Multiplicative Complexity of Autosymmetric
Functions: Theory and Applications to Security

Anna Bernasconi Stelvio Cimato
Dipartimento di Informatica
Universita di Pisa, Italy

anna.bernasconi @unipi.it

Abstract—The multiplicative complexity of a Boolean function
is the minimum number of AND gates (i.e., multiplications) that
are sufficient to represent the function over the basis {AND,
XOR, NOT}. The multiplicative complexity measure plays a
crucial role in cryptography-related applications. In fact, the
minimization of the number of AND gates is important for
high-level cryptography protocols such as secure multiparty
computation, where processing AND gates is more expensive
than processing XOR gates. Moreover, it is an indicator of
the degree of vulnerability of the circuit, as a small number
of AND gates corresponds to a high vulnerability to algebraic
attacks. In this paper we study a particular structure regularity
of Boolean functions, called autosymmetry, and exploit it to
decrease the number of ANDs in XOR-AND Graphs (XAGs),
i.e., Boolean networks composed by ANDs, XORs, and inverters.
The interest in autosymmetric functions is motivated by the fact
that a considerable amount of standard Boolean functions of
practical interest presents this regularity; indeed, about 24% of
the functions in the classical ESPRESSO benchmark suite have at
least one autosymmetric output. The experimental results validate
the proposed approach.

I. INTRODUCTION

In standard CMOS technology XOR gates are expensive
and often considered impractical [28]; they are used only
when their presence in a network implementation of a Boolean
function guarantees a considerable reduction of some design
parameters, usually the area of the network (see [4], [13],
[14], [15], [22]). Recently, however, the growing relevance of
cryptography-related applications and emerging technologies
has revived the interest in XOR gates [12], [18], [19], [25],
[26]. For instance, in high-level cryptography protocols such as
secure multiparty computation, processing XOR gates is par-
ticularly convenient since their evaluation is possible without
any interaction between the parties, and then has no commu-
nication cost [21] (more details are given in Section II-A).
In this context, it is therefore important to consider network
representations that assume XOR gates explicitly, and in fact,
cryptographic applications often consider Boolean functions
represented over the basis {AND, XOR, NOT}. As a result,
the widely adopted And-Inverter Graph (AIG) logic networks,
implemented in the academic state-of-the-art logic synthesis
tool ABC [10], have recently evolved into the new XOR-AND
Graph (XAG) multi-level logic representations [18], [19], [25].
Recall that an AIG is a directed acyclic graphs of 2-input AND

Valentina Ciriani Maria Chiara Molteni

Dipartimento di Informatica “Giovanni Degli Antoni”
Universita degli Studi di Milano, Italy
{stelvio.cimato, valentina.ciriani, maria.molteni } @unimi.it

nodes, with possibly inverted edges; analogously, a XAG is an
AIG enriched with 2-input XOR nodes.

Logic synthesis on XAGs mainly aims at reducing the num-
ber of AND nodes [25]. For example, as already mentioned,
for secure multiparty computation AND nodes are the only
nodes in a XAG with a communication cost (observe that the
NOT operation can be implemented with a XOR). The number
of AND nodes in a XAG implementation of a function is called
the multiplicative complexity of the XAG, while the minimum
number of ANDs that are sufficient to represent a function with
a XAG defines the multiplicative complexity of the function.
This complexity measure plays a crucial role in cryptography-
related applications: not only it is important for protocols
such as secure multiparty computation where processing AND
nodes is more expensive than processing XOR nodes, but it
also represents an indicator of the degree of vulnerability of
the circuit, as a small number of AND nodes corresponds to
a high vulnerability to algebraic attacks.

In this paper, we study the multiplicative complexity of
a class of Boolean functions exhibiting a special structural
regularity, called autosymmetry, easily expressed using the
XOR operation [7], [8], [22]. Intuitively, a Boolean function f
over n variables is k-autosymmetric if it can be projected onto
a smaller function fj, that depends on n— k variables only, and
has a smaller on-set. The XOR operation comes into play as
the new n — k variables are XOR combinations of some of the
original ones. The new function fj is called restriction of f
and can be identified in polynomial time. Observe that, even if
autosymmetric functions depend in general on all their n input
variables, they can be studied in a n—k dimensional space; i.e.,
they are in general non-degenerated, whereas all degenerated
functions are autosymmetric. The interest in autosymmetric
functions in this context is motivated by the fact that a XAG
representation of an autosymmetric function f can be easily
obtained composing a XAG for the restriction f; with an
additional layer of XOR nodes (as discussed in Sections II-C
and III). As a result, the multiplicative complexity of f can be
estimated from the multiplicative complexity of the restriction
fr. Actually, we prove a stronger result: f and fj, have exactly
the same multiplicative complexity. Since fj is a smaller
function, depending on less variables, computing a XAG
representation and minimizing the number of AND nodes
become easier problems, whose solutions allow to better assess

the actual multiplicative complexity of the original function
(note that determining the exact value of the multiplicative
complexity of a function is a computationally intractable
problem [11]). We validate the proposed approach through a
set of experiments. First of all, we observe that autosymmetry
is a property that is frequent enough within Boolean functions
to be worth studying, indeed about 24% of the functions in
the classical ESPRESSO benchmark suite [29] have at least
one non-degenerate autosymmetric output [8]. For this set
of functions, we are able to get a better estimate of the
multiplicative complexity in about 74% of the cases, with an
average reduction of the number of ANDs of about 61%.
The paper is organized as follows. Preliminaries on multi-
party computation, multiplicative complexity, XAG networks,
and autosymmetric functions are described in Section II. Sec-
tion III discusses the relationships between the multiplicative
complexity of an autosymmetric function and the multiplica-
tive complexity of its restriction, and Section IV reports the
experimental results. Finally, Section V concludes the work.

II. PRELIMINARIES
A. Secure Multiparty Computation

The goal of Secure Multiparty Computation (SMC) proto-
cols is to allow a set of mutually distrusting parties to compute
a joint function, keeping their own inputs private. Secure com-
putation, also denoted as secure function evaluation, has been
studied since the 80’s, and a theoretical result has been proved
stating that any function can be securely computed [31].

One of the possible approaches to solve the SMC problem
has been provided by Yao and is based on the Garbled Circuit
(GC) protocol [30], that allows the secure evaluation of the
Boolean circuit representing the given function. The idea of
the protocol is that the two collaborating parties, say Alice
and Bob, will evaluate the circuits by encoding wire values
as random strings and by encrypting the truth table of each
gate. Using the input wire values corresponding to the inputs
held by Alice and Bob, it is possible to decrypt the encoding
of the gate output. Alice acts as the garbler and sends Bob an
encoding of the circuit including the encrypted truth table for
each gate and the encodings of her inputs (that remain hidden
to Bob). Bob asks Alice the encodings for his inputs, using
an oblivious transfer protocol, a cryptographic primitive that
allows Bob to obtain the requested values without revealing
anything about his input to Alice. The protocol then goes
on with Bob computing the correct output of the circuit by
evaluating the encoded inputs gate by gate, and sharing only
the final result with Alice.

Recently, several research results have been presented in lit-
erature, showing impressive improvement in the performance
of GC protocols [20], [23], and proposing many software li-
braries and prototypes such as JustGarble [3], SCAPI [16], and
TinyGarble [24]. Using such libraries, many efficient applica-
tions have been presented solving also complex problems [2].
One of the proposed approaches to increase the efficiency of
the GC protocol is to transform the given circuit increasing the
number of XOR gates for reducing the number of other gates,

since a variation of the protocol has shown that the evaluation
of XOR gates is possible without any interaction between
the parties, and then it has no communication cost [21]. In
this direction, logic synthesis algorithms and tools have been
proposed aiming at minimizing the multiplicative complexity
of the circuit, in logic networks composed of AND, XOR and
inverter gates. In [25], a technique based on a cut rewriting
algorithm is described, achieving interesting performance in
the optimization of benchmarks related to secure multiparty
computation applications.

B. Multiplicative Complexity and XOR-AND graphs

The multiplicative complexity of a Boolean function is a
complexity measure defined as the minimum number of AND
gates (i.e., multiplications) that are sufficient to represent the
function over the basis {AND, XOR, NOT}, a logic basis
widely used to represent Boolean functions for cryptographic
applications [9], [11], [25], [27]. More precisely:

Definition 1: The multiplicative complexity M(f) of a
Boolean function f is the number of AND gates that are
necessary and sufficient to implement f with a circuit over
the basis {AND, XOR, NOT}.

Definition 2: The multiplicative complexity Mc(f) of a
circuit C' implementing a Boolean function f over the basis
{AND, XOR, NOT} is the actual number of AND gates in C.

Observe that the multiplicative complexity of a circuit for f
only provides an upper bound for the multiplicative complexity
of f,ie., M(f) < Mc(f).

As already discussed in Section I, the multiplicative com-
plexity measure plays a crucial role in cryptography-related
applications for various reasons. First of all, the minimization
of the number of AND gates is important for high-level
cryptography protocols such as zero-knowledge protocols and
secure multiparty computation, where processing AND gates is
more expensive than processing XOR gates [1], as discussed in
the previous section. Moreover, the multiplicative complexity
is an indicator of the degree of vulnerability of the circuits, as a
small number of AND gates in an {AND, XOR, NOT} circuit
corresponds to a high vulnerability to algebraic attacks [11],
[17], [27]. Unfortunately, determining the exact value of the
multiplicative complexity of a function f is a computation-
ally intractable problem [11]. Thus, the minimization of the
number of AND gates in any circuit implementation over the
basis {AND, XOR, NOT} becomes very important to assess
the actual multiplicative complexity of the function.

In this work, we consider Boolean functions represented in
XOR-AND graphs (XAGs) form [18], [25], and use the mul-
tiplicative complexity Mx (f) of a XAG implementation of a
function f to provide an upper bound for its real multiplicative
complexity M (f). XAGs are logic networks which contain
only binary XOR nodes, binary AND nodes, and inverters.
In particular, we refer to the XAG model described in [25],
where regular and complemented edges are used to connect
the gates. Complemented edges indicate the inversion of the
signals and replace inverters in the network. An example of

Fig. 1. XAG representation of the 4-input function corresponding to the
Karnaugh map in Figure 3.

XAG is shown in Figure 1, where complemented edges are
denoted by dashed lines.

C. Autosymmetry

Commonly, the “regularities” of Boolean functions are
exploited with the purpose to derive, in shorter synthesis time,
more compact circuits. It is not always clear whether a function
is “regular”, and which type of regularity could be exploited
for its synthesis. Some previous papers on logic synthesis
have focused on structural regularities of Boolean functions
based on the notion of affine spaces and easily expressed
using XORs. In this context, we study a particular regularity,
i.e., autosymmetry [7], [8], [22], in order to decrease the
multiplicative complexity of a XAG.

Intuitively, a Boolean function f over n variables is k-
autosymmetric if it can be projected onto a smaller function f,
that depends on n — k variables. The regularity of a Boolean
function f is then measured computing its autosymmetry
degree k, with 0 < k < n, where k = 0 means no regularity.
For k£ > 1 the Boolean function f is said to be autosymmetric,
and a new function fj; depending on n — k variables only,
called the restriction of f, is identified in polynomial time.
Moreover, an expression for f can be simply built from
fr: fer, w2, 20) = fe(y1,92,- -, Yn—k), Where fi is
a Boolean function on n — k variables y; = ®(X1),y2 =
B(X2), -, Yn—r ®(Xn—_r) and each B(X;) is a XOR whose
input is a set of variables X; with X; C {z1,22,...,2n}.
Note that &(X;) can be a single variable, ie., X; = {z;}
and ®(X;) = x;. The autosymmetry test consists of finding
the value of k, the restriction fi, and each single XOR
with its input variables X; (reduction equations). Note that
a degenerate function, i.e., a function that does not depend on
all the variables in the Boolean space, is autosymmetric.

The restriction fj, is “equivalent” to, but smaller than f,
and has |S(f)|/2* minterms only, where S(f) denotes the
support of f, and thus |S(f)| is the number of minterms of
f. The synthesis of f can be reduced to the synthesis of its
restriction fi, which can be identified in polynomial time.
As the new n — k variables are XOR combinations of some
of the original ones, the reconstruction of f from f; can be
obtained with an additional logic level of XOR gates, whose
inputs are the original variables, and the outputs are the new

n—Fk variables and their complementations given as inputs to a
circuit for fi. The restricted function fj can be synthesized in
any framework of logic minimization, in this paper we derive
a XAG representation of it. The overall representation of a
XAG for the function f using the XAG for fj and the XOR
nodes for the reduction equations is represented in Figure 4.

Consider, for example, the second output of the benchmark
function rd53 of the LGSynth’89 benchmark suite [29], i.e.,
the Boolean function f depicted in Figure 2. The “regularity”
of the function is highlighted by the colors in the figure.
The autosymmetry degree of f is 1 (i.e., kK = 1) and the
reduction equations are y; = x1 b T2, Y2 = X1 D T3,
ys = X1 DB x4, Y4 = x1 B x5 (for details on the computation
see [8]). Thus, the restriction f; depends on 4 variables
and it is depicted in Figure 3. Note that each point of the
restriction corresponds to two points of the original function,
as indicated by the colors in the maps. For example, the point
0000 in the Karnaugh map of Figure 3 corresponds to the two
points 00000 and 11111 in the Karnaugh map of Figure 2.
This is due to the reduction equations. In fact, considering
the point (x1, %2, x3, x4, x5) = 00000, through the reduction
equations we get (y1,Y2,¥s3,¥4) = (1 ® 22,21 B 3,21 D
Z4,21 ® x5) = 0000. Exactly the same holds for the point
(z1,22,23,24,25) = 11111. It is easy to verify that we can
perform a similar computation for any couple of corresponding
points depicted in Figure 2, obtaining the Karnaugh map of
Figure 3. For this example we have the XAG representation
described in Figure 5.

Autosymmetric functions are just a subset of the total
number of Boolean functions. Indeed, while the number Np
of the Boolean functions of n variables is Ng = 22" the
number of autosymmetric ones is Ny = (2" — 1)22"_1 [8].
Therefore, the set of autosymmetric functions is much smaller
than the one containing all the Boolean functions. Neverthe-
less, a considerable amount of standard Boolean functions of
practical interest falls in the class of autosymmetric functions.
Indeed, about 24% of the functions in the classical ESPRESSO
benchmark suite [29] have at least one truly (i.e., non de-
generate) autosymmetric output [7], [8]. Thus, the interest on
autosymmetric functions is motivated by 1) their compact (in
term of number of AND gates) representation, which consists
on a XOR layer that is the input to a XAG for the restriction;
2) the frequency of autosymmetric functions in the set of
benchmark functions.

ITI. MULTIPLICATIVE COMPLEXITY OF AUTOSYMMETRIC
FUNCTIONS

In this section we investigate the relationships between the
multiplicative complexity of an autosymmetric function and
the multiplicative complexity of its restriction.

First of all, observe that a XAG representation of a k-
autosymmetric function f can be easily obtained composing
a XAG for the restriction f; with an additional layer of XOR
gates implementing the reduction equations. The inputs to the
new layer are the original variables x1,xs,...,x, and the
outputs are the new variables y1, yo, . . . , Yn—k, that become the

(@x1 =0

Tos 00 01 11 10
o o 1] 1]
01 |1 1|0 |1
1|1t {ollo 0‘
10 1 1 0 1 ‘
bz =1

Fig. 2. Karnaugh map of the second output of rd53 depending on the 5 Boolean variables x1, x2,z3, 4, 5.

Y3Ya
Y1y2
00

00 o1 11 10
oo

01 0 1 1 1

11 1 1 0 1

10 | 1O 1 1 1

Fig. 3. Karnaugh map of the restriction of the second output of rd53
depending on the 4 Boolean variables y1, y2, Y3, y4.

inputs to the XAG for f, as shown in Figure 4. Since the new
layer contains only XOR gates, we immediately conclude that
M(f) < M(fx), as formally stated in the following lemma.
Lemma 1: The multiplicative complexity of an autosymmet-
ric function f is less or equal to the multiplicative complexity
of its restriction fj.
Proof. First recall that the multiplicative complexity of a XAG
implementation for a function f provides an upper bound for
the multiplicative complexity of the function itself. Thus, the
thesis follows since we can construct a XAG for f with exactly
M (fr) AND nodes. This can be done adding to a XAG for
fx, containing a minimum number M (f) of AND nodes, a
layer consisting only of XOR nodes, as shown in Figure 4. m

Actually, a much stronger result holds: f and f; have
exactly the same multiplicative complexity. To prove this
result, we need to recall some properties of autosymmetric
functions and of their restrictions. As shown in [7], [8], any
k-autosymmetric function f is associated to a k-dimensional
vector space Ly, defined as the set of all minterms w s.t.
f(v) = flv@w) for all v € {0,1}". The k variables that are
truly independent onto Ly, i.e., the variables that assume all
the possible combinations of {0, 1} values in the minterms in
Ly, are called canonical variables and are used to construct
the restriction fj. In fact, fj corresponds to the projection of f
onto the subspace {0, 1}"~* where all the canonical variables
assume value 0 (see [7], [8] for more details).

Consider for instance the 1-autosymmetric benchmark rd53
(second output) discussed in Section II-C. Its associated vector
space is the 1-dimensional space L; = {00000,11111},

whose canonical variable is x; (all other variables must be
equal to x; on Ly), and the restriction corresponds to the
projection of the function onto the space where x; = 0, as it
can be noted from Figures 2 and 3.

Exploiting this characterization for the restriction of an
autosymmetric function, we can prove the following theorem.

Theorem 1: Let f be a k-autosymmetric function, and let
fi be its restriction. Then,

M(f) = M(fx)-

Proof. We have proved in Lemma 1 that M (f) < M(f%).
Thus, it is enough to show that M (f) > M(fi). By contra-
diction suppose that the multiplicative complexity of the whole
function f is strictly less than the multiplicative complexity
of its restriction f, i.e., M(f) < M(f;). This assumption
means that any XAG for fj, requires strictly more than M (f)
AND nodes, i.e., Mx(fi) > M(f), where Mx (f;) denotes
the multiplicative complexity of a XAG for f;. Since the
restriction fj, corresponds to the projection of f onto the
subspace {0,1}"~* where all the canonical variables of f
have value 0, we can derive a XAG representation for fi
starting from a XAG for f and substituting all canonical input
variables with the constant value 0. Note that the constant
value O can be obtained computing the XOR of any non-
canonical variable with itself. Such a transformation can only
decrease the number of ANDs in the original XAG, as all
AND nodes that receive in input the constant value 0 can be
removed from the circuit, and substituted with the value 0.
Therefore, if we start from a XAG implementation of f with
the minimum number Mx (f) = M(f) of AND nodes, we
can derive a XAG for f with Mx(fx) < M(f) ANDs, in
contradiction with the initial assumption M (f) < M (f;). m

Since the restriction fj is a smaller function, depending
on less variables, computing a XAG representation and mini-
mizing the number of ANDs become easier problems, whose
solutions allow to better assess the actual multiplicative com-
plexity of the original function f. For instance, for our running
example concerning the benchmark rd53 (second output), we
can derive the XAG representation shown in Figure 5 simply
adding four XOR nodes to the XAG for fj of Figure 1, that
contains 4 XORs and only 2 ANDs. Notice that the direct XAG

XAG for f !

XAG for f

EXOR layer implementing the
reduction equations

Fig. 4. A XAG for an autosymmetric function f obtained adding a XOR
level implementing the reduction equations to a XAG for the restriction fy.

————————————————————————————————————

Y2

® (@ (& (&) oo

L Xz X3 X4 X5 |

Fig. 5. XAG representation for the benchmark rd53 (second output), derived
exploiting the autosymmetry of the function.

minimization of rd53 performed using the software from [25]
would produce a bigger circuit, with 12 ANDs and 23 XORs.

IV. EXPERIMENTAL RESULTS

The approach presented above has been applied to the
ESPRESSO and LGSynth’89 benchmark suite [29], running
on a Pentium INTEL(R) CORE(TM) i5-5200U 2.20 GHz
processor with 4.00 GB RAM, on a virtual machine running
OS Ubuntu 64-bit. The experiments consider the subset of
single outputs that are autosymmetric. The main aim of the
experiments is to compare the synthesized XAG computed
starting from an autosymmetric function f and the synthesized
XAG computed starting from the corresponding restriction fy,
after the autosymmetry test. Recall that the autosymmetry test
computes the autosymmetry degree k£ of a Boolean function
and outputs: 1) the reduction equations, which form the XOR
layer, and 2) the corresponding restriction fj,. We performed
the autosymmetry test described in [7], [8] considering the on-
set of the benchmarks. The functions f and fj, are synthesized
in XAG form using the heuristic approach proposed in [25] and
briefly described at the end of Section II-A. We then compare
the number of AND nodes of the XAGs for f and fi in
order to understand how the autosymmetry test can enable the
XAG minimization of autosymmetric functions. For the sake

TABLE I
EXPERIMENTAL COMPARISON OF AUTOSYMMETRIC BENCHMARKS,
CONSIDERING A XAG AFTER THE AUTOSYMMERTY TEST AND THE
STANDARD XAG COMPUTED WITHOUT THE AUTOSYMMETRY TEST.

standard XAG XAG with autosym. test
Benchmark in k Mx (f) time (s) | Mx (fi) time (s) gain
add6(0) 12 11 3 0.01 0 0.01 | 100%
bee(32) 26 11 26 17.15 21 19.45 19%
bee(33) 26 11 61 56.00 54 85.34 11%
exep(1) 30 18 17 7.33 15 9.36 12%
in5(3) 24 5 31 14.13 27 12.46 13%
in7(1) 26 10 21 15.68 15 11.48 29%
in7(5) 26 5 34 24.94 30 35.27 12%
mainpla(27) 27 3 180 147.01 147 130.00 18%
mish(4) 94 91 2 0.01 2 0.01 0%
opa(24) 17 11 9 2.15 5 1.98 44%
opa(25) 17 2 39 26.51 31 22.84 21%
pdc(13) 16 8 108 8.67 7 2.96 94%
pdc(26) 16 2 25 22.57 12 6.16 52%
t1(19) 21 18 5 0.18 2 0.04 60%
2(6) 17 4 17 12.49 14 11.6 18%
t2(9) 17 10 21 14.87 18 10.35 14%
vg2(6) 25 11 17 12.15 15 8.37 12%
x2dn(33) 82 | 79 2 0.01 2 0.01 0%
x6dn(0) 39 11 82 62.37 66 54.57 20%
x6dn(4) 39 10 93 74.83 82 77.12 12%
x7dn(1) 66 51 20 10.64 20 9.26 0%
xparc(0) 41 17 105 84.82 93 75.19 11%

of briefness, we report in Table I only a significant subset of
the results. The first column reports the name of the function
considered (benchmark function and output number). The
following one provides its input size. Next column refers to the
autosymmetry degree (i.e., k) of the function. The following
two pairs of columns report the multiplicative complexity of
the XAG (Mx) after applying the heuristic in [25] and the
time in seconds required to obtain it, for the entire function f
(first couple) and for the corresponding restriction fj (second
couple). Finally, the last column reports the gain in applying
the autosymmetry test before XAG synthesis.

Table II shows a summary of the overall experimental
results. We first consider the set of all autosymmetric functions
(degenerate! and non-degenerate), we then study the truly
autosymmetric (i.e., the non-degenerate) ones. In Table II, we
denote with Mx (fr) < (=, >, resp.) Mx(f) the number of
benchmarks where the number of ANDs of the XAG for fy, is
less than (equal to, greater than, resp.) the number of ANDs
of the XAG for f. We notice that the XAG minimization
algorithm proposed in [25] is sensible to degenerate functions
as shown in the first row of Table I, where the number of
benchmarks where f; and f have the same number of ANDs is
the majority (i.e., about 68%). Nevertheless, if we concentrate
on non-degenerate autosymmetric functions (i.e., second row
of the table) we notice that the number of benchmarks where
Mx (fr) < Mx(f) is about 74%. Moreover, in this set the av-
erage gain is about 61%, while the overall gain in the entire set
of autosymmetric functions (in the case Mx (fi) < Mx(f))
is about 31%. Finally, the results on computational times are
not very interesting, since the two compared approaches have
similar synthesis times.

From these experiments, we can conclude that, when a
function is truly autosymmetric (i.e., non-degenerate), we can

IRecall that degenerate functions are, by definition, autosymmetric.

TABLE II
SUMMARY OF THE EXPERIMENTAL EVALUATION, CONSIDERING THE NUMBER OF ANDS IN THE XAGS FOR AUTOSYMMETRIC FUNCTIONS AND
NON-DEGENERATE AUTOSYMEMTRIC FUNCTIONS.

Mx (fr) < Mx(f)

Mx (fr) = Mx(f) | Mx(fr) > Mx(f)

autosymmeric functions

11.34% 68.2% 20.46%

non-d ate autosymmeric functions

74.2% 19.35% 6.45%

obtain better results computing the XAG on the restriction f
instead of computing the XAG directly on the function f.

V. CONCLUSION

In this paper we have considered the class of autosymmetric
functions and we have shown how autosymmetry can be
exploited to better estimate their multiplicative complexity.
Moreover, the experimental results show that autosymmetry
test can enable the XAG minimization of autosymmetric
functions. Section II-A shows that XOR nodes are costless in
multiparty computation. In general, the computation between
parties can be applied to any Boolean functions; for this reason
we have conducted our experimentation on a wide set of
standard Boolean benchmarks. As a future work, we plan to
investigate benchmarks related to more general security and
cryptographic applications.

ACKNOWLEDGMENT

We are in debt to our student Alessandro Poggiali who
carried out the benchmark experimentation.

REFERENCES

[1] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for MPC and FHE,” in Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, 2015, pp. 430-454.

[2] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen, “Maturity
and performance of programmable secure computation,” I[EEE Security
Privacy, vol. 14, no. 5, pp. 48-56, Sep. 2016.

[3] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in 2013 IEEE Symposium on
Security and Privacy. 1EEE, 2013, pp. 478-492.

[4] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa, “Logic Mini-
mization and Testability of 2-SPP Networks,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 27, no. 7, pp. 1190-1202, 2008.

[5] A. Bernasconi and V. Ciriani, “DRedSOP: Synthesis of a New Class of
Regular Functions,” in DSD, 2006, pp. 377-384.

[6] ——, “Dimension-Reducible Boolean Functions Based on Affine
Spaces,” ACM Trans. Design Autom. Electr. Syst., vol. 16, no. 2, pp.
13:1-13:21, 2011.

[71 A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Three-Level Logic
Minimization Based on Function Regularities,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 22, no. 8, pp. 1005-1016, 2003.

[8] ——, “Synthesis of autosymmetric functions in a new three-level form,”
Theory Comput. Syst., vol. 42, no. 4, pp. 450—464, 2008.

[9] J. Boyar, R. Peralta, and D. Pochuev, “On the multiplicative complexity

of boolean functions over the basis (cap, +, 1),” Theor. Comput. Sci.,

vol. 235, no. 1, pp. 43-57, 2000.

R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-

strength verification tool,” in Computer Aided Verification, 22nd In-

ternational Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.

Proceedings, 2010, pp. 24-40.

C. Calik, M. S. Turan, and R. Peralta, “The multiplicative complexity

of 6-variable boolean functions,” Cryptography and Communications,

vol. 11, no. 1, pp. 93-107, 2019.

[10]

[11]

[12] S. Cimato, V. Ciriani, E. Damiani, and M. Ehsanpour, “An obdd-based
technique for the efficient synthesis of garbled circuits,” in Security and
Trust Management - STM, 2019, pp. 158-167.

V. Ciriani, “Synthesis of SPP Three-Level Logic Networks using Affine
Spaces,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 22, no. 10, pp. 1310-1323, 2003.

D. Debnath and T. Sasao, “A Heuristic Algorithm to Design AND-
OR-EXOR Three-Level Networks,” in Asia and South Pacific Design
Automation Conference, 1998, pp. 69-74.

E. Dubrova, D. Miller, and J. Muzio, “AOXMIN-MV: A Heuristic
Algorithm for AND-OR-XOR Minimization,” in Int. Workshop on the
Applications of the Reed Muller Expansion in circuit Design, 1999, pp.
37-54.

Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell, “Scapi: The se-
cure computation application programming interface.” JACR Cryptology
EPrint Archive, vol. 2012, p. 629, 2012.

D. Goudarzi and M. Rivain, “On the multiplicative complexity of
boolean functions and bitsliced higher-order masking,” in Cryptographic
Hardware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, Proceedings, 2016, pp. 457-478.
1. Halecek, P. Fiser, and J. Schmidt, “Are xors in logic synthesis really
necessary?” in 20th IEEE International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, DDECS 2017, Dresden,
Germany, April 19-21, 2017, 2017, pp. 134-139.

——, “Towards AND/XOR balanced synthesis: Logic circuits rewriting
with XOR,” Microelectronics Reliability, vol. 81, pp. 274-286, 2018.
Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits.” in USENIX Security Symposium,
vol. 201, no. 1, 2011, pp. 331-335.

V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor
gates and applications,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2008, pp. 486—498.

F. Luccio and L. Pagli, “On a New Boolean Function with Applications,”
IEEE Transactions on Computers, vol. 48, no. 3, pp. 296-310, 1999.
B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure
two-party computation is practical,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2009, pp. 250-267.

E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar, “Tinygarble: Highly compressed and scalable sequential
garbled circuits,” in 2015 IEEE Symposium on Security and Privacy,
May 2015, pp. 411-428.

E. Testa, M. Soeken, L. G. Amaru, and G. D. Micheli, “Reducing the
multiplicative complexity in logic networks for cryptography and secu-
rity applications,” in Proceedings of the 56th Annual Design Automation
Conference 2019, DAC 2019, Las Vegas, NV, USA, 2019, p. 74.

——, “Logic synthesis for established and emerging computing,” Pro-
ceedings of the IEEE, vol. 107, no. 1, pp. 165-184, 2019.

M. S. Turan and R. Peralta, “The multiplicative complexity of boolean
functions on four and five variables,” in Lightweight Cryptography for
Security and Privacy - Third International Workshop, LightSec 2014,
Istanbul, Turkey, 2014, pp. 21-33.

N. Weste and K. Eshraghian, Principles of CMOS VLSI Design.
Addison-Wesley Publishing Company, 1993.

S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Microelectronic Center, User Guide, 1991.

A. C. Yao, “Protocols for secure computations,” in Foundations of
Computer Science, 1982. SFCS’08. 23rd Annual Symposium on. 1EEE,
1982, pp. 160-164.

A. C.-C. Yao, “How to generate and exchange secrets,” in Foundations
of Computer Science, 1986., 27th Annual Symposium on. 1EEE, 1986,
pp. 162-167.

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

