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ABSTRACT  14 

Background: Durum wheat semolina is the best raw material for pasta production and its protein 15 

content and gluten strength are essential for the cooking quality. The need of finding rapid methods 16 

to speed up quality control makes Near Infrared spectroscopy (NIR) a useful method and widely 17 

accepted in cereal sector. In this study two non-destructive and rapid technologies, a low-cost sensor 18 

providing a short wavelength NIR range (swNIR: 700-1100 nm) and a handheld spectrometer 19 

providing a classical NIR range (cNIR: 1600-2400 nm), were employed to evaluate semolina quality 20 

parameters. 21 

Results: Semolina samples were firstly characterized by the most used reference methods (protein 22 

content, Gluten Index, Alveograph® and Sedimentation test) and more recent one (GlutoPeak®). The 23 

spectra data were correlated with the chemical and rheological parameters. Partial Least Squares 24 

(PLS) model was used to compare the efficacy of swNIR or cNIR. The protein content is the reference 25 

parameter better correlated to the spectra data and showed the best regression model (r model = 26 

0.9788 for cNIR and 0.9561 for swNIR). GlutoPeak indices also were well correlated with spectral 27 

data, particularly with swNIR spectra. Furthermore, the application of a provisional multivariate 28 

model (SIMCA) was used to classify quality of a semolina sample by means of its spectrum, obtaining 29 

a better modelling efficiency for swNIR. 30 

Conclusion: The results have highlighted the applicability of pocket-sized low cost sensor (swNIR) 31 

easy to use directly to the sample source, compared to laboratory instruments or more expensive 32 

portable device. 33 
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1. INTRODUCTION 37 

 38 

The worldwide success of the Italian dried pasta is due to the use of durum wheat semolina as raw 39 

material, as well as to a tradition of pasta-making combined with years of research and 40 

experimentation. For pasta production, high protein content and gluten strenght, as indicator of its 41 

visco-elasticity, are essential to transform the semolina into a product able to guarantee an excellent 42 

cooking quality, expressed by low stickiness and bulkiness, and good firmness at optimal cooking 43 

time and/or overcooking (D'Egidio et al., 1993).  44 

The performance of the raw material for pasta making is usually assessed through the total protein 45 

content and the rheological tests whose indices allow to predict the viscoelastic characteristics of 46 

gluten that are correlated to the pasta cooking quality (D'Egidio et al., 1990). Some of the methods 47 

used to assess raw material and pasta quality are well known standard procedures,while others are 48 

emerging and still in the phase of evaluation and comparison with the standards methods (Marti et 49 

al., 2014).  50 

The needs of all actors in the supply chain always remain those of finding rapid methods to improve 51 

and speed up quality control at all stages of production. In this context, Near Infrared spectroscopy 52 

(NIR) is a rapid and non-destructive technique widely used in the agri-food sector (Cortés et al., 53 

2019). In the case of durum wheat, NIR technique is accepted as a useful method to determine 54 

moisture and protein content (method EN 15948:2015). This technology has also been applied as 55 

predictive test to evaluate the quality (i.e., test weight, hardness, semolina yield and yellow pigment) 56 

of grain in early generations in breeding program (Sissons et al., 2006), to classify vitreous and 57 

nonvitreous kernels (Dowell, 2000), and to quantify the degree of adulteration of durum wheat flour 58 

with common bread wheat flour (Cocchi et al., 2006, Vermeulen et al., 2018). In the last decade, the 59 

applications of NIR have been focused to predict semolina technological quality (Sinelli et al., 2011, 60 

Firmani et al., 2020) and the technique has been proposed for in-line determination of moisture 61 

content in pasta immediately after the extrusion process (De Temmerman et al., 2007).  62 

While defining the qualitative characteristics of a sample by NIR technique, calibration models are 63 

required to extract information from spectral data (Porep et al., 2015). Multivariate calibration 64 

techniques are often employed to relate the concentration of a certain analyte to the spectral data 65 

collected from that sample. Menesatti et al. (2014), for example, applied multivariate provisional soft 66 

independent modeling of class analogy (SIMCA) to distinguish between the use or not of organic 67 

wheat analyzed by a rapid and non-destructive method based on hyperspectral imaging. In addition, 68 

Partial Least Squares (PLS) model was used to compare the efficacy of NIR vs. mid-infrared (MIR) 69 

to determinate the nutritional properties in wheat bran samples (Hell et al., 2016).  70 

Recently, to perform a direct and rapid detection, various manual NIR devices have been developed 71 

that have already found application in the food industry (Ayvaz et al., 2015) and in the cereal sector 72 

to control the sprouting process of wheat (Grassi et al., 2018). The portable NIR analyzers allow the 73 

instrument to be taken directly to the sample source, eliminating the time and protocols required to 74 

move samples to the lab. Taking into consideration that, to the best of our knowledge, no studies have 75 

been carried out on durum wheat semolina, in this study, two non-destructive and rapid technologies, 76 

a low-cost sensor providing a short wavelength NIR range (swNIR) and a handheld spectrometer 77 

providing a classical NIR range (cNIR), were employed to evaluate some semolina quality 78 

parameters. In addition, to determine the correspondence between the spectral data and some 79 

reference quality variables different multivariate statistical analyses were performed. 80 

 81 

2. MATERIAL AND METHODS 82 



 

 83 

2.1. Materials 84 

The study was performed on 64 durum wheat varieties obtained from experimental trials of the Italian 85 

network realized during the growing season 2016/2017. The samples were representative of three 86 

different agro-climatic areas: Po valley (11 samples); Adriatic coast (26 samples) and Sicilian insular 87 

(27 samples).  88 

All durum wheat grains were conditioned to 17% for about 20 h and milled by pilot milling plant 89 

Buhler MLU 202 (Bühler, Switzerland). Then semolina was passed twice to the purifier (Namad, 90 

Italy) for further refinement. The semolina obtained from each sample has an ash content between 91 

0.80 and 0.90% d.b. maximum limit defined by Italian legislation for the production and marketing 92 

of durum wheat semolina pasta (Italian law 580/67 and subsequent amendments). 93 

2.2. Methods 94 

 95 

2.2.1. Reference quality tests on semolina 96 

Firstly, semolina samples were characterized by means of standard methods. Protein content was 97 

determined by Dumas combustion method (ICC method n. 167) with automatic instrument Leco FP 98 

528 (Leco Corp., USA). The conversion factor used was N x 5.7. Gluten content was determined 99 

according to EN ISO 21415 method and Gluten Index by ICC method n. 158 using Glutomatic System 100 

(Perten, Sweden). The alveograph test (Chopin Co., France) was conducted according to UNI 10453 101 

method for durum wheat semolina. 102 

Gluten quality was also evaluated by nonconventional test, such as GlutoPeak devices (Brabender 103 

GmbH and Co., Germany). GlutoPeak test was performed according to Marti et al. (2014), with some 104 

modifications. In particular, 9 g of semolina and 9 g of distilled water were used, adjusting the 105 

quantity of semolina to 14% humidity. The speed of the rotating element was set at 2750 rpm while 106 

the temperature at 36 °C. The main indices considered, automatically evaluated by the software, were 107 

i) Maximum consistency (BEM) (expressed in GlutoPeak Units, GPU), corresponding to the peak 108 

occurring as gluten aggregation; ii) Total energy equivalent to the area under the peak (from 0 to 15 109 

s after the maximum peak) expressed in GlutoPeak Equivalents (GPE). 110 

All the samples were also characterized by the sedimentation test in Sodium-Dodecyl-Sulphate (SDS 111 

test, ICC method No. 151) carried out on whole wheat flour, obtained by grinding with a Cyclotec 112 

mill (FOSS AB Analytical, Sweden) equipped with a 1 mm sieve. 113 

2.2.2. NIR spectroscopy  114 

Semolina samples were analyzed using a NIR handheld spectrometer with a short wavelength range 115 

(swNIR) and one with a classic NIR range (cNIR). 116 

For both NIR analysis, semolina was placed in a plastic capsule and covered by a low reflectance 117 

glass plate. The measurements were carried out at three different points and repeated for three more 118 

fills, obtaining 9 data per sample. 119 

The short-wavelength spectra were recorded by SCiO (ConsumerPhysics Inc®), a pocket-sized 120 

device, with a reflectance range of 700-1100 nm. The spectral data were transferred to a smartphone 121 

via Bluetooth wireless technology and recorded in the cloud. The data in a CSV format were 122 

transferred to an Excel spreadsheet for analysis.  123 

The classic-wavelength spectra were collected by MicroPHAZIR RX analyzer (Thermo fisher 124 

scientific®), a handheld NIR instrument for on-site material identification, with a spectral range of 125 



 

1600-2400 nm. Spectral data were transferred to a PC via a USB cable in a TXT file and transferred 126 

to an Excel spreadsheet for analysis. 127 

2.2.3. Statistical analyses 128 

Partial Least Square Regression (PLS) 129 

The results obtained on the semolina samples were further processed through a multivariate 130 

regression using the PLS method to observe the predictive capacity of spectral data matrices (swNIR 131 

or cNIR; X-blocks). The predicted reference quality variables (Y-block) were: Protein content, Gluten 132 

content, Gluten Index, Sedimentation value, Alveograph parameters (W and P/L) and GlutoPeak 133 

parametrs (BEM and Total Energy). The PLS procedure (Wold et al 2001) was elaborated using the 134 

PLS Toolbox in MATLAB V7.0 R14 (The Math Works, Natick, MA, USA) and included the 135 

following steps: 1) extraction of raw spectra dataset, (X-block variables); 2) creation of measured 136 

values dataset to be used as reference or response variable (Y variable); 3) data fusion of the two 137 

dataset (Y and X-block) in one analysis dataset (ADs); 4) analysis dataset partitioning into model set 138 

(MS=80% of ADs) and external validation test set (TS=20% of ADs) by means of sample set 139 

partitioning based on joint x-y distances (SPXY) algorithm (Harrop Galvao et al, 2005). This method 140 

employs a partitioning algorithm that takes into account the variability in both x- and y-spaces; 5) 141 

application of different pre-processing algorithms to X-block and Y (none, Log 1/R, diff1, mean 142 

centre, autoscale, median centre, baseline) - the matrices were pre-processed using the autoscale 143 

Matlab algorithm; 6) application of chemometric technique: modelling and testing; 7) calculation of 144 

efficiency parameter of prediction. 145 

The performances of the model were estimated by evaluating the coefficient of correlation (r) between 146 

observed and predicted values, Standard Error of Prevision (SEP), Root-Mean-Square Error of 147 

Calibration (RMSEC) and bias calculated as the average of the differences between predicted and 148 

measured. Residual Predictive Deviation (RPD), defined as the ratio of the standard deviation of the 149 

laboratory measured (reference) data to the RMSE (Williams, 1987), was used to verify the accuracy 150 

of the model. RPD values between 2.0 and 2.5 indicate very good, quantitative model and/or 151 

predictions; RPD values major than 2.5 indicate excellent model and/or predictions (Viscarra Rossel 152 

et a., 2007; Febbi et al., 2015). 153 

The model accuracy and precision were evaluated according to the highest r, minimum SEP, 154 

maximum RPD and bias value very close to zero. 155 

 156 

Soft Independent Modeling of Class Analogy (SIMCA) 157 

A different processing approach was applied to evaluate the possibility to find a model able to perform 158 

a classification of semolina based on the NIR spectra. About that the 64 semolina samples were also 159 

classified using the quality ranges of the technological parameters reported in the UNI method for 160 

classification of semolina for pasta making (UNI 10940: 2001). The UNI method includes 3 quality 161 

grades (A, B, C) for the following parameters: protein content, gluten content, gluten index, 162 

alveographic parameters W and P/L. In this work the samples were grouped into three classes 163 

according to the scheme shown in Table 1. 164 

Table 1 165 

In order to search for an optimal classification model for semolina quality (as reported in Table 1) a 166 

SIMCA (Wold and Sjostrom, 1977) was applied. Two models, one for each spectral data (swNIR or 167 

cNIR), were built (single class modelling approach; Forina et al., 2008). SIMCA, computed with the 168 

software V-Parvus 2010, is a collection of Principal Component Analysis (PCA) models [Nonlinear 169 



 

Iterative vartial Least Squares (NIPALS) algorithm], one for each class of dataset (one in this case), 170 

after a separate category autoscaling. SIMCA cross validates the PCA model of each class (training 171 

set), splitting the data (evaluation set) into four contiguous groups (cross validation groups). In this 172 

case, the modified model with expanded range was used substituting the one first introduced by Wold 173 

and Sjöström (1977). The unweighted augmented SIMCA distance was considered in building the 174 

models. For each class, the number of significant components of the inner space was estimated 175 

considering four Principal Components (PC) (lowest noise found). For each class, a critical square 176 

distance based on the F-distribution was calculated using a confidence interval (95%). The class 177 

boundary was determined according to the confidence interval. An observation is attributed to the 178 

model class when its residual distance from the model has a value below the statistical limit for the 179 

class. SIMCA allows both the modelling and classification analysis. In the classification phase, all 180 

the observations should be attributed to one of the pre-defined classes. The efficiency was evaluated 181 

by classification (training set) and prediction (evaluation set) matrices, which reported the percentage 182 

of correct classification for each considered class. SIMCA also expressed the statistical parameters 183 

indicating the modelling efficiency. Unknown objects could be either classified into the class or 184 

recognized as outliers. The modelling efficiency was indicated by sensitivity. This is the measure of 185 

how well the model correctly identifies the cases really belonging to the class. The modelling power 186 

for each variable, which represents the influence of that variable in defining of the model, was 187 

expressed. In order to express a metric index for semolina quality based on spectral reflectance data, 188 

square SIMCA distances were linearized converting the values into a logarithmic scale and then 189 

translating them by adding a certain value in order to have all positive values. To avoid overfitting, 190 

only 8 out of 10 best samples (Table 1) were used to construct and cross-validate each SIMCA model. 191 

The remaining 2 samples together with all the other classes samples has been used to test the 192 

performance of each SIMCA models. The partitioning of the artificial datasets is optimally chosen 193 

with Euclidean distances, based on the Kennard and Stone (1969) algorithm that selects objects 194 

without a priori knowledge of a regression model (i.e., the hypothesis is that a flat distribution of the 195 

data is preferable for a regression model). 196 

3. RESULTS AND DISCUSSION 197 

 198 

3.1. Reference quality tests on semolina 199 

Table 2 showed the results in terms of average, standard deviation, minimum and maximum value, 200 

obtained with the reference quality tests on semolina samples. The methods used express different 201 

aspects of the characteristics of the raw material, specifically of gluten, and all together they 202 

contribute to providing a broader qualitative evaluation. 203 

The samples considered in this study cover a wide variability range for each parameter, above all for 204 

those related to the protein content and gluten quality based on which semolina is generally classified 205 

for pasta making (UNI method 10940). In this study the sample variability is important to allow a 206 

better comparison between different analysis approach and to be able to evaluate and predict semolina 207 

properties. 208 

Table 2 209 

3.2. NIR spectroscopy 210 

The PLS regression was performed to make a quantitative prediction and to find the best relationship 211 

between the set of reference variables and the set of spectral data. The results of the models obtained 212 



 

for swNIR and cNIR are reported in Table 3. For the variables not shown, the models reported low 213 

performance in regressing quality variables. 214 

 215 

Table 3 216 

 217 

Generally, a good predictive model should have high values of r and low values for RMSEC and low 218 

SEP (Liu et al. 2014). According to these considerations, the protein content is the reference 219 

parameter better correlated to the spectra data. In particular, the best regression model (r model = 220 

0.9788) was obtained with the cNIR spectra, but good correlation (r model = 0.9561) also occurred 221 

with swNIR spectra. In addition, the RMSEC was very low for both models (swNIR = 0.2903 and 222 

cNIR = 0.2028) as well as the SEP value (swNIR = 0.4899 and cNIR = 0.3263). The model robustness 223 

for protein content was validated by RPDtest, precisely swNIR = 2.4036 which indicate very good, 224 

quantitative model and/or predictions and cNIR = 3.9405 denote excellent model and/or predictions. 225 

Moreover, the systematic error in the predictive values (bias) of these models were also very small 226 

(swNIR = -0.0006 and cNIR = 0.0004). These results confirm the applicability of the NIR technique 227 

for measuring the protein content as widely reported in the literature (Sinelli et al., 2011, Dowell et 228 

al., 2006, Delwiche and Hruschka, 2000).  229 

As for the other reference parameters (particularly SDS test and Alveographic parameters), the 230 

models obtained are not very good, the regression models are not enough high as well as the RPD 231 

values. A better correlation was found between the swNIR spectra and the Maximum consistency 232 

(BEM) and Total energy (TE) (r model 0.9245 and 0.9390 respectively) obtained by the GlutoPeak 233 

test. The NIR prediction of the qualitative parameters, based on rheology or viscosity measures, can 234 

be traced to the relationship between physical properties and chemical constituents (proteins, starch 235 

contained in water etc) (William, 2007). The GlutoPeak test measures the aggregation kinetics of 236 

gluten proteins. It has been showed that flours with similar protein content can show different gluten 237 

aggregation profiles which comes from the way gluten proteins interact forming the gluten network. 238 

In winter wheat varieties, a correlation between maximum torque and gliadin content was found, 239 

whereas the area under the entire GlutoPeak profile was correlated to the amount of glutenins and to 240 

the insoluble fractions of the glutenins (Marti et al., 2015).   241 

The robustness of the models could be influenced by the fact that in this preliminary study the data 242 

set used is not particularly large. 243 

The performance of the models was represented graphically with the scatter plot in which the 244 

estimated variable is a function of the measured variable (Figure 1). In the case of perfect regression, 245 

the points relative to the samples used as tests should be placed along the bisector. The graphics 246 

confirmed the very good model performance for protein and good for GlutoPeak parameters. 247 

 248 

Figure 1.  249 

 250 

SIMCA was instead applied to spectral data (swNIR or cNIR) to find a classification model for 251 

semolina quality. Semolina samples were grouped into three classes: Best, Good and Sufficient basing 252 

on criteria reported in Table 1. Through the application of the SIMCA model the semolina samples 253 

were classified according to the collected spectrum. The models have been developed based on best 254 

samples, the rest (good and enough samples) have been used as an external test to verify the goodness 255 

of the quality metric scale obtained (Forina et al., 2008). The swNIR SIMCA model, shown in Figure 256 

2A, presented a square critical distance equal to 1.62 indicating that a semolina sample with a SIMCA 257 

distance lower than the critical distance (i.e., 95% confidence interval) was considered having a best 258 



 

quality by the model. The modelling efficiency, indicated by sensitivity value, was equal to 70% (3 259 

best observations out of 10 outside the model). The samples belonging to the Good class were much 260 

closer than those Sufficient to the model and 2 Good samples were included inside the model (values 261 

lower than the critical distance). This was also highlighted by the average values for the normal 262 

distributions: Best = 1.35, Good = 4.20, Sufficient = 5.60. This result underlined that the obtained 263 

SIMCA model based on swNIR spectra data was efficient to identify semolina quality; the translated 264 

log squared SIMCA distance was a good metric indicator for semolina quality. It must be underlined 265 

that good and enough samples were not included in the model construction. 266 

Figure 2B reported the same approach but based on cNIR spectral data. The obtained model returned 267 

a square critical distance equal to 2.27. The percentage of sensitivity was higher than the swNIR one 268 

and equal to 60% (4 best objects out of 10 outside the model). The distance between the average 269 

Good and Sufficient observed samples was not well outlined. In fact, the values of the averages of 270 

normal distributions were close to each other and inverted (Best = 2.00, Good = 3.20, Sufficient = 271 

3.00). The obtained model base on cNIR spectral data resulted not able to obtain a metric indicator 272 

for semolina quality. 273 

 274 

Figure 2.  275 

 276 

4. CONCLUSIONS 277 

As a whole, this study showed the possibility of using handheld NIR spectrometers to predict some 278 

chemical and rheological characteristics of semolina samples. The results, combined with 279 

multivariate statistical analyses, confirmed the use of NIR technology to evaluate protein content, a 280 

fundamental parameter to define the commercial class of semolina. The calibration models resulted 281 

to be good with high accuracy (r = 0.9561, SEP = 0.4899 for swNIR and r = 0.9788, SEP = 0.3263 282 

for cNIR). Furthermore, the application of a provisional multivariate model (SIMCA) appeared to be 283 

efficient in distinguishing the class quality of a semolina sample by means of its spectrum. In 284 

particular, the results showed a better performance of a short wavelength NIR sensor (swNIR), also 285 

obtaining an application model based on an immediately applicable metric indicator. Although the 286 

application on these devices required optimization of model robustness, the preliminary results 287 

highlighted the applicability of short wavelength tool for a commercial characterization (protein 288 

content) of semolina in very short time. The innovation and advantage of swNIR device were due to 289 

a pocket-sized low cost sensor, to be taken directly to the sample source and ready for use, compared 290 

to laboratory instruments or more expensive portable device. Further applications of these devices on 291 

final product will be developed in future. 292 
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Table 1. Quality classification of semolina samples (n = 64) 372 

 373 

 374 

Table 2. Quality characteristics of semolina samples (n = 64) 375 

 376 

 377 

Table 3. Characteristics and principal results of the Partial Least Squares (PLS) regression models in 378 

estimating the principal reference quality variables from spectral data (swNIR or cNIR).  379 

In particular: LVs = Latent Vectors; SEP = Standard Error of Prevision; RMSEC = Root-Mean-Square Error 380 

of Calibration; RPD = Residual Predictive Deviation. 381 

 382 
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Figure 1 – Partial Least Squares (PLS) scatter plots of the observed versus predicted principal reference 384 

quality variables from spectral data (swNIR or cNIR) for both validation (80%) and test (20%) datasets. 385 

Note: Line represented the bisectrix (i.e., perfect attribution). Black circles indicated the model set samples, 386 

meanwhile white circles the test set samples. 387 

 388 

Figure 2 – Soft Independent Modeling of Class Analogy (SIMCA) histogram by frequency class of the 389 

translated log squared values for A) swNIR and B) cNIR datasets built on 10 best samples of semolina. The 390 

three qualitative classes (reported in Table 1) were plotted with different colors. The dashed line represented 391 

the critical value (i.e., model boundary). 392 
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