
RAAS inhibitors are not associated with mortality in COVID-19 patients: findings from an observational multicenter study in Italy and a meta-analysis of 19 studies

Augusto Di Castelnuovo, Simona Costanzo, Andrea Antinori, Nausicaa Berselli, Lorenzo Blandi, Marialaura Bonaccio, Roberto Cauda, Alessandro Gialluisi, Giovanni Guaraldi, Lorenzo Menicanti, Marco Mennuni, Roberta Mussinelli, Ilaria My, Giustino Parruti, Giuseppe Patti, Stefano Perlini, Francesca Santilli, Carlo Signorelli, Giulio G. Stefanini, Alessandra Vergori, Paolo Abete, Walter Ageno, Piergiuseppe Agostoni, Luca Aiello, Samir Al Moghazi, Rosa Arboretti, Filippo Aucella, Greta Barbieri, Martina Barchitta, Alessandro Bartoloni, Paolo Bonfanti, Francesco Cacciatore, Lucia Caiano, Laura Carrozzi, Antonio Cascio, Giacomo Castiglione, Stefania Cianfrone, Arturo Ciccullo, Antonella Cingolani, Francesco Cipollone, Claudia Colomba, Crizia Colombo, Ottavia Cozzi, Annalisa Crisetti, Francesca Crosta, Gian Battista Danzi, Damiano D'Ardes, Katleen de Gaetano Donati, Francesco Di Gennaro, Giuseppe Di Tano, Gianpiero D'Offizi, Francesco Maria Fusco, Ivan Gentile, Emauele Graziani, Gabriella Guarnieri, Giovanni Larizza, Armando Leone, Veronica Lio, Mothanje Barbara Lucia, Gloria Ferruccio Madaro, Stefano Maccagni, Maitan. Sandro Mancarella, Rosa Manuele, Massimo Mapelli, Riccardo Maragna, Rossella Marcucci, Giulio Maresca, Silvia Marongiu, Claudia Marotta, Lorenzo Marra, Franco Mastroianni, Maria Mazzitelli, Menichetti, Alessandro Mengozzi, Francesco Marianna Meschiari, Jovana Milic, Filippo Minutolo, Beatrice Molena, Cristina Mussini, Maria Musso, Anna Odone, Marco Olivieri, Antonella Palimodde, Emanuela Pasi, Raffaele Pesavento, Francesco Petri, Biagio Pinchera, Carlo A. Pivato, Venerino Poletti, Claudia Ravaglia, Marco Rossato, Marianna Rossi, Anna Sabena, Francesco Salinaro, Vincenzo Sangiovanni, Carlo Sanrocco, Giancarlo Scoppettuolo, Laura Scorzolini, Raffaella Sgariglia, Paola Giustina Simeone, Enrico Maria Trecarichi, Roberto Vettor, Andrea Vianello, Marco Vinceti, Alexandra Virano, Laura Vocciante, Licia Iacoviello, Caterina

PII: S1537-1891(20)30310-4

DOI:

51557-1671(20)505

D

https://doi.org/10.1016/j.vph.2020.106805

Reference: VPH 106805

To appear in:	Vascular Pharmacology
Received date:	11 August 2020
Accepted date:	23 September 2020

Please cite this article as: A. Di Castelnuovo, S. Costanzo, A. Antinori, et al., RAAS inhibitors are not associated with mortality in COVID-19 patients: findings from an observational multicenter study in Italy and a meta-analysis of 19 studies, *Vascular Pharmacology* (2020), https://doi.org/10.1016/j.vph.2020.106805

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

RAAS inhibitors are not associated with mortality in COVID-19 patients: findings from an

observational multicenter study in Italy and a meta-analysis of 19 studies

Short title: RAAS inhibitors and mortality in COVID-19

THE COVID-19 RISk and Treatments (CORIST) Collaboration

Augusto Di Castelnuovo, ²Simona Costanzo¹, Andrea Antinori³, Nausicaa Berselli⁴, Lorenzo Blandi⁵, Marialaura Bonaccio², Roberto Cauda^{6,7}, Alessandro Gialluisi², Giovanni Guaraldi⁸, Lorenzo Menicanti⁵, Marco Mennuni⁹, Roberta Mussinelli¹⁰, Ilaria My^{11,12}, Giustino Parruti¹³, Giuseppe Patti⁹, Stefano Perlini^{14,10}, Francesca Santilli¹⁵, Carlo Signorelli¹⁶, Giulio G. Stefanini^{11,12}, Alessandra Vergori¹⁷, Paolo Abete¹⁸, Walter Ageno¹⁹, Piergiuseppe Agostoni^{20,21}, Luca Aiello²², Samir Al Moghazi²³, Rosa Arboretti²⁴, Filippo Aucella²⁵, Greta Barbieri²⁶, Martina Barchitta²⁷, Alessandro Bartoloni²⁸, Paolo Bonfanti^{29,30}, Francesco Cacciatore¹⁸, Lucia Caiano¹⁹, Laura Carrozzi³¹, Antonio Cascio³², Giacomo Castiglione³³, Stefania Cianfrone¹⁵, Antro Ciccullo⁶, Antonella Cingolani^{6,7}, Francesco Cipollone¹⁵, Claudia Colomba³², Crizia Colombo⁹, Ottavia Cozzi^{11,12}, Annalisa Crisetti²⁵, Francesca Crosta¹³, Gian Battista Danzi³⁴, Damiano D'Ardes¹⁵, Katleen de Gaetano Donati⁶, Francesco Di Gennaro³⁵, Giuseppe Di Tano³⁴, Gianpiero D'Offizi³⁶, Francesco Maria Fusco³⁷, Ivan Gentile³⁸, Emauele Graziani³⁹, Gabriella Guarnieri⁴⁰, Giovanni Larizza⁴¹, Armando Leone⁴², Veronica Lio⁹, Mothanje Barbara Lucia^{6,7}, Gloria Maccagni³⁴, Ferruccio Madaro⁴¹, Stefano Maita²², Sandro Mancarella⁴³, Rosa Manuele⁴⁴, Massimo Mapelli^{20,21}, Riccardo Maraga^{20,21}, Rossella Marcucci²⁸, Giuli Marcea⁴⁵, Silvia Marongiu⁴⁶, Claudia Marotta³⁵, Lorenzo Marra⁴², France Mastroianni⁴¹, Maria Muszi⁴¹, Vincenzo Sangiovanni³⁷, and Sancesco ⁴⁶, Anno Olone¹⁶, Marco Olivieri⁵⁰, Antonella Palimodde⁴⁶, Emanuela Pasi³⁹, Raffaele Pesavento¹⁴, Francesco Salinaro¹⁴, Vincenzo Sangiovanni³⁷, and Sancocco¹³, Giancarlo Scoppettuolo⁶, Laura Scorzolini³³, Raffaele Sagriglia⁴³, Paola Giustina Simeone¹³, Enrico Maria Trecarichi⁴⁷, Roberto Vetter⁵¹, Artea Vianello⁴⁰, Marco Vinceti^{4,54}, Alexandra Virano¹⁹, Laur

¹Mediterranea Cardiocentro. Napoli. Italy

Department of Epidemiology and Prevention. IRCCS Neuromed. Pozzilli (IS). Italy

³UOC Immunodeficienze Virali. National Institute for Infectious Diseases "L. Spallanzani". IRCC: Ror a. Italy

Section of Public Health. Department of Biomedical. Metabolic and Neural Sciences. Unive. 'ty of Modena and Reggio Emilia. Modena. Italy

⁵IRCCS Policlinico San Donato. San Donato Milanese (MI). Italy

⁶Fondazione Policlinico Universitario A. Gemelli IRCCS. Roma. Italy

⁷Università Cattolica del Sacro Cuore- Dipartimento di Sicurezza e Bioetica Sede di Roi. a. Roina. Italy

⁹University of Eastern Piedmont. Maggiore della Carità Hospital. Novara. Italy ¹⁰Department of Internal Medicine. University of Pavia. Pavia. Italy ¹¹Humanitas Clinical and Research Center – IRCCS. Rozzano (Mi) – Italy

¹²Humanitas University. Department of Biomedical Sciences. Milano. Italy

¹³Department of Infectious Disease. Azienda Sanitaria Locale (AUSL) di Pesura. Pescara. Italy

¹⁴Emergency Department. IRCCS Policlinico San Matteo Foundation 2avi - Italy ¹⁵Department of Medicine and Aging. Clinica Medica. "SS. Annunzi: a" Hr spital and University of Chieti. Chieti. Italy ¹⁶School of Medicine. Vita-Salute San Raffaele University. Milano. Italy ¹⁷HIV/AIDS Department. National Institute for Infectious Diseases "Lazzaru Spallanzani"-IRCCS. Roma. Italy

¹⁸Dipartimento di Scienze Mediche Traslazionali. Università deg. <u>studi di Napoli</u> "Federico II". Napoli. Italy
 ¹⁹Department of Medicine and Surgery. University of Insubria. Varea Italy

²¹Department of Clinical Sciences and Community Health. Ct dir valouar Section. University of Milano. Milano. Italy ²¹Department of Clinical Sciences and Community Health. Ct dir valouar Section. University of Milano. Milano. Italy

²²UOC. Anestesia e Rianimazione. Dipartimento di Chiruroja Generale Ospedale Morgagni-Pierantoni. Forlì. Italy ²³UOC Infezioni Sistemiche dell'Immunodepresso. Natior al Institute for Infectious Diseases L. Spallanzani. IRCCS. Rome. Italy

²⁴Department of Civil Environmental and Architectural E. vineering. University of Padova. Padova. Italy

²⁶Fondatione LR.C.S. "Casa Sollievo della Sofferer a". S. S. Giovanni Rotondo. Foggia. Italy.
²⁶Emergency Medicine Unit. University Hospital of Pisa, Department of Surgical. Medical and Molecular Medicine and Critical Care. University of Pisa. Pisa.

Italy

⁷Department of Medical and Surgical Sciences and Achanced Technologies "G.F. Ingrassia". University of Catania. Italy

²⁸Department of Experimental and Clinical Medicins, ¹ inversity of Florence and Azienda Ospedaliero-Universitaria Careggi. Firenze. Italy ²⁹UOC Malattie Infettive. Ospedale San Gerardo. 1SST Monza. Monza. Italy

³⁰School of Medicine and Surgery. University of M ano-Bicocca. Milano. Italy ³¹Cardiovascular and Thoracic Departme + A..., da Ospedaliero-Universitaria Pisana and University of Pisa. Pisa. Italy

32 Infectious and Tropical Diseases Unit- De, artment of Health Promotion. Mother and Child Care. Internal Medicine and Medical Specialties (PROMISE) -University of Palermo. Palermo. Italy

³Servizio di Anestesia e Rianimazione II UO Rianimazione Ospedale San Marco. AOU Policlinico-Vittorio Emanuele. Catania. Italy

³⁴Department of Cardiology. Ospedale di Cremona. Cremona. Italy

³⁵Medical Direction. IRCCS Neuromed. Pozzilli (IS). Italy

³⁷UOC Infezioni Sistemiche e dell'Immunodepresso. Azienda Ospedaliera dei Colli. Ospedale Cotugno. Napoli. Italy

³⁸Department of Clinical Medicine and Surgery. University of Naples "Federico II". Napoli. Italy

³⁹Medicina Interna. Ospedale di Ravenna. AUSL della Romagna. Ravenna. Italy

⁴⁰Respiratory Pathophysiology Division. Department of Cardiologic. Thoracic and Vascular Sciences. University of Padova. Padova. Italy

⁴¹COVID-19 Unit. EE Ospedale Regionale F. Miulli. Acquaviva delle Fonti (BA). Italy

⁴²UOC di Pneumologia. P.O. San Giuseppe Moscati. Taranto. Italy

⁴³ASST Milano Nord - Ospedale Edoardo Bassini Cinisello Balsamo (MI). Italy
 ⁴⁴U.O. C. Malattie Infettive e Tropicali. P.O. "San Marco". AOU Policlinico-Vittorio Emanuele. Catania. Italy
 ⁴⁵UOC di Medicina - Presidio Ospedaliero S. Maria di Loreto Nuovo. Napoli. Italy

⁴⁶Ospedale Santissima Trinità. Cagliari. Italy

⁴⁷Infectious and Tropical Diseases Unit. Deparment of Medical and Surgical Sciences "Magna Graecia" University. Catanzaro. Italy

⁴⁸Dipartimento di Farmacia. Università di Pisa. Pisa. Italy

⁴⁹UOC Malattie Infettive-Apparato Respiratorio. National Institute for Infectious Diseases "L. Spallanzani". IRCCS. Roma. Italy

⁵⁰Computer Service. University of Molise. Campobasso. Italy

⁵⁰Clinica Medica 3. Department of Medicine - DIMED. University hospital of Padova. Padova. Italy
 ⁵²UOC Pneumologia. Dipartimento di Malattie Apparato Respiratorio e Torace. Ospedale Morgagni-Pierantoni. Forlì. Italy
 ⁵³UOC Malattie Infettive ad Alta Intensità di Cura. National Institute for Infectious Diseases "L. Spallanzani". IRCCS. Rome. Italy

⁵⁴Department of Epidemiology. Boston University School of Public Health. Boston. USA

Word count: Abstract 248; Total (From Introduction to References and Figure Legend, including the

Appendix listing all Authors, affiliations and contributions): 6279: Tables: 4; Figure: 1;

Online Supplemental Material: 1

Address for correspondence:

Prof. Raffaele De Caterina, MD, PhD Chair of Cardiology, University of Pisa, and Cardiovascular Division, Pisa University Hospital Via Paradisa 2 - 56124 Pisa, Italy Tel.: +39-050-996-751 - E-mail: raffaele.decaterina@unipi.it ABSTRACT

Objective: The hypothesis that been set forward that use of Renin Angiotensin Aldosterone System (RAAS) inhibitors is associated with COVID-19 severity. We set-up a multicenter Italian collaboration (CORIST Project, ClinicalTrials.gov ID: NCT04318418) to retrospective viewestigate the relationship between RAAS inhibitors and COVID-19 in-hospital mortality. We also carried out an updated meta-analysis on the relevant studies.

Methods: We analyzed 4,069 unselected pations with laboratory-confirmed SARS-CoV-2 infection and hospitalized in 34 clinical centers in Italy from Fabruary 19, 2020 to May 23, 2020. The primary end-point in a time-to event analysis was in-hospital death comparing patients who received angiotensin-convertingenzyme inhibitors (ACE-I) or angioter.sub-receptor blockers (ARB) with patients who did not. Articles for the meta-analysis were retrieved until Cody 13th, 2020 by searching in web-based libraries, and data were combined using the general variance based method.

Results: Out of 4,069 COVID 19 patients, 13.5% and 13.3% received ACE-I or ARB, respectively. Use of neither ACE-I nor ARB was associated with mortality (multivariable hazard ratio (HR) adjusted also for COVID-19 treatments: 0.96, 95% confidence interval 0.77-1.20 and HR=0.89, 0.67-1.19 for ACE-I and ARB, respectively). Findings were similar restricting the analysis to hypertensive (N=2,057) patients (HR=1.00, 0.78-1.26 and HR=0.88, 0.65-1.20) or when ACE-I or ARB were considered as a single group. Results from the meta-analysis (19 studies, 29,057 COVID-19 adult patients, 9,700 with hypertension) confirmed the absence of association.

Conclusions: In this observational study and meta-analysis of the literature, ACE-I or ARB use was not associated with severity or in-hospital mortality in COVID-19 patients.

Key words: angiotensin converting enzyme inhibitors; ACE-I; angiotensin receptor blockers; ARB; sartans; COVID-19; mortality.

INTRODUCTION

Coronavirus Disease-19 (COVID-19) is caused by the beta coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)¹. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, which is used by the virus to enter and infect the cell, a process requiring priming of the viral S protein by the cellular serine protease TMPRSS2². ACE2 mRNA has been detected in the bronchi and lung parenchyma, as well as in the heart, the kidney and the gastrointestinal tract. This tissue distribution is consistent with the pathophysiology and clinical features of SARS infection and related disease ³. ACE2 is a key modulator of the renin-angiotensin-aldosterone system (RAAS), which is a signaling pathway involved in the regulation of vascular and heart function⁴. The strict relationship of CE2 with cardiovascular function supported the observation of a higher transmissibility and pathogenicity of the virus in patients with hypertension or heart failure ⁵. Inhibition of RAAS by angiotensin converting-enzyme inhibitors (ACE-I) or angiotensin-receptor blockers (ARB), drugs largely used in the therapy of hypertension and heart failure, may result in a compensatory increase in tissue levels of ACE2 6. At the beginning of the COVID-19 pandemic, this experimental observation generated the hypothesis that use of RAAS inhibitors might be detrimental in patients infected by SARS-CoV-2. The rapid diffusion of the hypothesis of detrimental effects of RAAS inhibitors in the lay press induce: hy, ertensive patients and/or their doctors to stop or replace previously prescribed ACE-I or ARB, decrite the first evidence from China was controversial ^{7,8}.

RAAS blockers were, however, also ' vpollesized to exert protective effects ⁴. Indeed, recombinant ACE2 or losartan might counteract both pullinonary edema and the reduced lung function due to decreased expression of ACE2 ^{9, 10}. RA S blockade was then proposed as a potential treatment for SARS-CoV-2 ⁴. This hypothesis was also supported by a report showing that serum angiotensin II levels in COVID-19 patients were higher than in non-infected individuals, and were linearly associated with viral load and lung damage ¹¹.

Against this controversial background, in March 2020, we launched a large multicenter study in Italy (ClinicalTrials.gov ID: NCT04318418) aimed at investigating the role of RAAS inhibitors in COVID-19 patients ¹². We here present the findings of this collaborative project, supported by a set of related metaanalyses. In fact, several articles on the topic have meanwhile been published, and an updated quantitative review of the entire literature may help better define the relationship between RAAS inhibitors and COVID-

19.

METHODS

Setting

This national retrospective observational study was conceived, coordinated and analysed within the CORIST Collaboration Project (ClinicalTrials.gov ID: NCT04318418). The CORIST Collaboration is a set of multicenter observational studies launched in March 2020, and aimed at testing the association of inhibitors of the renin-angiotensin system, risk factors and therapies with soverity and mortality of COVID-19 hospitalized patients ¹³. The study was approved by the institutional Ethics Board of the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, and of cull recruiting centers. Data for the present analyses were provided by 34 hospitals distributed throughou. Italy. Each hospital provided data from hospitalized adult (\geq 18 years of age) patients who all had a positive test result for the SARS-CoV-2 virus at any time during their hospitalization from February 19th to May 23rd, 2020. The follow-up continued through June 30th, 2020.

Data Sources

We developed a cohort comprising 4,312 perients with laboratory-confirmed SARS-CoV-2 infection in an inpatient setting. The SARS-CoV-2 strius was defined on the basis of laboratory results (polymerase chain reaction on a nasopharyngeal swab) from each participating hospital. Clinical data were abstracted at onetime point from electronic nedical records or charts, and collected using either a centrally-designed electronic worksheet or a centralized web-based database. Collected data included patients' demographics, laboratory test results, medication administration, historical and current medication lists, historical and current diagnoses, and clinical notes ¹³. In addition, specific information on the most severe manifestation of COVID-19 that occurred during hospitalization was retrospectively captured. The maximum clinical severity observed was classified as: light-mild pneumonia; or severe pneumonia; or acute respiratory distress syndrome (ARDS) ¹⁴. Specifically, we obtained the following information for each patient: hospital; date of admission and date of discharge or death; age; gender; use of ACE-I or ARB (no/yes/suspended after COVID-19 manifestations); the first recorded in-patient laboratory tests at hospital entry (creatinine, Creactive protein (CRP)); past and current diagnoses of chronic degenerative disease or risk factors (myocardial infarction, heart failure, diabetes, hypertension, chronic pulmonary disease and cancer), and in-

hospital drug therapies for COVID-19. Chronic kidney disease was classified as: stage 1: normal or increased glomerular filtration rate (eGFR) (\geq 90 mL/min/1.73 m²); stage 2: kidney damage with mild reduction in eGFR (60-89 mL/min/1.73 m²); stage 3a: moderate reduction in eGFR (45-59 mL/min/1.73 m²); stage 3b: moderate reduction in eGFR (30-44 mL/min/1.73 m²); stage 4: severe reduction in eGFR (15-29 mL/min/1.73 m²); stage 5: kidney failure (eGFR <15 mL/min/1.73 m² or dialysis). eGFR was calculated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. CRP levels were classified as \leq 3, 3-10 and \geq 10 mg/L.

Statistical analyses

The study index date was defined as the date of hospital admission. Index dates ranged from February 19th, 2020 to May 23rd, 2020. The study end point was the time from study in lex to death. The number of patients who either died, or had been discharged alive, or were still hospital length of stay was determined. Patients alive heat their data censored on the date of discharge or as the date of the respective clinical data collection. Dr.ca were censored at 35 days of follow up in n=405 (10.0%) patients with a follow up greater than 35 Ja.s.

Out of the initial cohort of 4,312 patients, 243 path nts were excluded from the analysis because of one or more missing data at baseline or during fo"aw-up, including use of ACE-I (n=93) or ARB (n=79), history of hypertension (n=54), time to event (n=61) octome (death/alive, n=8), age (n=4 with missing data and n=2 with age<18 years), or gender (n=2). At the end, the analyzed cohort consisted of N=4,069 patients. Among them, 284 (7.0%) had at least one missing value for covariates. Distribution of missing values was as follows: n=196 for C-reactive protein; 1 =77 for GFR; n=38 for history of ischemic disease; n=18 for history of chronic pulmonary disease; N=8 for d abetes and N=8 for cancer. We used multiple imputation techniques (SAS PROC MI, N=10 imputed datasets; and PROC MIANALYZE) to maximize data availability. As sensitivity analysis, we also conducted a case-complete analysis on 3,785 patients. For the primary analysis, we divided patients in 5 groups: a) controls, consisting of patients who used neither ACE-I nor ARB; b) patients treated with ACE-I but not ARB; c) patients treated with ARB but not ACE-I; d) patients treated with both drugs; e) patients who suspended ACE-I (ARB) and were not treated with ARB (ACE-I). Secondary analyses considered the use of ACE-I or ARB as a dichotomous exposure (no/yes). All analyses were conducted in all patients and then restricted to hypertensive patients. Cox proportional-hazards regression models were used to estimate the association between ACE-I and ARB use and in-hospital death. Since multiple imputation was applied, the final standard error was obtained using the Rubin's rule based on the robust variance

estimator in Cox regression ¹⁵. The proportional hazards assumption was assessed using weighted Schoenfeld residuals, and no violation was identified. Multivariable Cox regression models included age, sex, diabetes, hypertension, history of ischemic heart disease, chronic pulmonary disease, chronic kidney disease, CRP, use of other anti-hypertensive drugs (different from ACE-I or ARB), use of hydroxychloroquine (classified as yes/no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir, considered as a group and classified as yes/no/missing) as fixed effects; and clustering of hospitals as random effect (frailty model). The use of a frailty model was chosen as suggested in ¹⁶. Secondary analyses used multivariable logistic regression analyses comparing dead versus alive patients, or accounted for hospitals clustering via stratification or 'v robust sandwich estimator. Pre-established subgroup analyses were conducted according to the six o age of patients, the degree of COVID-19 severity experienced during the hospital stay, history c ¹ hyr ertension, ischemic heart disease or diabetes or treatment with hydroxychloroquine or with other drug 'herapies for COVID-19. Hospitals were clustered according to their geographical distribution, as illustrated in **Table 1**. Analyses were performed with the aid of the SAS version 9.4 statistical software for Windows.

Methods used for the meta-analysis

The meta-analysis was conducted according to a precommendations outlined in the Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0, and reported in line with the PRISMA statement. Articles published in English were retrieved until July 12th, 2020 by searching in MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials, using the following key words "COVID-19; Coronavirus; SARS-Cov-2" RAAS inhibitors; Renin-angiotensin system Inhibitors; angiotensin converting enzyme inhibitors; ACE-I; and otensin II receptor blockers; ARB; ARBs". Twenty-eight publications were identified. No controlled randomized clinical trial was retrieved. To be included in this meta-analysis, each study had a) to include only COVID-19 patients; and b) to report quantitative data on the association of ACE-I or ARB use with severity of COVID-19, including mortality.

Two of us (SC and ADC) independently reviewed the studies identified, then jointly excluded the articles not adhering to one or both criteria, and agreed on a final selection of 18 studies ^{7, 8, 17-32}. Findings from the CORIST project presented in this manuscript were also included in the meta-analyses, for a total of 19 studies.

For each selected study, odds ratio (OR) or hazard ratio (HR) (possibly adjusted for confounders) and/or number of events (number of deaths/severe events (severe pneumonia or ARDS) and number of total

COVID-19 patients) in both the ACE-I/ARB and the corresponding control groups were extracted. Number of events were used to calculate odds ratios (OR) and 95% confidence intervals (CIs) when OR or HR were not available from the primary study. Pre-specified subgroup analyses were conducted a) in hypertensive patients or in patients irrespective of the hypertension status; b) by considering combination of ACE-I and ARB use or ACE-I or ARB alone; c) according to different outcomes used in the primary studies (total mortality, illness severity or a combination of both).

All analyses were performed using standard statistical procedures provided in RevMan5.1 (The Cochrane Collaboration, Oxford, United Kingdom). Data were combined using the general variance-based method, that requires information on the OR estimate and their 95% CI for each st. 4y. Ninety-five % CI were used to assess the variance and the relative weight of each study. Heterogena ity was assessed using the Higgin's I² metric. Fixed and random effects were considered, but due to the large heterogeneity observed, findings from random effects were considered as the primary analysic. Two hypothesis that publication bias might have affected the validity of the estimates was visually tested by a funnel plot–based approach.

RESULTS

The CORIST project

We included in the final analyses 4,0F9 + atients who were hospitalized with confirmed SARS-CoV-2 infection at 34 clinical centers across Italy and aitner died or had been discharged or were still in hospital as of June 30, 2020. General characteri tics are reported in **Table 1**, separately for all (n=4,069) and hypertensive (n=2,057, 50.6%) patients. Ou. of all patients, 2,807 (69.0%) were treated neither with ACE-I nor with ARB, 549 (13.5%) used ACE-I, 542 (13.3%) were treated with ARB, 15 (0.4%) used both drugs and 156 (3.8%) suspended ACE-I (ARB) and were not treated for ARB (ACE-I) (**Table 1**). The prevalence of use of ACE-I or ARB was twice as common in hypertensive compared with non-hypertensive patients (**Table 1**). Another anti-hypertensive drug was used in 20.5% of all patients and in 35.8% of hypertensive patients. The large majority of patients (86.6%) received at least one treatment for COVID-19 (**Table 1**). The prevalence of either ACE-I or ARB use (considered together as a group) was strongly associated with hypertension and ischemic heart disease. After adjustment for these two conditions in multivariable logistic regression analysis stratified by hospital clustering, the use of ACE-I or ARB was slightly more prevalent in men (OR=1.21, 95%CI: 1.01 to 1.44) and in patients treated with hydroxychloroquine (OR=1.53, 95%CI: 1.25 to 1.89) or with

other COVID-19 drugs (OR=1.30, 95%CI: 1.07 to 1.59). These findings were confirmed in analyses restricted to hypertensive patients.

All patients

Out of 4,069 patients, 692 died (17.0%), 2,822 were discharged alive (69.4%) and 555 (13.6%) were still hospitalized. The median follow-up was 13 days (interquartile range: 7 to 22). Death rates (per 1,000 persondays) according to the various combinations in the use/non-use of ACE-I a. ARB ranged between 10.0 and 17.7 (**Table 2**). In multivariable analysis, patients treated with ACE-I or APB, alone or in combination, or who had suspended the use of these drugs had HR of death similar to patients not treated with any of the two drugs (**Table 2**). This null association was confirmed in secondary multivariable analyses when the use of ACE-I or ARB was considered together in a single group (.1R=0.91, 95%CI: 0.76 to 1.08) or for the casecomplete analyses restricted to the 3,785 patients wit iou missing data for covariates (**Table 2**). Control of hospitals clustering with different approaches (stratification or robust sandwich estimator) also yielded similar results (data not shown). **Table 3** show that the null association of ACE-I or ARB with mortality was confirmed in all subgroups of patients.

Hypertensive patients

Incidence rates, HRs and O's for death according to ACE-I and ARB use, in N=2,057 COVID-19 hypertensive patients (with N=471 deaths) are reported in **Table 4**. The null association with in-hospital mortality of this class of drugs was confirmed in hypertensive patients (**Table 4**). When the use of ACE-I or ARB was grouped together, the hazard for death was 0.93, 95%CI: 0.77 to 1.12.

Meta-analysis

The general characteristics of the 19 selected observational retrospective studies are shown in **Online Supplement Table 1**. A total of N=29,055 COVID-19 men and women adult patients (9,700 with hypertension) were included in the meta-analysis. Seven studies from China ^{7, 8, 21, 23, 27, 31, 32}, one from Italy ³⁰

and one from the U.S.²⁹ only included hypertensive patients. It was not possible to separate data for patients with or without hypertension in 4 studies ^{17, 22, 25, 26}. The exposure to either ACE-I or ARB was analyzed separately or in combination, and was tested for association with mortality or a combined outcome of severe illness and mortality (**Online Supplement Table 1**). In all studies the control group consisted of COVID-19 patients without drug exposure.

In studies including both hypertensive and non-hypertensive patients, the use of ACE-I or ARB was not associated with COVID-19 severity (9 studies, **Figure 1A** and **Online Supplement Table 2**), as well as the use of ACE-I or ARB considered together in a single group (5 studies, **Online Supplement Table 2**).

The pooled association of 12 studies on ACE-I or ARB and mortality or severe illness in hypertensive patients is reported in **Figure 1B** and **Online Supplement Table 2** Us of ACE-I or ARB was not associated with COVID-19 severity (pooled OR: 0.90, 95%CI: 0.80 to 1.01, 'ow level of heterogeneity: I^2 =5%, random effects, **Figure 1B**). The lack of association was confirmed excluding the CORIST study (overall HR=1.25, 95%CI:0.98 to 1.60 in **Figure 1A** and overall HR=0.86, > 5%CI:0.73 to 1.02 in **Figure 1B**) and in several subgroups analyses according to type of outcome (severe COVID-19 only as the outcome; mortality only as the outcome) or exposure (ACE-I or ARB combined d in a single group; ACE-I alone; or ARB alone) (**Online Supplement Table 2**). Selection bias was not revealed at visual inspection of funnel plots in all meta-analyses.

DISCUSSION

At the beginning of the COVID 19 pandemic, a diffuse suspicion emerged that the use of ACE-I and ARB drugs might be harmful in patients with COVID-19, due to their effects on the expression of ACE2, the putative SARS-CoV-2 receptor on target cells ⁴, causing concern among patients and physicians and leading in some cases to stop or change type of treatment with these anti-hypertensive drugs ³³.

In a large cohort of 4,069 patients hospitalized for COVID-19 in 34 clinical centers all over Italy covering almost completely the period of the hospitalization for COVID-19, neither previous treatment with ACE-I or ARB nor drug suspension did modify the risk of death. Discontinuation in the use of ACE-I or ARB occurred in 156 patients, a potentially harmful circumstance that in our sample was not associated with death in comparison with no therapy, in agreement with previous findings ³⁴; however, this our result should be considered with caution since it was based on a low sample size.

Our cohort included 2,057 hypertensive COVID-19 patients, one of the largest collections of this kind of patients in which a null association of ACE-I or ARB with in-hospital mortality has been observed ³⁵. Finally, we could prove that the null association remains valid in several sensitivity and subgrouping analyses, including that by COVID-19 severity and drug treatment. Of interest, we found that use of ACE-I or ARB were associated with increased risk of death in patients not treated with hydroxychloroquine or other COVID-19 drugs. Since in our cohort the prevalence of patients untreated for COVID-19 was very low, the latter observation is highly uncertain.

Several epidemiologic studies have been conducted to test the association of RAAS inhibitors with severity of COVID-19, and fourteen articles provided data suitable for a quantitate e meta-analysis that we conducted including findings of our project. All were published observational studies with some difference in patient catchment and/or data analysis. At variance with a previously published meta-analysis ³⁶, we performed a set of meta-analyses according to type of COVID-19 patients class and combination of RAAS inhibitors and type of outcomes and, whenever possible, we extracted and public odds ratio adjusted for confounders for each primary study. In addition, we also provided sever, total group analyses.

Our meta-analysis does not show any evidence to support the hypothesis that ACE-I or ARB use is associated with an increased risk of severe illness, or in-hospital death among patients with COVID-19, in agreement with another, more recent meta-analysis ³⁷ and with the observation that RAAS inhibitors are not associated with the risk of COVID-19 ³⁸.

We performed several subgroup analyses according to different drugs and/or different outcomes, and always failed to observe any association, between the use of ACE-I or ARB and severity or mortality in COVID-19 patients, irrespective of their , vpe tensive status. As far as drug category is concerned, when ACE-Is and ARB were analyzed separately no association with severe illness or death were consistently observed, both in all COVID-19 patients and in hypertensive COVID-19 patients.

Strengths and limitations

A major strength of the cohort CORIST study is the large, unselected patient sample from 34 hospitals, covering the entire Italian territory. Patient sampling covered all the overt epidemic period in Italy. Several statistical approaches were used to overcome possible biases due to the observational nature of the investigation.

One limitation of this study is represented by the population that pertains only to Italy thus the results might not be applicable to other populations with possibly different geographical and socio-economic conditions

and COVID-19 natural history. Furthermore, due to the retrospective nature of our study, some parameters were not available in all patients, and not all in-hospital medications might have been fully recorded.

The meta-analysis has few limitations too. All primary studies are retrospective and subgroup analyses suffer of a high degree of heterogeneity. Moreover, it was not possible to investigate subgroups according to different geographic settings, because eight out of 14 studies were performed in China.

In conclusion, in a large cohort of unselected patients with COVID-19, hospitalized in 34 different clinical centers all over Italy and in an updated meta-analysis of 19 studies, no harm of ACE-I or ARB use in COVID-19 patients has been reported. These results should be considered with caution, because all the studies analyzed were observational and retrospective, and the possibility of con bunding could not be completely excluded. However, at present, this is the best available result that can help physicians in managing anti-hypertensive therapy with these drugs in COVID-19 patients.

While we could reasonably exclude a harmful effect of RAAS ... nibitors on COVID-19 severity, randomized controlled clinical trials are still necessary to reach a conviu ion regarding a potential benefit of these drugs in patients with COVID-19.

Perspectives

This study, as well as a meta-anelysis of all the available literature indicate no either favorable nor detrimental effects of ACE-I or ARB up mortality in COVID-19 hospitalized patients. Use of this drugs should continue as per previous indications in cardiovascular disease.

Acknowledgments

We thank the 34 participating clinical Centres included in this cohort.

This Article is dedicated to all patients who suffered or died, often in solitude, due to COVID-19; their tragic fate gave us moral strength to initiate and complete this research.

The Authors alone are responsible for the views expressed in this article. They do not necessarily represent the views, decisions, or policies of the Institutions with which they are affiliated.

Source of funding

None.

Conflict of Interest Disclosures

None by any of the coauthors.

osures nors.

THE COVID-19 RISK and Treatments (CORIST) collaboration*

¹Augusto Di Castelnuovo, ²Simona Costanzo, ³Andrea Antinori, ⁴Nausicaa Berselli, ⁵Lorenzo Blandi, ²Marialaura Bonaccio, ^{6,7}Roberto Cauda, ²Alessandro Gialluisi, ⁸Giovanni Guaraldi, ⁵Lorenzo Menicanti; ⁹Marco Mennuni, ¹⁰Roberta Mussinelli, ^{11,12}Ilaria My, ¹³Giustino Parruti, ⁹Giuseppe Patti, ^{14,10}Stefano Perlini, ¹⁵Francesca Santilli, ¹⁶Carlo Signorelli, ^{11,12}Giulio G. Stefanini, ¹⁷Alessandra Vergori, ¹⁸Paolo Abete, ¹⁹Walter Ageno, ^{20,21}Piergiuseppe Agostoni, ²²Luca Aiello, ²³Samir Al Moghazi, ²⁴Rosa Arboretti, ²⁵Filippo Aucella, ²⁶Greta Barbieri, ²⁷Martina Barchitta, ²⁸Alessandro Bartoloni, ^{29,30}Paolo Bonfanti, ¹⁸Francesco Cacciatore, ¹⁹Lucia Caiano, ³¹Laura Carrozzi, ³²Antonio Cascio, ³³Giacomo Castiglione, ¹⁵Stefania Cianfrone, ⁶Arturo Ciccullo, ^{6,7}Antonella Cingolani, ¹⁵Francesco Cipollone, ³²Claudia Colomea, ⁹Crizia Colombo, ^{11,12}Ottavia Cozzi, ²⁵Annalisa Crisetti, ¹³Francesca Crosta, ³⁴Gian Battista Conzu, ¹⁵Damiano D'Ardes, ⁶Katleen de Gaetano Donati, ³⁵Francesco Di Gennaro, ³⁴Giuseppe Di Tangero D'Offizi, ³⁷Francesco Maria Fusco, ³⁸Ivan Gentile, ³⁹Emauele Graziani, ⁴⁰Gabriella Guanici, ⁴¹Giovanni Larizza, ⁴²Armando Leone, ⁹Veronica Lio, ^{6,7}Mothanje Barbara Lucia, ³⁴Gloria Vac agni, ⁴¹Ferruccio Madaro, ²²Stefano Maitan, ⁴³Sandro Mancarella, ⁴⁴Rosa Manuele, ^{20,21}Ma sin o Mapelli, ^{20,21}Riccardo Maragna, ²⁸Rossella Marcucci, ⁴⁵Giulio Maresca, ⁴⁶Silvia Marongiu, ³⁵Claudia Matotta, ⁴²Lorenzo Marra, ⁴¹Franco Mastroianni, ⁴⁷Maria Mazzitelli, ²⁶Alessandro Mengozzi, ²⁶Frar ze sc. Menichetti, ⁸Marianna Meschiari, ⁸Jovana Milic, ⁴⁸Filippo Minutolo, ⁴⁰Beatrice Molena, ⁸Cristine Mussini, ⁴⁹Maria Musso, ¹⁶Anna Odone, ⁵⁰Marco Olivieri, ⁴⁶Antonella Palimodde, ³⁹Emanuela Pasi, ⁵¹Ra, ⁵aele Pesavento, ²⁹Francesco Petri, ³⁸Biagio Pinchera, ^{11,12}Carlo A. Pivato, ⁵²Venerino Poletti, ⁵⁴Naudia Ravaglia, ⁵¹Marco Rossato, ²⁹Marianna Rossi, ¹⁴Anna Sabena, ¹⁴Francesco Salinaro, ³⁷Vincenzo Sangiovanni, ¹³Carlo Sanrocco, ⁶Giancarlo Scoppettuolo, ⁵³Laura Scorzolini, ⁴³Raffaella Sgariglia, ¹³Paola Giustina Simeone, ⁴⁷Enrico Maria Trecarichi, ⁵¹Roberto Vettor, ⁴⁰Andrea Vianello, ^{4,54}Marco Vinceti, ¹⁹Alexandra Virano, ⁴⁵Laura Vocciante, ^{2,19}Licia Iacoviello, ³¹Raffaele De Caterina.

¹Mediterranea Cardiocentro. Napoli. Italy

²Department of Epidemiology and Prevention. IRCCS Neuromed. Pozzilli (IS). Italy

³UOC Immunodeficienze Virali. National Institute for Infectious Diseases "L. Spallanzani". IRCCS. Roma. Italy

⁴Section of Public Health. Department of Biomedical. Metabolic and Neural Sciences. University of Modena and Reggio Emilia. Modena. Italy

⁵IRCCS Policlinico San Donato. San Donato Milanese (MI). Italy

⁶Fondazione Policlinico Universitario A. Gemelli IRCCS. Roma. Italy

⁷Università Cattolica del Sacro Cuore- Dipartimento di Sicurezza e Bioetica Sede di Roma. Roma. Italy

⁸Infectious Disease Unit. Department of Surgical. Medical. Dental and Morphological Sciences. University of

Modena and Reggio Emilia. Modena. Italy

⁹University of Eastern Piedmont. Maggiore della Carità Hospital. Novara. Italy

¹⁰Department of Internal Medicine. University of Pavia. Pavia. Italy

¹¹Humanitas Clinical and Research Center – IRCCS . Rozzano (Mi) – Italy

¹²Humanitas University. Department of Biomedical Sciences. Milano. Ital

¹³Department of Infectious Disease. Azienda Sanitaria Locale (AUSL) ¹ Pe ;cara. Pescara. Italy

¹⁴Emergency Department. IRCCS Policlinico San Matteo Foundatic n. P. via. Italy

¹⁵Department of Medicine and Aging. Clinica Medica. "SS. Annunzieta" Hospital and University of Chieti.

Chieti. Italy

¹⁶School of Medicine. Vita-Salute San Raffaele Universi v M 'ano. Italy

¹⁷HIV/AIDS Department. National Institute for Infrational Spallanzani"-IRCCS. Roma. Italy

¹⁸Dipartimento di Scienze Mediche Traslazionali. U. iversità degli studi di Napoli "Federico II". Napoli. Italy

¹⁹Department of Medicine and Surgery. University of Insubria. Varese. Italy

²⁰Centro Cardiologico Monzino IRCCS. Milano. Italy

²¹Department of Clinical Sciences and Community Health. Cardiovascular Section. University of Milano. Milano. Italy

²²UOC. Anestesia e Rianimazione. Dipartimento di Chirurgia Generale Ospedale Morgagni-Pierantoni. Forlì. Italy

²³UOC Infezioni Sistemiche dell'Immunodepresso. National Institute for Infectious Diseases L. Spallanzani. IRCCS. Rome. Italy

²⁴Department of Civil Environmental and Architectural Engineering. University of Padova. Padova. Italy

²⁵Fondazione I.R.C.C.S "Casa Sollievo della Sofferenza". San Giovanni Rotondo. Foggia. Italy

²⁶Emergency Medicine Unit. University Hospital of Pisa; Department of Surgical. Medical and Molecular

Medicine and Critical Care. University of Pisa. Pisa. Italy

²⁷Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia". University of Catania. Italy

²⁸Department of Experimental and Clinical Medicine. University of Florence and Azienda Ospedaliero-

Universitaria Careggi. Firenze. Italy

²⁹UOC Malattie Infettive. Ospedale San Gerardo. ASST Monza. Monza. Italy

³⁰School of Medicine and Surgery. University of Milano-Bicocca. Milano. Italy

³¹Cardiovascular and Thoracic Department. Azienda Ospedaliero-Universitaria Pisana and University of Pisa. Pisa. Italy

³²Infectious and Tropical Diseases Unit- Department of Health Promotion. Mother and Child Care. Internal Medicine and Medical Specialties (PROMISE) - University of Palermo. Palermo. Italy

³³Servizio di Anestesia e Rianimazione II UO Rianimazione Ospedale Sa Marco. AOU Policlinico-Vittorio

Emanuele. Catania. Italy

³⁴Department of Cardiology. Ospedale di Cremona. Cremona. Italy

³⁵Medical Direction. IRCCS Neuromed. Pozzilli (IS). Italy

³⁶UOC Malattie Infettive-Epatologia. National Institute for Infectic vs Diseases L. Spallanzani. IRCCS. Roma. Italy

³⁷UOC Infezioni Sistemiche e dell'Immunodepresso. Azichda Ospedaliera dei Colli. Ospedale Cotugno. Napoli. Italy

³⁸Department of Clinical Medicine and Surgery, University of Naples "Federico II". Napoli. Italy

³⁹Medicina Interna. Ospedale di Ravenna. AUSL della Romagna. Ravenna. Italy

⁴⁰Respiratory Pathophysiology Division. Department of Cardiologic. Thoracic and Vascular Sciences.

University of Padova. Padova. Italy

⁴¹COVID-19 Unit. EE Ospedal Re jionale F. Miulli. Acquaviva delle Fonti (BA). Italy

42UOC di Pneumologia. P.O. S; ∩ Giuseppe Moscati. Taranto. Italy

⁴³ASST Milano Nord - Ospedale Edoardo Bassini Cinisello Balsamo (MI). Italy

⁴⁴U.O. C. Malattie Infettive e Tropicali. P.O. "San Marco". AOU Policlinico-Vittorio Emanuele. Catania. Italy

⁴⁵UOC di Medicina - Presidio Ospedaliero S. Maria di Loreto Nuovo. Napoli. Italy

⁴⁶Ospedale Santissima Trinità. Cagliari. Italy

⁴⁷Infectious and Tropical Diseases Unit. Deparment of Medical and Surgical Sciences "Magna Graecia"

University. Catanzaro. Italy

⁴⁸Dipartimento di Farmacia. Università di Pisa. Pisa. Italy.

⁴⁹UOC Malattie Infettive-Apparato Respiratorio. National Institute for Infectious Diseases "L. Spallanzani". IRCCS. Roma. Italy

⁵⁰Computer Service. University of Molise. Campobasso. Italy.

⁵¹Clinica Medica 3. Department of Medicine - DIMED. University hospital of Padova. Padova. Italy

⁵²UOC Pneumologia. Dipartimento di Malattie Apparato Respiratorio e Torace. Ospedale Morgagni-

Pierantoni. Forlì. Italy

⁵³UOC Malattie Infettive ad Alta Intensità di Cura. National Institute for Infectious Diseases "L. Spallanzani".

IRCCS. Rome. Italy

⁵⁴Department of Epidemiology. Boston University School of Public Health. Boston. USA

Authors' contributions

Prof. lacoviello and Di Castelnuovo had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis *Concept and design:* Di Castelnuovo, Costanzo, Iacoviello, De Caterina, *Acquisition, analysis, or interpretation of data: I.* (arc.nors *Drafting of the manuscript:* Iacoviello, Di Castelnuovo, Costanzo *Critical revision of the manuscript for impo. tart. tellectual content:* Iacoviello, Di Castelnuovo, De Caterina, de Gaetano Donati, Guarnieri and all *A:* thore *Statistical analysis:* Di Castelnuovo, Coctanzo, Arboretti, Stefanini *Administrative, technical, or meteria support:* All Authors. *Supervision:* Iacoviello, Di Castelnuovo, De Caterina

REFERENCES

- Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y, Yuan M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L, Holmes EC, Zhang Y-Z. A new coronavirus associated with human respiratory disease in china. Nature. 2020;579:265-269
- Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-280.e278
- Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the sars coronavirus. Nature. 2003;426:450-454
- 4. Ingraham NE, Barakat AG, Reilkoff R, Bezdicek T, Schacker T. Chipman JG, Tignanelli CJ, Puskarich MA. Understanding the renin-angiotensin-aldoster the sars-cov axis: A comprehensive review. Eur Respir J. 2020;56
- 5. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 2020
- 6. Esler M, Esler D. Can angiotensin receptor-blockir.g drugs perhaps be harmful in the COVID-19 pandemic? J Hypertens. 2020;38:781-782
- 7. Li J, Wang X, Chen J, Zhang H, Deng A Association of renin-angiotensin system inhibitors with severity or risk of death in patients with 'uppertension hospitalized for coronavirus disease 2019 (COVID-19) infection in wuhan, china. JAMA Cardiol. 2020;5:1-6
- 8. Zhang P, Zhu L, Cai J, Lei F, Qin L AB J, Liu YM, Zhao YC, Huang X, Lin L, Xia M, Chen MM, Cheng X, Zhang X, Guo D, Peng Y, Ji YX, Chen J, She ZG, Wang Y, Xu Q, Tan R, Wang H, Lin J, Luo P, Fu S, Cai H, Ye P, Xiac B, Mao W, Liu L, Yan Y, Liu M, Chen M, Zhang XJ, Wang X, Touyz RM, Xia J, Zhang BH, Huang X, Yuan Y, Rohit L, Liu PP, Li H. Association of inpatient use of angiotensin-converting entrymation inhibitors and angiotensin ii receptor blockers with mortality among patients with hypertention hospitalized with COVID-19. Circ Res. 2020;126:1671-1681
- 9. Guo J, Huang Z, Lin ' Lv J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: A viewpoint on the poterual influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc. 2020;9:e016219
- Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112-116
- 11. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C, Zhang Z, Wang L, Peng L, Chen L, Qin Y, Zhao D, Tan S, Yin L, Xu J, Zhou C, Jiang C, Liu L. Clinical and biochemical indexes from 2019-ncov infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63:364-374
- 12. Di Castelnuovo A, De Caterina R, de Gaetano G, Iacoviello L. Controversial relationship between renin-angiotensin system inhibitors and severity of COVID-19. Hypertension. 2020;76:312-313

- The COVID-19 RISK and Treatments (CORIST) Collaborators. Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: Findings from the multicentre italian corist study. Nutr Metab Cardiovasc Dis. 2020;accepted
- 14. Clinical management of severe acute respiratory infection when novel coronavirus (2019-ncov) infection is suspected: Interim guidance, 28 january 2020. Available at: https://apps.who.int/iris/bitstream/handle/10665/330893/WHO-nCoV-Clinical-2020.3-eng.pdf?sequence=1&isAllowed=y (accessed July, 20, 2020).
- 15. Rubin D. Multiple imputation for nonresponse in surveys. New York: John Wiley; 1987.
- Glidden DV, Vittinghoff E. Modelling clustered survival data from multicentre clinical trials. Stat Med. 2004;23:369-388
- Conversano A, Melillo F, Napolano A, Fominskiy E, Spessot M, Ciceri F, Agricola E. Reninangiotensin-aldosterone system inhibitors and outcome in patier.'s with sars-cov-2 pneumonia: A case series study. Hypertensic n. 2020;Aug;76(2):e10-e12. doi:10.1161/HYPERTENSIONAHA.120.15312. Epub 2020 May 8. PMID: 32383626.
- 18. de Abajo J, Rodríguez-Martín S, Lerma V, Mejía-Abri' G, Aguilar M, García-Luque A, Laredo L, Laosa O, Centeno-Soto G, Gálvez M, Puerro M, Conz. lez Rojano E, Pedraza L, Pablo I, Abad-Santos F, Rodríguez-Mañas L, Tobías A, Rodriguez Naguel A, Elvira C. Use of renin–angiotensin– aldosterone system inhibitors and risk of COV 2-19 requiring admission to hospital: A case-population study. The Lancet. 2020;395
- Fosbøl EL, Butt JH, Østergaard L, Ar.der.son C, Selmer C, Kragholm K, Schou M, Phelps M, Gislason GH, Gerds TA, Torp-Pedersen C, Køber L. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocke. use with COVID-19 diagnosis and mortality. JAMA. 2020
- 20. Gao C, Cai Y, Zhang K, Zhou L, Zhang Y, Zhang X, Li Q, Li W, Yang S, Zhao X, Zhao Y, Wang H, Liu Y, Yin Z, Zhang R, Wang R, Yang M, Hui C, Wijns W, McEvoy JW, Soliman O, Onuma Y, Serruys PW, Tao L, Li F. Aschciation of hypertension and antihypertensive treatment with COVID-19 mortality: A retrospective obstructional study. Eur Heart J. 2020;41:2058-2066
- 21. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, Labella A, Manson DK, Kubin C, Barr RG, Sobieszczyk 14E, Schluger NW. Observational study of hydroxychloroquine in hospitalized patients with COVID-19 N Engl J Med. 2020;382:2411-2418
- Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1-8
- 23. Huang Z, Cao J, Yao Y, Jin X, Luo Z, Xue Y, Zhu C, Song Y, Wang Y, Zou Y, Qian J, Yu K, Gong H, Ge J. The effect of ras blockers on the clinical characteristics of COVID-19 patients with hypertension. Ann Transl Med. 2020;8:430
- 24. Iaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M, Cicero AFG, Minuz P, Muiesan ML, Mulatero P, Mulè G, Pucci G, Savoia C, Sechi L, Carugo S, Fallo F, Giannattasio C, Grassi D, Letizia C, Perlini S, Rizzoni D, Sarzani R, Tocci G, Veglio F, Rosei CA, Bevilacqua M, Bisogni V, Bombelli M, Bulfone L, Canichella F, Carpani G, Catanuso M, Chiarini G, Chiumiento F, Cianci R, Cipollini F, Concistrè A, Dalbeni A, Blasi RAD, Ciuceis CD, Dell'Oro R, Guardo AD, Lorenzo SD, Norcia MD, Ervo R, Eula E, Fabbricatore D, Fanelli E, Fava C, Grasso E, Grimaldi A, Illario M, Invernizzi C, Iraca

E, Liegi F, Malerba P, Maloberti A, Mancusi C, Molinari G, Mussinelli R, Paini A, Pellimassi P, Piazza O, Pontremoli R, Tevano FQ, Rabbia F, Rocco M, Sabena A, Salinaro F, Schiavi P, Sgariglia MC, Spannella F, Tedeschi S, Viale P. Age and multimorbidity predict death among COVID-19 patients. Hypertension. 2020;76:366-372

- Lee H, Ahn J, Kang C, et al. Association of angiotensin ii receptor blockers and angiotensinconverting enzyme inhibitors on COVID-19-related outcome (4/1/2020). Available at SSRN: https://ssrn.com/abstract=3569837 or http://dx.doi.org/10.2139/ssrn.3569837. 2020
- 26. Mehta N, Kalra A, Nowacki AS, Anjewierden S, Han Z, Bhat P, Carmona-Rubio AE, Jacob M, Procop GW, Harrington S, Milinovich A, Svensson LG, Jehi L, Young JB, Chung MK. Association of use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA cardiology. 2020
- 27. Meng J, Xiao G, Zhang J, He X, Ou M, Bi J, Yang R, Di W, Wang Z, Li Z, Gao H, Liu L, Zhang G. Renin-angiotensin system inhibitors improve the clinical cutcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020;9:757-760
- 28. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturratc E, Jonnson SB, Hausvater A, Newman JD, Berger JS, Bangalore S, Katz SD, Fishman GI, Kur chuff D, Chen Y, Ogedegbe G, Hochman JS. Renin-angiotensin-aldosterone system inhibitors and risk of COVID-19. N Engl J Med. 2020;382:2441-2448
- 29. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cockincham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Horvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanco TP. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized virth COVID-19 in the New York City area. JAMA. 2020;323:2052-2059
- 30. Tedeschi S, Giannella M, Bortoletti M, Trapani F, Tadolini M, Borghi C, Viale P. Clinical impact of renin-angiotensin system inhibitors on in-hospital mortality of patients with hypertension hospitalized for COVID-19. Clin Infect Dis. 2020
- 31. Yang G, Tan Z, Zhou Shang M, Peng L, Liu J, Cai J, Yang R, Han J, Huang Y, He S. Effects of angiotensin ii receptor blockers and ace (angiotensin-converting enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: A single-center retrospective study. Hypertension. 2020;76:51-58
- 32. Zhou X, Zhu J, Xu T. Clinical characteristics of coronavirus disease 2019 (COVID-19) patients with hypertension on renin-angiotensin system inhibitors. Clin Exp Hypertens. 2020;42:656-660
- 33. Cappuccio FP, Siani A. COVID-19 and cardiovascular risk: Susceptibility to infection to sars-cov-2, severity and prognosis of COVID-19 and blockade of the renin-angiotensin-aldosterone system. An evidence-based viewpoint. Nutr Metab Cardiovasc Dis. 2020;30:1227-1235
- 34. Cannata F, Chiarito M, Reimers B, Azzolini E, Ferrante G, My I, Viggiani G, Panico C, Regazzoli D, Ciccarelli M, Voza A, Aghemo A, Li H, Wang Y, Condorelli G, Stefanini GG. Continuation versus discontinuation of ace inhibitors or angiotensin ii receptor blockers in COVID-19: Effects on blood pressure control and mortality. Eur Heart J Cardiovasc Pharmacother. 2020

- 35. Pan W, Zhang J, Wang M, Ye J, Xu Y, Shen B, He H, Wang Z, Ye D, Zhao M, Luo Z, Liu M, Zhang P, Gu J, Liu M, Li D, Liu J, Wan J. Clinical features of COVID-19 in patients with essential hypertension and the impacts of renin-angiotensin-aldosterone system inhibitors on the prognosis of COVID-19 patients. Hypertension.0:HYPERTENSIONAHA.120.15289
- 36. Guo X, Zhu Y, Hong Y. Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in patients with hypertension. A meta-analysis. Hypertension. 2020;76:e13-e14
- 37. Flacco ME, Acuti Martellucci C, Bravi F, Parruti G, Cappadona R, Mascitelli A, Manfredini R, Mantovani LG, Manzoli L. Treatment with ace inhibitors or arbs and risk of severe/lethal COVID-19: A meta-analysis. Heart. 2020:heartjnl-2020-317336
- 38. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of COVID-19. N Engl J Med. 2020;382:2431-2440

FIGURE LEGEND

Succession

Novelty and Significance" written in a style that is understood by a general audience. This section, which should be about 100 words, comprises 3 subsections under the following headings:

What Is New?

In a large observational study in Italy, use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers was not associated with either increased or reduced mortality. This is confirmed by a metaanalysis of all published literature.

What Is Relevant?

- Use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers is not associated with either increased or reduced mortality.
- There is no heterogeneity of results in patients reported to heterogeneity as compared to nonhypertensive
- This is the largest data-set so far examining the association of angiotensin converting enzyme inhibitors or angiotensin receptor blockers with mortality in COVID-19 patiens

Summary of the conclusions of the study

We here found no association of the use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers with either mortality. Use of these druce chould continue according to current indications also in COVID-19 patients.

500

Characteristic	All patients	Hypertensive patients
	(N=4,069)	(N=2,057)
Age-median (IQR-yr)	67 (55-79)	74 (64-82)
Gender- no (%)		
Women	1,560 (38.3%)	803 (39.0%)
Men	2,509 (61.7%)	1,254 (61.0%)
ACE-I		
No	3,406 (83.7%)	1,442 (70.1%)
Yes	564 (13.9%)	520 (25.3%)
Suspended	99 (2.4%)	95 (4.6%)
ARB		
No	3,442 (84.6%)	1,470 (71.5%)
Yes	557 (13.7%)	521 (25.3%)
Suspended	70 (1.7%)	66 (3.2%)
ACE-I and ARB ACE-I no and ARB no	2 807 (60 08/1	002 (42 00/)
ACE-I yes and ARB no	2,807 (69.0°5)	882 (42.9%)
ACE-I yes and ARB no	549 (13 5 %)	506 (24.6%)
ACE-I lyes and ARB yes	542 (10 3%) 15 (0 4%)	507 (24.7%) 14 (0.7%)
ACE-I yes and ARB yes ACE-I or ARB suspended*		148 (7.2%)
Other anti-hypertensive drug use	<u>15`(3.0%)</u>	140 (1.270)
No	?,2°5 (79.5%)	1,320 (64.2%)
Yes	(20.5%) ن2. 34	737 (35.8%)
Diabetes- no (%)^		101 (00.070)
No	ప ,268 (80.5%)	1,476 (72.0%)
Yes	793 (19.5%)	575 (28.0%)
Ischemic heart disease- no (%)^		010 (20.070)
No	3,364 (83.5%)	1,494 (73.6%)
Yes	667 (16.5%)	537 (26.4%)
Chronic pulmonary disease- no (%)^		
No	3,473 (85.7%)	1,671 (81.6%)
Yes	578 (14.3%)	376 (18.4%)
Cancer- no (%)^		
No	3,620 (89.1%)	1,782 (86.9%)
Yes	441 (10.9%)	269 (13.1%)
CKD stage¶- no (%)^		
Stage 1	1,412 (35.4%)	416 (20.6%)
Stage 2	1,493 (37.4%)	799 (39.5%)
Stage 3a or stage 3b	789 (19.8%)	571 (28.2%)
Stage 4 or stage 5	298 (7.5%)	238 (11.8%)
C-reactive protein- no (%)^		
<1 mg/L	425 (11.0%)	151 (7.6%)
1-3 mg/L	491 (12.7%)	208 (10.5%)
>3 mg/L	2,957 (76.3%)	1,622 (81.9%)
Hydroxychloroquine use^	010 (00 00/)	100 (04 40/)
No Yes	910 (22.9%) 3,067 (77.1%)	482 (24.1%)
Lopinavir or Darunavir use^	3,007 (77.1%)	1,520 (75.9%)
No	2,124 (54.0%)	1,093 (55.4%)
Yes	1,808 (46.0%)	879 (44.6%)
Tocilizumab or Sarilumab use [^]	1,000 (10.070)	010 (44.070)
No	3,401 (85.9%)	1,692 (84.8%)
Yes	560 (14.1%)	304 (15.2%)
Remdesivir use^		001(10.270)
No	3,889 (97.2%)	1,954 (97.1%)
Yes	112 (2.8%)	58 (2.9%)
Corticosteroids use [^]		()

Table 1. General characteristics of COVID-19 patients at baseline, according to hypertension status

No	2,376 (64.6%)	1,144 (62.1%)
Yes	1,302 (35.4%)	699 (37.9%)
Clusters of hospitals		
Northern regions (except Milan) (n)	1,088 (26.7%)	554 (26.9%)
Milan (m)	926 (22.8%)	488 (23.7%)
Center regions (except Rome) (c))	1,034 (25.4%)	539 (26.2%)
Rome (r)	498 (12.2%)	184 (9.0%)
Southern regions (s)	523 (12.9%)	292 (14.2%)

^Missing values were N=8 for diabetes, N=38 for ischemic heart disease, N=18 for chronic pulmonary disease, N=8 for cancer, N=77 for CKD stage, N=196 for C reactive protein, N=92 for hydroxychloroquine, N=9 for lopinavir or darunavir, N=108 for tocilizumab or sarilumab, N=68 for remdesivir and N=391 for corticosteroids. *ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB suspended. ¶Stage 1: Kidney damage with normal or increased glomerular filtration rate (GFR) (>90 mL/min/1.73 m²); Stage 2: Mild reduction in GFR (60-89 mL/min/1.73 m²); Stage 3a: Moderate reduction in GFR (45-55 mL/min/1.73 m²); Stage 3b: Moderate reduction in GFR (30-44 mL/min/1.73 m²); Stage 4: Severe reduction in GFR (15-29 mL/min/1.73 m²); Stage 5: Kidney failure (GFR < 15 mL/min/1.73 m² o dia rsis).

(n) includes hospitals of 5-10; (m) includes hospitals 1-4; (c) includes nospitals 11-17; (r) includes hospitals 18-20; (s) includes hospitals 21-34 (see list of choice centers in the Online Supplemental Material).

outro cor

Table 2: Incidences, hazard ratios and odds ratios for death according to ACE-I and ARB use, in all COVID-19 patients

All patients, multiple imputation	analysis (N=4,069)				Survival analysis HR (95% CI)	Survival analysis HR (95% Cl)	Logistic analysis OR (95% CI)
	Death (N=692)	Patient at risk (N=4,069)	Person- days	Death Rate*	Univariable	Multivariable^	Multivariable^
Group	, , , , , , , , , , , , , , , , ,						
ACE-I no and ARB no	423 (15.1%)	2,807 (100%)	42,498	10.0	-1-	-1-	-1-
ACE-I yes and ARB no	116 (21.1%)	549 (100%)	8,694	13.3	1.36 (1.11 to 1.57,	0.96 (0.77 to 1.20)	0.89 (0.67 to 1.19)
ACE-I no and ARB yes	112 (20.7%)	542 (100%)	9,098	12.3	1.26 (1.02 tc 1.5⊜)	0.89 (0.71 to 1.12)	0.93 (0.69 to 1.24)
ACE-I yes and ARB yes	4 (26.7%)	15 (100%)	226	17.7	1.75 (0 66 t 4.69)	1.45 (0.54 to 3.94)	1.38 (0.32 to 6.03)
ACE-I or ARB suspended [¶]	37 (23.7%)	156 (100%)	2,929	12.6	1 32 '0.9 4 io 1.84)	0.76 (0.53 to 1.08)	0.85 (0.53 to 1.35)
All patients, case-complete analy	/sis (N=3,785)						
Group							
ACE-I no and ARB no	393 (15.1%)	2,612 (100%)	3 ,51%	10.0	-1-	-1-	-1-
ACE-I yes and ARB no	108 (21.3%)	506 (100%)	7, 05	13.8	1.40 (1.13 to 1.74)	0.95 (0.75 to 1.19)	0.88 (0.66 to 1.19)
ACE-I no and ARB yes	105 (20.8%)	504 (100%)	8,254	12.7	1.29 (1.04 to 1.60)	0.91 (0.72 to 1.15)	0.93 (0.69 to 1.25)
ACE-I yes and ARB yes	4 (28.6%)	14 (100%)	201	19.9	1.96 (0.73 to 5.25)	1.54 (0.57 to 4.17)	1.44 (0.32 to 6.36)
ACE-I or ARB suspended ¹	35 (23.5%)	149 (100%)	2,861	12.2	1.28 (0.91 to 1.82)	0.72 (0.50 to 1.04)	0.95 (0.75 to 1.21)

Abbreviations: HR, hazard ratio; 95%%CI, 95% confide. cc interval; OR, means odds ratio. *x1000 person-days. ^Controlling for age, sex, diabetes, hypertension, history of ischemic heart disease, chronic pullito ary disease, chronic kidney disease, C-reactive protein, use of other anti-hypertensive drugs, use of hydroxychloroquine (yes/no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a single group: yes/no/missing) as fixed effect, and hospitals clustering as random effect. [¶]ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB suspended.

Table 3: Hazard ratios for mortality according to ACE-I and ARB use, in different subgroups	Table 3: Hazard ratios	for mortality according	to ACE-I and ARB use, in	n different subgroups
---	------------------------	-------------------------	--------------------------	-----------------------

	Group 0	Group 1	Group 2		
	ACE-I no and ARB no	ACE-I yes and ARB no	ACE-I no and ARB yes	Group 1 vs	Group 2 vs
	(N=2,807)	(N=549)	(N=542)	Group 0	Group 0
	No. death/	No. death/	No. death/		
Subgroups	patient at risk	patient at risk	patient at risk	HR (95% CI)*	HR (95% CI)*
Women	156/1,105	39/206	39/197	0.80 (0.55 to 1.18)	1.07 (0.73 to 1.58)
Men	267/1,702	77/343	73/345	1.03 (0.78 to 1.37)	0.82 (0.61 to 1.08)
Age <75 years	139/2,006	24/286	28/307	0.78 (0.48 to 1.27)	0.66 (0.42 to 1.04)
Age ≥75 years	284/801	92/263	84/235	1.00 (0.78 to 1.29)	0.98 (0.76 to 1.28)
Highest degree of COVID-19 severi	ty experienced at hospi	tal^			
Mild pneumonia	55/1,523	15/312	8/238	1.06 (0.55 to 2.04)	0.64 (0.28 to 1.46)
Severe pneumonia	158/725	54/135	5 \/152	1.23 (0.87 to 1.75)	0.94 (0.67 to 1.32)
Acute respiratory distress syndrome	190/539	43/98	49/117	1.02 (0.71 to 1.47)	0.85 (0.59 to 1.22)
History of hypertension					
No	206/1,925	10'+3	2/35	0.78 (0.40 to 1.51)	0.26 (0.06 to 1.08)
Yes	217/882	106, 500	110/507	0.98 (0.77 to 1.24)	0.94 (0.74 to 1.18)
History of ischemic heart disease					
No	309/2,488	દ ૧/3 78	63/411	0.91 (0.68 to 1.23)	0.78 (0.58 to 1.04)
Yes	114/319	58/171	49/131	0.90 (0.64 to 1.28)	1.11 (0.76 to 1.61)
History of diabetes					
No	311/2,3€0	78/398	77/401	0.92 (0.70 to 1.20)	0.77 (0.59 to 1.02)
Yes	112/457	38/151	35/141	1.00 (0.67 to 1.49)	1.18 (0.78 to 1.78)
Treated with hydroxychloroquine ¹					
No	13 5/653	36/104	34/109	1.46 (0.95 to 2.22)	1.16 (0.76 to 1.77)
Yes	256/2,091	75/437	72/417	0.78 (0.59 to 1.03)	0.90 (0.68 to 1.19)
Treated with other COVID-19 drugs	,‡)				·
No	110/797	27/151	24/104	1.05 (0.65 to 1.71)	1.62 (0.98 to 2.69)
Yes	257/1,853	78/365	73/391	0.92 (0.69 to 1.21)	0.87 (0.66 to 1.15)

Abbreviations: HR, hazard ratios; CI, confidence intervals; *Controlling for age, sex, diabetes, history of ischemic heart disease, chronic pulmonary disease, chronic kidney disease, C-reactive protein, use of other anti-hypertensive drugs, use of hydroxychloroquine (yes/no/missing) and use of other COVID-19 treatments (lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a unique group yes/no/missing) as fixed effects and hospitals clustering as random effect; multiple imputed analysis; patients with both ACE-I and ARB or patients who suspended ACE-I or ARB were excluded. ^Missing data for N=31 patients. [¶]Missing data for N=87 patients. ^{*}Lopinavir, darunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a unique group, missing data for N=237 patients.

Table 4: Incidences, hazard ratios and odds ratios for death according to ACE-I and ARB use, in COVID-19 hypertensive patients

Hypertensive patients, multiple imputation analysis (N=2,057)					Survival analysis HR (95% CI)	Survival analysis HR (95% CI)	Logistic analysis OR (95% CI)	
	Death (N=471)	Patient at risk (N=2,057)	Person- days	Death Rate*	Univariable	Multivariable^	Multivariable [^]	
Group								
ACE-I no and ARB no	217 (14.4%)	882 (100%)	14,473	15.0	-1-	-1-	-1-	
ACE-I yes and ARB no	106 (20.7%)	506 (100%)	7,946	13.3	0.88 (0.70 to 1.11,	1.00 (0.78 to 1.26)	0.88 (0.65 to 1.20)	
ACE-I no and ARB yes	110 (20.9%)	507 (100%)	8,516	12.9	0.86 (0.68 tc 1.0)	0.94 (0.74 to 1.18)	1.00 (0.73 to 1.35)	
ACE-I yes and ARB yes	4 (26.7%)	14 (100%)	207	19.3	1.23 (0 46 t 3.32)	1.44 (0.53 to 3.91)	1.42 (0.31 to 6.47)	
ACE-I or ARB suspended ¹	34 (23.3%)	148 (100%)	2,800	12.1	<u>0 93 '0.50 io 1.19)</u>	0.73 (0.50 to 1.06)	0.80 (0.49 to 1.30)	
Hypertensive patients, case-com	plete analysis (N=1,	<u>926)</u>						
Group								
ACE-I no and ARB no	207 (14.4%)	828 (100%)	í 1,49 [.])	15.3	-1-	-1-	-1-	
ACE-I yes and ARB no	98 (20.7%)	469 (100%)	7, <i>'</i> 54	13.5	1.40 (1.13 to 1.74)	0.96 (0.75 to 1.23)	0.86 (0.63 to 1.18)	
ACE-I no and ARB yes	104 (20.9%)	474 (100%)	7,8∠0	13.3	1.29 (1.04 to 1.60)	0.95 (0.75 to 1.21)	1.00 (0.73 to 1.37)	
ACE-I yes and ARB yes	4 (26.7%)	13 (100 %)	182	22.0	1.96 (0.73 to 5.25)	1.52 (0.56 to 4.14)	1.46 (0.31 to 6.81)	
ACE-I or ARB suspended ¹	32 (23.3%)	142 10.%)	2,749	11.6	1.28 (0.91 to 1.82)	0.68 (0.46 to 1.00)	0.73 (0.44 to 1.21)	

Abbreviations: HR, hazard ratio; 95%CI, 95% confidence in terval; OR, odds ratio. *x1000 person-days. ^Controlling for age, sex, diabetes, history of ischemic heart disease, chronic pulmonary disease, chronic kidn, vrdisease, C-reactive protein, use of other anti-hypertensive drugs, use of hydroxychloroquine (yes/no/missing) and use of other COVID-19 treatments (lopinavir, dirunavir, tocilizumab, sarilumab, corticosteroids or remdesivir considered as a single group-yes/no/missing) as fixed effects; and hospitals clustering as random effect. [¶]ACE-I no and ARB suspended plus ACE-I suspended and ARB no plus both ACE-I and ARB suspended.

Figure 1: Forest plot for association of ACE-I or ARB with COVID-19 severity and/or mortality in all patients (panel A) or in patients with hypertension (panel B).

A) All patients						
				Odds Ratio		Odds Ratio
Study or Subgroup	log[Odds Ratio]		Weight	IV, Random, 95% CI		IV, Random, 95% CI
Guo T et al, 2020	0.76	0.511	3.5%	2.14 [0.79, 5.82]		+
Lee HY et al, 2020	0.065	0.228	9.8%	1.07 [0.68, 1.67]		+
Reynolds HR et al, 2020	-0.006	0.099	15.1%	0.99 [0.82, 1.21]		+
Geleris J et al, 2020	-0.151	0.132	13.8%	0.86 [0.66, 1.11]		-
Conversano A et al, 2020	0.588	0.305	7.3%	1.80 [0.99, 3.27]		
de Abajo F et al, 2020	0.687	0.126	14.0%	1.99 [1.55, 2.54]		-
Mehta N et al, 2020	0.526	0.4	5.1%	1.69 [0.77, 3.71 []]		+
Fosbøl EL et al, 2020	0.039	0.082	15.8%	1.04 [0.89, 1.22,		+
CORIST Study, 2020	-0.099	0.088	15.6%	0.91 [0.76, 1.08]		4
Total (95% CI)			100.0%	1.18 [0.96, 1 4.]		•
Heterogeneity: Tau ² = 0.07;	$Chi^2 = 37.19$, df = 8	B (P < 0.	.0001): P	700	+	
Test for overall effect: Z = 1					0.02	0.1 1 10 50
						ACE-I/ARB non ACE-I/ARB
B) Hypertensive patie	onte					
	1110			· dds Ratio		Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	V, Random, 95% Cl		IV, Random, 95% CI
Meng J et al, 2020	-1.099	0.698	0.8ኢ	0.33 [0.08, 1.31]		
Huang Z et al, 2020	-1.466	1.556	0.2 %	0.23 [0.01, 4.87]	←	
Zhang P et al, 2020	-0.868	0.402	7 3%	0.42 [0.19, 0.92]		
LiJetal, 2020	-0.272	0.285	4.53	0.76 [0.44, 1.33]		
Tedeschi S et al, 2020	-0.031	0.18.	10.4%	0.97 [0.68, 1.39]		+
Yang G et al, 2020	-1.142			0.32 [0.07, 1.51]		
Reynolds HR et al, 2020	-0.028		28.1%	0.97 [0.79, 1.19]		+
Conversano A et al, 2020	-0.69?			0.50 [0.20, 1.22]		
Zhou X et al, 2020	-0.763		0.4%	0.49 [0.08, 2.96]		
Gao C et al, 2020	-0.193		1.1%	0.85 [0.28, 2.58]		
Fosbøl EL et al. 2020	-6.941			0.96 [0.74, 1.25]		+
CORIST Study, 2020	-0.17		32.0%	0.93 [0.77, 1.12]		+
Total (95% CI)			100.0%	0.90 [0.80, 1.01]		
Heterogeneity: Tau ² = 0.00;	Chi $(1,, 2) df = f$	11 (P -)		500		
$\Box = \Box =$	UII 11.02. UI -	II (F = 1	0.39), 1 -	3.0	0.02	0,1 1 10 50

RAAS inhibitors are not associated with mortality in COVID-19 patients: findings from an

observational multicenter study in Italy and a meta-analysis of 19 studies

Short title: RAAS inhibitors and mortality in COVID-19

THE COVID-19 RISk and Treatments (CORIST) Collaboration

¹Augusto Di Castelnuovo, ²Simona Costanzo, ³Andrea Antinori, ⁴Nausicaa Berselli, ⁵Lorenzo Blandi, ²Marialaura Bonaccio, ^{6,7}Roberto Cauda, ²Alessandro Giallusi, ⁶Giovanni Guaraldi, ⁵Lorenzo Menicanti, ⁹Marco Mennuni, ¹⁰Roberta Mussinelli, ^{11,12}Ilaria My, ¹³Giustino Parruti, ⁹Giuseppe Patti, ^{14,10}Stefano Perlini, ¹⁵Francesca Santilli, ¹⁶Carlo Signorelli, ^{11,12}Giulio G. Stefanini, ¹⁷Alessandra Vergori, ¹⁸Paolo Abete, ¹⁹Walter Ageno, ^{20,21}Piergiuseppe Agostoni, ²²Luca Aiello, ²³Samir Al Moghazi, ²⁴Rosa Arboretti, ²⁵Filippo Aucella, ²⁶Greta Barbieri, ²⁷Martina Barchitta, ²⁶Alessandro Bartoloni, ^{6,7}Antonella Cingolani, ¹⁵Francesco Cacciatore, ¹⁹Lucia Caiano, ³¹Laura Carrozzi, ³²Antonio Cascio, ³³Giacomo Castiglione, ¹⁵Stefania Cianfrone, ⁶Arturo Ciccullo, ^{6,7}Antonella Cingolani, ¹⁵Francesco Cipollone, ³²Claudia Colomba, ⁹Crizia Colombo, ^{11,12}Ottavia Cozzi, ²⁵Annalisa Crisetti, ¹³Francesca Crosta, ³⁴Gian Battista Danzi, ¹⁵Damiano D'Ardes, ⁶Katleen de Gaetano Donati, ³⁵Francesco I Gennaro, ³⁴Giuseppe Di Tano, ³⁶Gianpiero D'Offizi, ³⁷Francesco Maria Fusco, ³⁸Ivan Gentile, ³⁹Emauele Graziani, ⁴⁰Gabriella Guarnieri, ⁴¹Giovanni Larizza, ⁴²Armando Leone, ⁹Veronica Lio, ^{6,7}Mothanje Barbara Lucia, ³⁴Gloria Maccagni, ⁴¹Ferruccio Madaro, ²²Stefano Maitan, ⁴³Sandro Mancarella, ⁴⁴Rosa Manuele, ^{20,21}Massimo Mapelli, ^{20,21}Riccardo Maragna, ²⁶Rossella Marcucci, ⁴⁵Giulio Maresca, ⁴⁶Silvia Marongiu, ³⁵Claudia Marotta, ⁴²Lorenzo Marra, ⁴¹Francesco Petri, ³⁶Biagio Pinchera, ^{11,12}Car A. Pivato, ⁵²Venerino Poletti, ⁵²Claudia Ravaglia, ⁵¹Marca Rossi, ⁴⁴Anna Sabena, ¹⁴Francesco Petri, ³⁶Biagio Pinchera, ^{11,12}Car A. Pivato, ⁵²Venerino Poletti, ⁵²Claudia Ravaglia, ⁵¹Marco Rossato, ²⁹Marianna Rossi, ¹⁴Anna Sabena, ¹⁴Francesco Petri, ³⁶Biagio Pinchera, ^{11,12}Car A. Pivato, ⁵²Venerino Poletti, ⁵²Claudia Ravaglia, ⁵¹Marco Rossato, ²⁹Mariana Rossi, ¹⁴Anna Sabena,

¹Mediterranea Cardiocentro. Napoli. Italy; ²Department of Epidemiology and Prevention. IRCC⁻ ¹*uuoned. Pozzilli (IS). Italy; ³UOC Immunodeficienze Virali. National Institute for Infectious Diseases T. Spalianzan¹: IRCCS. Roma. Italy; ⁵Bector of Pui, ic Heath, Department of Biomedical. Metabolic and Neural Sciences. University of Modena and Reggio Emilia. Modena. Italy; ⁶BrCCS Policlin⁻¹ 2. In Piato. San Donato Milanese (MI). Italy; ⁶Fondazione Policlinico Universitario A. Gemelli IRCCS. Roma. Italy; ¹Università Cattolica del Sacro Cuu. Dipartimento di Sicurezza e Bioetica Sede di Roma. Roma. Italy; ⁶Infectious Disease Unit. Department of Surgical. Medical. Dental and Morphologinal Survess. University of Modena and Reggio Emilia. Modena. Italy; ¹University of Eastern Piedmont. Maggiore della Carità Hospital. Novara, Italy; ¹⁰Emergency Department. IRCCS Polichinos San Matteo Foundation. Pavia. Italy: ¹¹Departiment of Medicine and Aging. Clinica Medica. 'SS. / nunzia: Hospital and University of Chieti. Chieti. Italy: ¹¹Department of Infectious Disease. Ratfatel University of Insubra. Vares. Italy: ²¹Department of Medicine and Aging. Clinica Medica. 'SS. / nunzia: 'Hospital and University of Chieti. Chieti. Italy: ¹¹Bepartment of Infectious Diseases. Itazzaro Spalinazan⁻¹ IRCCS. Roma. Italy: ¹¹Department of Medicine and Aging. Clinica Medica. 'SS. / nunzia: 'Hospital and University of Chieti. Chieti. Italy: ¹¹Bepartment of Sciences and Actine Contro Cardiologico Mo. zin. ''.CS. Milano. Italy: ²¹Department of Clinical Sciences and Community Hedith. Cardiovasoular Section. University of Milano. Milano. Italy: ²²Di On Anestesia e Rianimazione. Dipartiment of Clinica Generale Ospedale Morgagni-Pierantoni. Forli. Italy: ²⁰De Interioni Sistemiche dell'Imm. and Clinical Maduzi. Pava. Radva. Italy: ²⁰Endazione I.R.C.C.S. Casa Solilevo della Sofferenza^{*}. San Giovanni Rotondo. Foggia. Italy: ²⁵Emergency Medica. Juniversity of Pava. Padva. Italy: ²⁵Endazione I.R.C.C.S. C

CONFLICT OF INTEREST DECLARATION

Conflict of Interest Disclosures

None by any of the coauthors.

Address for correspondence:

Prof. Raffaele De Caterina, MD, PhD

Chair of Cardiology, University of Pisa, and Cardiovascular Division, Pisa University Hospital

Via Paradisa 2 - 56124 Pisa, Italy

Tel.: +39-050-996-751 - E-mail: raffaele.decaterina@unipi.it