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ABSTRACT. In this paper, we prove that the Brezis-Nirenberg problem
—Au = |[ulP"lu + eu inQ, w=0o0n 99,

%, has a solution

with the shape of a tower of two bubbles with alternate signs, centered at the center of

symmetry of the domain, for all € > 0 sufficiently small.

where € is a symmetric bounded smooth domain in RV, N > 7 and p =

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In this paper we are interested in the construction of solutions to the following problem

—Au=|uflu+eu inQ
{ u =0, on 0N (1.1)

where  is a bounded smooth domain of RY with N > 7, € is supposed to be small and posi-
tive while p+1 = 225 is the critical Sobolev exponent for the embedding of H} () into LPF1(€2).

The pioneering paper on equation (1.1) was written by Brezis and Nirenberg [9] in 1983 where
the authors showed that for N > 4 and € € (0, A1), the problem (1.1) has at least one positive
solution where \; denotes the first eigenvalue of —A on (.

In the case N = 3, a similar result was proved in [9] but only for e € (A*, A1) with A* = A*(Q) > 0.
Moreover by using a version of the Pohozaev Identity the authors showed that A\*(Q2) = %)\1 if Q
is a ball and that no positive solutions exist for € € (0, %)\1).

Note that, by using again Pohozaev Identity, it is easy to check that problem (1.1) has no non-
trivial solutions when € < 0 and 2 is star-shaped.

Since then, there has been a considerable number of papers on problem (1.1).

We briefly recall some of the main ones.

Han, in [22], proved that the solution found by Brezis and Nirenberg blows-up at a critical point
of the Robin’s function as € goes to zero. Conversely, Rey in [30] and in [31] proved that any
C'— stable critical point of the Robin’s function generates a family of positive solutions which
blows-up at this point as € goes to zero.

After the work of Brezis and Nirenberg, Capozzi, Fortunato and Palmieri [12] showed that for
N =4,¢>0and ¢ € o(—A) (the spectrum of —A) problem (1.1) has a nontrivial solution. The
same holds if N > 5 for all € > 0 (see also [21]).

The first multiplicity result was obtained by Cerami, Fortunato and Struwe in [14], in which
they proved that the number of nontrivial solutions of (1.1), for N > 3, is bounded below by the
number of eigenvalues of (—A, ) belonging to (e, e + S|Q|2/N), where S is the best constant
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for the Sobolev embedding D*2(RY) into LP*1(R™) and || is the Lebesgue measure of .

Moreover, if N > 4, then for any € > 0 and for a suitable class of symmetric domain €2, problem

(1.1) has infinitely many solutions of arbitrarily large energy (see Fortunato and Jannelli [20]).

If N> 7and Q is a ball, then for each ¢ > 0, problem (1.1) has infinitely many sign-changing

radial solutions (see Solimini [33]).

In the papers [20, 33], the radial symmetry of the domain plays an essential role, therefore their

methods do not work for general domains.

Concerning sign-changing solutions, Cerami, Solimini and Struwe showed in [15] that if N > 6

and € € (0,A1), problem (1.1) has a pair of least energy sign-changing solution. In the same

paper the authors studied the multiplicity of nodal solutions proving the existence of infinitely

many radial solutions when 2 is a ball centered at the origin.

On the other side, for 3 < N < 6 and when € is a ball, it can be proved that there is a A* > 0

such that (1.1) has no sign-changing radial solutions for € € (0,\*) (see Atkinson, Brezis and

Peletier [2]).

Moreover, Devillanova and Solimini in [18] showed that, if N > 7 and Q is an open regular subset

of RV, problem (1.1) has infinitely many solutions for each € > 0.

For low dimensions, namely N = 4, 5,6 and in an open regular subset of R, in [19], Devillanova

and Solimini proved the existence of at least N + 1 pairs of solutions provided e is small enough.

n [16], Clapp and Weth extended this last result to all € > 0.

Neither in [18, 19] nor in [16] there is information on the kind of sign-changing solutions obtained.

Recently, in [32], Schechter and Wenming Zou showed that in any bounded and smooth domain,

for N > 7 and for each fixed € > 0, problem (1.1) has infinitely many sign changing solutions.
Concerning the profile of sign-changing solutions some results have been obtained in [5], [6]

for low energy solutions, namely solutions u. such that / |Vu6\2 dx — 25 %, as € — 0, S being
Q

the Sobolev constant for the embedding of HE () into LP*1(Q). More precisely in [5] it is proved
that for N = 3 these solutions concentrate and blow-up in two different points of 2, as € — 0,
and have the asymptotic profile of two separate bubbles. A similar result is proved in [6] for
N > 4 but assuming that the blow-up rate of the positive and negative part of u. is the same.
Existence of nodal solutions with two nodal regions concentrating in two different points of the
domain 2 as € — 0 has been obtained in [13], [24] and [4]. So none of these solutions look like
tower of bubbles, i.e. superposition of two bubbles with opposite sign concentrating at the same
point, as € — 0. Such a type of solutions is shown to exist for other semilinear problems like
the almost critical Lane-Emden problem (see [7], [28], [27]) but not, to our knowledge, for the
Brezis-Nirenberg problem with the exception of the case of the ball. If €2 is a ball, and N > 7, in
a recent paper [23] the asymptotic behaviour as e — 0 of the least energy nodal radial solution
v is analysed and among other things, it is shown that the positive and negative part of v,
concentrate at the origin. Moreover they have the asymptotic profile of a positive and negative
solution of the critical problem in RY and the concentration speeds are different.

Hence [23] provides the first example of bubble of towers for the Brezis-Nirenberg problem.
Then the natural question is whether these kind of solutions exist in bounded domains other
than the ball.

In the present paper we answer positively this question constructing a sign-changing solution of
(1.1) in any bounded domain symmetric with respect to N orthogonal axis.

We next state our result.
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Theorem 1.1. Let N > 7 and let Q be a smooth bounded domain in RY such that Q is symmetric
with respect to x1,...,xy and 0 € Q. There exists g > 0 such that for any € € (0,¢€q) there exist
positive numbers dj., j = 1,2 and a solution u. of problem (1.1) of the form

o\ TN

16]\774 2€N74 N—6

ue(@) = an (22> - ( TS ) +o, (12
di eN=7 4 |z| A2, ET-DN-5 4 |z|2

where ay = [N(N — 2)] = dje = d; >0, as e — 0, d. — 0 in H(Q), as e — 0. Moreover u,

is even with respect to the variables x1,...,xN.

We remark that the assumption N > 7 in our proof is crucial. We believe that it is possible
to extend our result to a general domain €2 with some suitable modifications.
In the case the remainder term converges to zero also in L7° (€2), then, the asymptotic ex-
pansion and some energy estimates derived in the course of the proof allow to draw interesting
consequences concerning the number and shape of the nodal domains of the solution w..

Theorem 1.2. Let N > 7 and assume that the remainder term ®., appearing in Theorem 1.1,
is such that ®. — 0 uniformly in compact subsets of Q). Then, there exists ¢g > 0 such that
for any € € (0,€), the solution u. constructed in Theorem 1.1 has precisely two nodal domains

QL. Q2 such that Q! contains the sphere St := {x eRN : |z|= eﬁ}, Q2 contains the sphere

N—
82 = {x eERY  |z|= TNV D) } and ue >0 on Q! and u, < 0 on Q2.
Consequently, 0 € Q2 and Q! is the only nodal domain of u. which touches 9.

Remark 1.3. Under the assumptions of Theorem 1.2 it follows that the sign-changing tower of
bubble u. constructed in Theorem 1.1 has two nodal domains and its nodal set does not touch
09). By this we mean that, denoting by

Z.:={x€Q : ulx) =0}
the nodal set of u. then Z.N Q. = .

The proof of Theorem 1.1 is based on the Lyapunov-Schmidt reduction.
To describe the procedure and explain the difficulties which arise when looking for bubble towers
of the Brezis-Nirenberg problem, we introduce the functions
N-—-2
J 2
Us(x) = ayn———F—, 6>0 (1.3)
(02 4 |z2) =
N -2

with ay == [N(N —2)]77 . Is is well known (see [3], [11], [34]) that (1.3) are the only radial
solutions of the equation

—Au=ur in RV, (1.4)
We define s to be the unique solution to the problem
Aps =0 in
{ s = Us on 012, (1.5)
and let
'PZ/{(; = Z/{5 — @5 (1.6)
be the projection of Us onto HE(Q), i.e.
—APUs =UY in Q
{ Pls = 0 on 9. (1.7)
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Finally, let G(z,y) be the Green’s function associated to —A with Dirichlet boundary conditions
and H(x,y) be its regular part, namely
1 1 1

7G<$,y), N T,y € Qv with TN =

H S S I
(@) lz—yN=2 N N(N = 2)wy’

where wy is the volume of the unit ball in R,
The function 7(z) := H(z,z), x € Q is called Robin’s function.

It is well-known that the following expansions holds (see [30])

0s(x) = and 7 H(0,z) + O 2)  asd— 0. (1.8)
Moreover, from elliptic estimates it follows that
0 < ps(x) < c5¥, in Q, (1.9)
— 1
feslan < 08", qe (23R p1] (1.10)
and
Vslan < C1o6°7 (1.11)

see for instance [30], [35] and references therein.

We look for an approximate solution to problem (1.1) which is a superposition of two stan-
dard bubbles with two different scaling parameters, namely we take §; > do and we look for a
solution to (1.1) of the form

uc(x) = PUs, — PUs, + Pc(x) (1.12)

where the remainder term ®. is a small function which is even with respect to the variables
T1,.-.-,TN-

The Lyapunov-Schmidt reduction allows us to reduce the problem of finding blowing-up so-
lutions to (1.1) to the problem of finding critical points of a functional (the reduced energy)
which depends only on the concentration parameters.

As announced before in our case some difficulties arise which need some modification of the
standard procedure to be overcome.

Indeed, first we remark that the solutions of problem (1.1) are the critical points of the functional
Je : HY () — R defined as

1 1
Je(u) = §/Q|Vu|2dx— m/ﬂ|u|p+l dx — %/Qu2 dx, u € Hy(Q). (1.13)

If we apply directly the reduction method looking for a solution of the form (1.12) we get that
the remainder term is such that

1@ = O (E%M) o> 0

where || - || denotes the H}(€2)-norm, and that the reduced energy
N-2

5 2
Reduced Energy ~ J.(PUs, — PUs,) = C + C17(0)0Y 72 — Caed? + Cs (;) + H.O.T.

1
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where C, C; are some known positive constants.
Since 1, d2 are proper power of € of the form §; = €?7d;, d; > 0, after some easy computations,
in order to find a critical point of the reduced energy, we get that

N-—2
_ d _
Reduced Energy ~ C + N C17(0)dY ™2 — Cod? 4 Cs (dz> + o(e %7421)

1

with
— 1 . 3
71 N — 47 Y2 = N _4

However the function

N-—2

d

U(dy,ds) = C17(0)dy 2 — Codi + Cs (d?)

1

has a critical point in d; but not in dy and hence in this way we cannot find a solution of our

problem.

Hence we use a new idea. We split the remainder term ®. in two parts:

q)e(x) = d)l,e(x) + ¢2,6($)
such that
||¢2,e

Usually, the remainder term ®., solution of the auxiliary equation, is found with a fixed point
argument. Here we have to use the Contraction Mapping Theorem twice, since we split the
auxiliary equation in a system of two equations. The first one depends only on ¢; while the
second one depends on both ¢1,¢s. So we solve the first equation in ¢; and then the second
one finding ¢2. Then we obtain the remainder term ®,. which consists of two terms of different
orders. Then we study the finite-dimensional problem, namely the reduced energy that consists
of two functions of different orders. The lower term depends only on d; while the term of higher
order depends on dy,ds. At the end we look for a critical point of this new type of reduced
energy. We believe that our strategy can be used also in other contexts.

=0o(||p1.ell), ase—0.

The outline of the paper is the following: in Section 2 we explain the setting of the problem.
In Section 3 we look for the remainder term ®. in a suitable space. In Section 4 we study the
reduced energy and finally Theorem 1.1 and Theorem 1.2 are proved in Section 5.

Acknowledgments: The authors wish to thank F. Pacella for proposing the problem and
for useful suggestions.
2. SETTING OF THE PROBLEM

In what follows we let

(u,v) := / Vu - Vude, ||l :== (/ |Vu|2dx)
Q Q

as the inner product in Hg(£2) and its corresponding norm while we denote by (-, ) ey and
by || - || 1 gy the scalar product and the standard norm in H'(R"). Moreover we denote by

e i= ([ ulrar)”
Q
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the L™(§2)-standard norm for any r € [1,+00). When A # Q is any Lebesgue measurable subset
of RN or, when A = Q and we need to specify the domain of integration, we will use the alter-
native notations ||u|l 4, |u|, 4.

From now on we assume that € is a bounded open set with smooth boundary of RV, sym-
metric with respect to x1,...,xn and which contains the origin. Moreover we assume that N > 7.

We define then

Hg, = {u € H}(Q) : wuis symmetric with respect to each variable zy, k= 1,..., N} ,
and for ¢ € [1,4+00)

Lq

sim

:={ue LY(Q) : wuis symmetric with respect to each variable zy, k=1,...,N}.

2N 2N
Let ¢* : LY*? — Hg;p, be the adjoint operator of the embedding ¢ : Hg;pm () — L2, namely if
N

sim sim )
2N
ve Lt? then uw = i*(v) in Hy;y, is the unique solution of the equation
—Au=v in u=20 on Of).
By the continuity of ¢ it follows that

2N
[ (@)l < Clola Vv e Lg, (2.1)
for some positive constant C' which depends only on N.

Hence we can rewrite problem (1.1) in the following way

w=i* [f(u) + eu]
{ we Hop (2.2)
where f(s) = |s|P s, p = 22

We next describe the shape of the solution we are looking for.

Let §; = 6;(e), for j = 1,2 be positive parameters defined as proper powers of e, multiplied
by a suitable positive constant to be determined later, namely

(5]' = Ga-jdj with dj >0 (23)

1 .. .. __3N-10
N—4> 2= (N—pyWN—6)"
Fixed a small > 0 we impose that the parameters d; will satisfy

and oy :=

1
n<dj <-— for j=1,2. (2.4)
n
Hence, it is immediate to see that
@:E%Q%O as e — 0.
51 dl

We construct solutions to problem (1.1), as predicted by Theorem 1.1, which are superposi-
tions of copies of the standard bubble defined in (1.3) with alternating signs, properly modified
(namely we consider the projection of the original bubble into H{(f2)), centered at the origin
which is the center of symmetry of Q with parameters of concentrations d;. Such an object has
the shape of a tower of two bubbles.
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Hence the solution to problem (1.1) will be of the form
ue(x) = Ve(z) + @c(2) (2.5)
where
Ve(x) := PUs, (x) — PlUs, (x). (2.6)
The term ®. has to be thought as a remainder term of lower order, which has to be described

accurately.
Let Z; the following functions

Zj(x) = a[sju(sj (a:) = QanN 5-T
2 J (5? + ‘$|2)

We remark that the functions Z; solve the problem (see [8])
—Az = plUs|P~' 2, in RV, (2.8)
Let PZ; the projection of Z; onto Hg (). Elliptic estimates give

N
2

N —2 N ¥

PZ;j(x) = Zj(x) — an 6]-TH(O,I) +0(67), j=12, (2.9)

uniformly in 2.

Let us consider
K1 :=span{PZ1} C Hgim; K:=span{PZ; : j=1,2} C Hym
and
Ki :=={¢ € Hyim : (¢,PZ1)=0}; K+ :={¢p€ Hym : (¢,PZ;) =0, j=1,2}.

Let I1; : Hyipy — Ky, 12 Hyipy — K and T3 : Hggp — ICf-, I+ : Hy;m — K+ be the projections
onto Ky, K and Ki-, K+, respectively.
In order to solve problem (1.1) we will solve the couple of equations

I {Ve + @ — i [f(Ve + Be) + e(Ve + @)} = 0 (2.10)

I{Ve + @ —i" [f(Ve + ®c) +e(Ve+D,)]} = 0. (2.11)
For any (dy, ds) satisfying condition (2.4), we solve first the equation (2.10) in ®, € K+ which is
the lower order term in the description of the ansatz.

We start with solving the auxiliary equation (2.10). As anticipated in the introduction, we
split the remainder term as
D =1+ P2
with
||¢)2,6 = 0(”¢1,6||)7 as € = 0.
In order to find ¢,  and ¢  we solve the following system of equations

Ri+ Li(p1) +Ni(¢1) =0,
(2.12)
Ra + La(¢2) + Na(¢1,¢2) =0,

where

Ry = I {PUs, —i* [f(PUs,) + €PUs, ]}, (2.13)
Ro =" {=PlUs, —i* [f(Ve) — f(PUs,) — €PUs, ]}, (2.14)
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L1(¢1) =101 {¢1 — i [f' (PUL)p1 + €d1]}, (2.15)
Lo(¢2) =T {¢pg — i* [f'(Ve) 2 + €ba]} (2.16)
Ni(¢1) := I {—i*[f (PUs, + ¢1) — f(PUs,) — f'(PUs,)n]}, (2.17)

and

Na(91,62) i= IEH{—i* [f (Ve + 61 + 62) — f(Ve) = f'(Ve)bz — f(PUs, + ¢1) + f(PUs, )]} (2.18)

We remark that it is not restrictive to consider Ry, £L(¢1), N1(¢1) € Ki since only d; appears
and it is clear that a solution of (2.12) gives a solution of (2.10).

Therefore we solve the first equation in (2.12) finding a solution 351 = 5;_51 (e,dq1) and after that
we solve the second equation in (2.12) (with ¢1 = ¢1) finding also ¢2 = ¢a(€,d1, d2).

Finally let us recall some useful inequality that we will use in the sequel. Since these are known
results, we omit the proof.

Lemma 2.1. Let « be a positive real number. If a < 1 there holds
(z+y)" <z%+y°,
for allxz,y > 0. If a > 1 we have
(x+y)* <2072 +y7),
for all x,y > 0.

Lemma 2.2. Let q be a positive real number. There exists a positive constant ¢, depending only
on q, such that for any a,b € R

in{|b]4, |al?~|b ] 1
bt oo < @m0 < <1, o1
c(q)(lal*=*[b] + [b]7) ifq>1.
Moreover if ¢ > 2 then
lla+ 6|7 — |a|? — glal*"%ab| < C (|a|*"2[b|* + [b]7) . (2.20)

Lemma 2.3. Let N > 7. There exists a positive constant ¢, depending only on p, such that for
any a,b € R

[f(a+0b) = f(a) = f/(a)b] < c[b]”. (2.21)
Lemma 2.4. There exists a positive constant ¢, depending only on p, such that for any a,b € R
|f(a—b) — f(a) + f(b)] < c(p)(lalP~"[b] + [b[?), (2.22)

or
|f(a—b) — f(a) + f(b)] < clp)([b"~ |al + |a]”). (2.23)

Lemma 2.5. Let N > 7. There exists a positive constant ¢ depending only on p such that for
any a,by,bs € R we get

[f(a+b1) = fla+ba) = f'(a)(br — b2)| < C (bafP~" + [b2[P7) [b1 — ba. (2.24)
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3. THE AUXILIARY EQUATION: SOLUTION OF THE SYSTEM (2.12)
We first define
N -2 (N —2)?
0 = —; Oy i = ————F——.
N —4 (N —4)(N -6)
We observe that 05 is well defined since N > 7. We also remark that having defined J; as in
(2.3), j = 1,2, the functions Us, depend on the parameters d;, j = 1, 2.

(3.1)

In this section we solve system (2.12). More precisely, the aim is to prove the following result.

Proposition 3.1. Let N > 7. For any n > 0, there exist g > 0 and ¢ > 0 such that for all
€ € (0,€), for all (di,d2) € R% satisfying (2.4), there exists a unique ¢1 = ¢1(e,d1) € Ki
solution of the first equation of (2.12) such that

11l < cc? e

and there exists a unique solution b2 = Pa(e,dy,do) € KL of the second equation of (2.12) (with
¢1 = ¢1) such that

N 92
g2l < c e,
for some positive real number o whose choice depends only on N. Furthermore, ¢1 does not de-

pend on dy and it is continuously differentiable with respect to dy, @9 is continuously differentiable
with respect to (dy,ds).

In order to prove Proposition 3.1 let us first consider the linear operator
L1: K — Kt
defined as in (2.15).

The next result provides an a-priori estimate for solutions ¢ € Ki of £1(¢) = h, for some
right-hand side h with bounded || - ||— norm.

Lemma 3.2. Let N > 7. For any n > 0, there exists ¢g > 0 and ¢ > 0 such that for all d; € Ry
satisfying (2.4) for j =1, for all ¢ € Ki- and for all € € (0, ¢q) it holds

1£1(D)]] = cllll-
Proof. For the proof it suffices to repeat with small changes the proof of Lemma 3.1 of [27]. O

Next result states the invertibility of the operator £, and provides a uniform estimate on the
inverse of the operator L;.

Proposition 3.3. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that the linear
operator Ly is invertible and ||L7Y|| < ¢ for all € € (0,¢0), for all dy € Ry satisfying (2.4) for
j=1.

Proof. For the proof it suffices to repeat with small changes the proof of Proposition 3.2 of
[27]. O

For the linear operator Lo we state analogous results.

Lemma 3.4. Let N > 7. For any n > 0, there ezists ¢¢ > 0 and ¢ > 0 such that for all
(di,ds) € R% satisfying (2.4), for all € K+ and for all € € (0,€0) it holds

[1£2(D)[ = cllo]l-
Proof. For the proof see Lemma 3.1 of [27]. O

Proposition 3.5. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that the linear
operator Lo is invertible and ||L5 || < ¢ for all € € (0,€0), for all (d1,d2) € RY satisfying (2.4).
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Proof. For the proof see Proposition 3.2 of [27]. O

The strategy is to solve the first equation of (2.12) by a fixed point argument, finding a unique
#1 and then, substituting ¢; in the second equation of (2.12), we obtain an equation depending
only on the variable ¢o. Hence, using again a fixed point argument, we solve the second equation
of (2.12) uniquely.

3.1. The solution of the first equation of (2.12). The aim is to prove the following propo-
sition.

Proposition 3.6. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that for all
€ € (0,€), for all dy € Ry satisfying condition (2.4) for j = 1, there exists a unique solution
b1 = ¢1(e,dy), ¢1 € Ki of the first equation in (2.12) which is continuously differentiable with
respect to dy and such that

— 0
| < ce e, (3.2)

where 01 is defined in (3.1) and o is some positive real number whose choice depends only on N.

In order to prove Proposition 3.6 we have to estimate the error term R4 defined in (2.13). It
holds the following result.

Proposition 3.7. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that for all
€ € (0,€), for all d; € Ry satisfying condition (2.4) for j =1, we have

o
IRufl < ce=,
for some positive real number o whose choice depends only on N.

Proof. By continuity of IT{-, by using (2.1) and since PUs, weakly solves —APUs, = Z/lg1 in Q, it
follows that

Rl

HIIIl {PU51 - [f(PU51) + 6Pu51]} H < 01||PU51 — " [f(Pu51) + 6732/{51] ||
Co |f(u51) - f(PU51) - 6,PZ/{51|]\2[7_*1\_’2 <C |f(u51) - f(Pu51)|]§7j\_’2 +e |'PZ/{51‘ 2N -

N+2

IN

©)) an
Let us fix n > 0. We estimate the terms (I), (I1).

Claim 1:
N+42
(I) = O(ez™=-9), (3.3)
By using (1.9), (1.10) and by elementary inequalities we get

[ipusy ¥ e <o [ g en ¥ doten [ st do
Q Q Q

2N

5252 A / : 7 et cals, [P
C: — X C:
0 0 \(&2 1 [z2)2 2P0 lpr1,0
2N
Ng\l]\{;;)/ 5% N d 4 6N
= C(s — " = i C. .
e o \ (67 + |z[2)2 .

2N

g2\ a
/Q<<6%+|x|2>2> dm:o@ )

IN

Now for N > 7 we have
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Indeed:
/( i )Nd el e | d
R T = — 7% AT X — s~ 0T,
o \(F+ 2177 bt ®E T et
S < N. Finally, since % >N,

and the last integral is finite since N > 6, which implies )

for any N > 4, we deduce that
[Py =515 ar =0 (3Y).

and hence
P 52
[(PUs, )» — U, | g, = O (8,7 (3.4)
Since §; = die™% and d; satisfies (2.4), we get that |(PUs, )P —U§1|13§2 =0 (62<NNJ:24>) and
Claim 1 is proved.
Claim 2: s
(IT) = O(ev=2). (3.5)
_ N(N-2)

N+2

2N 2N 51
N+2 _ _NT2
Z/l(sl dr = ay / — 5 dzx
o (1+|£[2) %=
01

N
771/{5]1”2 der < /
Q Q

_ _N+2z
=ayN 0

1 AN
N(N—-2) dy + O((slNJr2 ) (3'6)

o (1+Jyi2) ¥

2N AN
N+2

—

Thus, since d; = dleﬁ and d; satisfies (2.4), we get that
2N _ 4N
/ PUNT? dz = O (em) ,
Q

N+2

and hence
2N 2N
€ </ Plxll;;’+2 d:z:) =e0 (eN*4
Q

The proof of Claim 2 is complete.
Hence, by (3.3) and (3.5), we deduce that there exist a constant ¢ = ¢(n) > 0 and ¢y = eg(n) > 0

sufficiently small such that, for all € € (0, €9) and d; € Ry satisfying (2.4) (with j = 1)
_N+2 N—2 0,
IRy|| < ¢ (X317 4 eN1) < ce 7 17,
]

with o such that 0 < o < ﬁ.

We are ready to prove Proposition 3.6.

Proof of Proposition 3.6. Let us fix n > 0 and define 7 : Ki — Ki as
Ti(é1) = —L7 V(1) + Ral-

Clearly solving the first equation of (2.12) is equivalent to solving the fixed point equation

Ti(¢1) = ¢1.
Let us define the ball

1 U4s 1

Biei={¢1 €Ky [[¢1]| <7 ez} C Ky
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with r > 0 sufficiently large and o > 0.
We want to prove that, for € small, 77 is a contraction in the proper ball B; ., namely we want
to prove that, for e sufficiently small

(]-) 7—1(B1,e) C Bl,e§
2) [Tl < 1.

By Lemma 3.2 we get:

[T1(o0)]l < c(IN1(@1)[l + [R1l]) (3.7)
and
[71(p1) — Te(Po) |l < e([[N1(d1) — Ni(y)l]), (3.8)
for all ¢1,9; € Ki. Thanks to (2.1) and the definition of N} we deduce that
N1 (@)l < elf (PUs, + ¢1) — f(PUs, ) — [/ (PUs, )61 2, (3.9)
and

IN1(61) = Ni()ll < el f (PUs, + ¢1) — f(PUs, + 1) — f'(PUs, )(¢1 — )l e . (3.10)

Now we estimate the right-hand term in (3.7). Thanks to Lemma 2.3 we have the following
inequality:

|f(PUs, + ¢1) = f(PUs,) = f'(PUs, )| < el |’ (3.11)

Since pN+2 = 2 and |¢117|% = |¢1|P,n , from (3.11) and the Sobolev inequality we deduce
the following;:

|f(PUs, + ¢1) — f(PUs,) — [ (PUs, 1| 2o, < 01|¢1|pzw < cof[¢n P (3.12)

Thanks to (3.7), Proposition 3.7, (3.9), (3.12) and since p > 1, then, there exist ¢ = ¢(n) > 0
and €9 = €p(n) > 0 such that
4 6
lg1]l < e+ = | Ti(1)] < ee? H,

for all € € (0,¢p), for all di € Ry satisfying (2.4) (with j = 1), for some positive real number
o, whose choice depends only on N. In other words 77 maps the ball B . into itself and (1) is
proved.

We want to show that 77 is a contraction. By using Lemma 2.5 we get that for any ¢1,¢1 € B .

|f(PUs, + ¢1) — f(PUs, + 1) — f'(PUs, ) (1 — 1) < C (|¢a [P+ [91[P71) |1 — -

By direct computation (p— 1) N+2 = % S0, since \qﬁl\(p_l)f\%z |¢1|(p_1)ﬂ

|1 — 11| ¥z € [P and 1 = m + X N2 2 by Holder inequality we get that

‘(|¢1|p—1 + |,(/}1|p—1) (¢1 - ’(/}1)| ]352 [<|¢1 2N2 + |2/11 2N ) o <|¢1 - 1/11 Zzgz) N+2]
= (|¢1 2N + |1h1] 2 ) |61 — 1| 2. (3.13)

Hence by (3.8), (3.10), (3.13) and Sobolev inequality we get that there exists L € (0,1) such
that

6 6
1]l < ce 2, ]l < ce 27 = [ Ti(¢r) = Ta(@)|| < Lla — .
Hence by the Contraction Mapping Theorem we can uniquely solve T1(¢1) = ¢1 in By .. We

denote by ¢, € B ¢ this solution. A standard argument shows that d; — o3 (dy) is a Ct-map
(see also [27]). The proof is then concluded. O
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3.2. The proof of Proposition 3.1. Before proving Proposition 3.1 we need some preliminary
results, in particular we need to improve the estimate on the solution ¢; of the first equation of
(2.12) found in Proposition 3.6.

The first preliminary result is an estimate on the error term Ro defined in (2.14).

Proposition 3.8. For any n > 0, there exists g > 0 and ¢ > 0 such that for all € € (0,¢€), for
all (dy,ds) € R% satisfying (2.4), we have
IRa < %57,
for some positive real number o, whose choice depends only on N.
Proof. By continuity of II*+ and by using (2.1) we deduce that
[Rall < el f@s,) + £ (PUs, —PUs,) — F(PUs,) — €PUs,| g,

IN

ol f(PUs, — PUs,) — f(PUs,) + f(PUs, )| 2, + el f(PUs,) — [(Us,)| 2,

(€] (1)

-i-06|'7)2/[52|1\2;7$2 . (3.14)
NI
(I11)

Let us fix n > 0. We begin estimating (I). Let p > 0 so that B(0,p) C Q. We decompose
the domain Q as = Ag U Ay U Ay, where Ag := Q\ B(0,p), A1 := B(0,p) \ B(0,1/d102) and
Ag := B(0,4/6162). We evaluate (I) in every set of this decomposition.

Thanks to Lemma 2.4 there exists a positive constant ¢ (depending only on p) such that

|f(PUs, — PUs,) — f(PUs,) + f(PUs, )| < c(PUE PUs, + PUL). (3.15)

Integrating on Ay and using the usual elementary inequalities (see Lemma 2.1) we get that

|11, —Pus,) - I(PUs) + 1P e d

< 01/ (PUP VIR py I 4 pyptty gy

Ao

N(N—2)
(SW 5y VT2 5N (3.16)

< Cz/ o dx+03/ STy 0

Ao (83 + [22) 57 (82 + [af2) ¥ A0 (02 F [f?)

AN N(N 2)

6N+2 5 T NF2 52

< O W‘ch

PN+ PNz

and hence we deduce that (recall the choice of 1,2 (see (2.3)))

3N2_12N -4
|f(PUs, = PUs,) = f(PUs,) + [(PUs,)| 2 4, < ce?¥=D=00 < ce Fo (3.17)
where ¢ depends on 7 (and also on Q, p, N), o is some positive real number (to be precise we
can choose 0 < 0 < %).
We evaluate now (I) in A;. By (3.15) and the usual elementary inequalities we deduce the
following:

/ \F(PUs, — PUs,) — [(PUs,) + f(PUs,) |32 da < c / Pul VD py e pyrty a,
A1 Al
(3.18)
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Let us estimate every term:

- s
_1)(2N 2N 1 2N 1) é
R G A | @+ P (5 4 o) P
1 1 1 1 x N+2
AN N(N—=2) o AN N(N '2)
o 5N+2 (52 N+2 N1 % 51N+2 62 N+2
= 5 5 5 N2 T dr = C1 5 2 2 9 5 N(N-2)
VBT (07 + 12N (53 4 2) R (03 + 0352) 772 (1 4 52) N2
_ 4
= ¢ 5 & " 5N+2 sN=1lds < ¢ %2 o —1 sV s
1 N(N-2) = €1 51 ﬁ% (1 N 82)N§\,N+;2)

4 o 4N N2_6N N2_6N
£

(52>2<N+2> (52)<N+z>
1 p

IN IN
Q
w
/N 7 N
Oq‘cq 0'1 =]
- (V) — [\.’)
~_ v
3 [V
»
z
2|m
—
52
n
[V
o
|
Q
[\v)
/N
0)‘0«1
- ()
N~
Z
n
[§]

Moreover

PULT da < /

Ay

p+1 I 92
Us, dz < C4 ——dr<Cy | = . (3.20)

Vi (1 + r2)N

Ay

Thanks to the choice of d1, do we have

v|z

(?) — O D), (3.21)
1

Hence, from (3.18), (3.19), (3.20) and (3.21) we deduce that

(N—=2)(N+2)

|f(PZ/[51 - Pu<52) - f(Pu51) + f(Pu52)| 2N VAL < ce2N=DIN=6) < ce 2 +0 (322)

where ¢ depends on 7, o is some positive real number (to be precise we can choose 0 < o <
2(N—2)
(N—4)(N—-6) )

Now we evaluate (I) in As. To do this we apply (2.23) of Lemma 2.4, so there exists a constant
¢ > 0 such that

|f(PUs, — PUs,) — f(PUs,) + f(PUs,)| < c(PUE " PlUs, + PUE). (3.23)

Thanks to (3.23) and the usual elementary inequalities we deduce the following:

/ F(PUs, — Pls,) — f(PUs,) + F(PUs, )| de < ¢ / (Pul VD py B pypt) g,
A2 A2
(3.24)

oV sN=1ds

(3.19)
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We estimate the first term

1 2N_
/ Pyl ERpy gy < [ TV IRy gy = ant! / 2 L e
Az A Az (33 + 22) %37 (82 4 |of2) " F 2
5 AN _N(N-2) 5 AN AN
_ \/g 6y g " N_N-1;._ \/g gy 5, N GN-1
= 2 2 NN_2) 2)5 S ds = ¢ 4 e ds
1
5\ Nz 32 1 5.\ N1z $2 NZTN-2
5 5 N+2
< a (2> / 1 8N N(N-2) sN s < e (2> / 1 5—(2)d$
1 0 sm(l + 52)W 01 0 (1 + 82) “—N¥z
2_
0o N2 \/% N2_7N-2 o i 0 %
< |+ / s~ Nfz ds=cy =
01 0 5 01

(3.25)
By making similar computations as before we get that
N
p+1 d27) ?
PUST dx < c3 . (3.26)
As o
So from (3.24) and (3.25) we deduce that
)(N—2)
[F(PUs, = PUs,) = F(PUs,) + F(PU) | g, g, < ces30070 <ecB¥e, (3.27)

where ¢ depends on 7, o is some positive real number (to be precise we can choose 0 < o <

%). Hence from (3.17), (3.22) and (3.27) we deduce that

(I) < ce 37, (3.28)

for some positive constant ¢, for some positive real number o depending only on V.
Now by making similar computations as for (I) of Proposition 3.7 (see (3.4)) we get that

(H):o((s;#),

and hence we deduce that
(3N —10)(N+2)

([I) < ce2-DN-6) < ce 2 +‘7

212
Wherec O<U< W

It remains to estimate (I17).

From (3.6), exchanging §; with d2 we get:

2N _ 2N 4N 1
y N+2

Hence we deduce that (I11) < ¢ €63, and thanks to the choice d2, by an elementary computation,
we get that:

N-2)2

(
(III) < ¢ e@-D=0) <ce?+"
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(N—2)*
2(N—4)(N—6) "
exist a positive constant ¢ = ¢(n) > 0 and ¢y = €y(n) > 0 such that for all € € (0,¢), for all
(di,d2) € R% satisfying (2.4)

where ¢, 0 < 0 < Finally, putting together all these estimates we deduce that there

IRa|| < ce# e,

for some positive real number o (whose choice depends only on N). The proof is complete. [

Now we prove a technical result on the behavior of the L>-norm of ¢, which will be useful
in the sequel.

Lemma 3.9. Let  be a small positive real number and let ¢y € Ki- be the solution of the first
equation in (2.12), found in Proposition 3.6. Then, as ¢ — 07, we have

_ __N-2
|$1loo = o€ 2=17),
uniformly with respect to dy satisfying (2.4) for j = 1.
Proof. Let us fix a small 7 > 0 and remember that 0; = evid, (see (2.3)), with d; satisfying
(2.4) for j = 1. We observe that by definition, since ¢; € Ki solves the first equation of (2.12),

then, for all € > 0 sufficiently small, there exists a constant c. (which depends also on d;) such
that ¢; weakly solves

—A¢y = ey + €PU5, + fF(PUs, + ¢1) — f(Us,) — ccAPZy. (3.29)

Testing (3.29) with PZ;, taking into account that ¢; € Ki and the definition of PZ;, we have
that

ce/pU§1*1PZ1Z1 de = —6/ nPZ; dx—e/ PUs, PZ1 d:c—/ [f(PUs,) — f(Us,)| PZ, dx
Q Q Q 0
7/{) [f(Pu51 + (51) - f(Puél)] PZl dx.

(3.30)

By definition, if we set ¢ := Z; — PZj, then 1 is an harmonic function and ¢ = Z; on 912,
therefore, by elementary elliptic estimates, for all sufficiently small € > 0, for any d; €]n, %[ we

N-a
have that [¢|c0,0 < Cd; 2 , for some positive constant C' = C(N, Q) depending only on N and
), and hence

/ pUL ' P21 2y du = / pUL™ 27 dx — / pUE™ "7, da.
Q Q Q

Now
- - 1 (|2 — 67)*
pUP Z2dz = cnolY 452/ dx
/Q o b o (07 ()2 (0F + [N
271)2
= 5_2/ Ld +0 5N—2
CNOq o (1+ |y|2)N+2 Y ( 1 )

= An67%40(1), ase—0.

N-a
By using the property |¢|co,0 < Cd; 2 , by the same computations, we see that
/ prl_lel de = 0N ™), ase— 0.
Q
Therefore, we get that

/ pULT P21 Zy dx = A6y 2 +o(1), as e — 0. (3.31)
Q
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Moreover, reasoning as before, we have

2 £2\2
/Zfdm cN5{V_4/ 7(|I| 01) dx
Q

(07 + [=|2)N
_ (Jy? - 1) 2
_ CN/RNi(Hl iy + 06 )

= Bny+o(l), ase—0,

and, by an analogous computation

N—-2
N(N— 4 2 22X 2N
| Z1] 2n <CN[/5 ¥ )wdﬂfl < Cnoy
o7 + |2?) ¥
and hence, since PZ; = Z; — ¢, by elementary estimates, we get that for all sufficiently small
e>0
[PZi|5 <2BN, |PZi]2x <2CN6; (3.32)

Thanks to (3.32), applying Holder inequality, Poincare inequality, taking into account of (3.4),
the asymptotic expansion of [PUs, |2 (see Lemma 4.6 and its proof), the choice of 1 (see (2.3))
and since ¢; € B ., we have the following inequalities

_ _ _ 0,
6/ |1||PZ1| dx < €|p1]2|PZ1]2 < crel|dr|||[PZ1]a < coe2 THH
Q

e/ PUs, |PZy1| dx < €|PUs, |2|PZ1 ]2 < cedy,
Q

Tz

Ntz
/Q F(PUs,) — FUs)IPZu| o < |F(PUs,) — (Us,)] g [PZ1] g < ey ® 67" = b

Moreover, taking into account of Lemma 2.3 and Sobolev inequality, we get that

/Q F(PUs, + 61) — F(PUs,) P2y da

< |f(Pu51 —'_(51)_.]"(IPZ/{51)|137$2|,PZ1‘137§2

< |f(PUs, + 1) = f(PUs,) — f'(PUs, )01 o [P Z1| o + | (PUs, ) 61| ooy, [PZ1 onv)
< cll1l”] gy IPZ1] o +|f’<7>u51>¢31|%|7321\%

< o (1 P2 g, + 1PU T 6], P21 g, )

<

(nmnw P2 g, + [PUs, T N1 2 g, )

9 — _N=-2 1 1
< cze +"51 L= 280177 -1 < e,

Thus, from (3.30) (3.31) and the previous estimates, we get that for all sufficiently small € > 0

/ ¢1P21 d{E

|cel

6/PU51P21 dxr
Q

<7
T OAST? {

+ / [f(PUs,) — f(Us,)] PZy dx| + / [F(PUs, + &1) — f(PUs,)] dm} (333)
Q Q
< cem=its

)

uniformly with respect to dy satisfying n < d; < %
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We observe that ¢; is a classical solution of (3.29). This comes from the fact that ¢; € HE(Q)
weakly solves (3.29), taking into account the smoothness of PUs,, Us,, PZ1, from standard el-
liptic regularity theory and the application of a well-known lemma by Brezis and Kato.

We consider the quantity supy, ¢, 1 (||u |‘ ) which is defined for all € € (0, ¢y), where €y > 0
’n
is given by Proposition 3.6. We want to prove that

lim sup ( [91]oc ) =0. (3.34)

e—0T di€]n |u51 |O<>

It is clear that (3.34) implies the thesis. In fact, we recall that, thanks to the definition (1.3)
and the choice of §; (see (2.3)), for any d; €]n, %[ we have

N-2 _ _N-2_ _N-2 _ _N-2_
ann 2 € N0 < |Us,|oo < ann 2 € 2D,

Hence, by this estimate and (3.34), we get that
b o0 b o0 u o0 o o0 —
0< sup % = sup ( [f1]ec | 61|_ ) < sup ( 1] )azvnN‘é’Z — 0,

N-—2
d1€]7],%[ € 2(N—9) di€]n |U61 |oo € 2(N—=%) d1€]7],%[ ‘U& |<>o

as ¢ — 07, and we are done.

In order to prove (3.34) we argue by contradiction. Assume that (3.34) is false. Then, there
exists a positive number 7 € R, a sequence (ex)r C RT, €, — 0 as k — +o0, such that

sup <MO> > T, (3.35)

d1€]77,,%[ ‘u51,k|00

_ _ 1
for any k € N, where, ¢1 := ¢1(ex,d1) € Bi, and 01 = ¢ "di. We observe that (3.35)
contemplates the possibility that SUP g, ey, 1 ( ZRIES ) = +oo. From (3.35), for any k € N,

|Z/[51 k |oo

thanks to the definition of sup, we get that there exists di x €]7, [ such that

|(Z_51,k‘oo
<|M51 k|00> (dl k)

Hence, if we consider the sequence ( |1, ’“|°° (d1 k)) , then, up to a subsequence, as k — +o0,
k

I\D\ﬁ

there are only two possibilities:

(a): NJ? = (dy 1) = +oo;

(b): &j; klx = (dy ) — 1, for some [ > T > 0.

We will show that (a) and (b) cannot happen.

Assume (a). We point out that, since n > 0 is fixed, then, di  €]n, %[ for all k, in particu-
lar this sequence stays definitely away from 0 and from +o0o. Hence, in order to simplify the

notation of this proof, we omit the dependence from d; , in (;51 k(di,k) and in 61 x(d1 k) = ek N1, &
and thus we simply write ¢1,;€, 01,5 In particular, we observe that, for any fixed k, ¢1 is a
function depending only on the space variable x € ().

Then, for any k € N, let a € 2 such that |q§1 k(ak)| = |¢>1 k|oo and set My = |¢>1 k|oo- Thanks

N 2
to the assumption (a), since [Us, , |oo = and; 2 = ane, At dy 7, we get that My — +00,
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as k — +o0o. We consider the rescaled function

~ 1 - 9
P1i(y) = m@bl,k <ak + ]\/.75> , 8= )

k

~ 2
defined for y € Q := M) ~* (Q — ai). Moreover let us set

— 1 ~ 1
PU; k(y) = EPMM <ak + ]\3’8> i Uie(y) == muﬁsl,k (ak + ﬁﬁ) )

k k
PZ1k(y) = W’])ZLI@ ar + M)

Since we are assuming (a) it is clear that |PU1 k| Nkl g, — 0, as k — 4o0. Moreover,

00,k
N—-4
thanks to the definition of Z;, and since PZ; = Z; — ¢, with |[¢|eo,0 < C0; 2 , we have that
_x Ntz
|PZ1 kloo >~ |Z1 k|00 ~ 0,2, and hence, thanks to (a), we have ﬁ =0(6, 7 ), which implies
v k )

that |ﬁ17k|oo g, — 0, as k — +oo. In particular, thanks to (3.33), the same conclusion holds

for ¢, (d1,x)PZ1 . Taking into account that 25 + 1 = p, by elementary computations, we see
that ¢ 1 solves

—

PU — ~ ~ — .=
M?Ak + f(PUs, 4 dri) = fUs, ) + o (dip)PZuk in g,

—Ap1 = A;E/s 1.k + €k
51,1@ =0 on 0Q.

(3.36)

Let us denote by II the limit domain of ﬁk Since M} — +oo, as k — +o0o, we have that

II is the whole RN or an half-space. Moreover, since the family (51,k)k is uniformly bounded

and solves (3.36), then, by the same proof of Lemma 2.2 of [6], we get that 0 € II (in particular

0 ¢ OII), and, by standard elliptic theory, it follows that, up to a subsequence, as k — 400, we

have that 517;C converges in C2 _(II) to a function w which satisfies

—Aw = f(w)inII, w(0)=1 (or w(0) =-1), |w| <1linlIl, w =0 on JIL (3.37)
We observe that, thanks to the definition of the chosen rescaling, by elementary computations
~ B _ 2
(see Lemma 2 of [23]), it holds ”¢1k‘% = [|¢1.k]%. Now, since ||¢1 x| < cek?1 7 where ¢ depends
only on 7 and ¢ is some positive number (see Proposition 3.6), we have H(j)LkH?~2 = ||¢1x]|3 — O,
k

as k — +o0. Hence, since ¢ — w in C7,

(IT), by Fatou’s lemma, it follows that

2 en T2
wllf < Egg.lf ¢1.kllg, =0 (3.38)

Therefore, since ||w||f = 0 and w is smooth, it follows that w is constant, and from w(0) =1
(or w(0) = —1) we get that w = 1 (or w = —1) in II. But, since w is constant and solves
—Aw = f(w) in II, then necessarily f(w) =0 in II, and hence w must be the null function, but
this contradicts w =1 (or w = —1).

Alternatively, if IT is an half-space, by using the boundary condition w = 0 on OII, we con-
tradicts w = 1 (or w = —1). Hence, the only possibility is I = RY. In this case, since w solves
(3.37) and ||w||% < 2SN/2, it is well known that w cannot be sign-changing and hence, assuming
without loss of generality that w(0) = 1, w must be a positive function of the form Us, (see
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(1.3)), for some dn such that Us, (0) = 1, and this contradicts w = 1.
Hence (a) cannot happen.

Assume (b). Using the same convention on the notation as in previous case, we deduce that
there exist two positive uniform constants ¢y, co such that

N-2 N_2
51 k e < |¢1 k|oo < C251 k y (339)

for all sufficiently large k. In particular, it still holds that My — +o0, as k — +oo. We consider
the same rescaled functions qbl x as in (a) and, as before, we denote by II the limit domain of Q.
Now, up to a subsequence, since PU 1% and Z/ll & are uniformly bounded we see that they converge
in C2.(II) to a bounded function which we denote, respectively, by PU and U (one of them
or both could be eventually the null function). In fact L?Lk is uniformly bounded and solves
—AZ]L;C = LNIf’k on ﬁk, and so by standard elliptic theory we get that Z/~{1,;C converges in 01200(1_[)

to some non-negative bounded function & which solves —AU = U’ in 1L Now, taking into

account that L?Lk — U in CEOC(H), the same argument applies to PU; i, which solves

—Ap/ﬂl,k = Z]{’,k in ﬁk,
PU1 =0 on 0,

and hence /’P\Hl’k converges in C? _(II) to some non-negative bounded function PU satisfying

loc
—APU=U"in II, PU = 0 on OII.
We point out that as in (a), but using (3.39), we still have c, (d1x)|PZ1k, 5, — 0. as

k — +o0. Moreover, by the proof of Lemma 2.2 of [6], it also holds that 0 € II.

Hence, by standard elliptic theory, we have that 517;C converges in C? _(II) to a function w

which solves L o
—Aw = f(PU+ w) — f(U) in IT,

w=0 on OII, (3.40)
w(0) =1 (or w(0) = —1).
As in (3.38) we have ||w||% = 0 and hence, since w is smooth, the only possibility is w = 1 (or

w = —1) because of the condition w(0) =1 (or w(0) = —1). Moreover, thanks to the definition
of the chosen rescaling, it also holds [¢1k| on_ g = |q/31k|1371\72 o (for the proof see Lemma 2 of
N—2° =E

_ _ 1
23]). Therefore, since |¢1 | 2v o — 0 (because ||¢1 k|| < ce,? +U7 where ¢ > 0 depends only on
Kl 2N 0 ; k
n) and ¢y — w in C2_(I1), as k — +oo0, then, by Fatow’s Lemma, it follows that lw| e 1 =0,

and thus it cannot happen that w =1 (or w = —1).
Hence (a) and (b) cannot happen, and the proof is then concluded. O

We are now in position to prove Proposition 3.1.

Proof of Proposition 3.1. Let us fix n > 0 and let ¢; € K N By, be the unique solution of the
first equation of (2.12) found in Proposition 3.6. We define the operator 75 : K+ — K+ as

To(p2) i= —L5  [Na(¢1, 2) + Ral.

In order to find a solution of the second equation of (2.12) we solve the fixed point problem
T2(¢2) = ¢2. Let us define the proper ball
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6
By = {ps € KL ||6o]| <7 e}

for 7 > 0 sufficiently large and o > 0 to be chosen later.
From Lemma 3.4, there exists ¢y = ¢y(n) > 0 and ¢ = ¢(n) > 0 such that:

[T2(02)| < c(|Na2(61, d2) || + [IR2)), (3.41)
and

[72(¢2) = Ta(¥2)|l < c(IN2(d1, 2) — Na(d1,92) ), (3.42)
for all ¢o, 10 € K+, for all (dy,ds) € R% satisfying (2.4) and for all € € (0, ).
We begin with estimating the right hand side of (3.41).
Thanks to Proposition 3.8 we have that

6.
IRl < ce? e,

for all € € (0,¢), for all (di,dz) € R% satisfying (2.4). Thus it remains only to estimate
IN2(é1, #2)||. Thanks to (2.1) and the definition of N5 we deduce:

IN2(f1, @2)l < el f(Ve + b1+ d2) = f(Ve) = f/(Ve)da — f(PUs, + ¢1) + f(PUs, )| oy, . (3.43)
We estimate the right-hand side of (3.43):
[f(Ve+ b1+ 62) = f(Ve) = [/ (Vo) b — f(PUs, + 61) + f (PUs, )| 2
< f(Vet 61+ 62) = F(Vet d1) = ' (Ve + d1) ol 2, +|(F'(Ve + 1) — f/(Ve)) b2 2,
H (Ve + 61) = f(Ve) = f(PUs, + 1) + f(PUs, )| 2,

In order to estimate the last three terms, by Lemma 2.2 and Lemma 2.3 we deduce that:

[f(Ve+ 61+ d2) = F(Ve+ 1) — f' (Ve + 1) 2] < c|gal” (3.44)
and
[(F'(Ve + 1) = f/(Ve)) 2| < ][~ ol (3.45)
Since ]\27—12 -p=p-+ 1 we get that

/Q|f(Ve+q§1 +2) = f(Ve+ 61) = F(Ve + d1)go| 537 dor < C/Q |po|P d,

and applying Sobolev inequality we deduce that
[f(Ve+ 01+ d2) = F(Ve+ 1) = [/ (Ve + 1) 2] 2n, < cla]|”. (3.46)
By (3.45) we get that

/ (f'(Ve+ 61) — F/(Ve)ga| ¥2 dz < ¢ / (61| PV 52 |y | FH2 dia.
Q Q

R e N2 . -
We observe that ¢, € L75, ¢, " € LP and p, == are conjugate exponents in Holder

2
ON N+42 _
Ni3 a4 —pt+lso

/ . / s T TN |, | e
|(f (Ve + ¢1) —f (Ve))(b2 < C|¢1|p+1 ‘¢2‘p+1 ’

2N
N+2

inequality. Moreover (p — 1)

and hence by Sobolev inequality we deduce that
(' (Ve +61) = F/(Ve)) ol z, < el 72 6]l (3.47)




SIGN-CHANGING TOWER OF BUBBLES FOR THE BREZIS-NIRENBERG PROBLEM 22

It remains to estimate the last term. As in the proof of Proposition 3.8 we make the decomposition
of the domain 2 as = Ag L Ay Ll A;. Hence we get that:

[f(Ve+61) = f(Ve) = f(PUs, + 61) + f(PUs, ) 2, a, < 1f(Ve+61) = f(PUs, + d1)] 23, 4,
HIFVe) = F(PUs )| 22, 4,

Then, by using the definition of 1,2, the usual elementary inequalities, the computations
made in (3.16) and Sobolev inequality, we get that

N+2°

|f(Ve+ 1) = f(PUs, + )| 2n 4, < @ (|73U62|§+1,A0 + |7’U§1_1PU62|1312,A0 + ’|<131|p_17’1/f62

IN

N+2 9 N-—2 — 1 N2
C2 (522 +0705 % 4 [[@][PT6, )

)
€3 1o,

IN

C3

for some o > 0.

Moreover, as in the previous estimate, we get that
-1
100 = FPUs ) a, < o (1P Pl gy + PP, )

92
< g2 T,

In A; we argue as in the previous case. The various terms now can be estimated as done in
(3.19) and (3.20) and hence the same conclusion holds.

For As, by using the usual elementary inequalities, Lemma 3.9 and remembering the choice
of 1, d2, we have:

[f(Ve+ ¢1) = f(Ve) = f(PUs, + d1) + f(PUs, )| 2, a,

N+2°

< Vet 61) = f(Ve) = [/ (Ve)oul ooy, a, + [ (PUs, + d1) — f(PUs, ) — ['(PUs, )1 2, 4,
H[F (Vo) = £/ (PUs, )] | 2
< dlel|,, | +ePui wf e
Ni JA2
N+2 N+2
N N 8N 2N
< c|érlB, ( 1d:L‘> + b1 oo (/ UN 4 dm)
N+2 AN %
 N-2 V0102 2N _ SN+
< 6 P / rNldr + c2|01|o0 / — - da
: x (53 + o)
N+2
_ N2 N+2 1 o
< sl 2 (6102) * + caldn]oods / ——dx
Ao |CC‘ N+2
wez i 15
0\ ([ s
< c3 <5> + 46y 05 (/ TNz dr)
1 0
5, Nzrz , 5 NZ»2 0
< c3 5* + 055 2 (5 ((5152) =cCg | — < crez +U.

1 61

2N
Ntz

)
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Hence, from these estimates, we have

_ — 05
[f(Ve+ 1) = f(Ve) = f(PUs, + 1) + f(PUs, )| ax, < ce? ™. (3.48)
Since ¢o € By and thanks to (3.43), (3.46), (3.47) and (3.48) we get that
92
IT2(¢2)| < ce?™, >0

and hence 7 maps Bs . into itself .

It remains to prove that 72 : Ba . — Bz, is a contraction. Thanks to (3.42) it suffices to
estimate ||[Na(d1,¢2) — Na(d1,102)| for any g, ¢2 € Ba.. To this end, thanks to (2.1), the
definition of A5 and reasoning as in the proof of Proposition 3.6 we have:

[Na (1, d2) — Na(1,102)|| < €*pa — o],

for some o > 0.

At the end we get that there exists L € (0, 1) such that
[T2(¢2) — T2(¥2) || < Llid2 — 2.

Finally, taking into account that d; — é1(dy) is a C'-map, a standard argument shows that also
(dy,ds) — ¢pa(dy,ds) is a Ct-map. The proof is complete. O

4. THE REDUCED FUNCTIONAL

We are left now to solve (2.11). Let (¢1,$2) € Ki x K+ be the solution found in Proposition
3.1. Hence V, + ¢1 + ¢3 is a solution of our original problem (1.1) if we can find d. = (dy., da)
which satisfies condition (2.4) and solves equation (2.11).

To this end we consider the reduced functional .J, : Ri — R defined by:

Je(dy, do) := Je(Ve + 1 + ¢2),
where J, is the functional defined in (1.13).
Our main goal is to show first that solving equation (2.11) is equivalent to finding critical points

(d1.c,da.c) of the reduced functional J,(dy, dz) and then that the reduced functional has a critical
point. These facts are stated in the following proposition:

Proposition 4.1. The following facts hold: B B

(1): If (d1e,dae) is a critical point of J., then the function Ve + ¢1 + ¢2 is a solution of
(1.1).

(ii): For any n > 0, there exists ey > 0 such that for all € € (0,¢y) it holds:

2
Jdids) = SV 4 ar(0)d 7 — 4] + O(), (4.1)

with

N-—2
d 2
as7(0) (d?) — ayd3

for some function g depending only on di (and uniformly bounded with respect to €),
where 01,05 are defined in (3.1), o is some positive real number (depending only on N ),
T is the Robin’s function of the domain ) at the origin and

1 / 1 1 1
p+1 2
a) = -« dy; as:=-o / — dy;
27N Jax (14 )P 2% Jax (L [yI)N2
1

1
az = ol

O(e"17) = M %7g(dy) + € +o ("), (4.2)

~z 4y

/RN [y[N =2 (1 + |y2) 27
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The expansions (4.1), (4.2) are CO-uniform with respect to (dy,ds) satisfying condition
(2.4).
Remark 4.2. We point out that the term g appearing in (4.2) does not depend on dy and this

will be used in the sequel, in particular in (5.5).

The aim of this section is to prove Proposition 4.1. First we prove two lemmas about the
C_Z'O—expansion of the reduced functional J.(dy,ds) := J. (V. + ¢1 + ¢2), where ¢1 € Ki N By . and
$2 € K+ N By are the functions given by Proposition 3.1.

Lemma 4.3. For any n > 0 there exists eg > 0 such that for any € € (0,¢€q) it holds:
Je(Ve + d1) = Je(Ve) + O(" ),
with
0(691+U) _ 601+crgl(d1) +0 (692+0) , (4.3)
for some function g1 depending only on dy (and uniformly bounded with respect to €), where 61, 02

are defined in (3.1), o is some positive real number (depending only on N ). These expansion are
CO-uniform with respect to (dy,ds) satisfying condition (2.4).

Proof. Let us fix n > 0. By direct computation we immediately see that
Je(‘/e“!‘qgl)_Je(Vve) = %fQ|V(51|2 dx""fgv‘/evél dw—%fg‘&lp d{[;—efﬂ‘/qul dx

— b [ Vet Gu P! = VPt der
(4.4)
By definition we have

/ VV.-Vé, dr = / V(PUs, —PUs,)-V 1 dx = / (Ufl —ng)él dr = / [f Us,)— f(Us,)] 1 dx,
Q Q Q Q

moreover, since F(s) = s[P*! is a primitive of f, we can write (4.4) as

st

Je(‘/e‘i‘(gl)_Je(‘/e) = %H(Z31H2_§|d;1‘§ EfQV(bl d$+fQ Z/{51 f(uﬁz)]qgl dx
— JolF (Ve + 1) — F(Vo)] da
= slloull? = 5l01l3 — € f Vedr dw+ [o[fUs,) — fUs,) — f(Ve)l by da

— [o[F(Ve + 1) = F(Vo) = f(Ve)én] da

A+B+C+ D+ E.
(4.5)
A,B: Thanks to Proposition 3.1, for all sufficiently small €, we have ¢ || < ce%+", for some
¢ > 0 and for some ¢ > 0 depending only on N. Hence we deduce that A = O(e’1727),
B = O(e%+29%1) . We point out that, since only ¢; is involved in A and B, these terms depend
only on d;.
C: By definition we have

6/ ‘/;(51 dl‘zé/ ’PU[SICZH d.T—E/ 73%2&1 dl‘zll +IQ.
Q Q Q

We observe that in the estimate I; only §; and ¢, are involved. Hence I; depends only on d;.
Thanks to Holder inequality, we have the following:

1] < eltds, | 20, |1 oy,
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Since N > 7 we have |Us, |1\%r2 = O(6?), for i = 1,2, so from our choice of §; (see (2.3)) and since

o1l < ce#+7 we deduce that
] < ce(eVT 3N 17) < e+, (4.6)

for all sufficiently small e. For I, with similar computations, we get that
_ 1+ 2BN-10) N-2 4,

TN—2)(N—6) ¢ 2(N—14)
(o] < elts,| ax fr] 2w < ce € :

Since N > 7 it is elementary to see that 1+ ( ]\2,(_3’1\)[( 1\}3)6) =+ 2(%’_24) > 5. From this we deduce

that

|Io| < cef2te
for all sufficiently small e.
D: we have
[ 1) = 55 = 1Vl do = [ 17(PUs) = 1(PUs) = F(V0)6n o+
: n i (4.7)
+ [0~ FPus o o+ [ (F(PUs,) ~ 10 )i o
Q Q
I I3

We evaluate separately the three terms.
We divide 2 into the three regions Ag, A1, Ay (see the proof of Proposition 3.8 for their definition).
Then

/ F(PUs,) — F(PUs,) — F(VOlbr dz =3 / F(PUs,) — F(VO))Br du
@ j=0"4i

1

_J»_X_:O/Aj f(PU62)¢1,dx+[42[f(PU5l) — f(PUs,) — F(V)]oy da:

I
" 1
I

Now, writing f(PUs,) — f(Ve) = f(PUs,) — f(Ve) + f'(PUs, ) PUs, — ['(PUs, )PUs,, applying the
usual elementary inequalities, Holder inequality and taking into account the computations made
in (3.16) , (3.19), (3.20), we get that

L1 < ofPUS|an, a,|01] 23 4, + cIPUS | 2n 4, 101] 25 4,

N+2» N—-2> N+F2° N—2°
p—1 7 p—1 n
el PUs, oy [PUs, |20y ao 1011200, a + clPUST PUsa| v, a,101] 2, 4,
N+2
N+2 2 L 2N
NE£2 ooy 0 4 gy N-2 g, 02 52 _N245N-2
< ealdy? 62+0+(5> €2+0+5%522€2+J+ 5 T N+2 dr €
1 1 /%
5 N+2 5 2 5 N—-6
Ntz gy 2\ * e N-2 6y 2 2\ Y 4
< |6y e T4 = e2+"—|—5f622 exto4 [ = —= g2 To
51 51 51
N+2
<

=)

.

* EAR 0240
€2 < €27,

o1
Fd
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As before we have
1

1< Y 1 (PUs) 2 il ax, a, < ce® 0.
— Ntz N—2j
j=

Now, by Holder inequality and reasoning as in (3.24), (3.25), (3.26), we get that
)< |F(PUs,) — F(PUs,) = F(Vo)l v, aulrlaae a,

N+2° N—
P p—1 Iy

< o <|Pu51|13f2,A2 + |PU;, PUall%Az) |p1 28 4,

5 N+2

4

2 o1

< e <5> €279 < cqef2to,
1

At the end we conclude that
|Il‘ é CEGerg.

For the remaining two terms of (4.7), reasoning as in the proof of Proposition 3.7, we get that

2N SC(S-2 .

N+2 ?

Hence
— N+2 6
|12| < |f(U51) - f(PUgl)‘%Wﬂ% < 062(1\%4)671-&-0 < 6691+a7

for all sufficiently small e. We remark that I depends only on d; and hence it is sufficient that
it is of order 6; + o.
At the end

| Is] < |f(Us,) — f(PUs, )| e, |61] e < e,

N+2 N—-2

for all sufficiently small e.
E: We decompose € in the three regions A;, 7 = 0,1, 2 used before.
For j = 0,1 we have

/ Ve 4+ 3P — VP — (o4 DIVLPVedy] da

J

= / [[PUs, — PUs, + 1P+ — |PUs, + ¢1|PTH + (p+ 1)[PUs, + ¢1[P~ (PUs, + ¢1)PUs, | da

Aj

I

- [PUs, — PUs, [P = PULH! + (p + 1)PUL PUs, | da
) 61 61

J

I>
+/ [|7>u51 + [P = PULT - (p+ 1)7Dug’1<51] da
Aj
I3
—(p + 1) / “771/151 - 'PU52 |p71('PU51 . PU52) - 'Pugl] (i_)l dx
Aj

Iy

—(p+1) / [|PUs, + 617~ (PUs, + ¢1) — PUE | PUs, da .

J

Is
(4.8)
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In order to estimate I, Is, I4 and I5, applying the usual elementary inequalities, we see that

IfA <c</ Pugjldx+/ PULTPUS, dx+/
Aj Aj A
|IQ‘ S C /

A

|14 < e (/ Pug;ﬁlldx —i—/ Pblfl_lPng\ch\ dw)
Aj Aj

J

|61 [P~ PU, dif)

PUET da + / PUETPUS, dm)

J 3J

|Is| < ¢ (/ |1 |PPUS, d:c+/ Pu§11Pu52|¢‘>1|dx> )

Now, as seen in the proof of (3.16) and thanks to (3.20), we have
5y if j =0

%
(%) if j=1,

p—1 2 2N -2
. PUF,PUL da < C\PL{51|p+1 Ao [ PUs, 51,4, < 0705 .
0

Moreover, by analogous computations, we get that

/ PU(?QH dr <c
Aj

N
02\ 2
PUZPUL™ da < 7/ ——dr<e (2]
5§v—26<p71><%1+a) ifj=0
/ PUE |61 [P di < el PUs, 24y 4 l61]PF < v
A, : (%) 7 @ if =1,
5,7 edto if =0
PUE |b1| dx < c|PUS, | b < N2
[, PGl < PU L 6l < ()% o fin
N-2 ¢
i PUs, PUL |61 d < e PUs, 1,40 |PUs, 1071 4, 1]l < 030,77+,
0

and, thanks to (3.19), we have

PUs, PUL 1l de < |PUs, PUL | on 4, 101] 2 4,

Ay Nt+2° N-—2°
- S

/ 5y % % 0L,

< ¢ s dx €2
A\ (63 + [2]2) 77 (0F + [z[?)?
0 \2 [0\ T S\ T
2 2 ﬂ+g 2 ‘Ll_;'_g

< = = 2 = = 2

- (51> (51} ‘ “ (51) ‘

At the end

_ _ N-2 6
Pls, |f1|P da < c1|PUs, |pi1,4, | 6117 < €20, 7 P2 H)
Ao



SIGN-CHANGING TOWER OF BUBBLES FOR THE BREZIS-NIRENBERG PROBLEM 28

and, by using Lemma 3.9, we get that

N+2
_ _ 2N N _
PUs,|p1|Pdz < crlda[20! [ PUs, " dx] |P1lp+1,4,
A1 Al
N+2
2 —N245N—2 2N 01
< cge N-152 Ntz dr €21

EP)
r
/91
kP

N—-6
2 4 LA 1
= 63€*m§§ l(gj) — 6, ] 667“’

é B
< ey ((52) exte,
1

In order to estimate I3 we observe that

e1 (I8P 1PUs, 753 + 6171 < eae e,

/ [[PUs, + 6117 = PUET — (p+ 1)PUE 61 | da <
Ao

(4.9)
which is sufficient since this term does not depend on ds.
Moreover
/A [Ipual + o = PURT — (p + 1)7’U§1¢31} dr = /B o [|7>u51 + [P = PUET — (p+ 1)PUL 1 | da
1 0,p

—/ [|7>u51 + [P —PUET — (p+ 1)7>u§1031} dx
Az

We observe that the first integral in the right-hand side of the previous equation depends only
on d;. Hence, as in (4.9), we have

[|77U51 + d_ll\erl — PUgfl —(p+ 1)7>u§’1q31} dz| < ce?r 17,

B(0,p)

Furthermore, by using Lemma 3.9, we get that

I 1
< er (1PUs, 551 4,101 s, + 101101, )

[|73u5 AP = PULT — (p+ DPUL G| da

2

] 1 2 a
remwd| o[ [ 1] g [ e

_/B(o, ) (1 + [y[H)N 1 As As
r \/T Z%f
22 _ V0102
<63( / " PN=lgp| e~ [/ rNldr
0

0

(4.10)
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Now, it remains only to estimate the left-hand side of (4.8) for j = 2. Hence, thanks to the
usual elementary inequalities, we get that

/ (Ve GaPH — [V — (p+ DIVP Vi dr
Az

<(/ Vi do+ [ g dx)
A2 A2

PUg;quS% dx + /

Az

= ( PULT 63 do + 6] dm)
Az

As

For the first and third integrals in the last right-hand side we can reason as in (4.10). For the
second integral, using Lemma 3.9, we have

_ _ 52
PUL 2 dr < o ¢1§o/ S R,
1 M 91 9l |, GTT 1P
N 1
< ;W 2>5§/ ——dx
As ||
V55
< 035fN+25§/ rN=5 dr
0
5\ 7
< =
< (5)

Finally, summing up all the estimates, we conclude that |E| = ¢?1%7g(d;) + O(e%277).

Lemma 4.4. For any n > 0 there exists eg > 0 such that for any € € (0, ¢eo) it holds:
Je(Ve + 1+ d2) = Je(Ve + 61) + O(e™77),

C°-uniformly with respect to (dy,ds) satisfying condition (2.4), for some positive real number o
depending only on N.

Proof. As we have seen in the proof of Lemma 4.3, by direct computation we get that
J(Vet b1+ 62) = J (Ve + 61) = 3 [ [Vé2l* da + [,V (Ve + 61) - V2 da
=5 Jolool? do — € [o(Ve + ¢1)do dr — 37 [ (Ve + b1 + gof 7T = [Ve + 61 [PH) da
= —3llg2l® + §lo2l3 + fo V(Ve + 61 + ¢2) - Vo dx
—€ Jo(Ve+ b1+ ¢2)d2 dx — [, f(Ve + ¢1) 2 da
— JolF(Ve+ 61+ ¢2) = F(Ve + ¢1) — f(Ve + ¢1)o] dx

o (4.11)
Since @1 + @2 is a solution of (2.10) we have

Ve + @1 + g2 — *[e(Ve + 1 + @2) + f(Ve + 1 + ¢2)]} = 0,
hence, for some v € K, we get that V. + ¢1 + ¢o weakly solves
—A(Ve + ¢1+ ¢2) + AP — [e(Ve + ¢1 + ¢2) + f(Ve + ¢1 + ¢2)] = 0. (4.12)
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Choosing ¢ as test function, since ¢o € K+, ¥ € K we deduce that
/ V(Ve+ g1+ ¢2) - Voo dax — 6/ (Ve + 61 + o) o da = / F(Vet é1+ da)o dz (4.13)
Q Q Q

Thanks to (4.13) we rewrite (4.11) as

J(Vet 1+ ¢2) — Je(Ve + ¢1) = _%|\¢_52H2+§|52|§+/Q[f(V6+¢_51+¢_52)—f(‘/;+¢_51)]¢_52 dx

- /Q[Fw; L G1 4 Ba) — F(Vet d) — F(Ve + G1)a] da
— A+B+C+D. (4.14)

A, B: Thanks to Proposition 3.1, for all sufficiently small €, we have ||¢2 < 06672+0, for
some ¢ > 0 and for some ¢ > 0 depending only on N. Hence we deduce that A = O(e%2127),
B = (212011,

C: By Lemma 2.2 we get

[Vt a1 a0 = sVt bl da| < [ jal ok [ Vot i de
< df|gllPT 4 | Ve |p+1|¢2 pr1 Tt c‘¢1|p+1‘¢2‘p+1
< cefrte

for all sufficiently small e.
D: Applying Lemma 2.2 and Holder inequality we get that

/Q F(Vi + 61+ 62) — F(Ve 1 61) — F(Vi + 1)) da

+1
<C|V|p+1|¢2 +1+C|¢1|p+1|¢2 +1+C|¢2|g+1~

Since all the terms from A to D are high order terms with respect to €’ the proof is complete.
O

In order to prove Proposition 4.1 some further preliminary lemmas are needed.

Lemma 4.5. Let 0; as in (2.3) for j =1,2 and N > 7. For any n > 0 there exists g > 0 such
that for any € € (0,€p), it holds

% / VPUs, | do — = / PUSH! dx = sN/2+a17<o>5;V*2+o(a;V*1),
Q

CO-uniformly with respect to (cl17 da) satisfying condition (2.4), where ay := p+1 S~ W dy
1+

and 7(0) is the Robin’s function of the domain Q at the origin.

Proof. By using (1.6), (1.7) and (1.8) we have that

1 2, 1 pt1 _1/ » _L/ 1
2/9\V7>u5],\ dz pH/QPUJj de=g [ U PUs, de— | PUPT dn

1
= /U(; ) dr — ? (uéj — (p(;j)p'i‘l dx

1 1
+1 +1 -1 2

1 1
= ([z-— up+1d+ /u” d+0( ur—t 2vd>
(2 p+1>/ T J e JHs, ws; de



SIGN-CHANGING TOWER OF BUBBLES FOR THE BREZIS-NIRENBERG PROBLEM 31

Now it is easy to see that

p+1
yrtt dx:/ AN gy 106, 415
/Q J o (LT [N ©5) (4.15)

while

N2 Ni2
/Ug’_@(;j dx /Z/lg (aNéj *H(0,z) +0(9;? )) dx
a Q

N-2 N+42
2

aNéjT/Qng’J_H(O,x) dx+0(5j /ng)j dm)

p+1

= &M r(0)6 2 o dy+ O(5N ). (4.16)

/ + :
! RV (1+y|?) ™
Moreover

0 (/ U2 dac) = 0N ). (4.17)
Q J J

Indeed, we get

/ Uyl oy de = / Uyl o5, dw + / Uyl p3, da
Q B /5-(0) Q\BW(O)

0155\’—2/ z,{g’]fl dx + |905].|I2,+1 (/
B o\

—X N-1 +o0 N-1
< et [T T gy 6N ey d
= 2% o (1+72)? rred i Ty

J

p—1

ey
Ug’_ﬂ dx)

IN

J

V55O B /5(0)

i
AL

< C45j

3N -4
S 24 655?/_1 < Cﬁ(st_l.

Hence, from (4.15), (4.16), (4.17) we get the thesis. d

Lemma 4.6. Let 0; as in (2.3) for j =1,2 and N > 7. For any n > 0 there exists g > 0 such
that for any € € (0,€p), it holds

€ N
3 /Q PM(?J_ dz = azed? + O(ed;? ),

CO-uniformly with respect to (dy, ds) satisfying condition (2.4), where as := a3 S W dy.
Proof. From (1.6) we get that

€ € € €

/(Puéj)z dr = 7/(2,{5]_ _<P6j)2 dx /Z/{g,_ dx—e/l/{5j<p5j dr + /Lp%,_ dx. (4.18)
2 Jo 2 Jo 2 Jq 7 Q 2 Jo "
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The principal term is the first one, in fact we have:

€ € oN -2 € 5o N2
- u2 d — a2 /J—d — _ 2/ J d
2/9 BT Ny @ PN T 2 Y g i le/a v
—(N-2)
€ 9 / 5]‘ N € 2 2/ 1
= —« ——— 5 dy = = a%0; —— dy+
2 %Y Jogs, AP W72 N o e
) +oo TN_I
+0 65./ ———dr
7 )5, T+ r2)N=2
€ 252 1 N-—2
= - a26? dy + O (6} .
QO‘NJ/RN(1_~_|y|2)N—2 Y+ O (ed; )
For the remaining terms, by using also (1.10), we deduce that
N-z N
e/ Us;ps; dr < elUs, |a]ps;|2 < cedjo; * < ced? . (4.20)
Q
Moreover by using again (1.10)
€ € _
5 [ ¢ do = Slenf < cer?
and the lemma is proved. O

Lemma 4.7. Let §; as in (2.3) for j =1,2 and N > 7. For any n > 0 there exists ey > 0 such
that for any € € (0, ¢€q) it holds

e/PU51PU52dx:O e (%2 61,
Q 3

C-uniformly with respect to (dy,ds) satisfying condition (2.4).

Proof. From (1.6) we get that

e/ PUs, PUs, dv = e/ Us, — ps,)Us, — ps,) dx
Q Q

(4.21)
= e/ Us,Us, dx — e/ Us, s, dx — e/ Us, 05, dw—i—e/ ©s,ps, dx.
Q Q Q Q
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We analyze every term.

5N2—2
6/(151L{52dx = ea/ 5 2
Q Q 1+|x/51 7 (02 +|z2) %7
N+2 5 2—2
= Ea / 5 22 ~— 4y
/5 lHyI = (03 + 03 lyl?)
67T 0y 7
= € Oé?v L N2 = N-—2 dy
o/6 (1+y|*) ™= ((‘52)2+|y2> >
51
S\ T 1 1 4.22
S € O‘?\/ 22 5%/ ~—3 dy ( . )
1 /6 (14 y?) 7= -
N—-2

2 1
5?/ dy
Y (14 [y[2) 55 [y V-2
A 400 N-—1
5%/ - dr
16 (1+472) 7 pN-2

52) 5%/ L dy + O e<52> V=2,
! RN (1+ [y[2) 57 [y| V-2 01

N—-2
Hence € [, Us,Us, dz = O (e (6—2) ’ 5%) Thanks to (4.20) we deduce that € [, Us, 5, dz =

N-2 N-2 N-2 N-2
@) (e 5% 052 ), € JoUs, 5, dz =0 (e 5% 6,2 ) Moreover it is clear that € [, @5, @5, dz =
N-2

N-2 N-2
O (€d; % 052 ). Since these last three terms are high order terms compared to e (22> o 52,

we deduce the thesis, and the proof is complete. O

We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. (i): One can reason as Part 1 of Proposition 2.2 of [27].

(ii): Let us fix n > 0. From Lemma 4.3 and Lemma 4.4, for all sufficiently small €, we get
that

Je(Ve+ ¢+ ¢2) = Je(Vo) + €179 (dy) + O(™ ),
for some o > 0. We evaluate J.(V) = J.(PUs, — PUs,).

1 1
Je(PUs, — PUs,) = 5/9 [V (PUs, — PUs,)|* dz — p+1 /Q |[PUs, — PUs, | d

— % / (PUs, — PUs, )2da

1
= 3 / \VPU5, |* dx + = / \VPU;5, |* dz — / VPUs, - VPUs, dx

5 [1PUs = PUs e S [ (U da = [ (P e
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+ o€ / PlUls, PlUs, dx
Q

2 2
_ 1 2, 1 p+1 _ E/ 2
- Z<2/9|v7>u5j| dz pH/QPué] d:v) Z_:Q quéj dz
j=1 j=1
(I) (I1)
+e / PUs, PUs, dx — / V'PUs, VPUs, dx
Q Q

(II1) (Iv)
1
T (1PUs, = PUls, |7+ — PUET — PUET | dar.
Q

(1v)

By Lemma 4.5, Lemma 4.6 and Lemma 4.7 we get
2
() = 5"+ @m0 +ar(0)6 " + 06 ) + 05,
(I) = azed? + azed? + O(e8 ) + O(ed?),
N-—2
(I11) = O (e (62) 5%) :
o1

Now since —APUs, = Uj, then [, VPUs, VPUs, dx = [, U5 PUs, dz and hence

1
1v) = o [|7>u51 — PUs, [P — PUETH — PULT + (p+ 1)PUL PUs, | da
Q

I

+ / [PUS — US| PUs, dx .
Q

I

By (1.6) and Lemma 2.2 we deduce that
|I5] < C/Qu§2‘1<p527>u51 dx + C/Q @5, PUs, dz.

Now let p > 0 such that B(0, p) C Q.

/ @5, PUs, dx < / o5 Us, da z/ o5 Us, dx—|—/ ©5 Us, dx
Q Q Q\B(0,p) B(0,p)

1
Pt N2 1
S |§0§2|Z+1 </Q\B(0 )u§1+1 dl’) + 052 2 L(O : D — vy dx
P N

(ell)

o1

A
Q
&
o

|

+
S
>
Oq N
—z

S—
=3
b

QU

3

IN
2
—
>,
[\
|
>,
iy
[§]
+
>
[\v]
|
>,
=z
&
| S
A
2
/‘\
"
>
H“‘Z
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N-2
Moreover, since [, U5 dz = 0(d; % ), we get

IN

N—2
/ UL o5, PUs, di 06, lloo / UL Uy, dw < C5, 7 / U5, da
Q Q Q

N_z B b
Coy 2 (/ Us, dm) </ us, da:)
Q Q
N—2 2(N—-2)

N24yaN-—12 (N-2)2 = NT2
S 0152 2(N+2) 512(N+2) _ Cl <§j> (gj) 5{\/—2
< <52> 57 2.

01

Now let p > 0 and we decompose the domain Q as Q = Ay U Ay U Ay where Ay =
Q\ B(0,p), A1 = B(0,p) \ B(0,1/0192), A2 = B(0,+/0102). Then we define

IN

1
L= ] [|79u51 — PUs, [P = PUL — PULT + (p+ 1)7>u§27>u51} dz
for j =0,1,2.

Now, by using Lemma 2.2 and Holder inequality, we see that

1
< — Us. — PU. p+1 _ up+1 d up—‘,—ld UP PUs. d
- p+1 |:/Ao (|P & P 62' P o1 ) T AOP 62 T AOP 527) 5, AT
< C </ PUg)l’Plxl(sz d:ch/ Pug’;l dx+/ 772/15273?/{51 dx>
Ao Ao Ao
< C( Us Us, dx + / U d + / us Us, d:c)
Ao Ao Ao
T == too N1
< C(/ UpHdﬂf) (/ Llp+1dx> +C/ ————dr
Ay 01 Ao d2 1 % (1—|—T2)N
+1 v +1 e
+C (/ U(i dz) </ Z,[g’1 dgg)
Ap Ao
+oo TN_I # +00 ’I"N_l pflrl N
< G Ty d L Cs6
= /f (1+r2)N " /ép 1+ r2)N T + (305
1 2
e [T ) ([ )
\ /. (1+r2)N " . (14N T
5o %
N+2 N-2 N N+2 N-2 (52 % N
< 04(612 522 -‘r(SQ +(522 (512 )<C5(51) (51,
Now
1
B ——— _ p+1 _ p+1 D
Ly il [1PUs, — PUs, [P+ = PUET + (p + 1YPUE PUs, | da
1
+ PU§1PU52 dx — 'Pug’z’Puél der — —— Pug;—i—l d.

A Ay p+1J4
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Applying Lemma 2.2 we get
PUL da:)

<cC ( PUETPUS, dx +
Al Al

/ (1PUs, — Puts, 7 —PUE 4 (0 + 1)7>u§17>u52} dz
Ay

<o(2) [ [ o) <a(2)

Thanks to (1.6) and Lemma 2.2 we have

PU§1PZ/I52 der = Ug’PUsQ dz + O (/ Uf;ltpzslPUaZ dx) +0 (/ <p§177L{52 dx)
Aq A A

A

Ufllxlgz dx + O (/ Z/{f;lgp(;z dx) +0 (/ u§1_1@61’PM52 dx) +
A Q Q

+0 (/ o5 PUs, da:)
)

By definition we have:

Uy Us, de = af\,ﬂ/ — w5 dz
A - 2> 2
52
N-—-2 N-2
L Pl RN <52> / 1 L <5> ’
= Y+ o
e : o VE<ki<g (L4 [yP)F [yIV 2 g

- () ((3)7)

Moreover by using (1.9) we get

Ay

N=2 N—2 N-2
/ugl ps, dv < Cdy * /Z/Ig’l dr < C16, 7 6y°
Q Q
and by using again (1.9) we have

/ UL s, PUs, dz < / UL s, Us, dx
Q Q
p—1 2
N-—2 +1 T p+1 T N—-2 N-2
cé, (/ leg)l da:) (/ Us? da:) <Ciéy 7 9,7 .
Q Q
Finally

/ @5 PUs, dx < / o5 Us, dx :/ @5 Us, d +/ @5 Us, d
Q Q B(0,p) Q\B(0,p)

1
N+2 _ N-2 % ’I“N_l ) p+1
Cé; % 4, * / ———dr + s, [P / Ut dx
1 2 0 (1 N 7‘2) N2 1lp+1 NB(0,p) d2

IN

<
N—2
06N+26N+ 06N+2< oo L N-1 >2N
< o o ([T
= 1 2 1 N
% (1+7‘)
N+2 N-—2

IN
2
(o9

—
)
(o9

V)
)
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At the end
1 1
PUP PUs, dx < ob '8, - d
a S e NG
O
+5Y
N-2 P N
S\ 2 [ N-1 K 2
>~ Cl <2> / : - N+t2 dr S CZ <2>
S AT b
Finally, thanks to Lemma 2.2 we get that
1
|L2| < p+1{ /A [|7>u51 — PUs, [P — PUET + (p+1)7>u§27>u51} dx| + /A Pugjldx}
2 2
< c( PUEPUS, do+ | PUET! dw) <C ( / UG de+ | Ul d:r)
A Az As Az
52\ \/% V=2 # N1
< C = ———d ———d
<al(®@) [ armees [ asaee
92 92
5\ (VR V7 5
< 0| (2 / rN_sdr—i-/ PNl | <0y (2
61) Jo 0 o
From Lemma 4.5 to Lemma 4.7 summing up all the terms we get that
2
J(PUs, — PUs,) = NSN/Q +a17(0)8) % + a1 7(0)53 2+ 00 ) + O
5\ T 5 5\ 7 (4.23)
o2 of(2 '
i <<51> >+ ((51> >+a3 <51>
— a2€52 + O (eéN_Q) — a2652 + O (edéV_Q) ,
where a1 = p+1 fR W dy, az = Of?v f]RN W dy, az = 0¢§)\/Jrl fRN ( !
Recalling the choice of 9;, j = 1,2 we get
2 3N—1 —2
T(PUs, — Pls,) = —SN2 4 ayr(0)dN—2eN=1 4 a7 (0)d) ~2¢ (N=iin=w
N—1 (BN—10)(N—1) (N—2)N
+ O (€N74) +0 <€ (N—4)(N—6) ) +0 (EN 6) +0 (E(N H(N— 6))
N—2 o2 2
+ as (32) 7 (e _ asd? eN=i 40 (6%> —agdge%
2(2N2-13N+22) (4.24)
+ 0 <€<N4><Ns>>>
2 _ _
= SV farr(0)d) 7 - azd2)eN=3 + O (e%f)
+ [ ()" - d] i 4 0 (4.
dy

We point out that the term O(e~¥=

N

1

1) depends only on d;.
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5. PROOF OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. Let us set G1(dy) := an’(O)aliV_2 — aad?, where aj, ap are the positive
constants appearing in Proposition 4.1 and 7(0) is the Robin’s function of the domain Q at the
origin, so by definition it follows that 7(0) is positive. It’s elementary to see that the function

1

G : Rt — R has a strictly local minimum point at d; = (m) A
Since d; is a strictly local minimum for Gi1, then, for any sufficiently small v > 0 there exists an
open interval I ,, such that Iy ,, C R*, I ,, has diameter o1, dy € I1 , and for all dy € 11 4,
Gi(dr) > G (dy) + 7. (5.1)

Clearly as v — 0 we can choose o7 so that o1 — 0.

N—2

We set Ga(dy,ds) := az7(0) (Z—f) i azd3, Gy : Ri — R, where a3 > 0 is the same

constant appearing in Proposition 4.1. If we fix d; = d; then G (d2) := G(dy,ds) has a strictly
2a231N;2
asT(0) N2

2
N—-6
local minimum point at dy := ( ) . As in the previous case there exists an open

interval I5 ., such that 72702 CRT, I 5, has diameter oy, dy € I+, and for all dy € 01> 4,
ég(dg) > GQ(CZQ) + . (52)
As v — 0 we can choose o3 so that oo — 0.

Let us set K := 11 5, X Iz 5, and let n > 0 be small enough so that K C|n, %[x]n, %[ Thanks
to Proposition 3.1, for all sufficiently small ¢, J, : Ri — R is defined and it is of class C'. By
Weierstrass theorem we know there exists a global minimum point for J. in K. Let (dy e, dz2.)
be that point, we want to show that there exists €; such that, for all € < €1, (d1,c,d2.¢) lies in the

interior of K.
Assume by contradiction there exists a sequence €, — 0 such that for all n € N

(dl,Gna d2,en) S 3K

There are only two possibilities:

(a): dl,én € QI1’017 d2>5n € 72702’
(b)' dl,en S Il,a’ly d2,en € 8‘[2,0'2‘

Thanks to (ii) of Proposition 4.1 we have the uniform expansion
je(dl,dg) — je(Czl,dg) = 691 [Gl(dl) — Gl(dl)] + o0 (691) . (53)

for all € < €, (d1,d2) € K. We point out that we have incorporated the other high order terms
in o (¢”1). Thanks to (5.1) and (5.3), for all sufficiently small € we have

Je(dy, dy) — Je(dy, d2) > 0, (5.4)

for all dy € 011 4,, for all ds € Tgm. So for n sufficiently large if (a) holds, since by definition
Je, (d1e,,dac,) =ming Je_, then

jen (dl,ena d2,en) < jen (Jla d2,6n )a

which contradicts (5.4). Assume (b). Thanks to (ii) of Proposition 4.1 (see also Remark 4.2) we
have the uniform expansion

Je(d,dz) — Je(dy, do) = €% [Ga(dy, d2) — Ga(dr,d2)] + 0 (€), (5.5)
for all € € (0,¢p), for all (dy,ds) € K.
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For n sufficiently large so that €, < ¢y we have

Jo(die,,doe,) — o (die,,d2) = €% [Ga(die,,dae,) — Ga(die,, d2)] + 0( 2)

2 [Ga(die,, do,) — Ga(di, dae,) + Ga(di, da,) — G2(d, da)

GQ(JI,CZ2) Gz(dl enad )] +O( )

N-2 1 1

= & asT(0)dy 2 | =5 — —x=z | *+ G2(d1,da,) — Ga2(dy, d2)
Le, dp7
_N-2 1 1
+a37(0)dy® | = — == || +o0 (G?f)
dy? 1en

(5.6)
We observe now that, up to a subsequence, d; ., — d; as n — +o00. This is a consequence of
the uniform expansion given by (ii) of Proposition 4.1, in fact

jen (d175n7d275n) - jen (le J2) = ele [Gl(dl,en) -G (Jl)] +o (6?3) . (5~7)

Since (di e, , d2,e, ) is the minimum point we have J. (dhe,,d2e,)— ( 0, hence, dividing
_ 01

(5.7) by €%, for all sufficiently large n we get that Gy (dy.,) — G1(dy ( " ) On the other

side, since d; is the minimum of G, we get that G1(dy ., ) — G1(d1) > 0. So we have proved that

di,dy) <
) <

0<Gi(die,) —Gi(dy) < —

and passing to the limit we deduce that lim, o, G1(d1,) = G1(dy). Hence, up to a subse-
quence, since d; is a strict local minimum, the only possibility is dq ., — d;.
Since we are assuming (b), from (5.2) we get that

Go(dy,da,) — Ga(dy,d2) > v

From this last inequality, (5.6) and since (da,, )» is bounded, then, choosing 7 sufficiently large

N-2

so that az7(0)d, 2 -

N-—2

and a37(0)d, 2

1 1
N—2 2
dy ? d1,52n

are small enough, we deduce

d, 2 4,7

1,en

that
Teu (e, da,e,) = e, (e, d2) > 0,
for all n > @i. Since (di,,,d2,,) is the minimum point it also holds
Jeo(die, doc,) — Je, (die,,d2) <0,
and we get a contradiction.

To complete the proof we point out that, as observed before, up to a subsequence dj . — di
as € = 0. With a similar argument we prove that ds . — ds. In fact, from the same argument of
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(5.6), since dq  — dq and (da.¢) is bounded, we have

je d ead € _je d eaJ 7 o 692
0> Jeldie da, )692 (die.da) Go(dy e, dae) — Ga(di e, d2) + Eez )
N-2 1 1 - -
= a37(0)dy? | = — == | +G2(d1,d2) — Ga(d1, d2)
dy¢ dy?
_N-2 1 1 0 602
+ a3z7(0)d, ? —~—5 — =~z | T (92 )
dy* dyg ‘

= 0(1) + Gg(dl, dz)e) — Gg(dl, dg)
(5.8)
Since dy is a local maximum point for dy — G’g(dg) we have Ga(d1,da ) — Ga(dy,ds) > 0 and so
from (5.8) we get that

0 < Go(dy,da,c) — Ga(d1,d2) < —o(1).

Passing to the limit as € — 0 we deduce that G (da,e) — GQ(CZQ). Hence, up to a subsequence,
since dy is a strict local minimum, the only possibility is doe — ds.

Hence by (i) of Proposition 4.1 we have that V. + ¢1 + ¢ is a solution of (1.1). Moreover, taking
into account of (1.6), (1.10) and (1.11), we get that the solution obtained is of the form (1.2)

and the proof is complete. (Il
We are ready also to prove Theorem 1.2. We reason as in [28].

Proof of Theorem 1.2. Let u, be a solution of (1.1) as in Theorem 1.1 and assume that &, — 0
uniformly in compact subsets of 2. We set

N—2 N—
1 - 3N—10 —
i (x) o d1€€N74 dlEE(N—4)(N—6)
€ = 2 - 3N —10
d? eN=1 + |z|? A2 =D 4 g2

N-—2 N-2

2 2
1 1
- 1 1 - - —_3N-10 _ __B3N-10 _
dice™=3 +d e V3 2|2 doce D=0 4 dyle” -0 -0 1|2

Then, by Theorem 1.1 and by using the assumption on the remainder term ®,. we get

ue(z) = ant(z)(1 + o(1)), x €, (5.9)

where o(1) — 0 uniformly on compact subsets of €.
We consider the spheres

Sli={reRY : |z :eﬁ}
and

862 ={z € RY |x| = eﬁ%}
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We may fix a compact subset K C Q such that S/ C K, j = 1,2 and € > 0 sufficiently small.
For x € S} we get

1 ’ 1 ’
ﬂe(‘r) = 1 1 1 - 3N—10 1 — N+2
dieeN=1 +dj eV doce M-DN=8) 4 d; e~ N-0(N=-0)

N—2 >
_N-2 1 2 1
= € 208-9) - _
d d—l 2(N-2) 1 - 8
1e + dq, doce WD) 4 d,le” W-DE-6

i (L )+ 0
= € 2=  E— )
d16+d1_51

as € — 0. Hence @ > 0 on S! for € small.
Analogously if x € S? then

N-—-2

(2) _BN-10)(N=2) ( 1 ) 2 W
Ue(T) = —€ 2N-"DHN=6) S +o
d2e + d2€1

as € — 0 and hence i, < 0 on S? for € small.

Since (5.9) holds, this implies that u. > 0 on 8! and u. < 0 on S for € small.

Then u. has at least two nodal domains {21, {25 such that €2; contains the sphere Si,j=1,2.
Next we show that u. has not more than two nodal domains for e small.

We remark that by (ii) of Proposition 4.1 and by Lemmas 4.3, 4.4 it follows that

2
Jo(ue) — NS%, as € — 0 (5.10)

where J, is defined in (1.13) and S is the best Sobolev constant for the embedding of HJ (£2) into
LPTL(Q), namely

2d
S = inf fQ [Vuldz —.
wEHGEOMO} ([ |u|p+l dz) 7+

We set ¢, := inf ;. J., where N, is the Nehari manifold, which is defined by

Ne = {ueHé(Q) : /Vu|2dx:/|U|p+1dx+e/u2da:}.
Q Q Q

N
2

as € — 0 and therefore, by (5.10), we get that
Je(ue) < 3ce (5.11)

It is easy to see that c. — ¢g = %S

for € small enough.

We now suppose by contradiction that u. has at least 3 pairwise different nodal domains
Qq1, 0, Q3.

Let x; be the characteristic function corresponding to the sets €2;.

Then ucy; € HE(2) (see [25]). Moreover

/\V(ugxi)\zdm‘ = /VuEV(uexi):—/Aue(uexi)dx
Q Q Q
/|u€|p(uexi)dm‘+e/ Ue * UeX; AT
Q Q

/|uexi|p+1 dm—&—e/(uexi)de

Q Q
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so that ucy; € Ne. Since also u. € N, we obtain

Je(ue)

1
>/|uep+1dx
Q
1 1 3
> [z ——— uex [P da
> (2 pﬂ);@ il

- ZJE(Xiuﬁ) Z 3Ce

i=1

|
N
N | =
|
i}
+
—_

contrary to (5.11). The contradiction shows that u. has at most two nodal domains for ¢ small.

This completes the proof. O
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