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Abstract. Let AQ be the self-adjoint operator defined by the Q-function Q : z 7→ Qz through
the Krĕın-like resolvent formula

(−AQ + z)−1 = (−A0 + z)−1 +GzWQ−1
z V G∗z̄ , z ∈ ZQ ,

where V and W are bounded operators and

ZQ := {z ∈ ρ(A0) : Qz and Qz̄ have a bounded inverse} .
We show that

ZQ 6= ∅ =⇒ ZQ = ρ(A0) ∩ ρ(AQ) .

We do not suppose that Q is represented in terms of a uniformly strict, operator-valued Nevan-

linna function (equivalently, we do not assume that Q is associated to an ordinary boundary

triplet), thus our result extends previously known ones. The proof relies on simple algebraic

computations stemming from the first resolvent identity.

1 Introduction

Let A0 : dom(A0) ⊆ H → H be a self-adjoint operator in the Hilbert space H and
let S : dom(S) ⊆ H → H be the symmetric operator given by the restriction of
A0 to the kernel (assumed to be dense) of the continuous (w.r.t. the graph norm)
linear map τ : dom(A0)→ K, K being an auxiliary Hilbert space. By [32, Theorem
2.1] (see Theorem 2.4 in the next section), a family of self-adjoint extensions of S
can be defined through the Krĕın-like resolvent formula

(−AQ + z)−1 = (−A0 + z)−1 +GzWQ−1
z V G∗z̄ , z ∈ ZQ , (1.1)

where V and W are bounded operators,

ZQ := {z ∈ ρ(A0) : Qz and Qz̄ have a bounded inverse}

and Qz is a family of (not necessarily bounded) densely defined, closed linear maps
such that

Qz −Qw = (z − w)V τ(−A0 + w)−1(τ(−A0 + z̄)−1)∗W , w, z ∈ ρ(A0) ,
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and

V ∗(Q∗z)−1W ∗ = WQ−1
z̄ V , z ∈ ZQ . (1.2)

By a slight abuse of terminology, we call such a map Q : z 7→ Qz a Q-function; for
the definition (in the case V = 1 and W = 1, where (1.2) reduces to Q∗z = Qz̄) of a
“Q-function of S belonging to A0” (with values in the space of bounded operators)
we refer to [14, Definition 3] and to the original papers [24] (defect indices n±(S) =
1), [25] (finite defect indices), [37] (infinite defect indices). Evidently the above
definition of AQ by (1.1) only requires ZQ 6= ∅. However, taking into account
formula (1.1), one would expect ρ(A0)∩ ρ(AQ) ⊆ ZQ (hence ZQ = ρ(A0)∩ ρ(AQ)
since ZQ ⊆ ρ(A0) ∩ ρ(AQ) by ZQ ⊆ ρ(A0) and (1.1)); moreover, in order to treat
scattering theory for the couple (AQ, A0) through a limiting absorption principle
(see [30], [31], [28], [10]), one at least would need C\R ⊆ ZQ. The aim of this work
is to show that if ZQ is not empty then it necessarily coincides with ρ(A0)∩ρ(AQ)
(and so it always contains the whole C\R). In the case the map τ is surjective,
i.e., ran(τ) = K, and V = π, W = π∗, π an orthogonal projector onto a closed
subspace of K (coinciding with K itself in the case π = 1), then (see [34], [35,
Section 4]) the construction provided in [32] is equivalent to the one given by
boundary triplet theory (we refer to [14], [8, Section 1], [15, Section 7.3], [38,
Section 14] and references therein for an introduction to such a theory). Thus, in
this case, Q can be expressed in terms of a self-adjoint operator and an holomorphic
function M : z 7→ Mz with values in the space of bounded operators such that
Mz = M∗z̄ and 0 ∈ ρ(Mz −M∗z ) (see [14, Theorem 1], [15, Theorem 7.15]), i.e., M
is a uniformly strict Nevanlinna operator function. Hence, whenever ran(τ) = K,
V = π, W = π∗, one gets ZQ = ρ(A0) ∩ ρ(AQ) by standard arguments (see
[14, Theorem 2], [15, Theorem 7.16]; see also [32, Proposition 2.1], [35, Theorem
2.1]). Since, by the correspondence with von Neumann’s theory (see [33], [35]), any
self-adjoint extension of S can be defined through (1.1) assuming the hypothesis
ran(τ) = K (equivalently, using the corresponding ordinary boundary triplet, see
[14], [38, Theorem 14.7]), these results seem to settle down our questions about ZQ

(at least in the case V = π, W = π∗). However, in cases where the defect indices
of S are not finite, in particular in applications to partial differential operators,
it can be much more convenient to do not require ran(τ) = K (and sometimes
V 6= 1, W 6= 1) and so to do not use ordinary boundary triplets (see, e.g., [12],
[7], [13], [32], [23], [16], [17], [18], [2], [3], [4], [6], [28], [9], [10]). While some results
regarding the validity of (1.1) for any z ∈ ρ(A0) ∩ ρ(AQ) are known even for not
ordinary boundary triplets (as generalized boundary triplets and quasi-boundary
triplets, see e.g., [3], [15], [5]), some additional hypotheses are required in these
cases (which moreover do not necessarily conform to our framework). Here, see
Theorem 2.19 in the next section, we provide a simple proof of

ZQ 6= ∅ ⇒ ZQ = ρ(A0) ∩ ρ(AQ)

in the case ran(τ) 6= K, V 6= π, W 6= π∗, without further hypotheses.
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2 Inverses of Krĕın’s Q-functions

Let H and K be Hilbert spaces with scalar products (which we assume to be
conjugate-linear w.r.t. the first variable) 〈·, ·〉H and 〈·, ·〉K. In the following, for
notational convenience, we do not identify K with its dual K∗; however we use
K∗∗ ≡ K. We denote by 〈·, ·〉K∗,K the K∗-K duality (conjugate-linear w.r.t. the first
variable) defined by 〈ψ, φ〉K∗,K := 〈J−1ψ, φ〉K, where J : K → K∗ is the duality
mapping given by the differential of φ 7→ 1

2 〈φ, φ〉K.

Given the self-adjoint operator

A0 : dom(A0) ⊆ H→ H ,

we consider a continuous (w.r.t. the graph norm in dom(A0)) linear map

τ : dom(A0)→ K

such that

ker(τ) is dense in H. (2.1)

Remark 2.1. Notice that we do not suppose that ran(τ) = K. This means
that the corresponding (accordingly to [34]) boundary triplet is not an ordinary
boundary triplet. See the successive Remark 2.20 for the case in which ker(τ) is
not dense.

For any z ∈ ρ(A0) we define R0
z ∈ B(H,dom(A0)) by R0

z := (−A0 + z)−1 and
Gz ∈ B(K∗,H) by

Gz : K∗ → H , Gz := (τR0
z̄)∗ ,

i.e.,

〈Gzφ, u〉H = 〈φ, τ(−A0 + z̄)−1u〉K∗,K φ ∈ K∗ , u ∈ H .

By (2.1), one has (see [32, Remark 2.9]),

ran(Gz) ∩ dom(A0) = {0}

and, by the resolvent identity,

Gz −Gw = (w − z)R0
wGz , (2.2)

so that

ran(Gz −Gw) ⊂ dom(A0) . (2.3)

Remark 2.2. Notice that (2.2) is equivalent to

Gz =
(
1 + (w − z)R0

z

)
Gw . (2.4)
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Let X and Y be two Hilbert spaces and let V and W be two bounded operators,
V ∈ B(K,X) and W ∈ B(Y,K∗). Given a not empty set ZΛ ⊆ ρ(A0), symmetric
with respect to the real axis (i.e., z ∈ ZΛ ⇒ z̄ ∈ ZΛ), we consider a map

Λ: ZΛ → B(X,Y) , z 7→ Λz ,

such that
V ∗Λ∗zW

∗ = WΛz̄V , (2.5)

Λz − Λw = (w − z)ΛwV G
∗
w̄GzWΛz . (2.6)

Remark 2.3. Notice that (2.6) is equivalent to

Λz = (1 + (w − z)ΛzV G
∗
z̄GwW ) Λw . (2.7)

Notice that, by (2.5) and (2.6), the map Λ̃z := WΛzV : K → K∗ satisfies the
relations

Λ̃∗z = Λ̃z̄

and
Λ̃z − Λ̃w = (w − z)Λ̃wG

∗
w̄GzΛ̃z ,

see [32, equations (2) and (4)]. Hence, building on [32, Theorem 2.1], one has (see

[28, Theorem 2.4 and Remark 2.5]; our Λ̃z = WΛzV corresponds to the operator
there denoted by Λz)

Theorem 2.4. Let Λ : ZΛ → B(X,Y) satisfy (2.5) and (2.6). Then there exists a
unique self-adjoint extension AΛ of the closed symmetric operator S := A0| ker(τ)
such that ZΛ ⊆ ρ(A0) ∩ ρ(AΛ) and

(−AΛ + z)−1 = R0
z +GzWΛzV G

∗
z̄ , z ∈ ZΛ . (2.8)

Remark 2.5. Any self-adjoint extension of S is of the kind provided by the
previous theorem (see [33, 35]).

From now on we use the shorthand notation

RΛ
z := (−AΛ + z)−1 , z ∈ ρ(AΛ) .

Lemma 2.6. For any w and z in ZΛ one has

Λz − Λw = (w − z)ΛwV G
∗
w̄

(
1 + (w − z)RΛ

z

)
GwWΛw . (2.9)

Proof. Taking into account relations (2.6), (2.7), (2.4) and (2.8), one gets

Λz − Λw

= (w − z)ΛwV G
∗
w̄ (Gz + (w − z)GzWΛzV G

∗
z̄Gw)WΛw

= (w − z)ΛwV G
∗
w̄

(
1 + (w − z)R0

z + (w − z)GzWΛzV G
∗
z̄

)
GwWΛw

= (w − z)ΛwV G
∗
w̄

(
1 + (w − z)RΛ

z

)
GwWΛw .
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Obviously, by (2.8), ρ(AΛ) 3 z 7→ RΛ
z is a B(H)-valued analytic extension of

ZΛ 3 z 7→ R0
z +GzWΛzV G

∗
z̄. Thus, given w ∈ ZΛ, relation (2.9) suggests to define

an analytic extension of Λ by

Λ̂(w) : ρ(AΛ)→ B(X,Y) ,

Λ̂(w)
z := Λw + (w − z)ΛwV G

∗
w̄

(
1 + (w − z)RΛ

z

)
GwWΛw . (2.10)

Lemma 2.7. Suppose that ZΛ contains at least an accumulation point. Then Λ̂(w)

is w-independent.

Proof. Let w1 6= w2. At first suppose that AΛ has a spectral gap, equivalently
ρ(AΛ) is a connected subset of C. Since Λ̂(w1) = Λ̂(w2) on ZΛ by (2.9), then

Λ̂(w1) = Λ̂(w2) on the whole ρ(AΛ) by the Identity Theorem for analytic functions.
Conversely suppose that ρ(AΛ) = C− ∪ C+, where C± := {z ∈ C : ±Im(z) > 0}.
Then the thesis is consequence of the same argument separately applied to the
connected sets C− and C+.

Remark 2.8. Suppose that Λ̂(w) in (2.10) does not depend on the choice of

w ∈ ZΛ, Λ̂z ≡ Λ̂
(w)
z ; then V ∗Λ̂∗zW

∗ = W Λ̂z̄V : by (2.5) and (RΛ
z )∗ = RΛ

z̄ , one has

V ∗Λ̂∗zW
∗ = WΛw̄V + (w̄ − z̄)WΛw̄V G

∗
w

(
1 + (w̄ − z̄)RΛ

z̄

)
Gw̄WΛw̄V = W Λ̂z̄V .

The previous lemma suggests that the Krĕın-like resolvent formula (2.8) could
hold on a larger set, i.e.,

(−AΛ + z)−1 = R0
z +GzW Λ̂zV G

∗
z̄ , z ∈ ρ(A0) ∩ ρ(AΛ) .

Let us consider a map

Q : ρ(A0)→ C (Y,X) , z 7→ Qz ,

(here C (Y,X) denotes the set of closed linear operators) such that

dom(Qz) is z-independent, dom(Qz) ≡ D, and dense, D = Y, (2.11)

Qz = Qw + (z − w)V G∗w̄GzW z,w ∈ ρ(A0) . (2.12)

Defining

ZQ := {z ∈ ρ(A0) : Qz and Qz̄ are bijections from D

onto X with inverses in B(X,Y)} ,

we suppose that
ZQ 6= ∅ (2.13)

and
V ∗(Q∗z)−1W ∗ = WQ−1

z̄ V , z ∈ ZQ . (2.14)
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Remark 2.9. Notice that the left hand side of (2.14) is well defined: since z ∈ ZQ,
Q−1

z is bounded and so its adjoint exists (and is bounded); moreover ker(Q∗z) =
ran(Qz)⊥ = X⊥ = {0} and so Q∗z is invertible and (Q∗z)−1 = (Q−1

z )∗.

Remark 2.10. Notice that Qw, w ∈ ZQ, is closed since it is the inverse of a
bounded (hence closed) operator. Then Qz, z ∈ ρ(A0), is closed since, by (2.12),
it differs from Qw by a bounded operator.

Remark 2.11. Notice that if V = 1 (or W = 1) then (2.14) follows from Q∗zW =
W ∗Qz̄ (or V Q∗z = Qz̄V

∗).

The set of maps satisfying (2.11)-(2.14) is not void, we give some examples. Be-
low we consider a Weyl function M : ρ(A0)→ B(K∗,K), z 7→Mz, i.e., a B(K∗,K)-
valued map such that

M∗z = Mz̄ , Mz −Mw = (z − w)G∗w̄Gz . (2.15)

The canonical representation is Mz := τ((Gz0 + Gz̄0)/2 − Gz), z0 ∈ ρ(A0), (see
[32, Lemma 2.2]; it is well defined thanks to (2.3)). In the case τ has a bounded
extension to ran(Gz) (eventually considering a range space for τ larger than the
original K), one can take Mz := −τGz.

Example 2.12. Let X be a closed subspace of K and let π : K → K, ran(π) = X,
be the corresponding orthogonal projector. Then π∗ : K∗ → K∗ is an orthogonal
projector as well. Let us set Y := X∗ = ran(π∗), V := π : K → X, W := π∗ : Y →
K∗. Given Θ: dom(Θ) ⊆ X∗ → X self-adjoint and a Weyl function M : ρ(A0) →
B(K∗,K), z 7→ Mz, we define Qz : dom(Θ) ⊆ Y → X by Qz := Θ + VMzW . If
one further supposes that τ is surjective, i.e., ran(τ) = K, then C\R ⊆ ZQ (see
[32, Proposition 2.1], [35, Theorem 2.1]). Q : z 7→ Qz satisfies (2.11), (2.12) and
Q∗z = Qz̄ by (2.15). So (Q−1

z )∗ = (Q∗z)−1 = Q−1
z̄ , z ∈ ZQ. Since V and W are

orthogonal projectors, this gives (2.14). For explicit examples where such kind of
maps appear in applications to partial differential operators, see [20], [35], [36],
[27], [19], [21], [29], [11], [30] and references therein. As Theorem 2.19 below shows,
it is not necessary to suppose ran(τ) = K whenever one knows that ZQ 6= ∅.

Example 2.13. Let α ∈ B(K,K∗), α∗ = α, and let M : ρ(A0) → B(K∗,K),
be a Weyl function. Suppose that there exists c > 0 such that ‖Mz‖B(K∗,K) <

‖α‖−1
B(K,K∗) whenever |Im(z)| > c. Then define Qz ∈ B(K∗) by Qz := −(1−αMz).

It is immediate to check (also use Remark 2.11) that Q : z 7→ Qz satisfies (2.11)-
(2.14) with X = Y = K∗, V = α, W = 1 and ZQ = {z ∈ ρ(A0) : |Im(z)| > c}.
Such kind of maps appears in the definition of Laplacians with δ-type potentials
supported on a compact hypersurface (see [4], [28, Section 5.4], [31] and references
therein); in such references it is proven that C\R ⊆ ZQ by analytic Fredholm theory
(Mz is a compact operators in these examples). As Theorem 2.19 below shows,
this is not necessary, ZQ 6= ∅ suffices. In the not compact case, for Laplacians with
δ-type potentials supported on a deformed plane, in [10, Lemma 3.6] it is proven
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C\R ⊆ ZQ whenever the deformation is in C1,1
0 (R2), while ZQ 6= ∅ whenever the

deformation is in C0,1
0 (R2), i.e., is Lipschitz continuous (see [10, Lemma 3.5]). By

Theorem 2.19, the latter hypothesis suffices to prove that ZQ = ρ(A0) ∩ ρ(AΛ).

Example 2.14. Let V ∈ B(K,K∗), W ∈ B(K∗,K) such that V ∗W ∗ = WV and
let M : ρ(A0)→ B(K∗,K), z 7→Mz, be a Weyl function. Suppose that there exists
c > 0 such that ‖Mz‖B(K∗,K) < ‖V ‖−1

B(K,K∗)‖W‖
−1
B(K∗,K) whenever |Im(z)| > c.

Then define Qz ∈ B(K∗) by Qz := −(1− VMzW ). It is immediate to check that
Q : z 7→ Qz satisfies (2.11), (2.12) and ZQ = {z ∈ ρ(A0) : |Im(z)| > c} with
X = Y = K∗. As regards (2.14), it holds by

V ∗(Q∗z)−1W ∗ = −V ∗(1−W ∗Mz̄V
∗)−1W ∗ = −V ∗

( ∞∑
n=0

(W ∗Mz̄V
∗)n

)
W ∗

= −
∞∑

n=0

V ∗W ∗Mz̄V
∗ . . .W ∗Mz̄V

∗︸ ︷︷ ︸
n-times

W ∗ = −
∞∑

n=0

W VMz̄W . . . V Mz̄W︸ ︷︷ ︸
n-times

V

= −W (1− VMz̄W )−1V = WQ−1
z̄ V .

Alike maps appear in [1, Appendix B] and produce resolvent formulae similar
to the (Kato-)Konno-Kuroda one (see [22, 26]). However in [1, Appendix B] it is
assumed that the map E∗F , where F := V τ , E := W ∗τ , is infinitesimally bounded
with respect to |A0|1/2 and that Mz is compact. As Theorem 2.19 below shows,
these hypotheses are not necessary, ZQ 6= ∅ suffices.

Example 2.15. Let Q : ρ(A0)→ C (Y,X) be any map satisfying (2.11)-(2.14) with
V = 1 (or W = 1) and let B ∈ B(Y,X) such that B∗W = W ∗B (or V B∗ = BV ∗).

Define Q̃z := B+Qz. For any z ∈ ZQ one has Q̃z = (1 +BQ−1
z )Qz. Suppose that

Z̃Q

:={z ∈ ZQ : 1 +BQ−1
z and 1 +BQ−1

z̄ are continuous bijections from X onto X}

is not void. Then Q̃ : z 7→ Q̃z satisfies (2.11)-(2.14). A map of such kind is
used in [28, section 5.5] to describe Laplacians with δ′-type potentials supported
on compact Lipschitz hypersurfaces. There Q−1

z is compact and it is proven that

C\R ⊆ Z̃Q by analytic Fredholm theory. As Theorem 2.19 below shows, Z̃Q 6= ∅
suffices to prove that ZQ̃ = ρ(A0) ∩ ρ(AΛ).

Given Q which satisfies (2.11)-(2.14), it is immediate to check (also use Remark
2.9) that

ΛQ : ZQ → B(X,Y) , ΛQ
z := Q−1

z ,

satisfies (2.5) and (2.6) and thus we can apply Theorem 2.4. From now on we use
the notations

AQ := AΛQ , RQ
z := (−AQ + z)−1 , z ∈ ρ(AQ) .
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According to (2.10), we can introduce the analytic extension of ΛQ given by

Λ̂Q : ρ(AQ)→ B(X,Y) ,

Λ̂Q
z := Q−1

w + (w − z)Q−1
w V G∗w̄

(
1 + (w − z)RQ

z

)
GwWQ−1

w , w ∈ ZQ . (2.16)

Remark 2.16. Notice that, since we are not supposing that ZQ contains an

accumulation point, the extension Λ̂Q could depend on the choice of the point
w ∈ ZΛ. This is not the case, as Theorem 2.19 shows.

At first we provide the following

Lemma 2.17. Let Λ: ZΛ → B(X,Y) be as in Theorem 2.4. Then, for any w ∈ ZΛ

and for any z ∈ ρ(A0) ∩ ρ(AΛ), one has

RΛ
z −R0

z =
(
1 + (w − z)RΛ

z

)
GwWΛwV G

∗
w̄

(
1 + (w − z)R0

z

)
. (2.17)

Proof. In the case z = w, (2.17) reduces to (2.8). Hence it suffices to prove the
thesis in the case z 6= w. By functional calculus, it is immediate to check that

(w − z) (1 + (w − z)Rz) =

(
−Rw +

1

w − z

)−1

(2.18)

for any w, z ∈ ρ(A), w 6= z, where Rz := (−A + z)−1 is the resolvent of a self-
adjoint operator A. Thus, by (2.18) and (2.8),

(w − z)2(RΛ
z −R0

z)

= (w − z)
(
1 + (w − z)RΛ

z

)
− (w − z)

(
1 + (w − z)R0

z

)
=

(
−RΛ

w +
1

w − z

)−1

−
(
−R0

w +
1

w − z

)−1

=

(
−RΛ

w +
1

w − z

)−1

(RΛ
w −R0

w)

(
−R0

w +
1

w − z

)−1

=

(
−RΛ

w +
1

w − z

)−1

GwWΛwV G
∗
w̄

(
−R0

w +
1

w − z

)−1

= (w − z)2
(
1 + (w − z)RΛ

z

)
GwWΛwV G

∗
w̄

(
1 + (w − z)R0

z

)
.

Remark 2.18. Notice that by the exchange RΛ
z ↔ R0

z in the above proof one gets
the alternative identity

RΛ
z −R0

z =
(
1 + (w − z)R0

z

)
GwWΛwV G

∗
w̄

(
1 + (w − z)RΛ

z

)
. (2.19)

The previous lemma provides an essential ingredient in the proof of our main
result:
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Theorem 2.19. Let ZQ 6= ∅, Q : ρ(A0) → C (Y,X) a map statisfying (2.11),
(2.12), and (2.14). Then ZQ = ρ(A0)∩ ρ(AQ) and for any z ∈ ρ(A0)∩ ρ(AQ) one

has Q−1
z = Λ̂Q

z . Moreover the resolvent formula

(−AQ + z)−1 = R0
z +GzWQ−1

z V G∗z̄ , z ∈ ρ(A0) ∩ ρ(AQ) ,

holds true.

Proof. The first statement of the theorem is equivalent to show that the two identi-
ties Λ̂Q

z Qz = 1Y and QzΛ̂Q
z = 1X hold true for any z ∈ ρ(A0)∩ρ(AQ), z 6= w ∈ ZQ.

By (2.16) and (2.12), one gets

Λ̂Q
z Qz

=
(
Q−1

w + (w − z)Q−1
w V G∗w̄

(
1 + (w − z)RQ

z

)
GwWQ−1

w

)
(Qw + (Qz −Qw))

= 1 + (w − z)Q−1
w V G∗w̄

(
1 + (w − z)RQ

z

)
GwW − (w − z)Q−1

w V G∗w̄GzW

− (w − z)2Q−1
w V G∗w̄

(
1 + (w − z)RQ

z

)
GwWQ−1

w V G∗w̄GzW .

Hence, by (2.4) and (2.17),

(w − z)−2
(
Λ̂Q
z Qz − 1

)
= (w − z)−1Q−1

w V G∗w̄
((

1 + (w − z)RQ
z

)
−
(
1 + (w − z)R0

z

))
GwW

−Q−1
w V G∗w̄

(
1 + (w − z)RQ

z

)
GwWQ−1

w V G∗w̄
(
1 + (w − z)R0

z

)
GwW

= Q−1
w V G∗w̄

(
(RQ

z −R0
z)

−
(
1 + (w − z)RQ

z

)
GwWQ−1

w V G∗w̄
(
1 + (w − z)R0

z

))
GwW

= 0 .

The proof of the other identity is almost the same. At first let us notice that
QzΛ̂Q

z is well defined since, by definition (2.16) and (2.12),

ran(Λ̂Q
z ) ⊆ ran(Q−1

w ) = dom(Qw) = D = dom(Qz) .

By (2.16) and (2.12), one gets

QzΛ̂Q
z

= (Qw + (Qz −Qw))
(
Q−1

w + (w − z)Q−1
w V G∗w̄

(
1 + (w − z)RQ

z

)
GwWQ−1

w

)
= 1 + (w − z)V G∗w̄

(
1 + (w − z)RQ

z

)
GwWQ−1

w − (w − z)V G∗w̄GzWQ−1
w

− (w − z)2V G∗w̄GzWQ−1
w V G∗w̄

(
1 + (w − z)RQ

z

)
GwWQ−1

w .

Hence, by (2.4) and (2.19),

(w − z)−2
(
QzΛ̂Q

z − 1)

= (w − z)−1V G∗w̄
((

1 + (w − z)RQ
z

)
−
(
1 + (w − z)R0

z

))
GwWQ−1

w

− V G∗w̄
(
1 + (w − z)R0

z

)
GwWQ−1

w V G∗w̄
(
1 + (w − z)RQ

z

)
GwWQ−1

w

= V G∗w̄
(
(RQ

z −R0
z)−

(
1 + (w − z)R0

z

)
GwWQ−1

w V G∗w̄
(
1 + (w − z)RQ

z

))
GwWQ−1

w

= 0 .
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To conclude the proof of the theorem we must show that Λ̂Q
z satisfies the

identities (2.5) and (2.6) for all z, w ∈ ρ(A0) ∩ ρ(AQ). These are immediate

consequences of Remark 2.8 (Λ̂Q
z = Q−1

z does not depend on w) and (2.12).

Remark 2.20. Notice that in the proof of the previous theorem we did not use
(2.1). This hypothesis is only needed in the proof of Theorem 2.4. In case (1.1) still
holds, then the statements in Theorem 2.19 retain their validity without requiring
ker(τ) = H.
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[8] Brüning, J., Geyler, V., Pankrashkin, K.: Spectra of self-adjoint extensions and applications
to solvable Schrödinger operators. Rev. Math. Phys. 20, 1-70 (2008)

[9] Cacciapuoti, C., Fermi, D., Posilicano, A.: Relative-zeta and Casimir energy for a semitrans-
parent hyperplane selecting transverse modes. In: A. Michelangeli, G. Dell’Antonio (eds.),
Advances in Quantum Mechanics. Contemporary trends and open problems. Springer IN-
dAM Series 18, 71-97. Springer, Cham, (2017)

[10] Cacciapuoti, C., Fermi, D., Posilicano, A.: Scattering from local deformations of a semi-
transparent plane. arXiv:1807.07916 (2018)

[11] Cacciapuoti, C., Pankrashkin, K., Posilicano, A.: Self-adjoint indefinite Laplacians. To
appear in J. Anal. Math., arXiv:1611.00696 (2016)

[12] Dell’Antonio, G.F., Figari, R., Teta, A.: Hamiltonians for Systems of N Particles Interacting
through Point Interactions. Ann. Inst. Henri Poincaré 60, 253-290 (1994)
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