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Abstract: The surface electromyography (sEMG) records the electrical activity of muscle fibers
during contraction: one of its uses is to assess changes taking place within muscles in the course
of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training
protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle
fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows
a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based
methods have been tentatively applied to the sEMG signal to better individuate the MMF onset
during sustained contractions. In this review, after describing concisely the traditional linear methods
employed to assess MMF we present the complexity methods used for sEMG analysis based on
an extensive literature search. We show that some of these indices, like those derived from recurrence
plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more
work remains to be done to compare the complexity indices in terms of reliability and sensibility;
to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing
the phase space; and to elucidate the relationship between complexity estimators and the physiologic
phenomena underlying the onset of MMF in exercising muscles.

Keywords: sEMG; approximate entropy; sample entropy; fuzzy entropy; fractal dimension;
recurrence quantification analysis; detrended fluctuation analysis; correlation dimension; largest
Lyapunov exponent

1. Introduction

1.1. General Aspects

The analysis of surface electromyography (sEMG) is widely used to characterize the electrical
activity of muscle fibers during a contraction, both in isometric (force generation without changing
the length of the muscles) and isotonic conditions (force generation by either lengthening [eccentric
contraction] or shortening [concentric contraction] the muscles). Whatever the type of contraction,
the prolongation of muscle contractions over time invariably causes the onset of muscle fatigue, defined
as the inability to sustain force generation over time. To date, sEMG revealed that signs of muscle
fatigue may manifest prior to the fatigue onset, suggesting the susceptibility of muscles to fatigue
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could be assessed noninvasively from the skin. These early signs of myoelectric alterations are often
termed myoelectric manifestations of muscle fatigue (MMF) and are of utmost interest in physiology,
pathophysiology, training and rehabilitation studies. However, from the first studies on sEMG analysis
during fatiguing contractions it has become apparent that the sEMG signal shows a complex behavior,
due to many concurrent factors. Therefore, in recent years, different complexity-based methods of
analysis previously applied to physical and other biological time series have been tentatively applied
to the sEMG, searching for new techniques to individuate early and efficiently the MMF onset during
sustained isotonic and isometric muscle contraction.

In this review, we briefly describe what MMF is and how it has been assessed, we introduce sEMG
as a tool to study the mechanisms underpinning muscle fatigue and explain the main linear and spectral
methods to detect MMF in exercising muscles. Then, we review the principal complexity methods
for sEMG analysis based on an extensive literature search over different databases to be maximally
descriptive of all the methodology used, without further considerations on the methodological approach,
experimental design, data analysis, and results. For each index of sEMG complexity, we provide
a brief description of its meaning, the algorithm for its estimation, the typical parameters setting
in sEMG analysis and the main articles employing it in investigating different muscles activations.
The relationships reported in previous studies between each index and the physiological mechanisms
underpinning muscular activation are propaedeutic to better understand the impact of MMF on each
index. Indeed, muscular activation occurring at the beginning of a fatiguing contraction represents the
preliminary phase of the fatigued condition. The main results obtained in studies on muscle fatigue
are presented and finally, the interpretative theories hypothesized by the investigators are introduced
without any personal endorsement but as an objective representation of the state of the art of this field
of research.

1.2. Muscle Fatigue

Muscle fatigue, a reversible reduction in force generation capacity, continues to generate great
interest in the scientific community worldwide [1–4]. Its manifestation in several neuromuscular
disorders [5] and its influence on sports performance [6] and rehabilitation [7] have led to deeply explore
the underlying mechanisms of this phenomenon, which seem to be multifactorial. Beyond psychological
aspects, many neuromuscular features ascribable to the central and peripheral nervous system head
for electrochemical alterations. Following a classic two-domain concept, central and peripheral fatigue
can be distinguished whenever the involved mechanism relates to the spinal and supra-spinal tract
(central origin) or to structures distal to the neuromuscular junction (peripheral origin).

At the central level, within the cerebral motor cortex fatigue causes the alteration of cells excitability,
the inhibition of motor cortex output and the interruption of action potential conductions at axonal
branching sites. As a consequence, the recruiting strategy of muscle fibers, based on increasing
the number of muscle fibers and their discharge rate, is deprived of both mechanisms. Moreover,
the recruitment of motor units, initially asynchronous, shifts toward a more synchronized pattern
and the fatigued motor neurons require a higher excitatory input to ensure their firing rate. Finally,
the firing rate of the motor units decreases [3,4,8].

At the peripheral level, electrophysiological adjustments consequent to fatigue onset include
accumulation of both inorganic phosphate in the sarcoplasm and increase of intracellular pH. Imbalance
of intra- and extra-cellular sodium and potassium concentration combines with impairment in calcium
release and reuptake at the sarcoplasmic level and the inhibition of cross-bridges interactions [3,4].
As a result, altered neuromuscular transmission and action potential propagation occur [6,9].
These phenomena, combined with a changing strategy of motor unit recruitment, contribute to
span the shape of the action potential, the electrical signal generated by all the motor units recruited
by the central nervous system. A reduction of the conduction velocity, the speed at which the action
potential propagates along the sarcolemma membrane, is attributed to fatigue onset and represents
a focus point in the study of muscle contraction [1,4,6,9].
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1.3. The Surface Electromyography

Muscle contraction is preceded by a cascade of electrophysiological events, from the excitation of
motor neurons in the spinal cord to the propagation of action potentials across the muscle T-tubules.
All these events, to a certain degree, contribute to the generation and propagation of electric potential
in the surrounding tissues, referred to as electromyogram. The electromyogram is often termed
as an interference signal, as it coalesces the contribution of many different motor units; depending
on the contracting muscle and on the contraction intensity, the number of excited motor units may
indeed range from tens to hundreds [10,11]. As schematically illustrated in Figure 1, the interference
electromyography (EMG), x(t), may be modelled as the sum of trains of motor unit action potentials
mi(t), each defined as the time convolution between the discharge instants δ

(
t− ti j

)
and the waveform

si(t) of the action potential of each single unit:

x(t) =
N∑
i

mi(t) =
N∑
i

Mi∑
j

δ
(
t− ti j

)
∗ si(t) (1)

where N and Mi respectively correspond to the number of motor units recruited and the total number
of discharges ( j = 1, 2, 3, . . . , Mi) for the i-th motor unit. The degree of EMG interference is therefore
clearly dependent on how often motor units discharge and on the number of motor units excited.
Overtly, the degree of interference increases with the contraction level.

Entropy 2020, 22, x 3 of 30 

 

Muscle contraction is preceded by a cascade of electrophysiological events, from the excitation 

of motor neurons in the spinal cord to the propagation of action potentials across the muscle T-

tubules. All these events, to a certain degree, contribute to the generation and propagation of 

electric potential in the surrounding tissues, referred to as electromyogram. The electromyogram 

is often termed as an interference signal, as it coalesces the contribution of many different motor 

units; depending on the contracting muscle and on the contraction intensity, the number of excited 

motor units may indeed range from tens to hundreds [10,11]. As schematically illustrated in Figure 

1, the interference electromyography (EMG), 𝑥(𝑡), may be modelled as the sum of trains of motor 

unit action potentials 𝑚𝑖(𝑡), each defined as the time convolution between the discharge instants 

𝛿(𝑡 − 𝑡𝑖𝑗) and the waveform 𝑠𝑖(𝑡) of the action potential of each single unit: 

𝑥(𝑡) =∑𝑚𝑖(𝑡)

𝑁

𝑖

=∑∑𝛿(𝑡 − 𝑡𝑖𝑗) ∗ 𝑠𝑖(𝑡)

𝑀𝑖

𝑗

𝑁

𝑖

 (1) 

where 𝑁 and 𝑀𝑖  respectively correspond to the number of motor units recruited and the total 

number of discharges (𝑗 = 1,2,3, … ,𝑀𝑖) for the 𝑖-th motor unit. The degree of EMG interference is 

therefore clearly dependent on how often motor units discharge and on the number of motor units 

excited. Overtly, the degree of interference increases with the contraction level. 

 

Figure 1. Schematic representation of the generation of electromyograms from motor unit action 

potentials. The recorded surface electromyography (sEMG) differs from the physiological 

electromyogram because of noise and filtering introduced by the detection; g(t) is the recorded 

signal on which spectral or complexity-based analyses are conducted, x(t) is the true signal of 

interest, based on neurophysiological backgrounds, e(t) is additive noise, and H(f) is the transfer 

function of the recording apparatus. 

According to Equation (1), two main sources explain 𝑚𝑖(𝑡): the discharge instants tij and the 

waveform representing the motor unit action potential, si(t). Being the signal arising from the spinal 

cord and determining the onset and frequency of muscle excitation, the train of impulses 

characterising the motor unit discharge instants is regarded as the neural drive to the muscle [12]. 

The mathematical (Equation 1) and conceptual (Figure 1) definitions for EMG do not necessarily 

imply a central origin for the discharge instants as often inappropriately conceived [9,13]; synaptic 

inputs arising from corticospinal pathways, spinal interneurons, and peripheral afferent feedback 

collectively determine the net neural drive to muscles [14]. Differently from the muscle neural 

drive, the waveform of motor unit action potentials does not carry any information from the spinal 

cord. It is entirely defined by peripheral factors, related to physiological, anatomical and detection 

aspects [15–18]. Physiological (e.g., conduction velocity, intracellular action potential duration) and 

anatomical (e.g., depth and length of muscle fibres) aspects are not under the direct control of the 

 

Figure 1. Schematic representation of the generation of electromyograms from motor unit
action potentials. The recorded surface electromyography (sEMG) differs from the physiological
electromyogram because of noise and filtering introduced by the detection; g(t) is the recorded signal
on which spectral or complexity-based analyses are conducted, x(t) is the true signal of interest,
based on neurophysiological backgrounds, e(t) is additive noise, and H(f ) is the transfer function of the
recording apparatus.

According to Equation (1), two main sources explain mi(t): the discharge instants tij and the
waveform representing the motor unit action potential, si(t). Being the signal arising from the spinal
cord and determining the onset and frequency of muscle excitation, the train of impulses characterising
the motor unit discharge instants is regarded as the neural drive to the muscle [12]. The mathematical
(Equation (1)) and conceptual (Figure 1) definitions for EMG do not necessarily imply a central origin
for the discharge instants as often inappropriately conceived [9,13]; synaptic inputs arising from
corticospinal pathways, spinal interneurons, and peripheral afferent feedback collectively determine
the net neural drive to muscles [14]. Differently from the muscle neural drive, the waveform of motor



Entropy 2020, 22, 529 4 of 31

unit action potentials does not carry any information from the spinal cord. It is entirely defined by
peripheral factors, related to physiological, anatomical and detection aspects [15–18]. Physiological
(e.g., conduction velocity, intracellular action potential duration) and anatomical (e.g., depth and
length of muscle fibres) aspects are not under the direct control of the experimenter. On the other hand,
detection aspects, as position and size of electrodes, should be cautiously defined according to the
muscle studied and the purpose of the study. Considering t he widespread sampling of sEMG with
a couple of surface electrodes, i.e., bipolar electrodes, here we therefore focus attention on the effect of
bipolar montages. The magnitude of the bipolar montage transfer function may be approached as [19]:∣∣∣H( f )

∣∣∣ ∝ sin2(π f d) (2)

with d being the centre-to-centre distance between electrodes. Because of its high-pass filtering response
for spatial frequencies smaller than 1/2d, the bipolar montage is a simple procedure for attenuating
common mode signals associated with power line interference and far-field potentials [20–22]. Benefits
of attenuation of the latter factor are well conceived in studies aimed at estimating conduction
velocity [23] but may be questionable when the intention is to estimate force from EMGs [24]. Clearly
from Equation (2),

∣∣∣H( f )
∣∣∣ = 0 at the frequencies f = n/d, n ∈ N. Considering the multiplicative effect

of H( f ) on the EMG spectrum), the bipolar montage leads therefore to dips in the frequency spectrum
G( f ) of the recorded EMG [17,25].

The electrode filter function H( f ) is particularly relevant when bipolar electrodes are aligned
parallel to the underlying muscle fibres, whereby space and time are intertwined. In this case,
the argument of the sine function in Equation (2) can be rewritten as π f d/v, with v corresponding to
the action potential conduction velocity. This relationship between d and v could motivate attempts
to define the appropriate inter-electrode distance not leading to spectral dips and methods for the
estimation of conduction velocity from dips location in G( f ) [26,27]. Both possibilities are arguable
though, given they are valid for the specific case electrodes and fibres reside in parallel directions and
because the conduction velocity differs between motor units. Moreover, the definition of appropriate
inter-electrode distance in bipolar recording should not be based on the avoidance of spectral dips
and of spatial aliasing [28] but on whether and how much both affect the possibility of extracting
physiologically relevant information from the electromyogram. Although short distances may help
attenuating the detection of undesired sources, non-targeted muscles, it may result in the detection of
signals unrepresentative of the whole, target muscles. Notwithstanding the selectivity-specificity issue
has been traditionally acknowledged [29,30], reports on this matter are incipient [31,32]. Throughout
this review, we assume the bipolar EMG is both selective and specific, sampling exclusively from all
fibres of the target muscle.

1.4. Surface EMG Analysis in Time and Frequency Domains

Different indices have been proposed to characterize the surface EMG (sEMG) in both time and
frequency domains. Here we refer to these indices as sEMG descriptors. Time descriptors often convey
information related to the amplitude of sEMG (i.e., amplitude descriptors) whereas spectral descriptors
typically relate to the distribution of energy across the sEMG frequency or power spectrum. Restating
the repertoire of time and spectral descriptors so far proposed appears pointless given recent reviews
on this issue [33–35]. Our focus is rather on the most widely used descriptors and on their sensitivity
to physiological, anatomical and detection aspects.

The sEMG can be conceived as a Gaussian random process with limited bandwidth [36].
The presence of random components in the signal makes unsuitable the use of specific waveform
features, such as the peak or peak-to-peak value, to describe the amplitude of sEMGs. The sEMG
amplitude is therefore more appropriately defined in statistical terms. Let’s consider the measured
sEMG as a zero mean signal g(t) conveying trains of action potentials of different motor units,
uncorrelated between themselves (Figure 1), and let’s call the power of individual trains of action
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potentials of each (i) of the N excited motor units, represented in time domain as σ2
mi

or in frequency
domain as PMi , and the discharge rate and energy of the action potential of each motor unit as DRi and
Ei respectively. Then, the following relationships holds for the standard deviation or root mean square
value of g(t) [12]:

σg =

√√√√√√
1
T

T∫
0

g2(t) =

√√√ N∑
i=1

σ2
mi
(t) =

√√√ N∑
i=1

PMi( f ) =

√√√ N∑
i=1

DRiEi (3)

where T corresponds to the period over which the sEMG has been recorded. According to Equation (3),
the variance (power) of the recorded signal equals the sum of the power of individual trains of action
potentials. Note that the additive property does not hold for the standard deviations: σg ≤

∑
σmi .

Another interesting aspect in Equation (3) is the monotonic relationship between σg and the discharge
rate DRi and the energy Ei of the action potential of each motor unit. These two aspects lead to
considerations of practical relevance. First, owing to the temporal overlapping of positive and negative
phases of excited motor units, an issue known as amplitude cancellation [37], not all motor units
contribute to σg. Keenan et al [38] have shown however that normalization of σg with respect to
amplitude values obtained during a reference condition (e.g., maximal voluntary contraction) helps
contending with the cancellation issue. Second, even though σg is sensitive to both discharge rate and
number of unit excited, it is also sensitive to any factors affecting the shape, and thus Ei, of motor
unit action potentials, be them of physiological origin or not. The impossibility of distinguishing the
contribution of both origins demands caution when drawing inferences from σg [39], in particular
when physiological and non-physiological factors may change abruptly and unpredictably like during
dynamic contractions [40].

Different descriptors have been also proposed to characterize the EMG spectrum [13,18,41].
The most widely considered are the mean frequency (MNF) and the median frequency (MDF)
defined as:

MNF =

∫ fmax

fmin
f
∣∣∣G( f )

∣∣∣2∫ fmax

fmin

∣∣∣G( f )
∣∣∣2 (4)

∫ MDF

fmin

∣∣∣G( f )
∣∣∣2 =

∫ fmax

MDF

∣∣∣G( f )
∣∣∣2 (5)

with fmin and fmax defining the EMG bandwidth (typically ranging from 20 to 400 Hz). MDF is less
sensible to noise [41] and more sensitive to simulated variations in the EMG spectrum [42] than MNF.
Theoretical and experimental considerations upon the effect of discharge instants on the EMG spectrum
revealed the rate of discharge of motor units (delta function in Equation (1)) contributes equally to
frequencies over 30–40 Hz [18,43,44]. Consequently, and differently from its amplitude, the EMG
spectrum is mostly dependent on the waveform of action potentials and not on the discharge rate of
motor units. Factors affecting the waveform of action potentials may either change or scale its shape,
as the filtering effect of the tissue interposed between electrodes and the excited fibers and the muscle
fiber conduction velocity [16,45]. As for amplitude descriptors, the possibility of discerning the relative
contribution of physiological, anatomical and detection source affecting spectral descriptors demands
careful reflection.

Before commenting on the use and validity of amplitude and spectral descriptors during fatiguing
conditions, a general consideration is necessary on EMG stationarity. The above descriptors presume
the recorded EMG is stationary, at least in the wide-sense. Wide-sense stationarity is well accepted in
applications for which variations in contraction intensity and in muscle shape and properties may
be regarded marginal. These circumstances are often limited to laboratory applications, whereby
isometric, constant force contractions may be applied. Even so, during such a controlled condition,
non-stationarities may manifest, often related to the building up of muscle fatigue. On this regard,
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Bonato et al [42] wisely classified the sources of non-stationarities in sEMG as being either slow
or fast. Slow non-stationarities are mostly associated with sluggish events, as the accumulation of
metabolites in the muscle tissue or changes in temperature. Fast non-stationarities are related to any
abrupt changes that could be triggered, e.g., by sudden variations in contraction level or in muscle
length, both typically occurring in dynamic contractions. The effect of both non-stationarities may be
circumvented by appropriately dimensioning the window over which spectral descriptors in isometric
contractions are computed [41,46] or by averaging spectral descriptors across a few cycles, if possible,
during dynamic conditions [42]. The crucial point though is not the non-stationarity itself but whether
EMG descriptors are sufficiently sensitive and robust to detect physiological changes induced by the
process under study and nothing else, be it fatigue or any other matter of applied relevance.

1.5. Myoelectric Manifestation of Muscle Fatigue in Time and Frequency Domains

Experienced sEMG users may wisely contest the potential of the technique to assess muscle
fatigue. As defined here, and in agreement with others [9,14,18,47], muscle fatigue may be well assessed
by any measurements of performance directly related to the reversible reduction of muscle force.
Even the eye of an expert observer could accurately judge the onset of muscle fatigue. In these terms,
the use of sEMG finds limited, if any, relevance. It is then that distinction between muscle fatigue and
electrophysiological events leading to muscle fatigue must be distinguished. This discrepancy is well
discussed in the classical review by De Luca [18]. The failure point, defining the onset of muscle fatigue
and thus of a relevant reduction in force, power or performance in general, is preceded by alterations in
the chain of events leading to voluntary contraction. These alterations, summarized in the illuminating
work of Kirkendal [47], are hardly observable to the naked eye or to performance-measuring sensors.
However, these alterations affect the electric potential generated in the surrounding tissues during
muscle contraction, making of the sEMG a valid and popular means for studying signs of muscle
fatigue. That is, the MMF [18,48,49]. The crucial point though is determining which sEMG descriptors
are specifically sensitive to which of the physiological alterations most likely leading to muscle fatigue.

Both amplitude and spectral descriptors have been considered to assess MMF during fatiguing
conditions. It is well established indeed that when performance is maintained at a constant level,
before the failure point, the amplitude and the frequency spectrum of sEMG change [48–51]. The value
of sEMG amplitude and spectral descriptors in studying MMF is however dissimilar, with spectral
descriptors typically exhibiting more consistent variations during fatiguing contractions than amplitude
descriptors. Multiple factors may account for this. When the sEMG is detected from muscles in which
the fibers are aligned parallel to the electrodes, for example, the location of spectral dips depends
on the conduction velocity ( fdip = nv/d; Section 1.3). In this circumstance, although the decrease in
conduction velocity often reported in fatiguing contractions increases the energy of low frequency
components, it also shifts the spectral dips to lower frequencies; both effects may therefore cancel
out, not altering the total signal power and thus signal amplitude (see Figure 8 in [18]). Similarly,
the decreased EMG amplitude expected for when the discharge rate of fatigued motor units decreases
(Equation (3)) may be cancelled by the recruitment of additional, fresh units [52] (see Figure 8 in [14]).
Motor unit recruitment is another—and possibly the most crucial confounding—factor affecting EMG
amplitude. Motor units are known to have different sizes, with bigger units exhibiting a greater number
of muscle fibers and thus greater action potentials. Even though one may argue the contribution
provided by the recruitment of a big unit may outweigh that resulting from the recruitment of a small
unit, the effect on EMG amplitude depends on the average distance of fibers of each unit to the
electrodes (see Figure 2 in [39]). This issue is further aggravated if evidence on the rotation of motor
units during fatiguing contractions is taken into consideration. Within a single muscle, different
motor units have been shown to (rotate) be alternately recruited and de-recruited during prolonged,
constant-force contractions [51,53,54]. If sEMGs recorded from a single muscle location do not convey
information from the whole muscle [32], motor unit rotation may lead to decreases in sEMG amplitude
and inferences on decreased excitation due to fatigue could be incorrect (see Figure 1 in [53]). Given all
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these competing factors cannot be controlled for, at least not during voluntary fatiguing contractions,
amplitude descriptors may change unpredictably and their use to assess MMF may be unsuitable.

Physiological and non-physiological factors manifesting during fatiguing contractions are known
to affect not just amplitude but also the spectral, sEMG descriptors. Differently, though, before
the failure point is observed during a constant-performance condition, changes in MNF and MDF
consistently indicate a relative shift in energy from high to low frequencies [15,18,41,42,46,48,50,55,56].
Such spectral compression is often attributable to decreases in conduction velocity with fatigue, possibly
triggered by altered distribution of H+ and K+ across the sarcolemma [47]. The altered membrane
excitability with fatigue may also lead to increased duration of intracellular action potentials, similarly
leading to spectral compression [15]. The popular use of EMG spectral descriptors to study MMF is
therefore presumably attributable to the fact they are equivalently affected by the different culprits
of fatigue. The key question is which of these spectral descriptors is mostly sensitive and robust to
describe MMF. Different indices have been proposed to characterize the spectral changes taking place
with fatigue in the sEMG, based on different, time-frequency distribution approaches [13,55,57–59].
These studies have however devoted to much attention to comparing changes between traditional
(MNF, MDF) and the proposed spectral indices without apparently caring for the validity of these
changes. All these indices may indeed be flawed as none of these studies has controlled for actual
variations in EMG spectrum. Comparing the performance of different indices from experimental data
only seems unwise given the relative contribution of physiological and non-physiological sources
arising in fatiguing conditions may be unpredictable. Rigorous, simulation studies have been published
on this matter though [41,42,46,56]. From synthesized signals, for example, Bonato et al [42] observed
that MDF computed from the Choi–Williams time-frequency distribution was shown to most accurately
and robustly track abrupt and slow changes in the EMG spectrum typically occurring during dynamic
contractions. The ability of MDF to capture the simulated changes was strictly related to focusing
analysis on the most biomechanically repeatable portion of the cycle and to the averaging of the spectral
descriptors over a few consecutive cycles; i.e., assessing MMF in dynamic conditions demands the
underlying movement is repeated as consistently as possible until endurance. Collectively, these results
indicate the traditional spectral descriptors may be well suited to study MMF during both isometric
and dynamic condition, when certain methodological precautions are taken. EMG users must however
be careful when inferences are to be drawn on the mechanisms underpinning fatigue from these
spectral descriptors, as different mechanisms may affect them equally.

The considerations just presented for the EMG descriptors traditionally used to assess MMF
apply likewise to any other proposed descriptors, many of which are illustrated in the next section.
The validity of these indices may be acceptable only after they have been evaluated for robustness and
sensitivity, during well-controlled, experimental and simulation conditions.

1.6. Myoelectric Manifestation of Muscle Fatigue in the Complexity Domain

The complex patterns of sEMG could be attributed to the mechanisms underlying its generation,
which seem to be non-linear or even chaotic in nature, as it reproduces the non-linear electrical activity
of the neuromuscular system [60]. In addition, the complex properties of sEMG seem to change with
fibers contraction during muscle activation [61], potentially giving additional means to the linear
sEMG analysis methods in assessing MMF [62]. Therefore, many different methods belonging to
the classic non-linear time series analysis of biological signals have been proposed so far to obtain
information on fatigue-induced adaptations of neuromuscular processes that could go unnoticed
by linear analysis approaches [63]. The hypothesis is that, compared to linear and spectral indices,
complexity measurements may detect additional EMG changes occurring with MMF. In the following
of this review, readers will find the state of the art about complexity analysis applied to EMG signals,
their qualities and the pitfalls that are settled in the procedures [64,65]. Awareness on the limitations of
complexity-based methods will be also provided.
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2. Materials and Methods

The measures of complexity of biological signals refer to the predictability of a time-series
independently from the amplitude of its fluctuations [66], quantify its temporal irregularity [67] or its
long-range (fractal) correlations [68] and estimate the amount of chaos in the underlying system [69].
To address all these aspects of complexity analysis, this review is based on the literature search of
the PubMed and Scopus scientific databases using the following terms: EMG, fatigue, nonlinear
analysis, complexity, fractal, nonlinear dynamic, entropy, approximate entropy (ApEn), sample entropy
(SampEn), fuzzy entropy (FuzzyEn), multiscale entropy (MSE), recurrence plot analysis, detrended
fluctuation analysis (DFA), largest Lyapunov exponent (LLE), correlation dimension (CD). Initially,
a list of 333 articles was obtained. After having excluded duplicates papers and manuscripts dealing
with pattern recognition and EMG classification, a subgroup of 109 studies was considered for the
final analysis. Then, the review was limited to the 106 papers written in English without applying
any other exclusion criteria. The collected papers were classified into four methodological groups: (1)
fractals and self-similarity; (2) correlation; (3) entropy; and (4) deterministic chaos. For each method,
we described its mathematical implementation and the influence of muscle activation and fatigue on
the complexity indices. The physiological interpretation of the sEMG changes with muscle contraction,
when available, aims at providing the reader a key to interpret the results when fatiguing contractions
are investigated.

3. Results

3.1. Fractals and Self-Similarity

3.1.1. Fractal Dimension

In 1977 Mandelbrot coined the term “fractal” to describe geometric shapes that reveal more
details at increasing degree of magnification [70]. Three related features are accredited to fractal forms:
heterogeneity, self-similarity and the absence of a well-defined scale of length. Heterogeneity reflects
the property of showing emerging details the more closely the shape is examined. Self-similarity defines
the characteristics of resembling similar structures at different size scale [68]. The description of fractal
structures goes through the determination of fractal dimension (FD), an index characterizing “the
complexity and space filling propensity of a structure” [71]. Transposed to time series signals, FD has
been demonstrated to describe the self-similarity of a pattern over multiple time-scale [71,72]. FD can
be estimated with different algorithms and a popular one is the Katz’s method [73] which, however,
provides FD estimates that may depend on the length of the time series [74]. The Katz’s method
has been revised by Anmuth et al. [61] to be applied to sEMG signal during isometric contractions.
Given a signal lasting 3 seconds, FD was estimated for the middle 1 s as:

FD =
log N[

log N + log
(

d
L

)] (6)

where N is the number of samples in the signal, d is the planar extent of the waveform (computed as
the distance between the first point of the sequence and the point of the series that provides the farthest
distance), and L the total length of the signal (sum of distances between successive points) [61,73].

Another popular FD estimator is the box-counting method. This algorithm superimposes the
time series waveform with a regular grid of square boxes. The size (S) of the boxes is increased from
small to large dimensions and the number (N) of boxes crossed by the waveform is computed for each
size. FD is thus estimated as:

FD =
log N

log 1
S

(7)
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Since the fractals structures show an inverse power law relationship between N and S, FD in Equation
(7) corresponds to the slope of the linear relationship between logN and log1/S [71]. In the study of
Gitter, box sizes were chosen as a multiple of the -amplifier bit resolution and the sampling rate and
its range varied from 2 to 500 boxes [71] (where a unit box had a physical dimension of 5580 µV/µs).
FD values close to 1 reflect smoothed signals whereas values approaching 2 are typical of signals with
high space-filling propensity [75]. The box-counting algorithm has been used to evaluate sEMG signals
during isometric and isotonic contractions [76–78].

FD and muscle activation. Anmuth et al. [61], and Gitter and Czerniecki [71] investigated the
behavior of FD as a function of force and found that, similarly to other traditional EMG indices,
the average FD increased almost linearly with the force intensity for force values below 50% of the
maximal force (Figure 2). Conversely, above this level the FD rise declined, deviating from the linear
increase [61,71,79]. Similarly, Beretta-Piccoli et al. [80] found a low dependence of FD on force intensity.
Indeed, they observed a linear relationship between FD and the level of force from 10% till 30% of
the maximum voluntary contraction (MVC), but at higher force intensity FD leveled to a plateau.
Even though these results led the authors to speculate the FD descriptor is “a reliable indicator of
motor unit synchronization, less dependent from the firing rate” no direct evidence appears to confirm
the sensitivity of FD to motor unit synchronization.
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(redrawn from Gitter and Czerniecki, [71], with permission).

Xu et al. [79] determined FD on simulated EMG signals in which motor unit recruitment and
firing rate was varied. They found that FD increased with the recruitment but the rate of the increment
tended to plateau when recruitment was high. Moreover, firing rate influenced FD, but only for low
values of recruitment [79].

Noticeably, not all the investigators found linear correlations between FD and force, neither at low
level of force. Indeed, Troiano et al. [81] did not found any relationship between FD and percentage of
MVC force in trapezius muscle, and similar results were obtained by Poosapadi and Kumar [82].

FD and fatigue: FD has been proposed to monitor changes in EMG signal as a consequence of
fatiguing contractions [75,77,78]. Beretta-Piccoli et al. [75] used FD to investigate MMF in knee-extensors
muscles, reporting the time-course of FD values in vastus lateralis and vastus medialis muscles during
sustained contractions at different intensities. Analyzing the time course of FD during the development



Entropy 2020, 22, 529 10 of 31

of fatigue a clear significant negative slope appeared, although different in the two muscles. The authors,
citing the study of Mesin et al [78] in which a decline in FD was associated with a progressive MU
synchronization, ascribed this behavior to an increase in MU synchronization as expression of the
central nervous system adaptation to fatigue progression. Moreover, the investigators attributed the
different slopes found between the two muscle bellies to the different proportion of slow and fast
twitch fibers constituting the muscles.

The decay of FD during sustained isometric contractions is the common denominator of the
studies of Mesin et al. [78], Beretta-Piccoli et al. [75,83], Troiano et al. [81] and Boccia et al. [77]. Indeed,
they found a linear decrease of FD during fatiguing contractions and attributed this response to
an increase in motor unit synchronization (Figure 3). In [78], FD values showed no association with
motor unit conduction velocity, supporting the idea that FD is more sensible to central rather than
peripheral fatigue. Despite this, the authors drew these conclusions using advanced signal analysis
techniques, the interference nature of the EMG signal makes questionable any speculation on the origin
of the fatigue components (central rather than peripheral).

Lin et al. [84] investigated the FD during isotonic repeated submaximal contractions (pedaling) but
observed no change. Meduri et al. [85] also tested the existence of different gender-related resistance to
fatigue in biceps brachii muscle. The time courses of conduction velocity and FD were determined
during the time-to-exhaustion task. Investigators found a lower initial FD in females compared to
males. Moreover, the rate of FD decrease at low level of contraction intensity was not different between
genders whereas males showed a significantly higher decrement of FD during 60% MVC exhausting
contraction. Importantly, the authors speculated the initial values of FD seem to be affected by motor
unit synchronization as well as by subject fat layers and skin properties (Figure 3).
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Figure 3. Mean percentage of changes in FD versus time in males (blue) and females (red) during 60%
MVC prolonged contraction. The time scale is expressed as a percentage of the total exhaustion time
for each subject (from Meduri et al., [85] with permission).

Troiano et al. [81] investigated the behavior of FD during fatiguing contraction at 50% MVC and
found a significant fatigue influence on FD. Indeed, the rate of changes of FD determined during
fatiguing tasks strongly correlated with endurance time, making this parameter a valuable tool to
predict the time to exhaustion during an isometric task.

Finally, Mesin et al. [86] explored the influence on FD on both different percentages of motor
unit synchronization (from 0–20%) and different motor units firing rates (5–40 Hz). As previously
anticipated, the Authors evidenced the existence of an inverse relationship between FD and motor
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unit synchronization and the positive relation with motor units firing rate. These findings have shed
new light on the interpretation of fatigue-induced changes of FD, making FD no more considered as
an exclusive index of motor unit synchronization [86].

Table 1 summarizes methodological aspects and results of studies on FD and muscle fatigue.

Table 1. Estimation parameters and fractal dimension (FD) in studies comparing fresh vs.
fatigued muscles.

Authors, Year Muscle Boxes Number (Range) Unit Box FD

Meduri et al., 2016 [85] BB NA −8–1.59 1.5 vs. 1.62

Mesin et al., 2009 [81] VL NA 1/640–1/40 of EMG
time/amplitude size 0.4 vs. 0.6

Poosapadi et al., 2012 [82]
VL
BB

FDS
NA NA 1.96 vs. 2.00

Gitter et al., 1995 [71] BB 8–125 5580 µV/µs 1.1 vs. 1.4
Xu et al., 1997 [79] * - 1–32 NA 1.1 vs. 1.8

* Contraction type was simulated in this work and isometric in all the others. BB = biceps brachii; FDS = flexor
digitalis superficialis; VL = vastus lateralis; T = trapezius.

3.1.2. Detrended Fluctuation Analysis.

A process g(k) is “self-similar” when it holds the same statistical properties of a−Hg(ak), with H
the Hurst exponent. This means that subsets of the original series properly rescaled to the size of the
original one look statistically similar to the original, a property called "self-similarity". The Detrended
fluctuation analysis (DFA) is a complexity method to assess the scaling properties of self-similar signals.
The algorithm returns a scale parameter α which is strictly related to the Hurst exponent, with α = 0.5
in case of no correlation (white noise), α = 1 in case of “1/f” (or pink) noise, and α = 1.5 in case of
Brownian motion (or random walk). In particular, 0 < α < 0.5 indicates anti-correlation between
samples whereas α > 0.5 indicates long-range correlation [87].

To estimate α of a series g(k) of N samples, first y(k), cumulative sum of g(k), is calculated. Then:

1. y(k) is split into M non-overlapped boxes of size n (in general, N is not a multiple of n and thus
the M boxes cover a segment N′ = M × n slightly shorter than N);

2. The local trend, yn(k), is determined in each box of size n by a least-squared linear detrending;
3. The difference between y(k) and the local trend is computed;
4. A variability function F(n) is calculated as the root-mean-square of the variance of the residuals in

each box:

F(n) =

√√√
1

N′

N′∑
k=1

[y(k) − yn(k)]
2 (8)

The Steps 1–4 are repeated for different box sizes n and α is estimated as the slope of the regression
line fitting F(n) vs. n in a log-log plot [87]. Successive improvements of the DFA method
considered least-square detrending polynomials of order greater than one and were able to
employ the whole series of N samples for each block n with properly overlapped boxes [88,89].
The popularity of the DFA method lies in the fact that unlike other estimators of the Hurst
exponent it does not require to know in advance whether the fractal series belongs to the family
of the fractional-Gaussian noises (fGn) or Brownian motions (fBm) [65]. The DFA provides
acceptable estimates of H for both these classes, being α = H for an fGn process, and α = H + 1
for an fBm process [90].

DFA and muscle activation: Different studies demonstrated an increase of the DFA scaling exponent
with muscle effort [91–93]. In addition, concentric contractions result in lower α values compared
to isometric and eccentric contractions, with scale exponents close to one (the characteristic value
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of 1/f power law phenomena) suggesting a higher level of complexity [93]. Such difference were
explained by the different levels of motor unit recruitment which occur during concentric versus
eccentric contraction [94,95] and possibly by the different motor control strategy which regulates
concentric and isometric contraction [96,97].

DFA and fatigue. The MMF as assessed by the DFA scale exponent results in a significant loss of
signal complexity. Interestingly, Hernandez et al. [93] recently found a significant multivariate effect
from fatigue status and muscle contraction type. They found that α DFA was significantly lower
during non-fatigued compared to fatigued conditions and during concentric compared to isometric
contractions. During fatigued condition, α was close to 1.5, value characteristics of Brownian motion.

3.1.3. Multifractality

Complex systems may also generate multifractal time series. A multifractal series is composed
by interwoven fractal processes and specific methods of analysis should be applied to identify the
components of the multifractal dynamics.

One multifractal method used in sEMG analysis is based on the evaluation of the singularity
spectrum over successive epochs of 1s duration [62]. The measured signal is covered with boxes of
size l and the probability Pi(l) in each box i is calculated. For monofractal series, Pi(l) increases as the
power αi of the size l, the exponent αi being called the singularity strength.

For the multifractal analysis, a normalized Pi(l) measure is used:

µi(q, l) =
[Pi(l)]

q∑
j[Pi(l)]

q . (9)

The exponent q allows highlighting the different components of the multifractal time series.
The normalized measure in fact amplifies the fractal components with greater singularity when
q > 1 and those with lower singularity when q < 1. In particular, if the series is monofractal the
singularity strength does not change with q. Thus, averaging αi over all the boxes i one obtains the
function α(q) that provides a measure of the degree of multifractality. The singularity α determines the
Hausdorff fractal dimension f of the data and therefore, as α changes with q, also f changes with α.
The function f (α) that describes the fractal dimension as a function of the singularity strength is called
the singularity spectrum.

Another way to assess the multifractality of a time series is to extend the DFA method, which was
originally proposed for monofractal series. This is done modifying the definition of the variability
function F(n) in Equation (8) and calculating a variability function Fq(n) which depends on the moment
order q as:  Fq(n) =

(
1
M

M∑
k=1

(
σ2

n(k)
)q/2

)1/q

f or q , 0

Fq(n) = e
1

2M
∑M

k=1 ln(σ2
n(k))

q/2
f or q = 0

(10)

where M is the number of blocks of size n and σ2
n(k) is the variance of the residuals in each block [98].

When q = 2, Fq(n) coincides with the “monofractal” variability function F(n). The multifractal variability
function amplifies the fractal components with greater amplitude when q > 0 and those with lower
amplitude when q < 0. At each moment order q, a multifractal DFA coefficient, α(q), is estimated as
the slope of the regression line fitting Fq(n) vs. n in a log-log scale. If α(q) depends on q the series is
multifractal while monofractal series are characterized by constant α(q) functions.

Multifractality in muscle action. Li et al. applied the method of multifractal DFA to the
cross-correlation function between force and sEMG [99]. The results show a strong statistical
self-similarity in the correlation sequences between force and sEMG signals, with fractal characteristics
similar to 1/f noise or fractional Brownian motion. The multifractal DFA has been applied to the biceps
brachii contraction, and it was observed that the sEMG signal is mono- and multifractal in different
time scales, with “several fractal-scaling breaks” [100].
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Multifractality and fatigue. The singularity spectrum f (α) of the sEMG signal of the biceps brachii
was estimated during isometric contractions and the area of the singularity spectrum was taken as
a concise index of the degree of the sEMG multifractality [62]. The results demonstrated that the area
of f (α) consistently increased during the static contraction suggesting the use of f (α) for assessing
muscle fatigue.

The multifractal DFA approach was used also to evaluate whether the effects of fatigue on the
EMG signal could be estimated with greater accuracy than that of conventional indices of EMG such as
the MDF of the sEMG power spectrum [100]. The observed changes in Hurst exponent in the fatigued
muscle may be due to a reduction in conduction velocity in muscles fibers and to the enlarged motor
unit action potential, which may increase the long-range correlation in sEMG at small time scales.

3.2. Correlation

3.2.1. Correlation Dimension

In 1996, Nieminem and Takala demonstrated that sEMG is better modeled as the output of
a non-linear dynamic system rather than as a random stochastic signal [101], suggesting the use
of non-linear analysis methods. Among the non-linear methods, the evaluation of the correlation
dimension (CD) [102] has been used to classify the sEMG dynamics, both at rest and during light and
fatiguing muscle contractions. CD is a measure of the amount of correlation contained in a signal
connected to the fractal dimension. The CD estimation requires the calculation of the correlation
integral C(r), which is the mean probability that the states of the dynamical systems at two different
times are close, i.e., within a sphere of radius r in the space of the phases. Given a time series g(k),
the phase space is reconstructed by the vectors G(k) = [g(k), g(k + τ), . . . , g(k + (m − 1)τ)]T with m the
embedding dimension and τ a delay. The correlation integral is then estimated by the sum:

C(r) =
1

N2

N∑
i, j = 1

i , j

Θ( r− ||G(i) −G( j) ||) (11)

where N is the number of states, Θ the Heavyside function and ‖ . . . ‖ the Euclidean norm. If g(k) is the
output of a complex system, when N increases and r decreases, C(r) tends to increase as a power of
r, C(r)~rCD. Thus, CD, the correlation dimension of the system can be estimated as the slope of the
straight line of best fit in the linear scaling range region in a plot of ln (r) versus ln r.

The algorithm requires a large amount of data to provide reliable estimates, a restraint in the
analysis of sEMG. Furthermore, the estimates are unreliable for m greater than 14 (Nieminem and Takala,
1996) and the computational time increases exponentially with the number of samples (Bai-Lin, 1990).

Correlation dimension and muscle activation. The studies on correlation dimension applied to sEMG
firstly confirm the non-linear character of muscle electrical activity, which shows a structure different
from a pure random noise [103]. Thus, during the dynamic muscle contraction, neuromuscular system
has been demonstrated to “progressively changes from narrow band orderly recruitment pattern to
a broadband chaotic pattern” [103].

As it concerns muscle activity, EMG signals from lower limbs muscles during walking were found
to exhibit signs of chaotic behavior by the computation of CD values between two and three [104,105].
Furthermore, the study of the electrical activity of paravertebral muscles during different bending
postures demonstrated that CD is a reliable method to compare the EMG signal in various muscle
contraction conditions [106]. Finally, during a submaximal test of isometric loading Meigal et al.
demonstrated that correlation dimension was able to distinguish the sEMG characteristics between
two groups of young and old healthy individuals [107].

More recently, Wang et al. used a mixed mathematical approach, based on decomposing the sEMG
signal by the wavelet transform for calculating CD, to distinguish four types of forearm movements.
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This could be prospectively useful to classify muscle movements in the conception and design of new
powered limb prostheses [108].

Correlation dimension and fatigue. Muscle fatigue seems to reduce the dimensionality of the system,
as assessed by CD: this has been ascribed to motor unit synchronization and reduction in action
potential velocity and firing rate, which may reduce the neuro-muscular system adaptability [101].
However, a precise connection between the physiologic adaptation to fatigue in muscle activity and
the changes in correlation dimension of sEMG signals is still lacking.

3.2.2. Recurrence Quantification Analysis

The recurrence quantification analysis (RQA) is a nonlinear geometrical tool used “to bring
out temporal correlations in a manner that is instantly apparent to the eye” [109]. This analysis
was proposed by Eckmann in 1987 to detect recurring patterns and non-stationarities in a dynamic
system [110]. Given a data set x(i) of points, RQA is constituted by a recurrence plot in which an array
of dots is arranged in a square map and darkened pixels are plotted at specific coordinate i, j whenever
the point x(j) is closer than a distance threshold r to the point x(i). When the distance between x(i) and
x(j) is below r, x(j) is considered as recurrent and then, a dot is signed on the recurring map at the
coordinate (i, j). Given a time series g(i) its recurrence plot is obtained as follows:

1. Setting an embedding dimension (d) and a delay τ, the data set x(i) = (g(i), g(i + τ), . . . , g(i +(d −
1)τ)) is generated;

2. The radius r is set to a value that allows a reasonable number of x(j) data being closer than r to x(i);
3. A darkened dot is plotted at each coordinate (i, j) for which x(j) is included in the ball with radius

r centered at x(i).

Since i and j are times the resulting recurrence plot provides information on the time correlation
of the data set.

Different recurrent structures might be found looking at the recurrence plots [111,112]. Single
isolated points result from chance recurrences in the signal; upward diagonal lines reflect the presence
of a deterministic rule into the signal as they appear “whenever strings of vectors reoccur further down
the dynamic” [113]; vertical and horizontal lines indicate the occurrence of isolated vectors of data set
that match with a repeated string of vectors separated in time; and blank bands are the consequence
of transients in time series. Given that subtle patterns are not always detected, different quantitative
descriptors can be determined. Readers can found an exhaustive description of the recurrence plot
descriptors in the brilliant paper of Webber and Zbilut [112]. The most often used are:

(i) Percent determinism (%DET), that quantifies the percentage of recurrent points forming diagonal
line structures

%DET =

∑N
l=lmin

lP(l)∑N
i, j Ri, j

(12)

where P(l) is the frequency distribution (i.e., the probability) of diagonal lines with length l, being l
an integer number;

(ii) Percent recurrence (%REC), that quantifies the density of recurrent points in the plot:

%REC =
1

N2

N∑
i, j=1

Ri, j (13)

A critical aspect of RQA is the need to carefully tuning the embedding dimension, the delay τ and the
threshold distance to obtain reliable estimates [78,111,114]. A typical value of the delay τ is the first
zero of the autocorrelation function.

RQA and muscle activation. Several studies investigated the sensitivity of RQA to sEMG shifts
towards more deterministic behaviors under different contraction intensities and characteristics in
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both small and large muscles [114–118]. Filligoi and Felici [113] evaluated %DET during voluntary
contractions at three different force levels, each sustained for 20 seconds. Although the initial %DET
value was insensitive to force levels, the slope correlated with the contraction intensity.

RQA behavior was also investigated in response to different levels of motor unit synchronization
by computing %DET before, during, and after the injection of a drug to increase the motor units
synchronization [118]. %DET rose as a function of synchronization in most of the investigated
muscles, leading the authors to consider it as a suitable tool to monitor changes in motor unit
synchronization [118]. Different results were reported by Schmied et al. [119] that did not find
a correlation between %DET and the amount of synchronous impulses when contractions were
performed at a low level intensity. No correlations were also found between %DET and potentiation
phenomena neither in endurance-trained nor in power-trained athletes [120].

Some studies compared recurrence analysis to frequency analysis finding prompter response
and higher magnitude of %DET compared to spectral indices. This supports the idea that recurrence
indices present a higher sensitivity than spectral indices to detect sEMG drifts [114,116,121].

RQA and fatigue. RQA also explored the effects of fatigue on muscular activation in different
studies, which found a continuous rise of %DET as a function of time, although the results could be
influenced by factors such as contraction intensity, muscle size [78,111,116,121–124], altitude and other
muscles characteristics [122]. The role of contraction intensity was explored by Webber and Zbilut
who found an almost-steady-state behavior of %DET during sustained light loading whereas during
heavy loading a progressive rise occurred [111].

RQA was also adopted to characterize fatigue effects in different groups: power-trained athletes,
endurance athletes, wheelchair basketball players and sedentary control subjects [116,120,122,125,126].
While %DET increased in all the athletes’ phenotypes, it did not in control group. Changes in %DET in
athletes were ascribed to a more regular and more similar bursts pattern, while differences between
groups were explained with the different proportion in fibers composition. Figure 4 shows an example,
in a representative subject, of the computation of EMG power spectrum (with the calculation of the
median spectral frequency) and RQA plot (personal data) during non-fatigued and fatigued muscle
conditions. During fatigue, the computed mean spectral frequency decreases and the spectral power
increases. Furthermore, the density of recurrent points remains relatively unchanged (constant %REC),
but the arrangement of points is altered, indicating an increased periodic component in the EMG
during fatigue.

Muscle endurance was also evaluated by RQA after exposure to high altitude. Similarly to
normobaric condition, %DET progressively increased during the sustained contraction; however,
the slope became steeper under exposure to hypobaric hypoxia [122]. Two studies evaluated the
behavior of spectral variables and recurrence-plot indicators (%DET and %REC) on experimental
as well as simulated EMG signals. In these latter the response to two typical signs of muscular
fatigue, like reduction of conduction velocity and the increase in motor unit synchronization,
were explored. %DET and %REC showed to be influenced by the conduction velocity and by
the degree of synchronization [78,116]. Ito and Hotta, by the use of RQA, recently explored sEMG
behavior during exhausting contraction under blood flow restriction. They found an increase in %DET
during contraction and even higher values when blood flow restriction was applied [127]. Table 2
summarizes the parameters adopted for RQA analysis in previous studies and the results in terms of
%DET and %REC in fresh and fatigued muscles.
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Figure 4. Power spectra with median frequency (MDF) (left panels) and recurrence plots with percent
determinism (%DET) and percent recurrence (%REC) from recurrence quantification analysis (RQA,
right panels) of sEMG signals for the non-fatigued (A) and fatigued (B) vastus lateralis muscle in one
representative subject (personal data); analysis parameters are: N = 1024; τ = 4; m = 4; r = 15.

Table 2. Percent determinism (%DET) and percent recurrence (%REC) in fresh vs. fatigued muscles
by RQA.

Authors. Muscle m τ (ms) r %DET %REC

Del Santo et al., 2007 [118]
D
BB
Q

15 3 10%
62 vs. 72
75 vs. 87
19 vs. 32

NA

Farina et al., 2002 [116] BB 15 3–6 10% (a) 28 vs. 70 3.1 vs. 3.5
Felici et al., 2001a [126] VL 15 τ0 2% 27 vs. 42 NA
Felici et al., 2001b [122] BB 15 τ0 2% 33 vs. 78 NA
Fattorini et al., 2005 [115] FD 15 τ0 2% 40 vs. 65 NA
Filligoi et al., 1999 [113] BB 15 τ0 2% 36 vs. 60 4
Ikegawa et al., 2000 [123] MF 10 τ0 2% 11 vs. 25 3.6 vs. 4
Ito et al., 2012 [127] BB - - 10% +15% NA
Mesin et al., 2009 [78] VL 7 1 20% NA
Schmied et al., 2011 [119] EC 10 3 20% 43 vs. 50
Uzun et al., 2012 [125] BB, BR 6 4 - 20 vs. 60
Webber et al., 1994 [111] BB 10 τ0 2% 20 vs. 30
Webber et al., 1995 [114] BB 10 τ0 2% 20 vs. 40
Webber et al., 2007 [112] BB 10 4 15% 61 vs. na
Yanli et al, 2005 [101] BM 7 3 - 82 vs. na
Yang et al., 2005 [124] BB 10 4 15% 55 vs. 90

m = embedding dimension; τ = delay; τ0 = first zero of the autocorrelation function (typically between 3–5 ms); r =
radius as % of maximum distance or (a) of mean distance; BB = biceps brachii; BM = back muscles; BR = brachioradialis;
D = deltoid; EC = extensor carpi radialis; FD = first dorsal interosseous; MF = multifidus; Q = quadriceps; VL =
vastus lateralis.
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3.3. Entropy

3.3.1. Approximate Entropy, Sample Entropy and Fuzzy Entropy

In 1991, Pincus coined the term approximate entropy (ApEn), to indicate a method estimating the
“likelihood that runs of patterns that are similar remain similar on next incremental comparisons” [67].
An advantage of this method is its applicability in noisy and short datasets [128–130]. To calculate
ApEn of a series g(i) of N equally-spaced values, one should first set an embedding dimension m and
a distance threshold r and then:

1. Form a series of N − m + 1 vectors of m components G(i) = [g(i), g(i + 1), . . . , g(i + m)]T;
2. Compute the distance between any couple of vectors G(i) and G(j) as the largest absolute difference

between the corresponding scalar components (if the difference is less than the distance r the two
vectors are similar);

3. Count nm
i (r), number of the N − m + 1 vectors G(j) similar to G(i) and the probability to find

a vector similar to G(i) as:

Cm
i (r) =

nm
i (r)

N −m + 1
(14)

4. Calculate Cm(r) as the average of Cm
i (r) for all the vectors G(i);

5. Repeat the steps from 1 to 4 for the embedding dimension m + 1.

Then,

ApEn(m, r) = −ln
[

Cm+1(r)
Cm(r)

]
(15)

Deterministic sequences present a high degree of regularity, i.e., if they are similar for m points they are
likely similar also for the next point, m + 1. Therefore, higher is the regularity, lower is ApEn. Since each
sequence matches itself, ApEn is a biased estimator and it is lower than expected for short records [128].
This also implies that it lacks relative consistency, making it difficult to interpret the comparison of
different datasets. Moreover, because of its bias, ApEn depends on the signal length. When two
time-series are compared, care must be taken to estimate ApEn on the same signal durations [130].

Sample Entropy (SampEn) addresses the drawbacks caused by self-matching and provides better
consistency and performance than ApEn [128]. SampEn reduces the bias avoiding self-comparison
between vectors [130]. This is done by calculating nm

i (r), the number of vectors similar to G(i), for all
the vectors G(j) excluding j = i. This leads to defining SampEn as:

SampEn(m, r) = −ln
Am(r)
Bm(r)

(16)

where:

Am
i (r) =

nm+1
i (r)

N −m− 1
(17)

Bm
i (r) =

nm
i (r)

N −m− 1
(18)

Boasting better consistency and robustness, the fuzzy approximate entropy (FuzzyEn) was
proposed in 2010 for noisy and short datasets [129,131]. Additionally, FuzzyEn was independent of
the tolerance r introducing the concept of fuzzy membership functions for determining the degree of
similarity between patterns. Therefore, the similarity between G(i) and G(j) is quantified by a fuzzy
continuous and convex function [129,132]:

Cm
i (r) =

1
N −m + 1

N−m+1∑
j=1, j, i

Ω
(
dm

i, j, r
)

(19)
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with [121,131,133,134]

Ω
(
dm

i, j, r
)
= e−

d2
i, j
r (20)

Finally,

FuzzyEn(m, r) = −ln
[

Cm+1(r)
Cm(r)

]
(21)

where Cm(r) is the average of Cm
i (r) for all the vectors G(i).

3.3.2. Multiscale Entropy

The measures of entropy like SampEn cannot properly distinguish whether the irregularity of
the time series just reflects random components or whether it is generated as the output of a genuine
complex system. To better detect the presence of complexity in the time series some authors proposed
a multiscale approach to entropy [135]. The multiscale entropy method is based on the evaluation
of SampEn on progressively coarse-grained series. A coarse graining of order n consists in applying
a moving average filter of order n on the original series g(i) and in decimating the filtered series
taking one sample every n. Then, SampEn is estimated over the coarse-grained series obtaining the
multiscale entropy at the scale n, MSE(n). Clearly, MSE (n = 1) coincides with SampEn by definition.
Like SampEn, also the multiscale entropy needs the preliminary choice of the proper embedding
dimension m and threshold distance r. In addition, it is still unclear whether the same threshold r
should be used at all the scales n or whether it should be adjusted at each scale, r(n) [136]. Recently,
the coarse-graining procedure has been improved to allow stable estimates at large scales even when
analyzing relatively short data segments and to reduce leakage from the shorter to the larger scales due
to the wide transition band of the moving average filter [137]. A concise way to quantify the MSE(n)
profile is to sum all scales shorter than a critical scale τc to obtain a short-term complexity index, CS,
and to sum all the scales larger than τc up to the largest estimated scale, nmax, to obtain a long term
complexity index, CL, as:

CS =

τc∑
n=1

MSE(n) (22)

CL =

nmax∑
n=τc+1

MSE(n) (23)

To identify the critical scale τc analyzing sEMG during isometric contractions, Cashaback et al.
performed a piecewise-linear regression on MSE(n) estimates for scales n between 1 and 50 samples
(corresponding to the range between 0.004 and 0.2 s) and found a single breakpoint demarcating two
linear scaling regions [138]. The intersection of the two-piece regression defined τc (see Figure 5).

Entropy and muscle activation. Several studies used entropy-based methods in characterizing
the complexity of EMG signals during relaxed conditions [139] and contractions [117,131,140].
From a physiological viewpoint, as healthy biological systems show markedly higher complexity than
compromised ones, low entropy values could be read as a sign of impairment [141].

Despite the different studies using ApEn on EMG signals, its consistency and reliability have
recently been questioned [72]. Zhou et al. employed SampEn and FuzzyEn to interpret sEMG collected
at different intensity levels of contraction and found a very weak correlation between SampEn and
muscle torque while FuzzyEn showed a direct positive correlation with the effort [134]. These authors
concluded that FuzzyEn could be a useful alternative to force estimation whereas SampEn might
be determined as a biomarker of EMG able to overcome interference due to changing muscular
contractions intensity. A relationship between entropy measures and force production was also
examined by Troiano et al., [81] who found no effect of fatigue on entropy values.
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of short-term and long-term complexity (from [138] with permission).

Finally, MSE analysis was applied to sEMG signal by Cashaback [138] to evaluate the short-term
complexity of sEMG at three different intensity contractions. The authors reported a correlation
between MSE and contraction intensity although the level of complexity at 100% was only slightly
different compared to the one found at 70%. The investigators hypothesized that, given that force
production above 70% is mainly attributed to an increase in temporal firing, signal complexity might
be mainly influenced by rate discharge rather than motor unit recruitment [138].

Entropy and fatigue. The use of entropy algorithms to study MMF has been recently
evaluated [121,129,132,142]. Hernandez et al. [93] recently studied the individual influence of fatiguing
contractions and of different contraction types on the complexity of sEMG signal by SampEn and DFA.
The effect of the combination of both factors were also evaluated. Given that SampEn values decreased
in fatigued conditions and different values were found among the contraction types, the Authors
concluded that “sEMG complexity is affected by fatigue status and contraction type, with the degree of
fatigue-mediated loss of complexity dependent on the type of contraction used to elicit fatigue” [93]
(Figure 6).
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Lin et al. applied the SampEn algorithm to sEMG signals collected from quadriceps muscles
during cycling. Comparing the results obtained under fatigued and un-fatigued conditions they found
no differences in SampEn values [84]. The absence of any changes in signal EMG complexity was
attributed to the different type of contraction (isometric and cyclic).

FuzzyEn was also used to characterize the determinism of sEMG signal during fatigue [129,132,142].
The study of Xie et al. compared the time course of FuzzyEn with that of ApEn and of the MDF and
found that FuzzyEn decreased linearly during muscle contraction as well as the MDF, where ApEn
did not [129]. Successively the Authors compared the performance of FuzzyEn with SampEn and
ApEn and concluded in favor of FuzzyEn, due to its better robustness to the analysis length [132].
Navaneethakrishna et al. [142] applied FuzzyEn to explore determinism in sEMG signal under fatigued
and un-fatigued conditions and, similarly to previous studies, found a decline in entropy throughout
fatigue development.

Kahl and Hofmann [121] compared six different algorithms (including SampEn and FuzzyEn)
in the detection of local MMF. The sEMG signal was analyzed by spectral, entropy and recurrence
quantification analysis. Authors found that entropy-based variables performed better than recurrence
methods, though ApEn provided a low MMF detection quality. Better results were found from SampEn.
Moreover, a limit of FuzzyEn method was recognized on the high computational effort.

The above cited work of Cashaback et al. [138], based on MSE approach, found that entropy values
significantly decreased after fatigue. The authors hypothesized that the reduction of signal complexity
might have resulted from a decrease of action potential amplitude and velocity as a consequence
of alterations in the metabolic and enzymatic events involved in muscle contractions. Similarly,
Navaneethakrishna et al. [142] observed a clear reduction of MSE values with MMF and attributed the
finding to the fatigue-induced synchronization of motor unit recruitment that in turn would have led
to the generation of more regular pattern in the neuromuscular signal.

MSE was used to investigate MMF also in a group of children with cerebral palsy to have a deeper
insight into the central nervous system and neuropathological mechanisms underpinning muscle
contractions [143]. Investigators noticed a decreasing pattern of MSE along with fatigue development
and ascribed it to a reduction of motor unit synchronization.

Table 3 shows settings and results obtained using entropy algorithms in the studies taken
into considerations.

Table 3. Entropy of sEMG during contractions.

Authors Contraction Muscle Estimator r Value

Ahmad et al., 2008 [117] Isometric FC, EC ApEn 4 0.5–0.79
Cashaback et al., 2013 [138] Isometric BB MSE 0.60 0.9–1.2

Hernandez et al., 2019 [93] Isometric
Dynamic VL SampEn 0.20 1.46–1.57

Pethick et al., 2019 [91] Isometric VL ApEn
SampEn 0.10 0.10–0.65

0.01–0.62

Xie et al., 2010 [129] Isometric BB ApEn
FuzzyEn 0.10/0.15 0.0–3.0

0.4–0.8

Zhu et al., 2017 [134] Isometric BB SampEn
FuzzyEn 0.25 0.8–1.00

0.01–0.13

r = threshold expressed as a fraction of standard deviation; BB = biceps brachii; Q = quadriceps; VL = vastus
lateralis; EC = extensor carpi radialis; FC = flexor carpi ulnaris.

3.4. Deterministic Chaos

Largest Lyapunov Exponent

The determination of the chaotic properties of a nonlinear system may be performed through the
computation of largest Lyapunov exponent (λLLE), which estimate the rate of exponential divergence
of neighboring trajectories into the phase space. This measure can therefore quantify the “amount
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of chaos” in a system. Different algorithms have been implemented to determine λLLE from finite
amounts of experimental data. The first implementation by Wolf estimated the non-negative Lyapunov
exponent and determined the grade of unpredictability by the magnitude of the exponent, but it was
rather inefficient [144]; later, the Rosenstein’s method proved to be more efficient and overcame the
drawbacks of the Wolf algorithm [145]. Rosenstein’s algorithm requires four input variables: time
delay, minimum embedding dimension, mean period and maximum number of iterations. Briefly,
the EMG time series of N points is considered as a trajectory in the embedding space. The algorithm
locates the nearest neighbor of each point j of the trajectory, and considers the distance between these
two close points as a small perturbation, ∆j(0). It is assumed that the j-th pair of nearest neighbors
diverges in time at the exponential rate given by the largest Lyapunov exponent λLLE, which means
that ln∆j(i) = Cj + λLLEi. This equation, evaluated λLLE for all the j pairs, represents a set of parallel
lines. To reliably estimate λLLE from short and noisy data, the average of the parallel lines is computed.
In general, the average line shows a long linear region after a short transition, and is estimated as the
slope of the regression line fitting the average line.

Muscle activation andλLLE. The Rosenstein method for calculating λLLE was applied on EMG signals
by Chakraborty and Parbat [72] for the assessment of chaotic patterns during isotonic contractions
of biceps brachii muscle (arm flexion with 1 kg load). Considering the stochastic nature of EMG,
the authors used Cao’s method for determining the embedding dimension [146], whereas the time delay
was determined through Kraskov’s mutual information function [147], the mean period was obtained
as the reciprocal of the median frequency found by the average Welch periodogram technique and
100 iterations were used as the last input variable. The results obtained by this application suggested
the presence of deterministic chaos in EMG signal, and found an, although very limited, variability
with the applied load. In another study, when applied to the electrical activity of paravertebral
muscles during various bending postures, the positive Lyapunov exponent could not discriminate the
contraction conditions, differently from CD [106].

Muscle fatigue and λLLE. The estimation of the largest Lyapunov exponent had limited applications
in the evaluation of muscle manifestation of fatigue. The λLLE value did not change with the increase of
the muscle load in [72], although it was unlikely that the load used in this work provoked a significant
fatigue state in the tested muscle (biceps brachii). Significant reductions in the dynamic stability of
low back EMG were found during a fatiguing task (30 repetitions of trunk extension) by means of
the maximum Lyapunov exponent [148]. Interestingly, the index was lower in subjects with chronic
low back pain (in whom paravertebral muscles are often contracted for antalgic reasons) compared to
control subjects, with a trend more pronounced in people with low back pain toward a reduction during
asymmetric versus symmetric tasks [148]. In a work of Padmanabhan and Puthusserypady [104] sEMG
signals exhibited chaotic behavior with a greater number of positive Lyapunov exponent for signals
recorded during maximal voluntary contraction than during walking. Finally, Sbriccoli et al., [149]
demonstrated a significant reduction (by 14–42%) of λLLE in EMG from muscles with exercise-induced
muscle damage (by 35 maximal contractions of biceps brachii), with complete recovery after two weeks.

4. Discussion

This review aimed at describing the main linear and complexity analysis methods in the literature
which were applied to the EMG signal to determine the effects of fatigue on muscle electric activity
(the scheme we followed is summarized in Figure 7). The issue we reviewed plays an important role in
physiology (e.g., exercise physiology, neurophysiology, training, etc.) and pathophysiology settings
(physical rehabilitation, neurology, prosthesis development, etc.).

Some linear and spectral descriptors of EMG, as the σg and MDF have been demonstrated to be
sensitive to fatigue-induced variations of EMG. However, intriguingly, it has been shown that the
EMG signal also exhibits many complexity characteristics deserving to be evaluated, especially to
understand whether these features have an onset time and a sensitivity to MMF development different
from those of the classic linear descriptors.
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Several papers focusing on the complex behavior of EMG demonstrated so far that the EMG
signal is non-linear in nature and expresses the features of a low dimension chaotic system [72,100,104].
Many complexity indices have been therefore used in characterizing the changes occurring in EMG
with muscle activation and with fatigue. Some of them seems to be more informative and shows early
changes compared to traditional linear and spectral analysis. In addition, fatigue results in a significant
loss in EMG complexity [124,127,143,148].
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Among the complexity analyses applied so far to the EMG the fractal analysis had many
applications. Though not universally accepted [81,82], FD typically reveals an increase during muscle
activation at low intensity levels of force production [61,76,79,82] with a decrease in response to
MMF [64–66,79,84,86]. The common finding of the reported studies suggests an inverse relationship
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between FD and motor unit synchronization. By contrast, FD seems to be positively related to motor
unit firing rate [78,86]. Finally, it showed to be suitable to estimate the exhausting time during
an isometric contraction [80].

The RQA approach is another widely used index of complexity applied to EMG. A rise in %DET
was attributed to an increase in motor unit synchrony and in a more similar bursts of motor unit
potential action generation patterns. Local MMF is accompanied by an increase in recurrent statistics
in sEMG signal therefore, %DET represents a promising tool in revealing early onset the MMF during
a challenging motor task [45,78,111,121–124].

In addition, the entropy-based measurement has been widely used to evaluate how fatigue
influences the determinism of EMG signal. During fatigue development entropy parameters show
a clear decline, reflecting a shift of EMG towards more regular pattern. The decay observed in
sEMG complexity by entropy has been ascribed to a decrease of both action potential amplitude
and velocity probably due to alterations in metabolic and enzymatic events involved in muscle
contractions [93,129,142,143].

A promising extension of MMF detection capabilities by complexity indices applied to EMG was
introduced by the study of multifractality [62]. This method has shown a higher degree of correlation
and accuracy with the progress of fatigue compared to the median spectral frequency, and presents
possible applications, such as discrimination between normal and pathological sEMG (e.g., in those
neuromuscular disease where a reduction of the number of motoneurons occurs and the action potential
of the residual motor units changes in shape and duration) [100].

Finally, the determination of the largest Lyapunov exponent from sEMG demonstrated the chaotic
properties of this nonlinear system but its potential in detecting MMF seems to be limited [72,106].
Therefore, despite some intriguing results [104,148,149], future standardized fatiguing protocols are
needed to confirm whether λLLE of sEMG can be diagnostic tool to assess MMF and impairments, as well
as the effectiveness of treatment in different settings, as clinic (rehabilitation) and sporting contexts.

All these findings, collectively, might make the use of complexity analysis tempting. However,
readers have to consider the several pitfalls and tricks thronging the analysis process. Indeed, almost
all the complexity procedures present some limitations in their use that should be considered. First,
the quality of the estimates of complexity indices increases with the length of the dataset and for this
reason complexity methods generally require long time series: this may be a critical point because EMG
data during fatiguing muscle contractions are usually of reduced length. Therefore, there is a need
to develop indices and estimation algorithms which can be meaningfully applied to short dataset.
In this regard, recent lines of research in the complexity analysis of physiological signals are aimed at
specifically designing algorithms for short time series, for instance by reducing the estimator bias and
variance in multiscale entropy analysis [137,150,151] or by improving the consistency of multifractal
DFA estimates [88]. It is, therefore, desirable that these algorithms are properly adapted to the analysis
of sEMG and applied to detect the electromyographic manifestation of muscle fatigue.

Second, many of these analyses are based on highly recursive calculation procedures and therefore
needs high computational times. Third, from a statistic viewpoint, there is a requirement for surrogate
data analysis, in order to test the EMG signal for non-linearity in different conditions (e.g., fatigued vs.
non-fatigued states). In the vast majority of the studies cited in this review no surrogate data analysis
has been performed. Fourth, only in some cases an accurate parameterization of the variables used in
the specific complexity analysis (in particular the parameters used to reconstruct the phase space, as the
embedding dimension, the time delay, the critical scale and the threshold distance) has been performed.
This latter point has been deeply stressed in those studies. Indeed, given that an inaccurate setting
of the algorithms parameters severely impacts on final results, a meticulous detection of the most
appropriate setting is absolutely required to achieve reliable results and avoid improper conclusions.
We encourage the interested readers to undertake the endeavor of assessing the sensitivity of complexity
descriptors with synthetic EMG signals, whereby the effect of different sources leading to MMF can
be controlled for. It is our understanding that only then would it be possible to reveal the added
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value of complexity analysis in screening the various physiologic phenomena that may manifest in
experimental EMG signal during fatiguing contractions (synchronization of the motor units generating
the action potentials, changes in the shape of action potentials, in the firing rate, in the biochemical
conditions and metabolism of the muscle fiber, etc.). Indeed, in some analyses reported in this review,
the authors attempted to correlate the behavior of the complexity indices of EMG to the changes in the
physiological phenomena that underlie the MMF during a protracted muscle contraction. However,
this should be possible only when working with synthetic signals, in which several phenomena, such as
fiber recruitment and action potential synchronization, can be controlled. Differently, in an interference
signal such as surface EMG, it is virtually impossible, even with sophisticated algorithms, to distinguish
the peripheral components of fatigue from the central ones. The conclusions of many authors on this
topic should, therefore, be evaluated with caution and considered to be eminently speculative.

In conclusion, although some complexity indices seem to detect MMF efficiently, more work
remains to be done to compare these indices in terms of reliability and sensibility, to optimize the
choice of the parameters used to reconstruct the phase space and to elucidate their relationship with
the physiologic phenomena underlying the onset of fatigue in exercising muscles.
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