
Adaptive Search over Sorted Sets

Biagio Bonaseraa, Emilio Ferrarab, Giacomo Fiumaraa, Francesco Paganoc, Alessandro
Provettia,∗

aDept. of Mathematics and Informatics, Univ. of Messina, V.le F. Stagno D’Alcontres 31, I-98166 Messina, Italy
bCenter for Complex Networks and Systems Research, School of Informatics and Computing. Indiana Univ.,

Bloomington, USA
cDept. of Informatics, Univ. of Milan, Via Comelico, 39. I-20135 Milan, Italy

Abstract

We revisit the classical algorithms for searching over sorted sets to introduce an algorithm re-
finement, called Adaptive Search, that combines the good features of Interpolation search and
those of Binary search. W.r.t. Interpolation search, only a constant number of extra comparisons
is introduced. Yet, under diverse input data distributions our algorithm shows costs comparable
to that of Interpolation Search, i.e., O(log log n) while the worst-case cost is always in O(log n),
as with Binary search. On benchmarks drawn from large datasets, both synthetic and real-life,
Adaptive Search scores better times and lesser memory accesses even than Santoro and Sidney’s
Interpolation-Binary Search.

Keywords: Sorting, Searching sorted sets

1. Introduction

We revisit the classical algorithms for searching over sorted sets to introduce a new algorithm,
called Adaptive Search (AS), that combines the good features of Interpolation search and those
of Binary search [1].
The membership problem can be formally defined as follows.
instance:

• S = {a1, a2, ..., an}, a set of n distinct, sorted elements,
with ai < ai+1 , 1 ≤ i ≤ n − 1;

• an element key

question: Does key belong to the set represented by S (key ∈ S) ?
There exist two classical algorithms for searching over sorted sets: binary search (BS) [1]

and interpolation search (IS) [2]; both take advantage of the ordering of the instance to minimize
the number of keys that must be accessed.

∗Corresponding author
Email addresses: ferrarae@indiana.edu (Emilio Ferrara), gfiumara@unime.it (Giacomo Fiumara),

francesco.pagano@unimi.it (Francesco Pagano), ale@unime.it (Alessandro Provetti)

In press by Elsevier Journal of Discrete Algorithms November 19, 2012

In BS, the worst-case computational cost is O(log n); this result is independent of data distri-
bution over the instance. Notice that in search the worst-case is rather important as it corresponds
to an unsuccessful membership query.

Vice versa, the Interpolation Search algorithm is more efficient than BS when the elements
of S are distributed uniformly or quasi-uniformly 1 over the [a1, an] interval; the computational
cost is in O(log log n).

Unfortunately, Interpolation Search degrades to O(n) when data is not uniformly distributed
(in the sense above). This is particularly inconvenient when searching over indexes of large
databases, where it is crucial to minimize the number of accesses2.

In this work we propose an algorithm, called Adaptive Search (AS) that refines Interpolation
Search and minimizes the number of memory accesses needed to complete a search. AS is
adaptive to the values by means of a mixed behavior: it combines the independence from the
distribution of BS with the good average costs of IS.

W.r.t. Interpolation search, AS requires only a constant number of extra comparisons. Yet,
under several relevant input data distributions our algorithm shows average case costs comparable
to those of interpolation, i.e., O(log log n), while the worst-case cost remains in O(log n), as with
Binary search.

Comparison with a more recent literature is also encouraging: both on synthetic and real
datasets AS has better times and lesser memory accesses than Santoro and Sidney’s Interpolation-
Binary Search [3]. Also, it is easier to implement and more broadly applicable that the approach
of Demaine et al.[4] to searching non-independent data.

2. The Adaptive Search algorithm

Given an ordered set S, allocated on an array A, and an element key that is searched, we
define the following:

A[bot]: the minimum element of the subset (at the beginning, bot = 1);

A[top]: the maximum element of the subset (at the beginning, top = |S|);

A[next]: interpolation element, i.e. what IS would choose, and

A[med]: the el. halfway between bot and top, i.e., what BS would choose.

Our algorithm consists, essentially, of a while cycle. At each iteration, we consider S =

{A[bot], .., A[top]} and we set:

next = bot +

⌊
key − A[bot]

A[top] − A[bot]
∗ (top − bot)

⌋
Variable next defined above contains the index value that bounds the array segment on which our
AS algorithm will recur on. As with interpolation, the instance is now clipped:

1By quasi-uniform data distribution we intended, informally, that the distance between two consecutive values of S
does not vary much.

2In this discussion we do not consider the advanced techniques, viz. the exploitation of locality, that underlie search
over large database indexes.

2

S′ =

{A[bot], ..., A[next]} if A[bot] ≤ key ≤ A[next]

{A[next], ..., A[top]} otherwise

To do so, we set the new boundaries of the segment containing S′:
top = next if A[bot] ≤ key ≤ A[next]

bot = next otherwise

The computation is now restricted to the segment that would have been considered by IS. Next,
the median point is computed over such restricted segment, rather than on the whole input. Vice
versa, if interpolation returns a shorter interval than BS would have, we keep the result of the
interpolation step:

if |S′| > |S|

2 then next = med = bot +
top−bot

2 ;
elseif key = A[next] then key is found and we terminate;

elseif key > A[next] then bot = next + 1;
else top = next − 1 (must be key < A[next]).

At the end of the iteration, S′ = {A[bot], ..., A[top]}, and, clearly, |S′| < |S|

2 . Finally:

if A[bot] < key < A[top] then iterate search on S′;
else key < S and we terminate with no.

From the point of view of computational costs, we could summarize the following: our algorithm
may spend up to double number of operations than IS in carefully finding out the best halving of
the search segment, which in turn will mean that less iterations shall be needed to complete. By
means of standard cost analysis techniques, we have the following results:

• Best Case: key is found, with a constant number of comparisons: Θ(1);

• Worst Case: the intervals between values are unevenly distributed; hence, the interval
found by the BS technique is always the shortest. As a result, AS will execute essentially
the same search as BS, with equal O(log n) time complexity (but more operations at each
level), and

• Average Case: we consider the average case to be when there is some degree of uniformity
in the distance between two consecutive values of S. In such cases, AS executes exactly
as IS so its cost is in O(log log n).

3. Relation with literature

Only after our solution was conceived and implemented, have we become aware of an earlier
work by Santoro and Sidney [3] who devised a similar solution that combines (but does not blend)
together interpolation and binary search. Although the asymptotic complexity is the same, there
are some marked differences between their solution and ours, let’s discuss them now.

Santoro-Sidney’s algorithm, called Interpolation-Binary Search, is based on the idea that
interpolation search is useful, from the point of view of costs, only when the array searched

3

is larger than a given threshold. When the considered array segment is smaller than a user-
defined threshold, binary search is applied unconditionally. Vice-versa, above the threshold an
interpolation search step is applied, followed eventually by a binary search step.

Unlike IBS, our algorithm makes, at each level of its iteration, a choice about which clipping
of S to apply. Hence, it is possible to show that for any input AS will not take more elementary
operations than IBS.

We have sought a statistical confirmation of this fact by running a set of experiment over
random-generated ordered sets; the results are presented in detail in the next Section3. We limited
the testing of IBS to queries with parameter θ = 2, which the authors suggested would work best.
For all parameter settings and for all data distributions considered AS outperformed IBS albeit
the difference could sometimes be statistically insignificant.

Two other works that address search over sorted sets have considered slight variations of
the specification, that of Melhlhorn and Tsakalidis [5] and that of Demaine et al. [4]. The
former considered an extended data structure, the Interpolation Search Tree (IST) to optimize
the dictionary operations, not just search, over the sorted set. As such, their solution is not
comparable to ours as it seeks to optimize insertion and deletion times rather than speed up
search.

The latter, i.e., Demaine’s interpolation search for non independent data is also not directly
comparable to our work, but deserves a careful analysis. They define a deterministic metric of
“well-behaved” or smooth data that enables searching along the lines of interpolation search.
Specifically, they define

∆ =
max(xi − xi−1)
min(xi − xi−1)

i.e., the ratio between the largest and smallest gap between two adjacent elements of S, as the key
parameter in measuring the well-behavedness of the input. A data structure is needed that main-
tains a dynamic data set, that evenly divide the interval (x1, ..., xn) into n bins, named B1, . . . Bn;
each of them represents a range of size xn−x1

n .
Each bin Bi stores in a balanced binary search tree (BST) its elements, plus the nearest neigh-

bors above and below that set. Hence, searching for an element key proceeds by interpolating on
key to find which Bi it may lay in, i.e.,

i =
(key − x1)
(xn − x1)

then performing a search in the BST associated to Bi. For their solution, Demaine et al. prove
the following results:

• the worst-case search time is O(log n) and thus O(log min{∆, n}), and

• the algorithm reproduces the O(log log n) performance of interpolation search on data
drawn independently from the uniform distribution.

3The instances and the test times are available from the companion Web site.

4

4. Experimental validation

We have implemented AS, along with the other algorithms mentioned so far, in order to test
its efficiency, on real data, vis-à-vis those in the literature. The testing platform consists of a Java
implementation running on a PC with JRE 1.7, Windows 2003 server R2, dual Opteron CPU with
4GBs of RAM. The tests consisted of running a number of searches corresponding to 1/1000 of
the size of the dataset; keys where randomly chosen, with at least 80% of them successful. The
results were normalized w.r.t. the number of queries.

4.1. Validation across distributions

As a first step, we considered random-generated benchmark instances (ordered arrays) of
Java double data type, double-precision 64-bit IEEE 754 floating point values. Instances were
randomly generated, with the following distribution types

1. uniform sparsity: the gap between two consecutive values is fixed across the instance. As
unrealistic as it is, this case is useful in assessing whether AS introduces overheads.

2. increasing sparsity: the gap is actually growing, so the elements towards the end (i.e., the
highest integer values) are more distant from each other than those at the beginning.

3. stepwise sparsity: the instance has zones with distinct, but fixed, gap sizes; the gap size
grows towards the end of the array.

4. Paretian: the “80-20” rule applied to the summation of the values inside the instance, i.e.,
the summation of the first 80% of elements is equal to the summation of the last 20%.

For each parameter setting we generated and tested 10 random instances, then computed the
average. Also, values are normalized w.r.t. the number of queries, so as to make them comparable
across instance sizes. The results, presented in Table 1 compare the number of accesses, iterations
and times of the four algorithms we considered.

On aggregate, AS outperformed IBS2 as well, albeit the difference could sometimes be statis-
tically insignificant. The distributions were designed to stress-test AS in an unfavorable setting,
where quicker implementations of BS could easily make up for the extra number of iterations.
Even though on uniform- and increasing-sparsity instances Binary search can still run slightly
faster than AS, on aggregation AS yields a huge advantage over all other algorithms, especially
in terms of number of accesses and iterations.

The full benchmark results and the source codes (in Java) will be made available on a dedi-
cated Web site4.

4.2. A real-life benchmark dataset

To perform our analysis on real-life data with mixed or alternating distributions we used
a public dataset on Facebook friendship released by Gjoka [6]; it contains a graph of about
957 thousands vertices (each representing a user) and 58.4 millions edges (each representing a
friendship relation). Since each user is identified by a unique integer, and the dataset is ordered by
user-id, it represents an ideal benchmark for testing our Adaptive Search algorithm as it gives to
us one instance of about 1 million ordered integers. Also, the dataset can be split up in 9 distinct
sub-instances of 100k elements each. The collected user-ids depend on several factors and human

4http://logic-ai.di.unimi.it/

5

Accesses Iterations Times
Sizes : 105 106 105 106 105 106

Sparsity Algo.

uniform

BS 14, 728 18, 467 15, 790 19, 155 4.074, 941 756, 956
IS 4, 743 4, 919 2, 888 3, 068 2.553, 635 700, 328

IBS 2 19, 644 23, 397 26, 922 33, 613 25.273, 348 3.639, 200
AS 6, 054 6, 290 2, 887 3, 065 3.150, 028 1.004, 239

increasing

BS 14, 741 18, 479 15, 828 19, 156 462, 659 831, 015
IS 19, 613 26, 619 18, 906 25, 978 948, 907 2.994, 142

IBS 2 19, 338 23, 502 22, 581 29, 177 1.345, 126 3.499, 578
AS 11, 198 12, 160 5, 460 6, 016 596, 080 1.744, 790

stepwise

BS 14, 795 18, 505 15, 957 19, 171 445, 794 753, 501
IS 232, 945 329, 222 256, 465 351, 515 10.386, 056 35.041, 154

IBS 2 20, 304 24, 202 24, 777 31, 096 1.485, 665 3.604, 115
AS 12, 055 12, 968 6, 129 6, 708 652, 009 1.505, 453

Paretian

BS 14, 793 18, 476 15, 917 19, 157 457, 496 916, 074
IS 17, 536 21, 702 16, 028 20, 209 839, 989 2.768, 519

IBS 2 20, 252 24, 180 25, 339 31, 904 1.509, 791 3.900, 253
AS 10, 338 11, 003 5, 097 5, 536 564, 157 1.516, 632

Table 1: Averaged and normalized benchmark values over random instances with distinct data distributions. Times are
in milliseconds.

intervention, e.g., users leaving Facebook and thus having their ids removed, so subinstances
turn out to have distinct data distributions. Moreover, the gaps between two consecutive user-ids
depends also on how the sample was collected.

These intuitions are confirmed by statistical analysis of the distribution of the gaps w.r.t. a null
model generated with gaps of the same average and standard deviation. For the whole dataset
we found that Spearman’s rank correlation coefficient is equal to 4.95 · 10−5 and Pearson’s to
1.66 · 10−4; this indicates that the distribution is nonuniform.

We used the same platform and the same set-up as before for the testing; the first test consid-
ered the whole Gjoka’s dataset and the aggregated results (averaged over 10 runs) are in Table 2.
As per the synthetic benchmarks, we ran a number of searches corresponding to 1/1000 of the
size of the dataset; keys where randomly chosen, with at least 80% of them successful.

Algorithm Accesses Iterations T ime(ms)
BS 18, 439 19, 136 6, 236, 787
IS 501, 346 499, 730 74, 035, 808

IBS 2 24, 097 31, 474 28, 205, 959
AS 8, 349 4, 044 4, 791, 845

Table 2: Benchmarks values over Gjoka’s dataset

Subsequently, we have sought to confirm these results over similar datasets having diverse
value distributions. To do so, we repeated the test on 9 sub-instances of Gjoka’s, each corre-

6

sponding to 100k consecutive keys, i.e., positions (not values) 0–99.999, 100.000–199.999 and
so on. In fact, the L2 (Euclidean) distance from a uniform distribution of gaps between two con-
secutive values, varies widely. Nevertheless, our AS algorithm performed well on each subset,
as it is reported in Table 3.

Instance 1 2 3 4 5 6 7 8 9
IS 1, 662 1, 473 1, 494 1, 463 1, 488 1, 470 1, 483 1, 487 1, 489
BS 621 522 3, 623 300 300 300 300 300 300
IBS 2, 177 2, 028 1, 951 2, 044 2, 043 2, 051 2, 057 2, 047 2, 068
AS 889 711 860 307 310 311 309 309 309

Table 3: Memory accesses over 9 subinstances of Gjoka’s dataset

Instanceno. 1 2 3 4 5 6 7 8 9
IS 1, 783 1, 567 1, 613 1, 570 1, 602 1, 578 1, 589 1, 593 1, 605
BS 422 351 3, 454 100 100 100 100 100 100
IBS 2, 834 2, 633 2, 466 2, 630 2, 618 2, 636 2, 644 2, 643 2, 661
AS 417 355 453 100 100 100 100 100 100

Table 4: Iterations over 9 subinstances of Gjoka’s dataset

Instance no. 1 2 3 4 5
IS 1, 180, 339 433, 851 474, 331 447, 672 453, 487
BS 682, 630 252, 233 1, 862, 590 126, 926 127, 868
IBS 5, 104, 407 2, 600, 980 2, 533, 918 2, 723, 071 2, 523, 096
AS 427, 276 326, 454 393, 219 135, 930 135, 005

Instance no. 6 7 8 9 S um(1..9)
IS 453, 342 481, 395 71, 925 70, 068 4, 066, 410
BS 127, 822 131, 044 136, 434 130, 819 3, 578, 366
IBS 2, 541, 275 2, 588, 292 242, 335 254, 291 21, 111, 665
AS 134, 669 136, 642 141, 063 140, 683 1, 970, 941

Table 5: Times, in milliseconds over 9 subinstances of Gjoka’s dataset

At this point of our validation, we can exclude that the results suffer from any possible positive
bias of the benchmark.

5. Conclusions

Even though we have considered only the simplest instance of search, i.e., ordered sets of
integers, it turns out that this case is of great practical interest when we consider large dataset
extracted from, e.g., crawling Web pages or Online Social Networks, where users/resources are

7

identified by simple integer keys. This is notably the case with Facebook, which assign to each
subscriber a user-id consisting of a progressive integer. On such type of data, our solution shows
a marked improvement over the literature. The results of experiments described in the previous
section lead us to draw the following conclusions:

1. The performances of our AS algorithm vis-à-vis those IS and BS are very good and im-
prove as n grows;

2. The number of accesses needed by AS is less than those of BS. The cost analysis of IS
suggests that on certain instances, i.e., when sparsity grows, our algorithm needs between
log n and 2 log n accesses.

3. our method for selecting the search interval succeeds in preventing the irregularities of data
distribution from affecting performances; indeed, the number of accesses required remains
� log log n.

4. while the asymptotic complexity of our AS algorithm is the same as Santoro’s IBS, we have
found that -on relatively diverse benchmarks- AS often needs half or less of the memory
accesses than IBS.

5. even though we could not yet run a complete study on large datasets, we have indication
that the results presented here are likely to be confirmed for search dictionaries (considered
by [5, 7]).

An interesting open question is whether instances that elicit the worst case (2 log n comparisons)
for AS can actually be found, and how likely they are to appear within real datasets.

Acknowledgments

Thanks to Minas Gjoka for making the dataset studied in this work available.

References

[1] T. H.Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd Edition, The MIT press &
McGraw-Hill, 2009.

[2] A. Andersson, C. Matsson, Dynamic interpolation search in o(log log n) time, in: Proc. of Int’l Colloquium on
Automata, Languages and Programs (ICALP), 1993, pp. 15–27.

[3] N. Santoro, J. B. Sidney, Interpolation-binary search., Inf. Process. Lett. 20 (4) (1985) 179–181.
[4] E. D. Demaine, T. R. Jones, M. Patrascu, Interpolation search for non-independent data., in: SODA: ACM-SIAM

Symposium on Discrete Algorithms (SODA), SIAM press, 2004, pp. 529–530.
[5] K. Mehlhorn, A. K. Tsakalidis, Dynamic interpolation search, Journal of the ACM 40 (3) (1993) 621–634.
[6] M. Gjoka, M. Kurant, C. Butts, A. Markopoulou, Practical recommendations on crawling online social networks,

IEEE Journal on Selected Areas in Communications 29 (9) (2011) 1872–1892.
[7] A. Andersson, T. Hagerup, J. Hastad, O. Petersson, Tight bounds for searching a sorted array of strings, in: SIAM J.

on Computing 30:55, 2001, pp. 1552–1578.

8

