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Abstract
We develop quantifier elimination procedures for fragments of higher order logic arising
from the formalization of distributed systems (especially of fault-tolerant ones). Such pro-
cedures can be used in symbolic manipulations like the computation of pre/post images and
of projections. We show in particular that our procedures are quite effective in producing
counter abstractions that can be model-checked using standard SMT technology. In fact,
very often in the current literature verification tasks for distributed systems are accomplished
via counter abstractions. Such abstractions can sometimes be justified via simulations and
bisimulations. In this work, we supply logical foundations to this practice, by our technique
for second order quantifier elimination. We implemented our procedure for a simplified (but
still expressive) subfragment and we showed that our method is able to successfully handle
verification benchmarks from various sources with interesting performances.

Keywords 2nd order quantifier elimination · Satisfiability Modulo theories · Verification of
parameterized distributed systems · Counter abstractions

1 Introduction

There is an increasing interest concerning algorithmic methods (and, in particular, quantifier
elimination methods) applying to second order logic, as witnessed by recent dedicated work-
shops [40]. Quoting from the textbook [25] “In recent years there has been an increasing use
of logical methods and significant new developments have been spawned in several areas
of computer science, ranging from artificial intelligence and software engineering to agent-
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based systems and the semantic web. In the investigation and application of logical methods
there is a tension between: (i) the need for a representational language strong enough to
express domain knowledge of a particular application, and the need for a logical formalism
general enough to unify several reasoning facilities relevant to the application, on the one
hand, and (ii) the need to enable computationally feasible reasoning facilities, on the other
hand. Second-order logics are very expressive and allow us to represent domain knowledge
with ease, but there is a high price to pay for the expressiveness. Most second-order logics
are incomplete and highly undecidable. It is the quantifiers which bind relation symbols that
make second-order logics computationally unfriendly. It is therefore desirable to eliminate
these second-order quantifiers, when this is mathematically possible; and often it is.”

However, most known applications of second-order quantifier elimination concernmodal-
like logics or knowledge representation area (see again [25]), with limited - if not negligible
at all - impact on other areas of computer science, like formal methods. In this paper, we
are partially filling this gap, by developing specialized second order elimination techniques
applying to the verification of distributed (especially fault-tolerant) algorithms. In designing
the fragments of second order logic to which our algorithms apply, we are strictly guided by
our intended main applications, although we feel that our contribution could be interesting
also in a general logical context.

1.1 The Challenge of Verification of Distributed Systems

The automated, formal verification of distributed algorithms is a crucial, although challeng-
ing, task. The processes executing these algorithms communicate with one another, their
actions depend on the messages received, and their number is arbitrary. These character-
istics are captured by so called reactive parameterized systems. The task of validating or
refuting properties of these systems is daunting, due to the difficulty of limiting the possible
evolutions, thus having to deal with genuinely infinite-state systems.

Building accurate declarative models of these systems requires powerful formalisms,
involving arrays [28], [29] and, in the fault-tolerant case, also some fragment of higher-order
logic [21], [4] (this is needed in order to have some form of comprehension to play with
cardinalities of definable sets). On the other hand, for a long time, it has been observed that
counter systems [18,19,22] can be sufficient to specify many problems (like cache coherence
or broadcast protocols) in the distributed algorithms area. Recently, counter abstractions have
been effectively used also in the verification of fault-tolerant distributed protocols [3,34,35,
38]. It should be noticed that, unlike what happens in the old framework of [18,19,22],
these new applications are often (although not always) based on abstractions that can only
simulate the original algorithms and such simulation may sometimes be the result of an a-
priori reasoning on the characteristics of the algorithm, embedded into the model. Despite
this fact, all runs from the original specifications are represented in the simulations with
counter systems (this is in fact the formal content of the notion of a ‘simulation’), thus for
instance safety certifications for the simulating model apply also to the original model. The
advantage of this approach is that, as it is evident e.g. from the experiments in [3], verification
of counter systems is very well supported by the existing technology. In fact, although basic
problems about counter systems are themselves undecidable, the sophisticated machinery
(predicate abstraction [24], IC3 [17,32], etc.) developed inside the SMT community leads
to impressively performing tools like μZ [33], nuXmv [13], SeaHorn [31].... which are
nowadays being used to solve many verification problems regarding counter systems.
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Being conscious that building simulations requires in any case some human interaction,we
tried to build in this paper a uniform framework. Our framework relies on recent powerful
techniques for deciding cardinality and array constraints [4,6,43]; we shall exploit these
techniques in order to obtain quantifier elimination results in a higher order context. Via these
quantifier elimination results, we shall show how to automatically build the best possible
counter simulations users can obtain once they fix (i) the specification of the system, (ii)
possibly some helpful invariants and (iii) the counter variables involved in the projected
simulation (such variables are cardinality counters for definable sets). We demonstrate the
effectiveness of our approach by producing, for some common benchmarks, counter systems
simulations which are effectively model-checked by current SMT-based tools.

1.2 A Toy Example

Let us begin by illustrating our methodology via a first example, the MESI protocol (the
same simple technique applies to all examples from e.g. [2]). The MESI protocol is a cache
coherence protocol; here we analyze the simplified version reported in the extended version
of [2] (in Appendix A.3 in the supplementary material we shall make a detailed analysis of
the original algorithm from [47]). We have a finite set Proc of N identical processes; each
process i can take a local state L(i) within the enumerated set

Data = {(m)odified, (e)xclusive, (s)hared, (i)nvalid} .

Initially all processes are in state i and the system can evolve from L to L ′ according to one
of the four nondeterministic rules:

(τ1) ∃i (L(i) = e ∧ L ′(i) = m ∧ ∀ j �= i L ′( j) = L( j))

(τ2) ∃i (L(i) = i ∧ L ′(i) = s ∧
∀ j �= i (L( j) = i = L ′( j) ∨ (L( j) �= i ∧ L ′( j) = s)))

(τ3) ∃i (L(i) = s ∧ L ′(i) = e ∧ ∀ j �= i L ′( j) = i)

(τ4) ∃i (L(i) = i ∧ L ′(i) = e ∧ ∀ j �= i L ′( j) = i)

This specification of the system involves a function variable L : Proc −→ Data and
we want to simulate it using only integer variables. To this aim, we introduce counters
zi, zs, ze, zm for the definable sets

{i | L(i) = i}, {i | L(i) = s}, {i | L(i) = e}, {i | L(i) = m},
respectively. In other words, the formulæ (τ1) − (τ4) are modified by adding to them the 8
equations below as further conjuncts

zi = �{i | L(i) = i}, zs = �{i | L(i) = s},
ze = �{i | L(i) = e} , zm = �{i | L(i) = m}, (1)

z′i = �{i | L ′(i) = i}, z′s = �{i | L ′(i) = s},
z′e = �{i | L ′(i) = e}, z′m = �{i | L ′(i) = m} (2)

For i = 1, . . . , 4, we let (τ+
i ) be the conjunction of (τi ) with the 8 equalities (1)–(2) above.

A similar transformation is done for the formula (ι), expressing the system initialization,
namely ∀i L(i) = i: this is modified to (ι+) by conjoining to it the first 4 equations above
(namely the equations (1)).
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Now, observe that the safety property we are interested in, namely that processes in state m
cannot coexist with processes in state s, can be expressed in terms of arithmetic properties of
our counters as zm > 0 → zs = 0. Thus, from an observational point of view, only counter
arithmetics is relevant.

How to approximate the whole specification of the system using just the above counters?
The idea is to existentially quantify and then eliminate the higher order variable L from the
formulæ (ι+), (τ+

1 ) − (τ+
4 ): we shall see that this is possible in this and in many cases. In

our case, after applying the quantifier elimination procedure, we get

(ι̃) zi = N ∧ zs = 0 ∧ ze = 0 ∧ zm = 0

(τ̃1) ze > 0 ∧ z′e = ze−1 ∧ z′m = zm + 1 ∧ z′i = zi ∧ z′s = zs

(τ̃2) zi > 0 ∧ z′i = zi−1 ∧ z′m = 0 ∧ z′e = 0 ∧ z′s = zs + zm + ze + 1

(τ̃3) zs > 0 ∧ z′s = 0 ∧ z′m = 0 ∧ z′i = zi + zs − 1 + ze + zm ∧ z′e = 1

(τ̃4) zi > 0 ∧ z′s = 0 ∧ z′m = 0 ∧ z′i = zi − 1 + zs + ze + zm ∧ z′e = 1

In this new system, the only variables are the arithmetic variables zi, zs, ze, zm; we will show
that the new system simulates the old system ‘in the best possible way’ (in the sense formally
explained in Sect. 4.1) using the variables zi, zs, ze, zm.1 Since the property to be checked
is a safety property, we can hope to check it for the new (simpler) system: if we succeed, we
get the desired safety certification for the original system. This is in fact what happens: an
SMT-based tool like μZ or nuXmv (among others) is able to solve the new safety problem
instantaneously.

1.3 Our Four-Steps Plan

It should now be clear what is our general strategy:

(1) system specifications are formulated in higher order logic, i.e. using a declarative for-
malism which is sufficiently expressive and close to informal specifications;

(2) counters for definable sets are added by the user to the system specification, in such a way
that the observationally relevant properties can be reformulated as arithmetic properties
of these counters;

(3) higher order variables are eliminated, by applying an automatic procedure;
(4) the resulting system is finally model-checked by using an SMT-based tool for counter

systems.

In this plan, only steps (1)–(2) require manual intervention (we shall better discuss these
steps in Sect. 7); step (3) is effective every time the syntactic restrictions for our quantifier
elimination procedures are matched; step (4) is subject to two risks, namely the fact that
model-checkers may not terminate on such (often undecidable) arithmetical problems and
the fact that simulations may introduce spurious traces. Non-termination, giving the actual
state of the art (much progress has been made both at the theoretical and at the practical
level) is less frequent than one can imagine. There are positive theoretical results: besides
classical achievements [1,28] showing that backward search terminates for coverability prob-
lems whenever system states carry a wqo ordering, additional recent results [39] show that
the system diameter may be (unexpectedly!) finite, thus reducing search to bounded model
checking. Concerning the second risk, notice that if spurious traces arise, they can be rec-
ognized because SMT-tools supply concrete numerical values for counterexamples; then,

1 Actually, this example is quite simple and the counters simulation is in fact a bisimulation.
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one can try to go back to step (2) and to refine the abstraction by adding more counters
for definable sets. In fact, the design of a good counter abstraction for a specific property
to be verified requires some manual ingenuity, because it is true that our results guarantee
the existence of a best counter abstraction once the integer variables are fixed, but one can
get better and better counter abstractions by adding further integer variables expressing the
cardinality of definable finite sets. One should not however exceed with the number of these
variables: adding a full set of counters for e.g. n Boolean flags requires an exponential number
of counters, which may be unfeasible and cause SMT-based model checkers to get in trouble
in the final verification phase. In principle, it might also be the case that no invariant involving
just arithmetic counters exists (in which case all attempts relying on counter abstractions are
bound to fail), but both theoretical results and practical experiments show that very often
counter abstractions are successful.

1.4 Structure of the Paper

The paper is structured as follows: in Sect. 2we supply syntactic background and in Sect. 3we
state and prove our quantifier elimination results. In Sect. 4 we introduce our formalism for
system specifications and show how quantifier elimination can be used to compute arithmetic
projections (i.e. best counter simulations). Section 5 shows how a restricted (more tractable)
format for system specifications can be handled inside our tool ArcaSim; Sect. 6 describes
the set of benchmarks used in our experiments and report ArcaSim performances. Finally,
in Sect. 7 we discuss related and future work. In the electronic Appendix A in the supple-
mentary material we run three representative examples in full detail; the electronic Appendix
is available on the publisher website. Preliminary versions of the material included in this
paper were presented in the Workshops [26,27].

2 Higher Order Logic and Flat Constraints

In order to have enough expressive power, we use higher order logic, more specifically
Church’s type theory (see e.g. [7] for an introduction to the subject).2 It should be noticed,
however, that our primary aim is to supply a framework for model-checking and not to build
a deductive system. Thus we shall introduce below only suitable languages (via higher order
signatures) and a semantics for such languages - such semantics can be specified e.g. inside
any classical foundational system for set theory. In addition, as typical for model-checking,
we want to constrain our semantics so that certain sorts have a fixed meaning: the primitive
sort Z has to be interpreted as the (standard) set of integers, the sort Ω has to be interpreted
as the set of truth values {tt,ff}; moreover, some primitive sorted operations like +, 0, S
(addition, zero, successor for natural numbers) and∧,∨,→,¬ (Boolean operations for truth
values) must have their natural interpretation. Some sorts might be enumerated, i.e. theymust
be interpreted as a specific finite ‘set of values’ {a0, . . . ,ak}, where the ai’s are mentioned
among the constants of the language and are assumed to be distinct. Finally, we may ask
for a primitive sort to be interpreted as a finite set (by abuse, we shall call such sorts finite):
for instance, we shall constrain in this way the sort Proc modeling the set of processes in a
distributed system. In addition, if a sort is interpreted into a finite set, we may constrain some
numerical parameter (typically, the parameter we choose for this is named N) to indicate the

2 Some notation we use might look slightly non-standard; it is similar to the notation of [44].
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cardinality of such finite set. The notion of constrained signature below incorporates all the
above requirements in a general framework.

A constrained signature Σ consists of a set of (primitive) sorts and of a set of (primitive)
sorted function symbols,3 together with a class CΣ of Σ-structures, called the models of Σ .
Using primitive sorts, types can be built up using exponentiation (= functions type); terms
can be built up using variables, function symbols, as well as λ-abstraction and functional
application.

Remark 1 In the standard model-checking literature, CΣ is a singleton; here we must allow
many structures in CΣ , because our model-checking problems are parametric: the sort mod-
eling the set of processes of our system specifications must be interpreted onto a finite set
whose cardinality is not a priori fixed. Our definition of a ‘constrained signature’ is analogous
to the definition of a ‘theory’ in SMT literature; in fact, in SMT literature, a ‘theory’ is just
a pair given by a signature and a class of structures. When transferred to a higher order con-
text, such definition coincides with that of a ‘constrained signature’ above (thus our formal
framework is very similar to e.g. that of [51]).

Our constrained signatures always include the sort Ω of truth-values; terms of type Ω are
called formulae (we use greek letters α, β, . . . , φ, ψ, . . . for them). For a type S, the type
S → Ω is indicated as℘(S) and called the power set of S; if S is constrained to be interpreted
as a finite set, Σ might contain a cardinality operator � : ℘(S) −→ Z, whose interpretation
is assumed to be the intended one (�s is the number of the elements of s - as such it is always
a nonnegative number). If φ is a formula and S a type, we use {x S | φ} or just {x | φ} for
λx Sφ. We assume to have binary equality predicates for each type; universal and existential
quantifiers for formulæ can be introduced by standard abbreviations (see e.g. [44]). We shall
use the roman letters x, y, . . . , i, j, . . . , v, w, . . . for variables (of course, each variable is
suitably typed, but types are left implicit if confusion does not arise). Bold letters like v (or
underlined letters like x) are used for tuples of free variables; below, we indicate with t(v)
the fact that the term t has free variables included in the list v (whenever this happens, we say
that t is a v-term, or a v-formula if it has type Ω). The result of a simultaneous substitution
of the tuple of variables v by the tuple of (type matching) terms u in t is denoted by t(u/v)
or directly as t(u).

Given a tuple of variables v, a Σ-interpretation of v in a model M ∈ CΣ is a function
I mapping each variable onto an element of the correponding type (as interpreted in M).
The evaluation of a term t(v) according to I is recursively defined in the standard way and
is written as tM,I . A Σ-formula φ(v) is true underM, I iff it evaluates to tt (in this case,
we may also say that vM,I satisfies φ); φ is valid iff it is true for all models M ∈ CΣ and
all interpretations I of v over M. We write |
Σ φ (or just |
 φ) to mean that φ is valid and
φ |
Σ ψ (or just φ |
 ψ) to mean that φ → ψ is valid; we say that φ andψ areΣ-equivalent
(or just equivalent) iff φ ↔ ψ is valid.

2.1 Flat Cardinality Constraints

Let us fix a constrained signature Σ for the remaining part of the paper. Such Σ should be
adequate for modeling parameterized systems, hence we assume that Σ consists of:

(i) the integer sort Z, together with some parameters (i.e. free individual constants) as well
as all operations and predicates of linear arithmetic (namely, 0, 1,+,−,=,<,≡n);

3 These include 0-ary function symbols, called constants; constants of sort Z will be called (arithmetic)
parameters.
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(ii) the enumerated truth value sortΩ , with the constants tt,ff and the Boolean operations
on them;

(iii) a finite sortProc, whose cardinality is constrained to be equal to the arithmetic parameter
N (in the applications, this sort is used to represent the processes acting in our distributed
systems);

(iv) a further sort Data, with appropriate operations, modeling local data; we assume that (a)
first-order quantifier elimination holds for Data, meaning that all first-order formulæ
built up from Data-atoms (i.e. from variables of type Data using operations and pred-
icates relative to the sort Data) are equivalent to quantifier-free ones; (b) ground (i.e.
variable-free) Data-atoms are equivalent to ⊥ or to �.

In principle, we could consider having finitelymany signatures for data instead of just one, but
this generalization is only apparent because one can use product sorts and recover component
sorts via suitable pairing and projection operations.

If Data is an enumerated sort, we call Σ finitary; the subsignature Σ0 of Σ obtained by
restricting to sorts and operations in (i)–(ii) is called the arithmetic subsignature of Σ .

In the syntactic definitions below, we freely take inspiration from [4], however the present
framework is greatly simplified because we do not view Proc as a subsort of Z, like in [4];
in addition, notice that Σ does not contain operations or relation symbols specific to the sort
Proc (apart from equality) - this restriction reduces terms of sort Proc to just variables.

Below, besides integer variables (namely variables of sort Z), data variables (namely
variables of sort Data) and index variables (namely variables of sort Proc), we use
two other kinds of variables, that we call array-ids and matrix-ids. An array-id is a vari-
able of type Proc → Data or of type Proc → Z and a matrix-id is a variable of type
Proc → (Proc → Data) or of type Proc → (Proc → Z). Array-ids and matrix-ids of
codomain sort Z are called arithmetical array-ids or matrix-ids; if Data is enumerated,
array-ids and matrix-ids of codomain sort Data are called finitary. If M is a matrix-id and
i, y are index variables, we may write Mi (y) or M(i, y) instead of M(i)(y).

Let us now introduce some useful classes of formulæ.

– Open formulæ: these are built up from atomic formulæ containing arithmetic parameters
and the above mentioned variables, using Boolean connectives only (no binders, i.e. no
λ-abstractors and no quantifiers).

– 1-Flat formulæ: these are formulæ of the kind φ(� {x | ψ1} / z1, . . . , � {x | ψn} / zn),
where φ(z1, . . . , zn), ψ1, . . . , ψn are open and x is a variable of type Proc.

– Given an index variable i , a formula φ is said to be i -uniform with respect to a matrix-id
M (resp. an array-id a) iff i is not used as a bounded variable in φ and the only terms
occurring in φ containing an occurrence of M (resp. of a) are of the kind Mi (y) (resp.
a(i)) for a variable y.

Notice that, some quantified formulæ can be rewritten as 1-flat formulæ: for instance
∀x (a(x) = c → b(x) = d) is the same as �{x | a(x) = c → b(x) = d} = N, and
similarly ∃x (a(x) = c) can be re-written as �{x | a(x) = c} > 0. Such rewriting however
is not possible for nested quantifiers: ∀i �{x | a(x) = b(i)} > 0 (semantically equivalent to
∀i ∃x a(x) = b(i)) is not 1-flat because it cannot be obtained by replacing terms of the kind
{x |ψ j } (with open ψ j ) for free arithmetic variables inside an open formula φ.

Remark 2 1-Flat formulæ of this paper are slightly different from the flat formulæ of [4,5]
(they roughly correspond to the flat formulæ of degree 1 of [5]); the definition here is not
recursive and is simplified by the fact that we do not have nonvariable terms of type Proc;
on the other hand, we allow matrix-ids to occur in our formulæ, whereas the syntax of [4,5]
is restricted to array-ids.
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Remark 3 In the applications, we typically use matrix-ids M(i, x) in the finitary case where
Data is the set of Boolean truth values: M(i, x) asserts for instance that x sent a message
of a certain type to i . This allows to count the number of such messages received by i via the
term �{x | M(i, x)} (according to our notational conventions, this is the term �{x | Mi (x)}).
The definition of a i-uniform formula is meant precisely to make such terms available: they
are used in order to formalize standard benchmarks like the byzantine broadcast primitive
protocol (see Appendix A.1 in the supplementary material).

3 Quantifier Elimination

In this technical section we state and prove the quantifier elimination results we need. Let
us fix a constrained signature Σ like in Sect. 2.1. We first investigate in a closer way our
open formulæ. Notice first that if an open formula is pure (i.e. it does not contain array-ids
or matrix-ids), then it is a Boolean combination of arithmetic, index or data atoms, where:

– arithmetic atoms are built up from variables of sort Z, parameters (i.e free constants of
sort Z), by using =,<,≡n as predicates and +,−, 0, 1 as function symbols;

– index atoms are of the kind i = j , where i, j are variables of sort Proc (we do not
consider further operations and predicates for this sort - apart from equality - in this
paper);

– data atoms are built up from variables of sort Data by applying some specific set of
predicates and operations (predicates include equality, all arguments of such predicates
and operations are of type Data).

By assumption (see Sect. 2.1), quantifier elimination holds for first-order Data-formulæ,
but this result extends very easily to all pure first-order formulæ. We state this formally as a
Lemma:

Lemma 1 Any pure first-order formula is equivalent to an open pure first-order formula.

Proof Using prenex formula transformations, it is sufficient to show how to eliminate a
quantifier ∃x α, where α is open and pure. Actually, using disjunctive normal forms, we can
assume that α is a conjunction of literals. Pushing the existential quantifier inside, we can
assume that such literals are all arithmetic, all index or all data literals, depending on the
sort of x . The case of arithmetic literals is covered by Presburger quantifier elimination [49],
whereas the case of data literals is covered by our assumption. It remains to consider the
case of index literals; excluding trivial cases where the existential quantifier is redundant or
eliminable by substitution, we are left with the case where α is x �= y1 ∧ · · · ∧ x �= yn . By
introducing a disjunction of cases (and by distributing the existential quantifier over such
disjunction and removing redundant variables), we reduce to a disjunction of formulæ of the
kind

∃x (x �= y1 ∧ · · · ∧ x �= yn′ ∧
∧

i �= j

yi �= y j )

The latter is equivalent to N > n̄′ ∧ ∧
i �= j yi �= y j , where n̄′ is 1 + · · · + 1 (n′-times). ��

In case array-ids and matrix-ids do not occur, 1-flat formulæ can also be trivialized:4

4 If the sort Proc is identified with a definable finite subset of Z, the result still holds but is much less trivial:
to get it, one must apply results from Presburger arithmetic with counting quantifiers [52].
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Lemma 2 A 1-flat formula without array-ids and matrix-ids is equivalent to a pure formula.

Proof Let us eliminate subterms t of the kind �{x | α} (with pure α) inside a pure formula φ.
We can first remove from α arithmetic and data atoms, as well as index atoms not containing
x , by the following equivalence (let A be the atom to be removed):

φ ↔ ([A ∧ φ(�/A)] ∨ [¬A ∧ φ(⊥/A)]) .

By Venn regions decomposition, we can assume that α is a conjunction of literals: in fact,
if {α1, . . . , αk} is a Venn regions decomposition of α, then �{x | α} is sematically equal to∑k

j=1 �{x | α j }. In addition, if t is of the kind �{x | x = i ∧ α}, we can remove it using the
equivalence:

φ ↔ ([α(i/x) ∧ φ(1/t)] ∨ [¬α(i/x) ∧ φ(0/t)]) .

Thus we are left only with the case in which t is �{x | ∧n
s=1 x �= is}; we can also assume

that φ entails
∧

s �=s′ is �= is′ (otherwise we can force this by making φ a disjunction of case
distinctions). Then we can remove t using

φ ↔ (N ≥ n̄ ∧ φ(N − n̄/t)) ∨ (N < n̄ ∧ φ(0/t)) .

Once all t are removed (one by one), the statement is proved. ��
It is now convenient to introduce a notation for open (not necessarily pure) formulæ (from

now on we shall reserve the letters α, β, . . . to first-order pure formulæ, to recognize them).
Considering that there are no operation symbols of sort Proc, the only new terms that might
arise in open non pure formulæ (wrt pure formulæ) are of the kind a(i) or Mi ( j), where a is
an array-id, M is a matrix-id and i, j are variables of sort Proc. Thus we may write an open
formula φ as the formula obtained by replacing in a pure formula some arithmetic variables
with terms of the kind a(i) or Mi ( j). If our open φ does not contain matrix-ids, we can write
it as

α(z, k, a(k)/e, d) or simply as α(z, k, a(k), d) (3)

where α(z, k, e, d) is pure, z is a tuple of arithmetic variables, k is a tuple of index variables,
d is a tuple of data variables, a is a tuple of array-ids (the e might be arithmetic or Data-
variables depending on the types of the a); if a = a1, . . . , an and k = k1, . . . , km , then a(k)
is the tuple

a1(k1), . . . , a1(km), . . . , an(k1), . . . , an(km)

so that the matching tuple of arithmetic or data variables e can be indexed as e11, . . . , enm .
A 1-flat formula without matrix-ids is then written as

α(z, k, a(k), d, �{x | β1(z, x, k, a(x), a(k), d)}, . . . , �{x | βs(z, x, k, a(x), a(k), d)})
or (with some abuse of notation) shortly as

α(z, k, a(k), d, �{x | β(z, x, k, a(x), a(k), d)}) (4)

where β is a tuple of formulæ (we use the convention that �{x | β} stands for the tuple of
terms �{x | β1}, . . . , �{x | βs}).

Displaying 1-flat formulæ with matrix-ids requires an even more complex notation, that
we will not use though. These notations are apparently cumbersome but have the merit of
displaying the essential information on how our formulæ are built up from pure formulæ.
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Lemma 3 If φ is an open formula and d ′ are arithmetic and data variables, then ∃d ′ φ is
equivalent to an open formula.

Proof Let φ be α(z, k, a(k), d)

as in (3) and let d ′ be data variables.5 Suppose that d = d ′d ′′; then ∃d ′α(z, k, e, d), by
Lemma 1, is equivalent to a pure formula β(z, k, e, d ′′), so that,

applying a substitution, ∃d ′α(z, k, a(k)/e, d) is equivalent to β(z, k, a(k)/e, d ′′), which
is as desired. The case in which d are arithmetic variables is treated similarly. ��

We now state a first quantifier elimination result (this is essentially Theorem 4 from [5],
we nevertheless report the proof for the sake of completeness):

Theorem 1 Suppose that φ is a 1-flat formula containing the array ids a, a′ (and not con-
taining matrix-ids); then the formula ∃a′ φ is equivalent to a formula ∃eψ , where the e are
arithmetic and data variables, ψ is 1-flat and contains only the array-ids a.

Proof We start with a formula having the form

∃a′ α(z, k, a(k), a′(k), d, �{x | β(z, x, k, a(x), a′(x), a(k), a′(k), d)}) (5)

where k are index variables, z arithmetic variables and d data variables. We can first get
rid of the terms a(k), a′(k), as follows. Suppose that a = a1, . . . , an , a′ = a′

1, . . . , a
′
n′ and

k = k1, . . . , km ; we introduce new variables

e = e11, . . . , enm, e′
11, . . . , e

′
n′m

and rewrite (5) as

∃e.
∧

i, j

ai (k j ) = ei j ∧ ∃a′

⎛

⎜⎝

∧

i, j

�{x | x = ki ∧ a′
j (x) = e′

i j } = 1 ∧

∧ α(z, k, e, d, �{x | β(z, x, k, a(x), a′(x), e, d)})

⎞

⎟⎠

Thus it will be sufficient to eliminate the ∃a′ from formulæ of the kind

∃a′ γ0(z, k, d
′, �{x | β(z, x, k, a(x), a′(x), d ′)}) (6)

(here the d ′ include the old d and the e - the latter are existentially quantified and will remain
such in the final outcome).

If we suppose that β is β1, . . . , βt , we can set K := ℘({1, . . . , t}) and introduce for every
r ∈ K a new existentially quantified arithmetic variable ur , thus rewriting (6) as

∃u, a′.
∧

r

ur = �{x | βr (z, x, k, a(x), a′(x), d ′)} ∧ γ (z, k, d ′, u) (7)

where u is the tuple formed by the ur ’s (varying r ) and βr is the ‘Venn region’
∧

l∈r βl ∧∧
l /∈r ¬βl ; the formula γ is obtained from γ0 by replacing, for all l, the term �{x | βl} with∑
l∈r ur . Notice that at this point γ is pure and the new βr ’s are a partition (i.e. they are

mutually inconsistent and
∨

r βr is valid).
To continue, following the technique in [4], we need a further ‘Venn region decomposition’

δS . For every S ∈ ℘(K ) let δS(z, x, k, a(x), d ′) be the pure formula
∧

r∈S
∃y βr (z, x, k, a(x), y, d ′) ∧

∧

r /∈S
¬∃y βr (z, x, k, a(x), y, d ′)

5 In (3), there are no matrix-ids; if there were also matrix-ids, then the argument would be the same (we do
not insist, because we shall need the lemma only for formulæ without matrix-ids).
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(here data quantifiers ∃y can be eliminated using Lemma 3). We claim that the formula (7)
is equivalent to the formula obtained by prefixing the existential quantifiers ∃ur (varying
r ∈ K ), ∃uS (varying S ∈ ℘(K )) and

∃ur ,S (varying S ∈ ℘(K ) and r ∈ K ) to the formula

∧

S∈℘(K )

uS = �{x | δS(z, x, k, a(x), d ′)} ∧
∧

S∈℘(K )

(
uS =

∑

r∈S
ur ,S

)
∧

∧
∧

r∈K

⎛

⎝ur =
∑

S∈℘(K ),r∈S
ur ,S

⎞

⎠ ∧
∧

r∈S∈℘(K )

ur ,S ≥ 0 ∧ γ (z, k, d ′, u)

(8)

Suppose that (8) is satisfied under the assignment I to the free variables occurring in it
(for simplicity, we use the same name for a free variable and for the integer assigned to it by
I). Let us assume that Proc is interpreted (up to a finite sets bijection) as the interval [0,N);
we need to define for all i ∈ [0, N ) the tuple a′(i) - namely a′

s(i), for all s = 1, . . . , n′. For
every r = 1, . . . , K this must be done in such a way that there are exactly ur elements taken
from [0, N ) satisfying βr (z, x, k, a(x), a′(x), d ′). The interval [0,N) can be partioned by
associating with each i ∈ [0,N) the set iS = {r ∈ K | ∃y βr (z, i, k, a(i), y, d ′) holds under
I}. From the fact that (8) is true, we know that for every S ∈ ℘(K ) the number of the i’s such
that iS = S isuS ; for every r ∈ S, pickur ,S among themand, for these selected i , let the s-tuple
a′(i) be equal to an s-tuple y such that βr (z, i, k, a(i), y, d ′) holds (for this tuple y, since the
βr ’s are a partition,βh(z, i, k, a(i), y, d ′) does not hold, if h �= r ). Since uS = ∑

r∈S ur ,S and
since

∑
S uS is equal to N (because the formulæ

∧
r∈S ∃y βr ∧∧

r /∈S ∀y¬βr are a partition),
the definition of the a′ is complete. The formula (7) is true by construction.

On the other hand suppose that the matrix of (7) is satisfiable under an assignment I;
we need to find I(uS), I(ur ,S) (we again indicate them simply as uS, ur ,S) so that (8) is
true (the ur are already given since (7) is true). For uS there is no choice, since uS = �{x |
δS(z, x, k, a(x), d ′)}must hold; for ur ,S , we take it to be the cardinality of the set of the i such
that βr (z, i, k, a(i), a′(i), d ′) holds under I and S = {h ∈ K | ∃y βh(z, i, k, a(i), y, d ′)
holds under I}. In this way, for every S, the equality uS = ∑

r∈S ur ,S holds and for every
r , the equality ur = ∑

S∈℘(K ),r∈S ur ,S holds too. Thus the formula (8) becomes true under
our extended I. ��
The following Corollary follows from Theorem 1 and Lemmas 2,1:

Corollary 1 Suppose that φ is a 1-flat formula containing the array ids a (and not containing
matrix-ids); then the formula ∃a φ is equivalent to an open pure formula.

Notice that the above result (as it happenswith all our quantifier elimination results) imme-
diately implies that 1-flat formulæ not containing matrix-ids are decidable for satisfiability.

If the sort Data is enumerated and all array-ids are finitary, we can improve Corollary 1
above by including an extra quantified variable, as shown in the following Theorem (the
Theorem is useful for some benchmarks, see Appendix A in the supplementary material for
an example):

Theorem 2 Let the sort Data be enumerated and let the 1-flat formula φ contain only the
finitary array ids a (and no matrix-ids); then the formula

∃a ∀i ∃y φ (9)

(where i is an index variable and the y are arithmetic and data variables) is equivalent to
an open pure formula.

123



S. Ghilardi, E. Pagani

Proof Let Data be enumerated as {a0, . . . ,ak}; let z be the arithmetic variables occurring
freely in (9) and let k = k1, . . . , kn be the index variables occurring freely in (9) (thus i is
not among the k and the y are not among the z). We can assume that the y are arithmetic
variables because, since Data is enumerated, existential data variables can be elimitated via
disjunctions. For simplicity, we assume that (9) contains only one array-id, let it be a.6

Before working on the formula (9), it is better to make some preprocessing steps. Our final
aim is to produce a formula logically equivalent to (9), which is a disjunction of existentially
quantified formulæ whose matrices are pure open formulæ: in this way the extra existentially
quantified variables we introduce can be eliminated in the very end using Lemma 1. We need
also to introduce extra information to complete (9): this extra information is achieved by
rewriting (9) as a disjunction (each disjunct formalizes a suitable guess) and by operating on
each disjunct separately.

Concretely, we shall freely assume that ∀i ∃y φ in (9) is of the kind

Diff(k) ∧
∧

i

(a(ki ) = ali ) ∧
∧

j

(u j = �{x | a(x) = a j }) ∧

∧ ∀i ∃y φ′(z, y, i, k, a(i), �{x | β(z, y, x, i, k, a(x), a(i))})
(10)

where

• the formula Diff(k) says that the k are pairwise distinct (i.e. it is
∧

i �= j ki �= k j ): this
can be assumed without loss of generality, because one can guess a partition (introducing
a disjunction over all partitions) and make the appropriate replacements so as to keep
only one representative for each equivalence class of variables;

• since Data is enumerated we can guess (via a disjunction) for each ki the ali which is
the value of a(ki ) (then, all occurrences of the term in the remaining part of the formula
can be replaced by this ali );

• the u j are fresh arithmetic variables indicating the cardinality of the set of indices whose
a-value is a j (these u j are the extra existentially quantified variables to be eliminated in
the very end by Lemma 1);

• β are open formulæ as displayed and φ′ is a 1-flat formula as displayed (notice that
the terms a(ki ) do not occur anymore here, because we can assume that they have been
replaced by the corresponding ali ).

We now operate further transformations on the subformula ∀i ∃y φ′: we want to show
that this formula is equivalent to a 1-flat formula (hence without the quantifier ∀i), so that
the claim of the Theorem follows from an application of Corollary 1 and Lemma 1 - by
these results in fact all quantified variables in (9) can be eliminated in favor of a pure open
formula in which only the k, z occur. When manipulating ∀i ∃y φ′ below, we assume all the
information we have from (10), namely that the k are all distinct and that the values of the
a(ki ) are known.

As a first step, we can distinguish the case in which i is equal to some of the k from the
case in which it is different from all of them; in the latter case, we can also guess the value
of a(i). This observation shows that ∀i φ′ is equal to the conjunction of an open formula
(expressing what happens if i is equal to any of the k) with the conjunctions (varying aj in
our enumerated data)

∀i . Diff(i, k) ∧ a(i) = aj → ∃y φ′′(z, y, i, k, �{x | β ′(z, y, x, i, k, a(x))}) (11)

6 This is without loss of generality: since Data is enumerated and the a are finitary, one may take a product
of Data and replace the tuple a with a single array with values in such a product.
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where the φ′′, β ′ are obtained from the φ′, β by replacing a(i) with aj. Again, it will be
sufficient to show that (11) is equivalent to an open formula.

First observe that φ′′ is obtained from a pure formula by replacing arithmetic variables
with the terms �{x | β ′(z, y, x, i, k, a(x))}; since equality is the only predicate of sort Proc
(and there are no function symbols of sort Proc), the only atoms of sort Proc that might
occur in a pure formula are of the kind i = ks, ks = ks′ for some s �= s′, but these can all be
replaced by ⊥ because we have Diff(i, k) in the antecedent of the implication of (11). As
a consequence φ′′ can be displayed as φ′′(z, y, �{x | β ′(z, x, i, k, a(x))}).

A similar observation applies also to the β ′, however here we must take into consideration
also atoms of the kind x = i, x = ks . Thus, the β ′ are built up using Boolean connectives
from atoms of the kind x = i, x = ks , from arithmetic atoms A(z, y) and from Data-atoms
that might contain the term a(x). We can disregard arithmetic atoms, because for each such
atoms A(z, y) we may rewrite φ′′ as

[A(z, y) ∧ φ′′(z, y, �{x | β ′(�/A)})] ∨ [¬A(z, y) ∧ φ′′(z, y, �{x | β ′(⊥/A)})] . (12)

Thus the β ′ can be displayed as β ′(x, i, k, a(x)).
When x = i or x = ks (for some s) the β ′ can be simplified to � or ⊥ because we know

the values of a(i), a(ks) (and as a consequence the numbers �{x | x = i ∧ β ′}, �{x | x =
ks ∧ β ′} are 0/1-tuples). In conclusion we have that, for some tuple of numbers m7 that can
be computed, we have that (11) is equivalent to

∀i . Diff(i, k) ∧ a(i) = aj → ∃y φ′′(z, y, m̄ + �{x | Diff(x, i, k) ∧ β ′′(a(x))}) (13)
where β ′′ is obtained from β ′ by replacing the atoms x = i, x = ks with ⊥. Fix now some
β ′′
s from the tuple β ′′; for every enumerated data ak , each of the formulæ β ′′

s (ak) simplify to
either � or ⊥ and, since we know that uk = �{x | a(x) = ak} from (10), we can deduce that
�{x | Diff(x, i, k) ∧ a(x) = ak ∧ β ′′

s (ak)} is equal to either 0 (in case β ′′
s (ak) simplifies

to ⊥) or to uk − nk , where nk is the number of the k, i for which we know that a(k), a(i)
is equal to ak . As a consequence �{x | Diff(x, i, k) ∧ β ′′(a(x))} is equal to ∑

k(uk − nk)
(where the sum extends to all k such that β ′′

s (ak) simplifies to �).
All this can be summarized by saying that we can rewrite (13) as

∀i . Diff(i, k) ∧ a(i) = aj → ∃y θ j (y, z, u) (14)

where the formulæ θ j are pure (the tuple u is the tuple of the u j from (10)). By Presburger
quantifier elimination, we can drop the ∃y, thus getting

∀i . Diff(i, k) ∧ a(i) = aj → θ ′
j (z, u) (15)

Since now θ ′
j does not contain occurrences of i , we can rewrite this as

∃i (Diff(i, k) ∧ a(i) = aj) → θ ′
j (z, u) (16)

and finally as

�{x | Diff(x, k) ∧ a(x) = aj} > 0 → θ ′
j (z, u) (17)

This is a 1-flat formula. To sum up, our original formula (9) is equivalent to a formula of
the kind ∃a ∃u ϑ , where ϑ is 1-flat. Then (after swapping the quantifiers ∃a ∃u) we can first
use Theorem 1 to remove ∃a and then Lemma 1 to produce an equivalent pure open formula
(involving just the arithmetic variables z and the index variables k). ��
7 This tuple depends on j , i.e. on the a j used in the antecedent of (11) (we do not indicate this dependency
for simplicity).
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In case we have uniformity, we can further extend the above result to cover formulæ in
which arithmetic array-ids and matrix-ids occur.

Remark 4 Let us continue the considerations we made in Remark 3. We saw there that,
when building i-uniform (also 1-flat) formulae, we can employ terms counting the messages
received by a process i . Suppose that in our protocol we want to say for instance that all
processes i having received enough messages (e.g. messages from some qualified majority
of the network) are allowed to change their status into some ‘accepting’ status: to express this,
we need a formula of the kind ∀i φ, where φ is i-uniform 1-flat (this is the case for instance
of the examples of Appendix A in the supplementary material). Next Theorem guarantees
that we can indeed eliminate the higher order quantifiers over array-ids and matrix-ids from
(a slight generalized set of) such formulae.

Theorem 3 Let the sort Data be enumerated and let i be an index variable; suppose that
all matrix-ids M occurring in the 1-flat formula φ are i-uniform and that all array-ids a
occurring in φ are either finitary or i-uniform. Then the formula

∃a ∃M ∀i ∃y φ (18)

(where the y are arithmetic and data variables) is equivalent to an open pure formula.

Proof Thefirst step is to remove∃M for eachM ∈ M, using uniformity. In fact, by uniformity,
M occurs in φ only inside terms of the kind Mi (y) (for some index variable y); thus, applying
a reverse skolemization step, we can rewrite (18) as

∃a ∀i ∃b ∃y φ(· · · b/Mi · · · ) (19)

(here the b are existentially quantified array-ids: formula (18) is the skolemization of (19)).
Then we swap the existential quantifiers ∃b∃y and apply Theorem 1 to the subformula
∃bφ(· · · b/Mi · · · ), thus obtaining a formula of the kind ∃a ∀i ∃y ∃eψ where the e are
further arithmetic or data variables, ψ is 1-flat and contains only the array-id a. Let us
now split the a as a′, a′′, where the a′′ are i-uniform and the a′ are finitary (notice that
the syntactic transformations of Theorem 1 maintain the i-uniformity of the a′′). We can
apply the same anti-skolemization argument to the a′′ and rewrite ∃a′ a′′ ∀i ∃y ∃eψ as
∃a′ ∀i ∃z ∃y ∃eψ(z/a′′(i)), where the z are fresh arithmetic variables replacing the terms
a′′(i) in ψ . Now Theorem 2 can be used to eliminate the a′. ��

4 System Specifications and Simulations

We now turn to verification applications. The behavior of a system can be modeled through
a transition system, which is a tuple

T = (W ,W0, R, AP, V )

such that (i) W is the set of possible configurations, (ii) W0 ⊆ W is the set of initial configu-
rations, (iii) AP is a set of ‘atomic propositions’, (iv) V : W −→ AP is a function labeling
each state with the set of propositions ‘true in it’, (v) R ⊆ W × W is the transition relation:
w1Rw2 describes how the system can ‘evolve in one step’.

Definition 1 We say that the transition system T ′ = (W ′,W ′
0, R

′, AP, V ′) simulates the
transition system T = (W ,W0, R, AP, V ) (notice that AP is the same in the two systems)
iff there is a relation ρ ⊆ W × W ′ (called simulation) such that
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(i) for all w ∈ W there is w′ ∈ W ′ such that wρw′;
(ii) if wρw′ and w ∈ W0, then w′ ∈ W ′

0;
(iii) if wρw′ and wRv, then there is v′ ∈ W ′ such that w′R′v′ and vρv′;
(iv) if wρw′, then V (w) = V ′(w′);

If the converse ρop of ρ is also a simulation, then ρ is said to be a bisimulation and T ′ and
T are said to be bisimilar.

Bisimilar systems are equivalent in the sense that the properties expressible in common
temporal logic specifications (e.g. in CT L, LT L,CT L∗, etc.) are invariant under bisim-
ulations; simulation is also useful as important properties (like safety properties, or more
generally properties expressible in sublogics like ACT L) can be transferred from a system
to the systems simulated by it (but not vice versa).

We write T ≤ T ′ iff W ⊆ W ′ and the inclusion is a simulation. This relation is a partial
order and notice that if T ′ simulates T and T ′ ≤ T ′′, then T ′′ also simulates T ; in this case,
the simulation supplied by T ′ is said to be stronger or better (in fact, one has more chances
of establishing an ACT L-property of T by using T ′ than by using T ′′).

The above formalism of transition systems is often too poor, because it cannot cover rich
features arising in concrete applications. That is why we need higher order logic, namely
constrained signatures as introduced in Sect. 2. Constrained signatures are used for our system
specifications as follows:

Definition 2 A system specification S is a tuple

S = (Σ, v, Φ, ι, τ, AP)

where (i) Σ is a constrained signature, (ii) v is a tuple of variables, (iii) Φ, ι are v-formulæ
and AP is a set of v-formulæ, (iv) τ is a (v, v′)-formula (here the v′ are renamed copies of
the v) such that

ι(v) |
Σ Φ(v), Φ(v) ∧ τ(v, v′) |
Σ Φ(v′) . (20)

In the above definition, the v are meant to be the variables specifying the system status,
ι is meant to describe initial states, τ is meant to describe the transition relation and the
AP are the ‘observable propositions’ we are interested in. The v-formula Φ, as it is evident
from (20), describes an invariant of the system (known to the user). Of course, since in our
expressive type theory higher order quantifiers are available, it would be easy to write down
the ‘best possible’ invariant describing in a precise way the set of reachable states; however,
the v-formula for such invariant might involve logical constructors lying outside the tractable
fragments we plan to use. On the other hand, invariants are quite useful - and often essential
- in concrete verification tasks, that is why we included them in Definition 2.

It is now clear how to associate a transition system with any system specification:

Definition 3 The transition system associated with the system specification S = (Σ, v,
Φ, ι, τ, AP) is the transition system T S given by

(WS ,WS
0 , RS , APS , VS)

where: (i) the set of states WS is the set of the tuples vM,I satisfying Φ(v), varying M, I
among the Σ-models and Σ-interpretations of v; (ii) WS

0 is the set of states satisfying ι(v);
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(iii) RS contains the couples of states vM,I , v′
M,I′8 satisfying τ(v, v′); (iv) APS is AP;

(v) for φ(v) ∈ APS , we have that V (φ) contains precisely the states satisfying φ(v).

4.1 Simulations

Model-checking a transition system like T S might be a terribly difficult task, that is why it
might be useful to replace it with a (bi)similar, simpler system: in our applications, we shall
try to replace S by some S ′ whose variables are all integer variables. To this aim, we ‘project’
S onto a subsystem S ′, i.e. onto a system comprising only some of the variables of S.

In order to give a precise definition of what we have in mind, we must first consider
subsignatures: here a subsignature Σ0 of Σ is a signature obtained from Σ by dropping
some symbols of Σ and taking as Σ0-models the class CΣ0 of the restrictions M|Σ0 to the
Σ0-symbols of the structures M ∈ CΣ .

Definition 4 Let S = (Σ, v, Φ, ι, τ, AP) be a system specification; a sub-system specifica-
tion of it is a system specification S0 = (Σ0, v0, Φ0, ι0, τ0, AP0)whereΣ0 is a subsignature
of Σ , v0 ⊆ v, AP0 = AP and we have

Φ(v) |
Σ Φ0(v0), ι(v) |
 ι0(v0), Φ(v) ∧ τ(v, v′) |
 τ0(v0, v′
0) (21)

The following fact is immediate:

Proposition 1 Let S0 be a sub-system specification of S like in Definition 4; then the map
πS0 associating

(v)M|Σ0 ,I|v0 to vM,I is a simulation of T S by T S0 (called a projection simulation over
Σ0, v0).

Projection simulations are ordered according to the ordering of the simulations of S they
produce, i.e. we say that S0 is stronger or better than S ′

0 iff T S0 ≤ T S ′
0 . Once Σ0, v0 are

fixed, one may wonder whether there exists the best projection simulation over Σ0, v0. The
following easy result supplies a (practically useful) sufficient condition:

Proposition 2 Let S = (Σ, v, Φ, ι, τ, AP) be a system specification, let Σ0 be a sub-
signature of Σ and let v0 ⊆ v be Σ0-variables. Suppose that there exist Σ0-formulæ
Φ0(v0), ι0(v0), τ0(v0, v′

0) such that (let v := v0, v1):

(i) |
Σ Φ0(v0) ↔ ∃v1Φ(v0, v1);
(ii) |
Σ ι0(v0) ↔ ∃v1ι(v0, v1);
(iii) |
Σ τ0(v0, v′

0) ↔ ∃v1 ∃v′
1(Φ(v0, v1) ∧ τ(v0, v1, v′

0, v
′
1)).

If we let S0 be the subsystem specification (Σ0, v0, Φ0, ι0, τ0, AP), then the projection sim-
ulation πS0 is the best projection simulation over Σ0, v0.

Proof That S0 = (Σ0, v0, Φ0, ι0, τ0, AP) is a subsystem specification of S is clear; let us
now pick another subsystem specification S ′ = (Σ0, v0, Φ ′, ι′, τ ′, AP) of S inducing a
projection simulation over the same subsignature Σ0 and the same sub-tuple of variables v0.
According to (21), we have

Φ(v) |
Σ Φ ′(v0), ι(v) |
 ι′(v0), Φ(v) ∧ τ(v, v′) |
 τ ′(v0, v′
0)

8 Notice that M is the same in vM,I and in v′
M,I′ . In principle, WS might be a proper class, but if one

wants to avoid this, it is sufficient to ask for the set of models CΣ of the constrained signature Σ to be a set,
not a proper class.
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that is

Φ0(v0) |
Σ Φ ′(v0), ι0(v0) |
 ι′(v0), τ0(v, v′) |
 τ ′(v0, v′
0)

which guarantees that T S0 ≤ T S ′
0 . ��

To understand the meaning of the above proposition, one should keep in mind that there
is no reason why the Σ-formulæ ∃v1Φ, ∃v1ι and ∃v1 ∃v′

1(Φ ∧ τ) should be equivalent to
Σ0-formulæ (in our applications, Σ0 contains only the sort and the symbols of linear first-
order arithmetic, so no higher-order variables are allowed in Σ0-formulæ). Thus, the road
map to apply Proposition 2 is to prove some quantifier-elimination results in order to find
Σ0-formulæ equivalent to ∃v1Φ, ∃v1ι, ∃v1∃v′

1(Φ ∧ τ).
Such quantifier elimination results will supply the best possible projected simulation onto

the set of the selected variables, as informally mentioned in the toy example of Sect. 1.2.

4.2 Bisimulations

For the sake of completeness, we make a little digression on bisimulations (in fact, in some
lucky cases, the best projection simulation is also a bisimulation). The content of this digres-
sion will not be used in the rest of the paper.

For considerations involving bisimulations, it is useful to consider special kinds of sub-
signatures, those whose models are quite close to the models of the original signature:

we say that Σ0 is a core subsignature iff every Σ0-model is the restriction of a unique (up
to isomorphism) Σ-model. As a typical example (used in our applications) of this situation,
consider a signature Σ containing the sorts Z,Ω (with the usual operations), some enumer-
ated sorts, and a finite sort Proc whose cardinality is constrained by a parameter N (we do
not have operations on Proc, just the cardinality function � on℘(Proc)). Suppose that now
we consider the subsignatureΣ0 containing just Z andΩ (with inherited operations) and the
parameter N: this is evidently a core subsignature, because the interpretation of enumerated
sorts and of the sort Proc is uniquely determined—up to isomorphism—by the Σ0-reduct.

Proposition 3 Let S0 be a core sub-system specification of S (S and S0 are as displayed in
Definition 4) and let v := v0, v1. Then πS0 is a bisimulation iff the following conditions

(i) |
Σ Φ0(v0) ↔ ∃v1Φ(v0, v1);
(ii)′ ι0(v0) |
Σ ∀v1(Φ(v0, v1) → ι(v0, v1));
(iii)′ Φ0(v0) ∧ τ0(v0, v′

0) |
Σ ∀ṽ1(Φ(v0, ṽ1) → ∃v′
1τ(v0, ṽ1, v′

0, v
′
1))

are satisfied.

Proof We need to show that assuming the four conditions of Definition 1 for both πS0 and
its converse relation is the same as assuming the three conditions above. First notice that
condition (iv) of Definition 1 is trivially satisfied (both for πS0 and its converse relation)
because the formulæ in AP are v0-formulæ in the signature Σ0 according to the definition
of a subsystem specification (Definition 4). Similarly, conditions (i)–(iii) of Definition 1 are
also guaranteed for πS0 by Definition 4, so that such conditions are relevant only for the
converse of πS0 .

Since S0 is a core sub-system specification of S, asking that “every (v0)M0,I0 satisfying
Φ0 comes (by restriction to Σ0, v0) from some (v)M,I satisfying Φ”9 is the same as asking

9 This is the relevant content of condition (i) of Definition 1 in our case, where the simulation relation is the
converse of the projection function πS0 .
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condition (i) above: the only possible candidate for M is the unique extension of M0 to Σ ,
hence the above statement under quotation marks holds just in case Φ0(v0) ↔ ∃v1Φ(v0, v1)
is valid in all Σ-models.

Similarly, it is now evident that condition (ii) of Definition 1 for the converse of πS0 is
the same as condition (ii)′ above and condition (iii) of Definition 1 for the converse of πS0 is
the same as condition (iii)′ above. ��

Notice that condition (i) is the same in Proposition 2 and in Proposition 3.Moreover, using
such condition (i) (and the fact that ι0(v0) |
Σ0 Φ0(v0), see Definition 2) it is not difficult
to see that condition (ii)′ of Proposition 3 is stronger than the corresponding condition (ii) of
Proposition 2; the same observation applies also to conditions (iii)′ and (iii) in case we make
the additional mild and obvious assumption that τ0(v0, v′

0) |
Σ Φ0(v0).

4.3 Arithmetic Projections

Let now S = (Σ, v, Φ, ι, τ, AP) be a system specification based on a signature Σ as
discussed in Sect. 4.1. The variables v of S include some integer variables v0 and in addition
variables for arrays and matrices. If a is an array variable, then a(y) represents a local status
of the process y; if M is a matrix variable, then Mi (y) represents the content of a message
received by i from y (or, in other words, sent by y to i).10 Let us suppose that v = v0v1,
where v1 is the tuple of array and matrix variables and the v0 are all the integer variables
of the system. We suppose also that the formulæ in AP—namely the formulæ expressing
observable properties—are all open v0-formulæ (in particular, they are allΣ0-formulæ,where
Σ0 is the arithmetic subsignature of Σ).

Let S = (Σ, v0v1, Φ, ι, τ, AP) be as above; a subsystem specification of the kind S0 =
(Σ0, v0, Φ0, ι0, τ0, AP) is called a counter abstraction of S; as usual, counter abstractions
are ordered according to the ordering of the simulations of S they produce, i.e. we say that
S0 is stronger than S ′

0 iff T S0 ≤ T S ′
0 . We are interested in sufficient conditions on Φ, ι, τ

ensuring the existence of a strongest counter abstraction.

Theorem 4 If Φ, ι, τ do not contain matrix-ids and are of the kind ∃k1 · · · ∃knφ for a
1-flat formula φ and for index variables k1, . . . , kn, then the system specification S =
(Σ, v0v1, Φ, ι, τ, AP) has a strongest (effectively computable) counter abstraction.

Proof We apply Proposition 2. Let us rename the arithmetic variables v0 as z; then v1 is the
tuple of array-ids a; we also abbreviate k1, . . . , kn as k. We need to show that a formula of
the kind

∃a ∃k α(z, k, a(k), �{x | β(z, x, k, a(x), a(k))}) (22)

is equivalent to a pure arithmetic formula.11 But this is indeed the case: just swap the exis-
tential quantifiers and apply Corollary 1 and Lemma 1. The result follows because there are
no ground index atoms and all ground data atoms are equivalent to � or to ⊥, according to
our assumptions from Sect. 2.1. ��

Next result concerns specifications using matrix-ids in a finitary signature.

10 A conventional value may be employed to specify that no message has been sent at all. We do not model
time passing and message scheduling in this paper.
11 In view of condition (iii) of Proposition 2, we need also the observation that formulæ of the kind ∃k φ (for
1-flat φ) are closed under conjunctions.
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Theorem 5 Let the sort Data be enumerated and let Φ, ι, τ be disjunctions of formulæ of
the kind

∃k ∀i ∃y φ (23)

where φ is 1-flat, k are index variables, y are arithmetic and data variables and i is an
index variable such that all matrix variables and all non-finitary array variables from v are
i-uniform in φ; then S = (Σ, v0v1, Φ, ι, τ, AP) has a strongest (effectively computable)
counter abstraction.

Proof Similar to the proof of Theorem 4, using Theorem 3 instead of Corollary 1. � ��

Strongest counter abstractions (typically computed via Theorems 4,5) will be called arith-
metic projections.

In the next section, we describe the infrastructure we deployed, leveraging the presented
formal results, so as to model distributed fault-tolerant algorithms and to verify their proper-
ties.

5 Implementation

The quantifier elimination procedures relying on Theorems 1, 2, 3 are very expensive: the
procedure of Theorem1 requires a double exponential blow-up and includes as subprocedures
other expensive algorithms, like quantifier elimination in Presburger arithmetic. Althoughwe
feel that the above results are needed if one wants to build and then process some formal
precise declarativemodels derived out of the original pseudo-code of fault-tolerant algorithms
(see our detailed analysis in Appendix A in the supplementary material for an example of
what we mean), from a practical point of view it is often possible to build coarser models
requiring a less expressive language. For instance, one trick that is often used in the literature
(see e.g. [46]) is to replace a Boolean-valued matrix-id M(i, x) by an arithmetic array a(i)
representing the term �{x | M(i, x)} (the intended meaning is that, in this way, we only
count the number of the M-messages received by process i , disregarding the source of these
messages). Quite often, the loss of expressivity due to such abstractions does not prevent the
possibility of formalizing the dynamics of the evolution of the whole system in a satisfactory
way.

For the above reasons, we designed a restricted input specification language for our tool
ArcaSim: we describe below such a language and we supply a milder quantifier elimination
procedures applying to it. In the experimental Sect. 6 below, we shall see that such restricted
language is sufficient to handle benchmarks from different sources.

5.1 TheARCASIM Tool

ArcaSim accepts system specifications matching the syntactic format explained below and
produces as output a file in the Horn SMT_Lib format, ready to be model-checked e.g.
by μZ [33], the fixpoint engine of the SMT solver Z3. In successful cases, μZ produces
an invariant (entirely expressed in terms of our counters) which guarantees the safety of the
original system.
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A specification file for ArcaSim should first contain declarations for

– parameters,
– integer variables,
– arithmetic array-ids,
– enumerated array-ids.

Parameters include a symbol N denoting the (finite but unknown) number of processes acting
in the system; moreover, with each enumerated array-id, a number m is associated, whose
meaning is that of telling the tool that the values of such array-id are taken into the set
{0, . . . ,m − 1}.

Then counters definitions are introduced: these must have the form of equalities zi =
�{x | ψi (x)}, where ψi is a Boolean combination of data atoms (in the restricted ArcaSim
language the constrained signature Σ is assumed to be finitary, i.e. that the sort Data is
enumerated).

The system transition is given as a single (indexvariable) universally quantifieddisjunction
of cases of the form

∀i
∨

j

(φ j1 ∧ φ j2) (24)

where: (i) φ j1(a(i)/y, z) is obtained from a conjunction of arithmetic atoms φ j1(y, z) by
replacing some arithmetic variables y with terms of the kind a(i) (notice that the above
introduced counters for definable sets may occur here);

(ii) φ j2(i) is a Boolean combination of data formulæ containing the free variable i .
Notice that primed arithmetic array-ids cannot occur in φ j1, whereas both primed and

unprimed enumerated array-ids can occur in φ j2.
The initial formula follows the same syntax as the transition formula (but only one disjunct

is allowed), whereas the formula expressing the (negation of the) safety property must be an
arithmetic formula containing only counters, integer variables and parameters.

We underline that the above limitations to the formats of transitions, initial and safety
formulae are due to an implementation choice: our theoretical results from Sects. 3 and 4are
much richer, however we realized that most standard benchmarks can be formalized in the
above restricted ArcaSim language.

In order to produce a file for μZ , ArcaSim applies the following simplified procedure
for quantifier elimination.

(i) First, it eliminates (from the arithmetic part φi1 of each transition case) the arithmetic
array-ids by reverse skolemization andPresburger quantifier elimination: the formal jus-
tification for this is that, for an arithmetic array-id a, we have that ∃a ∀i ∨

j (φ j1(a(i))∧
φ j2) is equivalent to ∀i ∃z ∨

j (φ j1(z)∧φ j2) and finally to ∀i ∨ j (∃z φ j1(z)∧φ j2) - in
this last formula the ∃z can be eliminated via Presburger quantifier elimination.

(ii) Then, the whole transition is rewritten as a disjunction of formulæ of the kind
∧

k

(zk = �{x | ψk(x)}) ∧ α ∧ ∀x θ(x) (25)

wherewehave, besides the counter definitions zk = �{x | ψk(x)}, aBoolean assignment
α (seen as a conjunction of literals) to the arithmetic atoms occurring in the problem,
and a single-variable universally quantified formula ∀x θ(x) built up from data atoms
only: the formal justification for this is that an arithmetic assignment can be guessed
and that, in presence of it, arithmetic atoms can be everywhere replaced by � or ⊥.
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(iii) Auxiliary counters are now introduced: we have one counter z f for each function f
associating values to enumerated array-ids and their primed copies. In detail, z f counts
the cardinality of the set

{x |
∧

a

a(x) = fa ∧
∧

a

a′(x) = fa′ } . (26)

The set of counters z f is much richer than the set of the user-defined original coun-
ters. There are two reasons for that: first, the user might have decided to introduce
only a relatively small set of counters, the set of counters he feels it could be suf-
ficient to get an appropriate simulation. Second (more important!), the user can
only introduce static counters, whereas the z f are dynamic counters: they count
how many processes make each possible change of values for their enumerated
array-ids.12 The original counters are expressed as linear combinations of these new
dynamic counters; in addition, in each disjunct (25), the universally quantified formula
∀x θ(x) is replaced by the equation N = ∑

ε f z f , where ε f is 0 or 1 depending
on whether the formula defining the set (26) counted by z f is consistent or not
with θ .

(iv) In the final steps, all arithmetic atoms involving old and new counters are collected for
each disjunct (25); the new dynamic counters are eliminated by quantifier elimination
and the resulting formulæ give the disjuncts of the transition of the desired arithmetic
projection of the input system.

Contrary to what one might expect, the quantifier elimination steps in (i) and (iv) are
not so problematic, because of the special shapes of the arithmetic formulæ arising from
the benchmarks we analyzed. In fact, we did not even use a full Presburger quantifier
elimination module in ArcaSim for the reasons we are going to explain. In our exam-
ples, the quantifier elimination problems in (i) involve just easy (‘difference bounds’-like)
constraints and those in (iv) are usually solved by a substitution (in other words, the for-
mula where a variable z needs to be eliminated from, always contains an equality like
z = t).13 Notice also that, in case a difficult integer quantifier elimination problem arises,
shifting to the (better behaved from the complexity viewpoint) Fourier-Motzkin real arith-
metic quantifier elimination procedure is a sound strategy: this is because, in the end, the
tool needs to produce just a simulation (i.e. an abstraction). Although ArcaSim was pre-
pared to make such a shifting to Fourier-Motzkin procedure, it never applied it during our
experiments.

The step (ii) basically amounts to an “all sat” problem (i.e. to the problem of listing all
Boolean assignments satisfying a formula), which is difficult but can be handled efficiently.
The real bottleneck seems to be the need of introducing in (iii) a large amount of auxiliary
‘dynamic’ counters: future work should concentrate on improving heuristics here.

12 If, for instance, there are two array-ids a1, a2 each of them taking values from the set {1, 2, 3}, then we have
one dynamic counter for every 4-tuple from {1, 2, 3}: a 4-tuple is seen as a function f from {a1, a2, a′

1, a
′
2}

into {1, 2, 3} and the corresponding counter z f counts the number of the processes x such that a1(x) =
fa1 , a2(x) = fa2 , a

′
1(x) = fa′

1
, a′

2(x) = fa′
2
.

13 In case a maximum choice of static counters is made by the user, one can even formally prove that this is
always the case.
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6 Our Experiments

In this section we report our experiments; the source files for the benchmarks are available at
https://homes.di.unimi.it/~pagae/ARCASIM/, while the ArcaSim executables are available
at the link http://users.mat.unimi.it/users/ghilardi/arca_tools/.

6.1 Classes of Problems Considered

We analyzed several benchmarks representative of different classes of problems. In the fol-
lowing, we analyze the peculiarities and complexity of modeling the algorithms belonging
to each class. In Appendix A in the supplementary material, three models are described in
detail. Most of the verified algorithms are synchronous and round-based, i.e. they assume
that within a round both each process performs the computation of the algorithm for that
round, and messages sent in the round are delivered to their destinations by the end of the
same round. The few exceptions are highlighted. Only safety properties of the algorithms
are verified with the proposed tool; liveness properties are considered just when they can be
rewritten as safety properties (one way to get such a safety reformulation is to strenghten a
liveness property by asking that a desired event must happen within a specified number of
rounds).

All experiments have been conducted on a PC equipped with Intel Core i7-7700 processor
3.60 GHz and operating system Linux Ubuntu 18.04 (64 bits).

6.1.1 Agreement Algorithms with Either Omission or Malicious Failures.

The algorithms of this class consider a set of N processes residing on different hosts and
communicating through a data network. Processes must reach an agreement about some
value, in spite of possibile failures of some of them. Faulty processes may either (i) omit to
send or receive some of the messages considered by the algorithm (benign failures), or (i i)
maliciously fail (byzantine failures) reporting fake information. In the latter case, malicious
processes might also coalesce in order to fool honest processes. In the former case, a process
may also fail crash, that is, from a certain point on no message is anymore sent or received.

In order to express our problems within the restricted language explained in Sect. 5 (i.e.
in theArcaSim format), all the models just consider the behavior of correct processes, while
faulty ones are abstracted away. (This is a technique used also in [34,35,37–39]).

Both omission and byzantine failures are modeled by using a global variable f , whose
value may be upper bounded by e.g. the algorithm resilience t . The number of correct pro-
cesses is thus N − f , and every message sent by a correct process is received by all other
correct processes. Using the counter abstraction, we disregard the identities of processes
sending a certain message; we simply impose that—if cm is the number of correct processes
sending a certain kind of message—then each correct process receives in between cm and
cm + f messages of that kind, where cm is the worst case of all faulty processes actually
failing, and cm + f is the best case of all faulty processes behaving correctly. As far as
omission failures are considered, faulty processes may or may not send their messages. As
far as byzantine failures are concerned, independently of their state faulty processesmay send
whatever message they want (or none at all), and even send different messages to different
destinations.

The verification results for this set of algorithms are reported in Table 1, where we show
the considered algorithm, the property to be verified and the conditions under which it is
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verified, the number of transitions produced by ArcaSim and its running time, the running
time of Z3 to process the file produced by ArcaSim and the outcome of the verification. In
order to properly understand the results in the Table, recall that when the μZ module of Z3
gives a sat answer, this means that there exists a safety invariant for the abstracted counter
system (so that the original system is also safe); on the contrary, an unsat answer by Z3
means that the safety condition for the abstracted counter system is violated (which is likely
- but not necessarily - implying that the original is not safe).14

The One-Third (OT) algorithm [11] solves the Consensus problem in case of benign
failures. Formally, the problem is defined as follows: each process starts with its own initial
value. By the end of the algorithm, processes must decide for one of those values so that the
following properties are satisfied:

Agreement whenever two processes have reached a decision, the values they have decided
on must be equal.

Integrity - Weak Validity if all processes propose the same initial value, they must decide
on that value.

Irrevocability if a process has decided on a value it does not revoke its decision later.

No upper bound is needed on the number of faulty processes. As for all other Consensus
algorithms considered in this work, we limited the set of possibile initial values to {0, 1} (this
is often not a limitation, see the 0-1 theorems from [46]).
The Irrevocability property requires to check that never in the future a revocation occurs.
For OT and the other Consensus algorithms mentioned in the sequel, we verified it by re-
formulating Irrevocability as a safety property: an integer global variable dec is used, which
is initialized to 0, and whose value becomes 1 whenever a process having already decided for
a value v takes a decision for a value v �= v. The unsafe condition is dec > 0 and—through
backward search—we check whether a state with dec = 1 can be reached from the initial
condition with all processes undecided and with no constraint on their initial values.

Formal verification highlighted something that was not evident in the original formula-
tion of some problems, that is, it allowed to discover that some properties in the problems
enunciations are indeed “trivial”; in fact, they cannot be violated for any number of faulty
processes. This is the case for the Weak Validity property of OT: if all processes own the
same initial value, there is no way to decide for a different value, considering that processes
cannot lie.

The Uniform Voting algorithm (UV) [16] similarly solves the Consensus problem in the
presence of benign failures. The solved problem is analogous to that defined for OT, refor-
mulating the Integrity property as follows: “Any decision value is the initial value of some
process” (which is also indicated as StrongValidity). In order to guarantee theAgreement and
Irrevocability property, UV requires the system to satisfy a Pnospli t condition that imposes
that communication failures must not partition the network, that is, there cannot exist two
subsets of processes such that processes belonging to the same subset communicate amongst
themselves, but processes belonging to different subsets not. We omitted to include the
Pnospli t property in our models because—by abstracting away the processes identities, and
just counting both the number of processes performing a certain action and the number of
messages received whatever are their sources—we cannot represent the identities of com-
municating processes and thus there is no way to model the property within the restricted

14 It may happen that the counter abstraction employed in our model is too coarse (more counters should be
introduced) or even that there is no way of certifying the safety of the original system by using just counters
projections. For some benchmarks, one can prove offline that the employed counter abstraction is not just a
simulation but actually a bisimulation: in such cases, an unsat outcome by Z3 correponds to the effective
unsafety of the original system.
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language of ArcaSim. As a consequence, the models verifications expectedly result in an
unsafe outcome.

The Coordinated UV algorithm (CoUV) [16] derives from UV and solves the same
problem under the same conditions. Differently from UV—which adopts a distributed com-
munication pattern where each process communicates with all the others—CoUV adopts a
rotating coordinator paradigm such that at each round a process behaves as coordinator, to
which other processes send their values and which tries to help them decide. The Simplified
CoUV (SiCoUV) [16] shortens the algorithm execution with slight modifications of the pro-
cess computation that allow to reduce the number of rounds needed to decide. In both cases,
the rotating coordinators have beenmodeled by using a local variableC[x] that assumes three
values indicating whether x already has been, currently is, or never was so far a coordinator.
At the beginning of each round, a coordinator is nondeterministically taken from the yet
unelected processes.
These two algorithms show the impact of central coordination on correctness. Both satisfy
Agreement also in the presence of partitions: processes in the same partition as the coordinator
decide according to its indications, while partitioned processes do not decide. Yet, in CoUV,
they may retain some value different from that chosen by the coordinator. If partitions change
later and the new coordinator is a previously partitioned process with a value different from
that disseminated by the previous coordinator, then a process may change its decision, thus
violating Irrevocability. By contrast, in SiCoUV, the simplification—consisting in voting just
for the value received by the coordinator of the current phase or for no value at all—prevents
processes owning values from previous coordinators to vote for those values, thus possibly
inducing inconsistent decisions for stale values.

UT ,E,α [10] solves the Consensus problem without the Irrevocability property, in the
presence of byzantine failures. It requires the system to fulfill two properties, namely that the
number of malicious messages received by each process in each round is ≤ α < N/2 (Pα

property), and that the total number of received correct messages is> N/2 (Psa f e property).
Various combinations of both α and Psa f e have been considered in our verifications.

In [9], an algorithm is proposed to solve Consensus in asynchronous systems with byzan-
tine failures and a resilience t < N/5. Such an algorithm may also work in synchronous
systems if the number of faulty processes is upper bounded by O(

√
N ). In this case, we

modeled an asynchronous system in that no time quantization is reproduced, but just a divi-
sion in phases as in the original algorithm. In the first phase, a process waits till it receives
at least N − t messages; it decides the value to diffuse subsequently and switches to the
next phase. In the second phase, a process waits till it receives at least N − t messages and
tries to decide. If this is not possible, the process goes back to the first phase. Leveraging
the backward search, we started from the configurations in which the considered property is
violated. The algorithm runs in which the sufficient number of messages is not received—
which do not lead to any action—are unimportant; we verified whether the cases in which
actions are undertaken by the processes can lead to an unsafe state. As a resilience value we
used t < N/5 as in the original paper, which actually leads to a safe result. Moreover—since
the article ignores the lower bound on the resilience for Byzantine failures (t < N/3 [48]) –
we considered the case of violation of this lower bound which correctly gives unsafe results.

The Byzantine Broadcast Primitive (BBP) [55] aims at achieving agreement among the
processes about the messages to deliver. This algorithm tolerates byzantine failures and
requires that the number t of faulty processes is such that N > 3t . BBP is a round-based
algorithm operating in synchronous systems. It fulfills the following properties:
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Correctness If correct process p broadcasts (p,m, k) in round k, then every correct process
accepts (p,m, k) in the same round.

Unforgeability If process p is correct and does not broadcast (p,m, k), then no correct
process ever accepts (p,m, k).

Relay If a correct process accepts (p,m, k) in round r > k, then every other correct process
accepts (p,m, k) in round r + 1 or earlier.

The Relay property asks to check all the states reachable from the configurations satisfying
the hypothesis; as this is not possibile, we had to re-write this property as two separate safety
properties sequentially verified. In Appendix A.1 in the supplementary material, we explain
in detail this procedure.

Formal verification reveals thatCorrectness andRelayproperties cannot be violated for any
number of faulty processes. The Correctness property cannot be violated since the threshold
for acceptance is equal to the minimum number of correct processes, and the initial broadcast
is performed by a correct process and thus received by all correct processes; hence, there
is no way for a correct process to not receive enough echo’s. The Relay property cannot be
violated because a correct accepting process must have received at least N − 2t echo’s from
correct processes; those echo’s are received by each correct process, all correct processes
send their own echo, and as a consequence there are N − t correct echo’s around that allow
each correct process to decide.

The Send Receive Broadcast Primitive (SRBP) algorithm from [54] is proposed as a basis
for clock synchronization in systems affected by benign failures. It requires an upper bound
t on the number f of faulty processes, i.e., N > 2t and t ≥ f . The algorithm satisfies the
same properties as BBP, with the broadcast message consisting in a time signal (round k).
The same two-steps verification of the Relay property is adopted as for BBP. In this case as
well, formal verification shows that Unforgeability and Relay properties cannot be violated.
The former trivially follows from the fact that no message is around and faulty processes
cannot lie. The latter follows from considerations similar to the case of BBP.

6.1.2 Agreement and Reliable Multicast Algorithms with Crash Failures

The algorithms considered for this category have in common a failure model such that
processes behave correctly until they possibly fail, but from the failure on no action is anymore
taken, nor any message is sent or received (fail-stop model). Crash failures may partially
disrupt the broadcast transmission of a message in the sense that the message may reach just
a subset of its destinations.

Although counter-intuitive, these failures are harder to model than both omission and
byzantine failures. We describe the state of each process with a local variable F that can
assume three values, indicating if the process is (so far) correct, if it crashed in the past,
or if it is crashing in the current algorithm step and it will send only part of the messages
scheduled to be transmitted currently. In the last case, by the end of the step the process is
moved to the crashed processes and it will do nothing in the future. At every step, the sum
of both crashing and crashed processes must not exceed the algorithm resilience.

The results for these algorithms are reported in Table 2.
FloodSet [45] is a Consensus algorithm that satisfies the same properties as OT, with no

resilience and terminating after f + 1 rounds with f the number of crashed processes in the
current run. Processes circulate the values received in the previous rounds; in the last round,
processes decide either for the unique value they received, or for a default value if more
values have been observed.
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Table 2 Agreement and Reliable multicast algorithms with crash failures

Algorithm Property Conditions arca_sim Z3
#Trans. Time (s) Time (s) Answer

FloodSet [45] Weak Validity – 11 4.43 0.02 sat

FloodSet [45] Agreement – 11 5.18 0.03 sat

FloodMin [45] Weak Validity k = 1 ∧ |V | = 2 9 1.37 0.01 sat

FloodMin [45] Strong Validity k = 1 ∧ |V | = 2 9 1.42 0.01 sat

FloodMin [45] k-Agreement k = 1 ∧ |V | = 2 9 1.59 0.03 sat

FloodMin [45] Weak Validity k = 1 ∧ |V | = 3 17 11.84 0.05 sat

FloodMin [45] Strong Validity k = 1 ∧ |V | = 3 17 10.30 0.02 sat

FloodMin [45] k-Agreement k = 1 ∧ |V | = 3 17 13.03 0.08 sat

FloodMin [45] Weak Validity k = 2 ∧ |V | = 3 17 11.78 0.06 sat

FloodMin [45] Strong Validity k = 2 ∧ |V | = 3 17 10.31 0.02 sat

FloodMin [45] k-Agreement k = 2 ∧ |V | = 3 17 13.06 0.05 sat

FC [50] (Strong) Validity |V | = 2 9 13.92 0.03 sat

FC [50] Agreement |V | = 2 9 15.29 0.07 sat

EDAC [15] (Weak) Validity |V | = 2 35 46.95 0.03 sat

EDAC [15] Agreement |V | = 2 35 49.66 0.02 sat

UTRB1 [8] Validity – 2 0.13 0.06 sat

UTRB1 [8] Unif.Agreem. – 2 0.19 0.0015 sat

UTRB1 [8] Integrity (I) – 2 0.16 0.0015 sat

UTRB1 [8] Integrity (II) – 2 0.15 0.0015 sat

FloodMin [45] is a Consensus algorithm that solves the k-agreement problem: the algo-
rithm runs for � f /k� + 1 rounds—with f defined as before—after which it is requested that
the values decided upon by the processes are in a set of cardinality at most k. This reduces to
classical Consensus for k = 1. FloodMin guarantees both the Weak Validity and the Strong
Validity properties defined before. We performed experiments with two values of k, and with
a set V of initial values of cardinality either 2 or 3.

FC [50] is a Consensus algorithm that guarantees both Agreement and Strong Validity as
defined above; it terminates at round t + 1 with t < N the algorithm resilience, and f ≤ t
number of actually crashed processes; the decision is the smallest received value.

EDAC [15] as well solves Consensus, but it considers the Weak Validity property. This
algorithm is early-deciding in the sense that—if a process does not detect new failures in
the current round—it decides, differently from the above three algorithms.The problem
of modeling this algorithm is that it would require each process to record the observed
crashes (a process is assumed having crashed when no expected message is received from
it in the current round), which should be modeled with bi-dimensional arrays, not avail-
able in ArcaSim. Considering the syntactic constraints of ArcaSim, the fact that (i) no
message is anymore received from a process after it crashes and (i i) a crashed process
is detected within at most the following round by all alive processes, we abstracted this
part of the algorithm by using a global variable cnum that counts the crashed processes
and is incremented for all processes as soon as a new crash is observed by the first pro-
cess.
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UTRB1 [8] solves the Uniform Timed Reliable Broadcast problem, which guarantees the
following properties:15

Validity: If a correct process broadcasts a message m, then all correct processes eventually
deliver m.

Integrity: For any message m, each process delivers m at most once and only if some process
actually broadcasts m.

UniformAgreement: If any process delivers amessagem then all correct processes eventually
deliver m.

Timeliness: There exists a known constant Δ such that if the broadcast of a message m is
initiated at time t , no process delivers m after t + Δ.

Following the pen-and-paper correctness proof of UTRB1, we applied the Timeliness prop-
erty to instantiate the “eventual” attribute and verified that both uniform agreement and
validity are reached by round f + 1. As far as Integrity is concerned, we separately checked
its two components, by verifying that (i) if no process broadcasts m then no process delivers
it, and (i i) each process deliversm at most once; both conditions are checked at round f + 1
when the algorithm run terminates.

6.1.3 Cache Coherence andMutual Exclusion Algorithms

TheMESI [47] andMOESI [53] algorithmshave beendesigned to guarantee cache coherence.
This problem affects shared-memory multi-processors systems where more than one process
at a time may access the same memory location and copy the content to its processor’s cache,
but the algorithms must guarantee that at most one process at a time is allowed to modify its
copy, and successive read operations to the same locationmust return the most updated value.
The problem of verifying these algorithms w.r.t. the safety property above lies in the fact that
there may be more processes in the same state—and thus satisfying the same guard—but just
one of them is allowed to fire at a time; this feature differentiates the algorithms in question
from pure counter-based algorithms. In order to model this characteristic, we used both a
global variable f lag that is initialized to 0, becomes 1 when one of the processes in either
the invalid or the shared state prepares to fire, and returns to 0 after the process has performed
its operation, and a local array variable F[x] that is initialized to 0, becomes 1 for a process
in either invalid or shared state that is selected to fire, and returns to 0 when that process
fires. We constrain the system such that #{x |F[x] = 1} ≤ 1, that is, at most one process at
a time—in one between the invalid and the shared state—may be selected to perform some
operation. By contrast, in the system just one process at a time may be in either the modified
or the exclusive state, and hence the constraint is not applied to those processes.

Dekker [20] is a classical mutual exclusion algorithm that guarantees that no more than
one process is in critical section. We used local variables T [x] to record what process has the
turn, and WE[x] as the local flag to record that process x wants to enter the critical section.
As before, we use a constraint imposing that #{x |T [x] = 1} ≤ 1, that is, it is the turn of
at most one process at a time; this way T [x] takes the place of the global variable turn in
Dekker’s algorithm. A variable ST [x] records whether x is currently in the critical section.

The results achieved with these algorithms are shown in Table 3.

15 The time spent by Z3 was not measurable because it is below the clock tick.
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Table 3 Cache coherence and mutual exclusion algorithms

Algorithm Property Conditions arca_sim Z3
#Trans. Time (s) Time (s) Answer

MESI [47] Cache coherence – 15 0.21 0.05 sat

MOESI [53] Cache coherence – 20 0.41 0.07 sat

Dekker [20] Mutual exclusion – 5 0.04 0.00 sat

6.2 Qualitative Comparison with Other Tools

Other tools in the literature aim at verifying safety properties for distributed algorithms. In
[46], Consensus algorithms are considered, a specification language ConsL is proposed, and
cutoff bounds are supplied to reduce the parameterized verification to a setting with finite
number of processes. Amongst the algorithms studied in [46], there are the algorithms OT,
UV, CoUV, SiCoUV and Ben-Or described above, whose safety we verified for an unlimited
number of processes using ArcaSim. Although the time spent by ArcaSim for verification
was greater than that obtained byConsL–ConsL latency is on the order of tens ofmilliseconds
for the cited algorithms—it succeeded in performing the computation and within reasonable
time.

In this section, we present a qualitative comparison between ArcaSim and ByMC [38],
which is a verification framework proposed for the validation of threshold algorithms, that
is, algorithms where an action is performed when a certain number of messages are received,
regardless of who generated them. The comparison was performed by manually “transcript-
ing” some ByMC examples—provided by the virtual machine version 2.4.0 downloaded
from [36]—into ArcaSim. The transcription was conducted trying to maintain maximum
fidelity to the ByMC models, by developing ArcaSim models that use the same variables
and counters as the equivalent ByMC model, define arithmetic assertions equivalent to the
assumptions in the ByMC model, and include one transition for each computation step in
the ByMC model. For the sake of better comparison, ByMC was run using Z3 as underlying
SMT solver. Clearly, ByMC and ArcaSim are two really different approaches to the verifi-
cation of distributed algorithms: ByMC considers asynchronous algorithms while ArcaSim
is more oriented to model synchronicity and some properties are modeled by introducing
a bound—usually provided in the original algorithms’ descriptions—on the time at which
safety must be checked; the two underlying logical paradigm have different expressiveness.
Yet, we were interested in investigating whether ArcaSim is able to deal with the same
benchmarks as ByMC. Table 4 reports the results; the ByMC time was obtained by adding
the displayed system and user times.

The considered algorithms are as follows: STRB [55] is the same as the previously
described BBP algorithm (we adopt here the ByMC nomenclature to emphasize that this
is a different model mimicking the ByMC one). ABA (Asynchronous Byzantine Agreement)
[12] slightly modifies the Agreement problem definition supplied before, and satisfies the
following properties:

Correctness If the transmitter is correct, all the correct processes decide on its value.
Unforgeability If the transmitter is malicious, then either no correct process will decide or

they will all decide on the same value.
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Table 4 Comparison with ByMC

Algorithm Property Condition arca_sim Z3 ByMC
#Trans. Time (s) Time (s) Answer Time (s)

STRB [55] Correctness N > 3t 7 0.73 0.05 sat 0.23

STRB [55] Unforgeability N > 3t 7 0.74 0.03 sat 0.16

ABA [12] Correctness N > 3t 6 1.79 0.01 sat 15.68

ABA [12] Unforgeability N > 3t 6 1.79 0.01 sat 0.95

NBAC [30] Agreement N > f 5 0.14 0.01 sat 5.01

NBAC [30] Abort-validity N > f 5 0.14 0.01 sat 4.81

NBAC [30] Commit-validity N > f 5 0.15 0.01 sat 4.89

FRB [23] Unforgeability N > f 4 0.59 0.01 sat 0.14

FRB [23] Correctness N > f 4 0.73 0.01 sat 0.18

ABA tolerates < N/3 malicious failures; it may work in asynchronous systems, which are
modeled with processes that wait until a sufficient number of messages is received to perform
some action.

NBAC (Non-blocking atomic commitment) [30] aims at reaching an agreement amongst
processes about an action to perform, and satisfies the following properties:

Agreement No two processes decide differently.
Termination Every correct process eventually decides.
Abort-validity Abort is the only possible decision if some process votes no.
Commit-validity Commit is the only possible decision if every process votes yes and no

process crashes.

We did not consider the Termination property as it is a liveness property that cannot be
managed by ArcaSim.

FRB (Folklore Reliable broadcast) [23] is an algorithm aiming at distributing amessage to
all alive processes in a system; it works in asynchronous systems and tolerates just crash fail-
ures. It satisfies both a Correctness and an Unforgeability property equal to those previously
defined for BBP.

To sum up, we believe that the main strength of our approach lies in its declarative
(thus expressive and flexible) nature: nevertheless, our firstArcaSim implementation for the
restricted fragment of Sect. 5 shows that many benchmarks from disparate literature can be
effectively handled in our uniform framework with reasonable performances.

7 Conclusions and RelatedWork

We introduced a plain technique for automatically building counter simulations of system
specifications: the technique consists of modeling system specifications in higher order logic,
then of introducing counters for definable sets and finally of exploiting quantifier elimination
results to get rid of higher order variables. Such technique is quite flexible and since,whenever
it applies, it always supplies the best simulation, it should be in principle capable to cover
all results obtainable via counter abstractions. We underline some further important specific
features of our approach.
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First of all, the approach is purely declarative: our starting point is the informal description
of the algorithms (e.g. in somepseudo-code) and thefirst stepwepropose is a direct translation
into a standard logical formalism (typically, classical Church type theory), without relying
for instance on ad hoc automata devices or on ad hoc specification formalisms. We believe
that this choice can ensure flexibility and portability of our methods.

Secondly, the amount of human interaction we require is nevertheless confined to design
choices: although the final outcome of our investigations should be the integration of our tech-
niques into some logical framework, the key leading to their success relies almost entirely on
results (satisfiability and quantifier elimination algorithms) belonging to the realm of decision
procedures. In fact, the quantifier elimination results presented in this paper (Theorems 1, 2, 3)
are of interest by themselves and go far beyond the well-known case of Boolean Algebras
with Presburger Arithmetic (BAPA) [42], because they are not confined to fragments where
sets are uninterpreted.

Although we are claiming that the fully declarative approach is the main merit of our
approach, we are aware that a full automation is, in the present status of the art, far from
reachable. In particular, contrarily to what happens in other verification areas, a uniform
established standard for the specification of distributed system is not available. Moreover,
even when some form of pseudo-code for an algorithm is supplied in the original source
papers, its translation into higher order logic is not completely obvious and requires a careful
analysis. In principle, higher order logic is a quite powerful and expressive formalism, so
that one might claim that “everything” is expressible in it; however, designing a detailed
translation from some fragment of pseudo-code into transition systems expressed in higher
order logic is far from obvious and surely requires deep specific work, to be attacked in
quite differently oriented papers. In this paper, we just made a syntactic classification of
higher-order specifications to which quantifier elimination applies; the question whether a
given higher-order specification can be symbolically tranformed up to logical equivalence
into a specification falling within the syntactic shape to which our theorems apply, is another,
terribly difficult, question to which only very limited answers can be provided. All in all,
manual intervention is required even in this stage, especially if one wants to go beyond strict
syntactic matching. However, in concrete cases our approach can be really effective: in the
online available supplementary material to this paper, we made a careful detailed analysis
of three concrete examples, starting from informal description, to pseudo-code specification,
to translation into higher-order transition systems, to mechanical verification via counter
abstractions.

A potentially weak point to be taken care is the complexity of our algorithms: in fact, the
procedure for quantifier elimination used in the proof of Theorems 1, 2, 3 produces super-
exponential blow-up of the formulæ it is applied to. Notice however that, when building
a counters simulation of a concrete algorithm, such a heavy procedure is applied to each
instruction (or to each block of instructions) separately, i.e. not to the whole code instance.
Moreover, it is not difficult to realize (going through e.g. the computation details from the
online available suplementarymaterial) that it is hardly the case that the quantifier elimination
procedure is applied in its full generality: in fact, it is always applied to smaller fragments,
where complexity presumably drastically reduces (similarly to what happens for satisfiabil-
ity algorithms, compare e.g. Theorems 2 and 3 in [4]). The same observation applies also
to the instances of the Presburger quantifier elimination procedure that are invoked in our
manipulations: usually, they are confined to difference bounds formulæ or to formulæ where
quantifiers can be eliminated by simple instantiations. The identification of such small frag-
ments and the study of the related complexities is important for future work and preliminary
to any implementation effort.
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Another delicate point is related to the syntactic limitations we require on the formulæ
describing system specifications (see the statements of Theorems 4 and 5): such syntactic
limitations are needed to ensure higher order quantifier elimination. Although it seems that
a significant amount of benchmarks are captured despite such limitations, it is essential to
develop techniques applying in more general cases. To this aim, we observe that just over-
approximations are needed to build simulations and that, even if the best simulation may not
exist, still practically useful simulations might be produced. In fact, quantifier elimination is
just an extreme solution to symbol elimination problems. Symbol elimination and interpo-
lation are well-known techniques to build invariants, abstractions and over-approximations,
and for this reason their investigation has deserved considerable attention in the automated
reasoning literature [41]; still, extensions to higher-order fragments need to be attacked and
might be useful in our context.

To conclude, we mention some recent work on the verification of fault-tolerant distributed
systems, starting from our own previous contributions. The additional original contributions
with respect to our previous paper [4] and its journal version [5] are due to the fact that
we are moving from bounded model-checking and invariant checking to the much more
challenging task of full model-checking via invariant synthesis. As discussed in [5] (Sect.
7), standard model-checking techniques are difficult to apply in the present context of fault-
tolerant distributed systems because Pre- and Post-image computations are very expensive
and lead to fragments for which full decision procedures seem not to be available. That is
why we tried here a different approach, via counter simulations. While developing such a
different approach, we established further new quantifier elimination results for higher-order
fragments (Theorems 2 and 3above): we believe that these new results, although tailored to
our specific applications, are of some independent interest from a logical and a technical
point of view.

Papers [34,35,37,39] represent a very interesting and effective research line (summarized
in [38]), where cardinality constraints are not directly handled but abstracted away using
counters. In this sense, this research line looks similar to the methodology we applied in this
paper (and in contrast to the alternative methodology we adopted in our previous paper [4]);
however, abstraction in [38] and in related papers is not obtainedvia logical formalizations and
quantifier elimination, but via a special specification language (‘parametric Promela’) and/or
via special devices, called ‘threshold automata’. A comparison with the counter systems
we obtain is not immediate and not always possible because the authors of [38] work on
asynchronous (not round-based) versions of the algorithms and because their method suffers
of some lack of expressiveness whenever local counters are unavoidable. On the other hand,
they are able to certify also liveness properties, whereas at the actual stage we can only do that
bymaking reductions to safety or boundedmodel checking problems (we applied thismethod
in our experiments, usually taking bounds for reductions from the literature on distributed
algorithms—such bounds are often trivially suggested by the round-based structure of our
benchmarks).

Paper [11] directly handles cardinality constraints for interpreted sets by employing
specifically tailored abstractions and some incomplete inference schemata at the level of
the decision procedures. Nontrivial invariant properties are synthesized and checked, based
on Horn constraint solving technology; this is the same technology we rely on in our final
step, however the counter systems we get are ‘as accurate as possible’, in the sense stated in
our main Theorems 4 and 5.

Paper [21] introduces an expressive logic, specifically tailored to handle consensus prob-
lems (whence the name ‘consensus logic’ CL). Such logic employs arrays with values into
power set types, hence it is naturally embedded in a higher order logic context. Paper [21] is
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not concerned with simulations and bisimulations, rather it uses an incomplete algorithm in
order to certify invariants. A smaller fragment (identified via several syntactic restrictions)
is introduced in the final part of the paper and a decidability proof for it is sketched.

Cutoff approaches are often employed in the literature on verification of distributed sys-
tems: in such approaches, problems involving unboundly many processes are reduced to
particular cases where only a finite number of processes has to be considered (as soon as
such number is determined, finite state model checking techniques apply). For a recent paper
in the area, specifically tailored to fault-tolerant distributed algorithms, see [46].

Finally, we mention the effort made by the interactive theorem proving community in
formalizing and verifying fault-tolerant distributed algorithm (see e.g. [14]); such approach
is a natural complement to ours.
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