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Abstract: Weed infestation is one of the most severe problems affecting rice production worldwide.
Current weed control practices are either costly or pose a threat to the environment. The use of
competitive rice genotypes seems to be a promising strategy. The aim of our study was to improve the
allelopathic potential of three selected rice genotypes by foliar application of methyl salicylate (MeSA),
a signaling molecule eliciting the plant defense response. Aqueous extracts of the shoots and roots
of two competitive (UPR 2962-6-2-1 and Govind) and one non-competitive (UPR 2992-17-3-1) rice
genotypes treated with MeSA solution at different concentrations (1 mM, 2 mM, and 3 mM) showed
phytotoxic effects on the growth of the weed Echinochloa colona. Specifically, shoot and root extracts
obtained from the competitive rice genotypes similarly decreased both the E. colona germination rate
(9% to 44.5%) and the length of its roots and shoots (11% to 48%). Extracts of the non-competitive
rice genotype showed a similar trend but lower effects, inhibiting the E. colona germination up to
32% and reducing the growth of the weed roots and shoots by 6–23.5% and 7–28%, respectively,
according to the increasing MeSA concentrations. High-performance liquid chromatography (HPLC)
analysis demonstrated an increase in different allelopathic phenolic acids in the three rice genotypes
in response to MeSA treatments. Among the detected compounds, vanillic and protocatechuic acids
showed the greatest differences compared to controls with values up to 2.1-fold higher in shoots of the
two competitive UPR-2962-6-2-1 and Govind rice genotypes, while their roots were characterized by
the greatest increases of 8-hydroxyquinoline (8.2-fold) and protocatechuic acid (1.7-fold). Differently,
non-competitive genotype UPR 2992-17-3-1 showed the highest increase for gallic acid (2.2-fold) in
shoots and for p-hydroxybenzoic acid (2.4-fold) in roots. Lastly, MeSA was found to improve the
competitiveness of rice genotypes without any detrimental effect on the host plant.
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1. Introduction

Weeds are one of the major threats to farm productivity and their management is an ever-present
challenge. Chemical approach is becoming increasingly problematic, both in terms of environmental
pollution and herbicide resistance. Among the alternative strategies, allelopathy integrated with the
existing agronomic solutions can be a tool to give greater sustainability to agro-production systems.
Allelopathy is defined as the beneficial or detrimental influence of one organism on the growth and
development of other organisms by the production of chemical compounds known as allelochemicals [1].
They are mainly plant secondary metabolites (e.g., alkaloids, flavonoids, glucosinolates, hydroxamic
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acids, phenols, salicylates, terpenoids) released by leaching, decomposition, volatilization, and root
exudation or microbe decomposition products [1,2]. Allelopathy is a natural survival process and has
been used to reduce the competition from neighboring plants in agriculture since ancient times for its
positive effects such as weed control, crop protection, and crop re-establishment [1].

In sustainable agriculture, the possibility of incorporating allelopathic traits into genotypes to
enhance their competitiveness is worth exploring [3]. The competitiveness provided by allelopathic
genotypes could reduce the burden of using conventional herbicides, thus reducing the inputs of
agrochemicals [4]. Rice is one of the most important crops in the world and its allelopathy has attracted
great attention, as the allelopathic potential of some genotypes against one or more paddy weeds has
been demonstrated [5]. Since then, the selection of allelopathic rice germplasm has been carried out in
many countries [6–16]. Several main and epistatic quantitative loci have been identified responsible
for allelopathy in rice [17]. However, instead of developing new competitive genotypes, allelopathy
can be more useful to screen the existing germplasm for allelopathic crop genotypes [18]. It was
shown that some rice cultivars were able to suppress the growth of various paddy common weeds,
including the Echinochloa species that cause severe yield losses, showing greater allelopathic potential
than others [19–25].

Previous works hypothesized that allelopathy is an actively inducible defense mechanism and
that plant signaling compounds are potentially valuable in its regulation [26]. Among them, salicylic
acid (SA) plays a key role in plant defense [27]. It can activate many stress-related genes and the
release of allelochemicals [26,28]. The application of SA to different plant species was sufficient to
invoke disease resistance [29]. However, it has been shown that its methyl ester, i.e., MeSA, is more
effective when applied exogenously [30]. MeSA is an organic ester naturally produced by many plants,
particularly wintergreens. It can be manufactured synthetically and it is used as a flavoring agent in
foods, beverages, and liniments [31].

In this study, 10 rice genotypes were screened for their allelopathic potential. Then, two competitive
and one non-competitive genotypes were selected and further investigated for the changes in their
allelopathic potential after the exogenous application of MeSA.

2. Materials and Methods

2.1. Chemicals

Standards of caffeic acid (CAF), p-coumaric acid (PC), gallic acid (GAL), p-hydroxybenzoic acid
(PHB), 8-hydroxyquinoline (HQ), protocatechuic acid (PRO), syringic acid (S), and vanillic acid (V)
were purchased from Sigma-Aldrich (Bangalore, India). Diethyl ether, methanol, and acetic acid,
as well as MeSA, were also obtained from Sigma-Aldrich (Bangalore, India).

2.2. Seeds

The seeds of 10 rice genotypes, namely of Pant Dhan-16, UPR2916-211, Pant Sankar Dhan-3,
UPR-2919-14-1-1, UPR-2962-6-2-1, UPR-2992-17-3-1, UPRI 2005-15, UPR 2805-14-12, V3R11, and
Govind, were used.

The seeds of weeds belonging to different botanical families, such as Alternanthera sessilis (L.) R.Br.
ex DC. (Amaranthaceae), Caesulia axillaris Roxb. (Asteraceae), Cyperus iria L. (Cyperaceae), Echinochloa
crus-galli (L.) P.Beauv. (Poaceae), Echinochloa colona (L.) Link (Poaceae), Paspalum distichum L., and
Ammannia L. species (Lythraceae), were chosen for the first part of the experimental design.

Before use, all seeds were surface-sterilized with 70% ethanol by shaking for 15 min, then rinsed
with distilled water three times and sown in germination trays. After five days, the germinated
seeds were transplanted in plastic pots (7 cm × 10 cm), kept in a growth chamber at 24–26 ◦C with a
photoperiod of 12-h light and 12-h dark, watered, and fertilized with Hoagland nutrient solution every
two days.
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2.3. Experimental Design

The experiment was carried out through a split-plot design with three replicates at Norman E.
Borlaug Crop Research Center, G.B. Pant University of Agriculture and Technology, Uttarakhand, India.
The main plots included two conditions, weedy (weeds were not removed) and weed-free (weeds were
removed by hand whenever they appeared), while subplots included all rice genotypes [32].

2.4. Methyl Salicylate Treatment

Rice seedlings were treated with MeSA as described by Bi et al. [18]. At the two-, four-, and
six-leaf stage, they were sprayed with 1 mM, 2 mM, and 3 mM MeSA solution and left in growth
chamber for 48 h. Control plants were not treated with MeSA.

2.5. Morphological Trait Measurements

Morphological parameters, such as plant height, number of leaves, and leaf area, in addition to
dry matter, of all the rice genotypes cultivated under weedy and weed-free conditions were recorded
both at flowering and maturity stages [32].

2.6. Aqueous Extraction

Based on the collected data, two competitive and one non-competitive rice genotypes were
selected. Then, 2 g of their shoots and roots were chopped and extracted with 10 mL of water for two
days. Each residue was re-extracted by 10 mL of water and the two extracts were pooled together,
filtered, and stored at 4 ◦C until use. Aqueous extracts were also obtained from the control plants.

2.7. Phytotoxic Activity

Seeds from E. colona, a cosmopolitan weed common in rice fields, were used to assess the in vitro
phytotoxic activity of the aqueous extracts. Germination percentage, root, and shoot lengths of E. colona
seedlings grown in petri dishes were detected seven days after the treatment [32].

2.8. Determination of the Phenolic Acid Content

The aqueous extracts were partitioned against equal volume of diethyl ether three times.
The obtained fractions were combined and evaporated to dryness at room temperature and reduced
pressure. Each residue was dissolved in 2 mL of methanol and filtered through a 0.22-µm membrane
filter (Millipore HVLP01300, Merk, Massachusetts, USA). The phenolic compounds in the filtrate were
analyzed using a DIONEX Ultimate 3000 HPLC system equipped with a reverse phase C18 column,
detector, and autosampler to monitor the absorbance of elution at 254 nm. The solvent system was
70% methanol and 2% acetic acid. Ten microliters of each sample were injected at a flow rate was
1.0 mL/min and temperature of 32 ◦C. Pure compounds were used as standards and phenolic acids
were identified by comparison of retention time and UV spectrum.

2.9. Statistical Analysis

The statistical analysis for all the parameters was carried out using analysis of variance for
split-plot design, with means being tested at p > 0.05 using an STPR software designed at the
Department of Mathematics, Statistics, and Computer Science, CBSH, G.B. Pant University of
Agriculture and Technology.

3. Results and Discussion

3.1. Morphological Traits

Plant height, leaf number, leaf area, and dry matter of 10 rice genotypes were recorded at flowering
and maturity stages both under weedy and weed-free conditions (Table 1).
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Table 1. Plant height, leaf number, leaf area, and dry matter of 10 rice genotypes cultivated in weedy (W) and weed-free (WF) plots at flowering and maturity stages.

Genotypes

Plant Height (cm) Leaf No. Leaf Area (cm2) Dry Matter (g m−1)

Flowering Maturity Flowering Maturity Flowering Maturity Flowering Maturity

WF W WF W WF W WF W WF W WF W WF W WF W

PD-16 100.8 91.3 102.0 101.5 32.3 31.8 15.8 17.3 1442.3 1372.3 324.2 339.5 15.6 14.6 25.1 20.8
UPR2916-211 93.3 84.8 104.8 100.6 29.1 32.2 22.1 20.0 1505.0 1466.6 649.6 524.3 19.8 17.1 25.5 22.3

PSD-3 103.8 93.1 105.6 102.0 34.6 39.8 27.3 22.1 1784.3 1574.3 69.3 84.6 15.9 13.6 22.0 19.2
UPR-2919-14-1-1 92.8 84.0 101.3 94.60 39.0 44.8 24.3 18.3 1900.6 1669.6 326.0 72.3 19.3 17.4 29.8 27.6
UPR-2962-6-2-1 88.8 88.3 102.3 101.6 32.3 42.6 22.0 22.3 1151.6 1087.3 889.6 840.3 18.1 16.9 33.6 31.1

UPR-2992-17-3-1 94.0 91.3 103.1 102.1 35.1 49.5 23.1 16.6 1497.6 956.0 39.3 70.6 18.5 15.3 23.3 18.7
UPRI-2005-15 101.5 84.6 105.3 102.3 36.0 37.0 19.0 16.6 2002.3 1896.3 265.3 169.6 13.7 10.6 25.6 26.6

UPR-2805-14-12 77.5 80.3 93.6 86.1 35.6 36.0 24.8 21.5 1380.0 823.6 417.3 387.6 8.7 6.9 24.8 21.2
V3R11 89.8 82.1 99.8 98.3 46.8 49.1 27.8 26.0 1131.0 1107.3 681.3 814.0 16.9 15.3 26.1 22.5
Govind 82.5 79.1 84.6 83.3 36.3 38.8 21.5 21.3 984.3 949.3 157.3 326.0 18.2 17.4 28.4 26.7

SEM ± 0.63 0.72 0.45 0.75 0.13 0.38 0.17 0.30
LSD (p ≤ 0.05) 3.74 4.31 26.94 4.49 82.29 22.91 1.04 1.79
Genotypes (G) 6.06 3.00 6.42 4.51 97.64 55.73 1.99 6.90

Weed (W) 8.57 5.69 9.08 6.38 138.09 78.82 2.81 9.76
G ×W 10.12 9.11 56.33 9.69 188.86 83.06 3.15 9.68



Appl. Sci. 2019, 9, 4881 5 of 12

The decrease of plant height under weedy conditions ranged from 0.56% to 16.7% and from 0.5%
to 8% at the time of flowering and maturity, respectively. Rice genotypes UPR-2962-6-2-1 (0.56%),
UPR-2992-17-3-1 (2.9%), and Govind (4.12%) showed the lowest decrease compared to other genotypes
(≥ 8.6%) at flowering. A similar trend (0.7%, 1%, and 1.5%) was recorded for the three genotypes
at maturity (Table 1). Therefore, these rice genotypes can be considered competitive, unlike the
non-competitive genotypes, showing a greater decrease in plant height under weedy conditions
compared to the weed-free conditions.

Leaf number increased in the range 1.1–29% at flowering stage under weedy conditions in
comparison with the weed-free conditions. UPR-2992-17-3-1 and UPR-2962-6-2-1 were genotypes
showing the greatest difference (24% and 29%, respectively). At maturity, an opposite trend was
observed. The leaves decreased from 1% to 39% in Govind and UPR-2992-17-3-1 rice genotypes,
respectively. This decrease likely occurred because at the beginning of seed setting, the maximum
amount of photosynthates were diverted toward the maturing grains (Table 1).

Among other factors, the leaf area that can confer competitive ability against weeds. Plants with a
higher leaf area capture more sunlight, thus shading neighboring growing weeds and lowering their
photosynthetic rate [33–35]. Therefore, greater development of the leaf area in weedy conditions was a
significant trait which was recorded at the end of the experiment (Table 1). At flowering, in contrast to
the increase in leaf number, leaf area decreased under weedy conditions. The detected values ranged
from 2.1% to 40% less than those measured under weed-free conditions. The genotypes UPR-2916-211
(2.5%), UPR-2962-6-2-1 (5.5%), V3R11 (2.1%), and Govind (3.5%) showed the lowest decrease, while
the highest reductions were found in UPR-2992-17-3-1 (36%) and UPR 2805-14-12 (40%). At maturity,
this indicator did not show a definite trend, with half of the genotypes characterized by a lower leaf
area. The other half was characterized by a greater leaf area compared to plants grown in the absence
of weeds (Table 1).

The dry matter was also detected at the flowering and maturity stages to obtain a clear picture of
accumulated biomass under weedy and weed-free conditions. At both stages, dry matter decreased
in weedy conditions. The lowest losses were noted in genotypes UPR-2962-6-2-1 (6.6% and 7.4%,
respectively) and Govind (4.3% and 5.9%, respectively), thus delineating their competitive nature.

In agreement with previous reports, these results corroborated that the rice genotypes possess
different competitiveness against weed populations [8,9,13,36]. For example, Dilday et al. [8] screened
approximately 5000 rice genotypes for competitiveness against Heteranthera limosa (Sw.) Willd. Among
them, about 4% demonstrated some allelopathic activity. Jung et al. [37] reported the allelopathic
potential of 114 rice residues on weed emergence (−51.45%), height (−39.75%), and dry weight (−5.13%)
of E. crus-galli. Finally, our findings confirmed that Govind and UPR 2962-6-2-1 genotypes are the most
competitive on emergent weeds in the early stages of their growth [32].

3.2. Weed Population

Weed populations were checked 15 days after transplanting of the germinated seeds and their
numbers were expressed per square meter. The occurrence of A. sessilis, C. axillaris, C. iria, E. crus-galli,
E. colona, P. distichum, and Ammannia spp. was recorded. The lowest number of weeds was found
in the genotypes UPR-2962-6-2-1 and Govind, which were able to suppress six out of seven weeds
compared to the other eight rice genotypes (data not shown). This reduction can be ascribed to
their competitiveness, probably exerted in the form of a better canopy development and nutrient
uptake [33,38]. Moreover, it can be assumed that the two genotypes produce higher amounts of
phenolic compounds, allelochemicals that can suppress weed growth [2].

3.3. Methyl Salicylate Treatments

A second experiment was carried out to study the effect of MeSA treatments on the competitiveness
of rice genotypes. Based on the above parameters and percent reduction in yield (data not shown),
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three rice genotypes, two competitive (UPR-2962-6-2-1 and Govind) and one (UPR-2992-17-3-1)
non-competitive, were selected.

Their aqueous extracts showed higher phytotoxic effects on the growth of E. colona than those from
control plants (Table 2). The shoot extracts the two competitive genotypes, UPR-2962-6-2-1 and Govind,
decreased E. colona seed germination, with values ranging from 9.2% to 42.5% and from 13% to 44.5%,
respectively, while the root extracts ranged from 11.4% to 41.4% and from 16.2% to 48%. The shoot
extracts from the non-competitive rice genotype UPR-2992-17-3-1 decreased E. colona germination by
10.4%, 19.2%, and 26.2% at 1 mM, 2 mM, and 3 mM MeSA, respectively, and root extracts decreased
germination by 9.9%, 16.7%, and 31.7%.

Table 2. Effects of shoot and root extracts obtained from rice genotypes treated with 1 mM, 2 mM, and
3mM concentrations of methyl salicylate (MeSA) on percent germination, root and shoot length of the
weed Echinochloa colona.

Genotypes MeSA
(mM)

E. colona
Germination (%)

E. colona Root
Length (cm)

E. colona Shoot
Length (cm)

UPR-2992-17-3-1

Shoot
extract

Root
extract

Shoot
extract

Root
extract

Shoot
extract

Root
extract

Control 86.3 77.7 6.8 6.8 5.8 5.9
1 77.3 70.0 6.1 6.4 5.1 5.5
2 69.7 64.7 5.5 5.9 4.5 5.3
3 63.7 53.0 5.2 5.4 4.2 5.1

UPR-2962-6-2-1

Control 65.0 61.0 6.4 6.7 5.7 5.8
1 59.0 54.0 5.5 5.5 5.0 5.1

2 46.7 42.3 4.9 4.7 4.0 4.6
3 38.0 35.7 4.1 4.2 3.4 3.5

Govind

Control 58.3 57.7 5.9 5.9 5.5 5.8
1 50.7 48.3 5.1 5.4 4.8 5.3
2 43.3 39.0 4.4 4.7 4.1 4.6
3 32.3 30.0 4.0 4.2 3.3 3.6

LSD (p ≤ 0.05) 4.04 2.83 0.80 0.81 0.80 0.64
Genotypes (G) 5.50 3.84 1.08 1.11 1.09 0.87

Methyl salicylate (MeSA) 6.35 4.44 1.25 1.28 1.26 1.00
G ×MeSA 11.0 7.69 2.17 2.22 2.18 1.74

The reduction of the E. colona root and shoot length ranged from 10.1% to 23.5% and from 12.1%
to 27.6%, respectively, due to the action of the UPR-2992-17-3-1 shoot extract, while the root extract
increased their inhibition from 5.8% to 20.5% and from 6.7% to 13.5% with the increasing concentration
of MeSA. It is evident that the treatment with the signaling compound increased the competitiveness
of the non-competitive genotype over the control.

The shoot and root extracts from the competitive genotype UPR-2962-6-2-1 after treatment with
3 mM MeSA reached the maximum inhibition of E. colona root and shoot length with similar values
equal to 35.9% and 40.3% and 37.3% and 39.6%, respectively. Similarly, for the shoot and root extracts
of the genotype Govind, the maximum inhibition of E. colona root and shoot length was 32.2% and 40%
and 28.8% and 37.9%, respectively.

Bioassay results showed that both the competitive and non-competitive rice genotypes enhanced
their phytotoxicity against E. colona after treatment with MeSA. These results are in accordance with the
results of Bi et al. [26], who reported that treatments with the signaling compounds MeSA and methyl
jasmonate increased the phytotoxicity of allelopathic and non-allelopathic rice genotypes against the
Echinochloa species.

3.4. Phenolic Acids

The phenolic acid content of the genotypes UPR-2992-17-3-1, UPR-2962-6-2-1, and Govind after
treatment with 1 mM, 2 mM, or 3 mM MeSA was analyzed by high-performance liquid chromatography
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(HPLC) using syringic acid (S), vanillic acid (V), p-hydroxybenzoic acid (PHB), p-coumaric acid (PC),
caffeic acid (CAF), protocatechuic acid (PRO), 8-hydroxyquinoline (HQ), and gallic acid (GAL) as
standards (Table 3).

Table 3. Retention time of the phenolic acid standards.

Phenolic Acid Retention Time (min)

Syringic acid (S) 9.9
Vanillic acid (V) 7.1

p-Hydroxybenzoic acid (PHB) 9.4
p-Coumaric acid (PC) 13.0

Caffeic acid (CAF) 11.6
Protocatechuic acid PRO) 5.57
8-Hydroxyquinoline (HQ) 4.8

Gallic acid (GAL) 3.6

Phenolic acids with different structures and modes of action show variable phytotoxic activity [39].
All phenolic acids detected in the three rice genotypes after MeSA exposure are among the main
phytotoxic compounds isolated from the aqueous extracts of allelopathic plants [39,40]. They
demonstrated significant inhibition of the Lactuca sativa seed germination compared to the control at
10 ppm or at 1 mM and 2 mM concentrations [39]. Differently, Bravo and coworkers [41] reported that
some acids, namely p-hydroxybenzoic, vanillic, gallic, and caffeic acids, have not proved capable of
significantly reducing L. sativa germination both at 100 µg/mL and 250 µg/mL. On the contrary, caffeic
acid showed a particular behavior stimulating seedling growth, particularly the root elongation of
L. sativa, in the concentration range 50–500 µg/mL [41]. Lastly, the phytotoxicity of the compounds
involved in allelopathic effects depends upon the target species and, overall, their chemical interference
is probably based upon a combination of phytotoxic metabolites. Studies on phenolic acid mixtures
have shown that individual components can be additive when being evaluated for phytotoxic affects.
However, further research is still needed to find evidence for their synergistic activities [41].

In our work, all MeSA treatments enhanced the production of these compounds in the analyzed
samples. In particular, the 2-mM concentration of MeSA had the largest effect. In the shoot extracts of
competitive genotype UPR-2962-6-2-1, the resulting increase of S, V, PHB, PC, CAF, PRO, and GAL
was 1.8-, 2.1-, 2-, 1.6-, 1.5-, 2.1-, and 1.6-fold, respectively, compared to control (Figure 1a). In Govind
genotype S, V, PHB, PC, PRO, and HQ increased by 1.8-, 2.1–, 1.6, 1.5-, 1.9-, and 1.8-fold, respectively
(Figure 1b).

The root extracts of UPR-2962-6-2-1 reported an increment of 1.6-, 1.8-, 1.6-, 1.5-, 1.5-, 1.6-, 8.2-, and
1.6-fold in the levels of all eight considered compounds, respectively (Figure 2a). The concentrations of
S, V, PHB, PC, PRO, HQ, and GAL increased by 1.4-, 1.6-, 1.5-, 1.3-, 1.7-, 1.6-, and 1.5-fold in Govind
roots, respectively (Figure 2b). An increase in phenolic acids also occurred in the non-competitive
genotype UPR-2992-17-3-1 (Figure 1c). Though PC reached the highest levels of concentration in the
shoots after all three MeSA treatments, HQ and GAL recorded the greatest differences compared to the
control with values up to 2- and 2.2-fold higher at 2-mM MeSA, respectively (Figure 1c). A similar
effect was detected on the phenolic content of the root extracts characterized by S, V, PHB, PC, HQ, and
GAL compounds. Their concentrations reported an increase of 1.9-, 1.4-, 2.4-, 1.6-, 2.3-, and 2.1-fold,
respectively (Figure 2c).
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PHB = p-hydroxy benzoic acid, PC = p-coumaric acid, CAF = caffeic acid, PRO = protocatechuic acid,
HQ = 8-hydroxyquinoline, and GAL = gallic acid.

In all genotypes, the phenolic acid amount recorded after treatments with 1 mM MeSA was at
par with that at 3 mM MeSA, both in shoots and roots. It is likely that 1 mM is a low-dose treatment,
whereas 3 mM could be slightly phytotoxic or somehow repress the phenolic acid biosynthesis in plant.
We can also speculate that a negative feedback regulation of salicylates occurs in rice.

Similar increments in phenolic acid contents after the application of signaling compounds were
shown by Bi et al. [26] and An et al. [30]. These results suggest that MeSA exerted an effect on the
phytotoxic potential of rice genotypes in which the allelopathic activity against E. colona increased
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in response to its foliar application, both in competitive and non-competitive genotypes. This
increment could be attributed to the well-known role of salicylic acid as an elicitor of the plant’s own
defense mechanisms toward insect and pathogen attacks, including the increased biosynthesis of
allelochemicals [42]. Hence, MeSA can be developed to enhance the allelopathic potential of the crop
plants. It has been documented that the weeds compete with the host crop for area, nutrients, water,
and sunlight, and this competition results in decreased growth and yield losses in the host plant. These
losses can be minimized by the use of competitive genotypes. Moreover, treatments with signaling
compounds such as MeSA can further increase the competitiveness of the genotypes against weed
species by stimulating the accumulation of the allelochemicals such as phenolic acids.

Treatments of rice plants with MeSA improved their growth, productivity, and competitiveness
against weeds. Therefore, the use of elicitors in effective concentrations can be developed to enhance
the allelopathic potential of the crops, as well as their yield and resilience. Boosting the production of
allelochemicals in crop plants could represent a promising strategy in weed control as an alternative to
the intensive use of conventional herbicides.

4. Conclusions

Chemical weed control is problematic and developing an alternative and sustainable approach
is pivotal. Here, we applied an elicitor to improve the allelopathic potential of rice against weeds.
Treatments also raised the levels of allelochemicals. This study opens a new perspective on the use of
systemic acquired resistance (SAR) elicitors or plant activators in weed control, stimulating the plant’s
own defense mechanisms (innate immunity). This study impacts the field of herbicides, contributing
to the reduced use of conventional herbicides, as well as the risk of selecting resistant weeds (elicitors
stimulate a multigenic system in the crop species and do not exert any selective pressure on the weeds).
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