, for example, egg, meat, milk, etc. (Khan et al.
2018). During the decades 1980–1990, microalgae
were studied mainly for the rearing of larvae and juve-
niles of shellfish and finfish, as well as for feeding live
preys (zooplanktons) needed for feeding fish juveniles.
Recently the interest towards the utilisation of microal-
gae as a source of protein in total or partial replace-
ment of fishmeal in diets for different fish species with
high protein request (salmon, rainbow trout, chinook
salmon) but also for less demanding species, like Nile
tilapia, Indian major carp, common carp, that have the
blue-green algae as common components of their
diet, has increased.

The species experimented as ingredients in aqua-
feeds are Arthrospira sp., Tetraselmis, Phaeodactylum
tricornutum, Nannochloropsis sp., Isochrysis sp.,
Navicula sp., Haematococcus pluvialis, Nanofrustulum
sp., Scenedesmus almeriensis, Chlorella vulgaris, utilised
as single species or in consortia (Rahman Shah et al.
2018). The trials performed using microalgae in partial
replacement of fishmeal produced not consistent
results. Walker and Berlinsky (2011) on juvenile
Atlantic cod (Gadus morhua) tested a combination of
dried Nannochloropsis sp. and Isochrysis sp. in partial
replacement (15 or 30%) of fish meal protein, finding
a worsening of fish performance (growth, feed intake)
at the highest percentage of replacement. The use of
a blend of Tisochrysis lutea and Tetraselmis suecica
dried biomass replacing 15, 30 or 45% of fish meal
protein in diets low in fishmeal content in European
sea bass produced no effects on fish growth despite
the decline in feed digestibility (Cardinaletti et al.
2018). Palatability and nutrient bioavailability is strictly
dependent of the microalgal species as it is hampered
by the high complexity of their cell walls, which may
introduce anti-nutritional factors and may harm the
intestinal tract and result in inflammation and reduced
nutrient uptake in fish species. Proper processing tech-
niques should be applied before the inclusion of
microalgae biomass are considered in aquafeeds
(Batista et al. 2020). In general, the nutritive value of
microalgae appeared lower in comparison with

combinations of fish meal and oil, but performed bet-
ter than diets based on plant protein and oil sources,
that are increasingly utilised as alternatives to fish
meal and oils in the current commercial aquafeeds.

In the case of livestock (ruminants and monogas-
trics), the microalgae tested are well summarised in
the recent review by Madeira et al. (2017). Arthrospira
(Spirulina) platensis, Schizochytrium sp., Chlorella vulga-
ris and Chlorella sp. were utilised as feed ingredients
for ruminants, pigs, chicken, in percentages ranging
from 0.00003 to 20%, with different effects, in relation
to the inclusion levels and microalga species, the spe-
cies and life stage of the animals fed but also in rela-
tion to the processing realised on the biomass.
Indeed, the presence of cellulose in the microalgae
wall (except for cyanobacteria, like Arthrospira
(Spirulina) and Aphanizomenon) differently affects the
results in monogastric and ruminants, if microalgae
are not previously submitted to an appropriate pro-
cess to increase their digestibility.

The development of technologies for microalgae
biomass production started sixty years ago at the
Massachusetts Institute of Technology in a project to
produce the green microalga Chlorella for human
foods using closed culture systems, so-called photo-
bioreactors (PBRs) in addition to the more traditional
open pond algae cultivation systems (‘high rate ponds’
or HRPs), consisting in circular or raceway ponds, rang-
ing from 100 L to more than 109 L. Currently, the race-
way-type, paddlewheel mixed ponds (HRPs) are the
dominant cultivation systems (Benemann 2013).
Autotrophic microalgal cultivation of marine species in
these systems can utilise non-arable lands and water
resources considered unsuitable for agriculture. In the
last years, there was a growing interest in microalgae
production for biofuels as well as for animal feeds, but
the current high production costs represent a relevant
limiting factor for this latter utilisation. Even though
the term ‘microalgae’ is utilised as a synonym for pho-
toautotrophic, unicellular algae utilising CO2 and gain-
ing energy solely from the light, there are numerous
microorganisms currently classified as microalgae that
are in fact obligate heterotrophs (Droop 1974; Gladue
and Maxey 1994), and others are capable of both het-
erotrophic and photoautotrophic metabolism, sequen-
tially or simultaneously. Until now, only a few
heterotrophic species are produced commercially,
using less expensive, well-defined mineral medium
and starch or sugars as carbon source. Genera that
can be reared in heterotrophic condition are Chlorella,
Crypthecodinium, Nitzia, Prototheca spp., Galdieria,
Haematococcus, Nannochloropsis or Schizochytrium spp.
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Some species show very slow growth performance
while others are scarcely tolerant of environmental
conditions. Schizochytrium and Thraustochytrium are
highly tolerant species and are both known to accu-
mulate large quantities of lipids within their biomass
(Bumbak et al. 2011).

The global market value of microalgae is estimated
to be around US$6.5 billion, out of which about
US$2.5 billion are produced by the health food sector,
US$1.5 billion by the production of DHA while US$700
million by aquaculture. The world annual production
of microalgae is approximately 7.5 million tons (Mobin
and Alam 2017), which is estimated to be only 0.7%
of what would actually be needed to totally replace
the protein from the fish meal in aquaculture. In add-
ition, even if extensive research into algae cultivation
in order to reduce the cultivation cost and increase
the productivity of microalgae has increased dramatic-
ally over the last few decades (Beal et al. 2015), the
current price of microalgae is between US$10 and
US$30 per kg, much higher than soybean meal (0.30
$per kg), hence global production is limited to high-
value niches as human supplement and nutraceutical.
The qualitative assessments of the alternative protein
sources based on a combination of the current-day
realities and the future potential (10–20 years) of each
protein source consider that the main obstacle that
will need to be overcome before development, in the
case of microbial biomasses, is the economics feasibil-
ity (Hua et al. 2019), that is the main objective for the
next future.

Microbial biomasses composition

Microalgae are dietary sources of macro and micronu-
trients that provide natural ingredients and supple-
ments in animal diets in order to meet the increasing
demand of protein and energy. The nutritional com-
position of microalgae is generally well known and
has been documented in many published paper (e.g.
Yaakob et al. 2014; Madeira et al. 2017; Molino et al.
2018). Particularly, the high protein content of various
microalgae species is one of the main factors promot-
ing their utilisation in feed production (Kova�c et al.
2013). Arthrospira (Spirulina) platensis and Chlorella vul-
garis show the highest protein content with values
ranging from 42.1 to 63% and from 20 to 60.4% (w/w
on dry matter), respectively, which constitutes an
enormous span (Molino et al. 2018). This wide range
of protein percentage, particularly in Chlorella vulgaris,
highlights that microalgal protein content is strongly
connected to the growth phase of the microalgae and

it often declines after nitrogen depletion phase, with a
relative increase in carbohydrate or lipid content.
Therefore, the microalgal biomass has to be harvested
before nitrogen depletion state when its protein con-
tent would be at the maximum (Bleakley and Hayes
2017; Khan et al. 2018). Moreover, higher protein con-
tents are mostly achieved in nitrogen-rich media (com-
monly <450mg N L�1) (Grossmann et al. 2019). On
the contrary, the essential amino acid composition of
microalgal proteins is rather conserved among species,
and relatively unaffected by growth phase and cultiva-
tion conditions (Guedes et al. 2015). Carbohydrates
are also important nutrients in microalgae because
contribute to providing energy for animals and
include a large share of dietary fibre that help keeping
the gastrointestinal tract healthy (Guti�errez-Salme�an
et al. 2015).

Microalgae lipids are also high-value nutrients due to
the high content of PUFA such as DHA, EPA, c-linolenic
acid (GLA) that have recognised effects on animal health
(Madeira et al. 2017). In particular, Nannochloropsis sp.
has a high amount of fatty acids, with a percentage of
long-chain PUFA equal to 45.85%, making it a promising
product for the x-3 market, with an EPA content
(33.19%) similar to Ulkenia sp. and Schizochytrium sp.,
according to Regulation (EU) 2017/2470 on novel foods
(Molino et al. 2018). Schizochytrium sp. is characterised
by valuable DHA concentration (certain Schizochytrium
strains might contain levels of DHA >94% of total n-3
fatty acids) and good growth under high-density culture
conditions (Martins et al. 2013). Nannochloropsis oculata
and Isochrysis galbana are two additional promising can-
didates for large scale production of EPA and DHA,
respectively, as highlighted by Aussant et al. (2018).
Moreover, under particular cultivation conditions as the
two-step cultivation method, a substantial enhancement
of lipid production has been achieved in Chlorella and
Scenedesmus (Yu et al. 2018).

Microalgae also represent a valuable source of min-
erals, vitamins and carotenoids like astaxanthin, lutein,
tocopherols, phycobiliproteins like phycocyanin
(Bumbak et al. 2011; Molino et al. 2018). Vitamins such
as niacin, nicotinate, biotin, and folic acid have been
found in microalgae, particularly in Arthrospira
(Spirulina) platensis and Chlorella sp. (Madeira et al.
2017), the latter one being also a valuable source of
cobalamin vitamin B12.

Trace elements composition of microalgae reported
in the literature is highly heterogeneous for copper
(4–1900mg kg�1), iron (15–6800mg kg�1), manganese
(19–4000mg kg�1) and zinc (14–5500mg kg�1) while
that of selenium is rather consistent (about 1mg kg�1)
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(Batista et al. 2020). The health beneficial effects of Se
in relation to oxidative stress conditions, immune sys-
tem, viral infections, reproduction, and thyroid func-
tion have been reviewed and seafood is one of the
food commodities relatively rich in this micronutrient.
In general, the mineral and trace element composition
of microalgae does not appear particularly unique
relative to other common terrestrial plant-based feed
ingredients, except for iron (Fe). The high Fe content
of many microalgae-based ingredients is due to the
fact that most microalgae products generally contain
the entire dried organism, including their chloroplast
proteins responsible for photosynthesis, while terres-
trial plant-based ingredients are generally produced
from seeds which are non-photosynthetic. So as feed
industries continue to search for natural sources of
key nutrients and micronutrients to replace expensive
chemically synthesised feedstocks, these high levels of
Fe may provide a unique and highly marketable prop-
erty for certain microalgae-based products.

Arthrospira platensis (Spirulina) is the most highly
consumed microalgae due to its high protein content;
it is an edible, filamentous, spiral-shaped cyanobacter-
ium, formally classified as a blue-green microalga.
Arthrospira platensis also has nutritional benefits such as
anti-hypertension, renal protective, anti-hyperlipidaemic,
and anti-hyperglycaemic. Arthrospira (Spirulina) contains
high levels of hypocholesterolemic c-linoleic acid (GLA),
B-vitamins, calcium, iron and b-carotene (Bleakley and
Hayes 2017). The protein of Arthrospira (Spirulina) has a
digestibility coefficient value of 77.6% while reference
protein sources such as casein and egg have a digest-
ibility coefficient of 95.1% and 94.2% (Becker 2007).
Arthrospira (Spirulina) can be included as a protein
source into the diets of ruminants, pigs, poultry, and
rabbits (Holman and Malau-Aduli 2013). Several studies
showed the use of algae as viable alternatives to fish
meal and fish oil (Gouveia et al. 1997; Palmegiano et al.
2005; Kiron et al. 2012; Tulli et al. 2012; Qiao et al. 2014;
Tibaldi et al. 2015; Sarker et al. 2016; Cardinaletti et al.
2018). Over the last years, the use of microalgae and
seaweed for the development of novel products, as well
as for obtaining high-added value compounds, has
attracted much interest from both food and pharma-
ceutical industries (Barba 2017).

As a further asset for SCP massive production is
represented by its antibacterial properties linked to
the natural aquatic environments typically filled with
bacteria and viruses that can attack fish and shellfish.
Bacteria and viruses can also attack single-celled
microalgae, so these microorganisms have developed
biochemical mechanisms for self-defence; such

mechanisms involve secretion of compounds that
inhibit bacterial growth or viral attachment. For
instance, compounds synthesised by Scenedesmus cos-
tatum, and partially purified from its organic extract,
exhibit antibacterial activity because of their fatty
acids longer than 10 carbon atoms in chain length,
which apparently induce lysis of bacterial protoplasts
that has recently been put into commerce against
well-known bacterial infections that cause bovine mas-
titis (Zivo Bioscience 2018). Anyway, the nutraceutical
benefits of their utilisation in animal feeds still need
to be fully exploited.

Ruminants can utilise algal proteins more efficiently
than monogastric animals. A study of Panjaitan et al.
(2010) reported that 20% of the consumed A. platensis
bypasses degradation within the rumen, allowing for
increased digestion and absorption of protein and
nutrients. In this study, the Arthrospira (Spirulina) was
added to the drinking water, and the daily water
intake increased by 24.8 g/kg. Incorporation of 200 g/
day of Arthrospira (Spirulina) in cattle feed was
reported to be an economically effective method of
increasing animal body condition score and body
weight (8.5–11%), and daily milk production (21%)
(Kulpys et al. 2009). In more detail, previous data
showed an increase in milk fat (between 17.6% and
25.0%), milk protein (up by 9.7%) and milk quantity
associated with dietary inclusion of Arthrospira
(Spirulina) supplementation (Simkus et al. 2007).
Christaki et al. (2012) demonstrated that the increased
milk quality was associated with decreasing saturated
fatty acids, while simultaneously increasing monoun-
saturated fatty acids and PUFA. These results could be
attributable to Arthrospira’s influence on microbial pro-
tein synthesis, avoidance of rumen degradation and
its nutrient-rich composition. Bezerra et al. (2010)
reported that lambs increased average daily gains
upon consumption of 10 g of Arthrospira (Spirulina)
per day. Similar results in live weight and in body con-
dition score of lambs were observed by Holman and
Malau-Aduli (2013), but variations did not reach statis-
tical significance. Anyway, it should be pointed out
that differences in the age of the lambs in the two
studies the age of the lambs was different, as well as
in the Arthrospira (Spirulina) suspensions in water used
to deliver it make the results not easy to
be compared.

In pig nutrition, results about the supplementation
of Arthrospira (Spirulina) to diets are inconsistent.
Hugh et al. (1985) found growth rates of up to 9%
higher in weaning pigs than their unsupplemented
peers; Grinstead et al. (2000) found no growth
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difference between Arthrospira (Spirulina) - supple-
mented and unsupplemented pigs. Supplementation
to pellets was reported to decrease average daily gain,
whereas incorporation of Arthrospira (Spirulina) to
meal diets actually increased average daily gain
(Grinstead et al. 2000). Addition of Arthrospira
(Spirulina) to the diet has also been suggested to
improve fertility in pigs, increasing sperm motility and
storage viability (Granaci 2007).

Arthrospira (Spirulina) sp. is widely used in poultry
nutrition and the impact of its inclusion on chicken
growth and growth rates depends on the feed ingre-
dient it replaces in the ration and on the inclusion
percentage. Toyomizu et al. (2001) have shown that
dietary Arthrospira (Spirulina) levels of 50–100 g/kg of
feed ration maintain typical growth rates that are
impaired at inclusion level higher than 200 g/kg.
Feeding cockerel chicks, male broiler chicks, and
Japanese quails with varying concentrations of
Arthrospira (Spirulina) slightly delayed growth rates but
did not affect the final growth at concentrations less
than 10% (Ross and Dominy 1990). Furthermore, this
study also reported that the dietary supplementation
of Arthrospira (Spirulina) results in increased fertility
rates, as well as the intensity of the egg-yolk colour.
These results have been confirmed by several other
studies, indicating that the inclusion of Arthrospira
(Spirulina) at a concentration of 20–25 g/kg in the feed
intensifies egg yolk colour making it more attractive
for consumers (Sujatha and Narahari 2011; Mariey
et al. 2012). The same result was obtained for egg
yolk colour by Saxena et al. (1983) utilising Arthrospira
(Spirulina) at levels of 3–9% of the total ration in the
diet for White Leghorn layer hens. Arthrospira
(Spirulina) effect on yolk colour results from its high-
level content of zeaxanthin, xanthophylls and other
carotenoid pigments, particularly b-carotene, which
accumulate within the lipid fraction of the yolk. Such
an effect has also been registered within the muscle
tissues as increasing levels of dietary Arthrospira
(Spirulina) result in a parallel increase of the yellow-
ness and redness of broiler chicken meat (Toyomizu
et al. 2001; Venkataraman et al. 1994). Dietary
Arthrospira (Spirulina) levels at 1% of the total ration
1 week prior to slaughter have resulted in broiler
muscle tissue pigmentation at levels best-representing
consumer preferences (Dismukes et al. 2008). So,
Arthrospira (Spirulina) has been shown to be an effect-
ive means of altering chicken product quality to meet
consumer preferences. Moreover, this microalga has
high antioxidant and PUFA content that enriches the
nutritional value of eggs at the expense of cholesterol

content as observed by Sujatha and Narahari (2011).
Mariey et al. (2014) observed increased viability,
improved overall health, and reduced plasma concen-
trations of cholesterol, triglycerides, and fatty acids in
chickens fed with supplemented Arthrospira (Spirulina).
Moreover, chickens had an improved immune system
as demonstrated by a significant increase in white
blood cell count and enhanced macrophage phago-
cytic activity. A generally improved health status in
chickens receiving dietary Arthrospira (Spirulina) was
also observed and was attributable to enhanced dis-
ease resistance and increased functionality of macro-
phage (Venkataraman et al. 1994).

Few data are available on the effect of feeding
Arthrospira (Spirulina) in rabbits. Data from Peiretti and
Meineri (2008) showed that dietary supplementation
with Arthrospira (Spirulina) did not influence the
growth rate of animals but increased the feed intake
and, at dietary levels of 1% of total dry matter,
improved crude protein digestibility in rabbits fed
both low- and high-fat diets compared to those fed
the control treatment. Similarly, Arthrospira (Spirulina)
inclusion in growing rabbit diets did not exhibit sub-
stantial effects on growth performance, apparent
digestibility, or on health status according to
Gerencs�er et al. (2014). Nevertheless, the 5% A. platen-
sis supplementation in rabbit diets positively affected
the composition of the caecal microbiota resulting in
a significantly higher amount of Bacteroides and a
lower amount of Clostridia (Bag�on�e V�antus et al.
2018). In addition, the same inclusion level was able
to fortify by twofold the rabbit meat with vitamin B12
(Dalle Zotte, Cullere, Sartori, Dal Basco, et al. 2014), to
increase meat redness and yellowness (Dal Bosco et al.
2014), as well as c-linolenic acid content (Dalle Zotte,
Cullere, Sartori, Szendr}o, et al. 2014).

SWOT analysis

Strength
Cultivating feed protein in close intensive systems
instead of using croplands might help to mitigate
some of the environmental and climatic impacts of
feed production. The nutritional value of a microalgal-
based diet is related to its ability to supply essential
macro- and micro-nutrients to the target animal con-
sumer. Many different SCP already plays a crucial role
in animal feeding even if only a handful of species
have been selected primarily for ease of cultivation
with relatively low annual production: Arthrospira
(3000 tons), Chlorella (2000 tons), Dunaliella (1200
tons), Nostoc (600 tons), Aphanizomenon (500 tons),
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Haematococcus (300 tons), Crypthecodinium (240 tons)
and Schizochytrium (10 tons) and estimated price is
US$8000–US$300,000 per ton of dry biomass (Tibbetts
2018). Besides providing a source of protein, amino
acids, fatty acids, vitamins and minerals, microalgae
provide also other biologically active phytochemicals.
So, their role in feed formulation is far beyond the
supply of nutrient (Hussein et al. 2013).

Microalgal biomasses have the advantage to grow
in a wide range of habitats and do not spoil arable
land and limit the water use for their cultivation while
resulting in high yields (Kain and Destombe 1995)
Some species exhibit several folds higher biomass pro-
ductivities per unit area than plants (Grossmann et al.
2019). Their energy efficiency (food energy output, kg/
energy input, kg) is five-fold higher than soy, twice
that of corn, and over 100 times higher than grain-fed
beef (Habib et al. 2008).

Moreover, scientific studies have proven high plasti-
city of the chemical characteristics according to culti-
vation and processing technology.

Weaknesses
The availability of a consistent amount of microalgal
biomass is still the main obstacle to their application
for feed purposes. Moreover, despite the fact that
some microalgal species are relevant for industrial
applications, including commodity protein production
(Tibbetts et al. 2017) and in some cases an
International Feed Number has been assigned (e.g. IFN
5-20-658), standard nutrition references report
(National Research Council 2011) does not exhibit data
of their general composition, amino acid profile and
nutrient digestibility, thus adding uncertainty for their
use for feed formulation (G€ors et al. 2010).
Consequently, many of the nutritional claims still lack
scientific evidence.

According to the known structural and compos-
itional characteristics of algal biomass, it should be
expected that ruminants are among the most suitable
livestock for microalgae dietary inclusion as protein
and energy supply, due to their unique digestive sys-
tem. However, microalgae protein naturally appears to
have high resistance against ruminal microbial degrad-
ation (Wild 2019) due to the presence of rigid and
thick cell walls. The gas production and the total pro-
duction of volatile fatty acids were reduced for differ-
ent microalgae genera (Chlorella, Nannochloropsis,
Phaeodactylum and Arthrospira) which was accompa-
nied by high ruminal undegradable protein levels,
indicating low ruminal fermentation. The availability of
microalgae nutrients to animals can be limited not

only by the presence of thick cell walls (Chlorella spp.),
but also by the presence of extracellular polysacchar-
ides (Dunaliella tertiolecta) that negatively affect the
activity of digestive enzymes in monogastric animals
(Skrede et al. 2011), compromising the intestinal
health and consequently host immunity and nutrient
digestibility and uptake. The practical implication is
that, in the absence of food-chain amplification, reli-
ance on transformative intermediary organisms repre-
sents a nutritional barrier for direct feeding microalgae
to most monogastric animals.

Opportunities
Although up to 30% of the annual global microalgae
supply is sold for animal feeds, many nutritional evalu-
ation steps are still incomplete, or totally lacking, for
the most microalgae-based aquafeed ingredients.
Besides the nutrient content of the SCP biomass, the
microalgal extracellular polysaccharides could be use-
ful binding agents in forming feed pellets during man-
ufacturing. Alginates are indigestible polysaccharides
normally used in feeds as a stabiliser, thickener, or
emulsifier agent, and as dietary bulk (Brownlee et al.
2005). Oligo-alginates have agglutination capacity that
reduces leaching of water-soluble nutrients and opti-
mise feed texture, thus improving digestibility, growth
rate and developing high energy feeds (Rodriguez-
Miranda et al. 2012). Anyway, the effect of the inclu-
sion of this novel ingredient on the physical properties
of compound feeds still need specific investigations.
Co-products from the algae industry could result in an
economically viable perspective for the utilisation of
microalgae-based biomass as an alternative feed ingre-
dient for animal feeds. With more interest in algae-
derived omega-3 fatty acids as nutraceutical for both
humans and animals, condensed algal residue solubles
(CARS) produced from heterotrophic algae could rep-
resent a potential source of macronutrients. The CARS
are produced by condensing the residue from algal
fermentation of dextrose, after the extraction from the
algal cell made without organic solvents. Including
CARS at 5% of diet dry matter increased gain (þ4.4%)
and feed:gain (þ10.1%), when compared to a corn-
based finishing diet for cattle (Norman et al. 2019).
Moreover, it has often been claimed that coupling bio-
fuel production after lipids extraction from microalgae,
and the utilisation of residual protein-rich biomasses
in animal feeds, could represent an economically sus-
tainable perspective in an integrated biorefinery sys-
tem. However, when considering the use of such
high-value products, it is necessary to avoid that the
economic need to favour low-cost methods for fuel
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production may result in the contamination of protein
residues, thus making them unsuitable for use in ani-
mal feed (Li et al. 2015). Microalgae have considered
one of the favourable wastewater agents due to their
ability to absorb nutrients and convert them to bio-
mass (Chinnasamy et al. 2010), thus suggesting the
incorporation of treated wastewater-based microalgae
biomass into animal feed. However, such an opportun-
ity has received, until now, little attention due to the
negative public perception, and to strict quality food
regulations on animal feeds.

Threats
Despite the efforts over the latest decades, the high
production costs of microalgae still remain the main
constraint to their utilisation in the animal feed indus-
try. The use of protein from microalgae is strictly
linked to its sales price and large-scale production
(Sarker et al. 2016). Cell wall disruption methods can
help in enhancing the efficiency of algal protein
digestibility, but they must preserve the nutritional
value of the several bioactive compounds inside the
cell (Agboola et al. 2019). The selection of proper
methods for cell wall disruption should consider not
only the degree of success but also the realistic poten-
tial for an industrial scale-up (G€unerken et al. 2015).
Nevertheless, this further step adds in any case add-
itional production costs. To further attenuate this situ-
ation, unlike terrestrial crops, microalgae cultivations
must begin with dewatering the highly dilute cells
(typically by centrifugation) down to dry biomass (typ-
ically by spray-drying) and usually some means of
mechanical, chemical or enzymatic cell wall rupture is
required. All these processes are currently highly
energy-intensive and costly. There is no doubt that
with innovation it will be possible to optimise the bal-
ance between the types and the size of the down-
stream processing and the associated costs. This will
determine the ‘yield reduction point’ at which algal
ingredients of the highest nutritional value, in a cost-
effective way, usable for low-cost salmonid ration for-
mulations will be obtained. In contrast to agricultural
crop production, large-scale algae culture is still in its
embryonic stage and production tonnage needs to
dramatically rise to industrial levels to realise the ben-
efits of economies of scale that will ensure reliable
supply, consistent nutrient profile, high nutrient qual-
ity and cost-competitiveness need by deeper exploit-
ation for the feed industry requirements. This lack of
quality control and nutritional ‘proofing’ cannot be
tolerated in quality assurance in ‘from farm to
fork’ systems.

Future perspectives

While it is of key importance to reduce competition
with human food resources, it is also desperately
needed to minimise environmental impacts and social
inequities for sustainable production of animal feeds.
It already seems that microalgae will play an import-
ant role in the effort to move the animal feed industry
towards a more sustainable future based on ‘lower
trophic’ ingredients (Guedes et al. 2015). Although a
limited number of studies have taken into account the
beneficial effects of microalgae on health applications,
as such both microalgae or as extracts, they will cer-
tainly have further applications for their bioactive
compounds in animal nutrition (de Jesus Raposo et al.
2013). Considering the large discrepancy in the global
supply and purchase cost of microalgal biomass versus
consolidated commodity feedstuffs, improving the
technologies for heterotrophic mass culture produc-
tion, affordable closed photobioreactors, is mandatory.
Responsible use of water resources encourages the
possibility of using microalga-based water re-use sys-
tems where the ‘effluent’ represents a valuable
resource and turns effluent ‘waste’ into a profitable
item – while taking advantage of the SCP enhanced
biomass. In the absence of high-value compounds,
algal biorefineries should take a holistic approach that
valorises the whole algal crop as an attractive path
towards a viable microalgae-based industry, and the
feed sectors are promising areas to focus on. There is
tremendous potential for microalgae cultivation to be
co-located with industrial point-source emitters of
waste ‘outputs’ (e.g. CO2, nutrients, heat) which are
essential ‘inputs’ for rapid microalgae growth and
accumulation of nutrient-rich biomass. Microalgae-
based ingredients could have competitive market
advantages over terrestrial crops in terms of input
costs, lower aerial footprint, the potential for waste-
water remediation and carbon credits from CO2 con-
version (Apandi 2019). By cultivating microalgae in an
integrated multi-system approach, it is possible to
obtain, concurrently, the purification of the waste-
water from other uses, while the wastewater provides
free nutrients to produce the microalgal feed, as
reported for Tetraselmis suecica (Michels et al. 2014).
Microalgae have mainly been used in many biotechno-
logical applications, where each species or strain
express the required properties. The future challenge
is to isolate, develop, characterise, and optimise micro-
algae species, or strains, that can express the specific
properties relevant for animal feedstuff. Some exam-
ples are the high productivity of extractable lipids,
easiness in harvesting, the use of photosynthesis by
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upgrading sugars, biogas or syngas from agricultural
origin to produce a high-value protein that can result
in higher environmental benefits.

Conclusions

The increase in protein consumption due to the rising
demand in animal products has pushed research to
screen for new and environmentally friendly alterna-
tive protein sources for aquaculture and livestock.
Cereals and protein-rich plants such as pulses can rep-
resent interesting and valuable options that most of
the times have any legal limitations. Furthermore,
these materials are often intimately linked with the
territory that can be useful in renewing the perception
as well as the animal production systems that
use them.

The use of microalgae proteins is not a new topic
but issues, such as the economically sustainable pro-
duction process, are still to be solved. Despite that,
these marine sources have a big potential not only in
terms of biomass that potentially can be produced
but also in terms of nutrients (micro/essential
nutrients especially) that they can deliver. Thus, it can
be concluded the plant kingdom can offer interesting
opportunities requiring proper insights and evalua-
tions to help satisfy the protein hunger of the live-
stock and aquaculture sectors and humanity in the
future, now near.
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