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Experimental observations of unexpected shear rigidity in con-
fined liquids, on very low frequency scales on the order of 0.01
to 0.1 Hz, call into question our basic understanding of the elas-
ticity of liquids and have posed a challenge to theoretical models
of the liquid state ever since. Here we combine the nonaffine
theory of lattice dynamics valid for disordered condensed matter
systems with the Frenkel theory of the liquid state. The emerg-
ing framework shows that applying confinement to a liquid can
effectively suppress the low-frequency modes that are responsi-
ble for nonaffine soft mechanical response, thus leading to an
effective increase of the liquid shear rigidity. The theory suc-
cessfully predicts the scaling law G′∼ L−3 for the low-frequency
shear modulus of liquids as a function of the confinement length
L, in agreement with experimental results, and provides the basis
for a more general description of the elasticity of liquids across
different time and length scales.
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The elasticity of liquids is well understood in the high fre-
quency limit of the mechanical response, where pioneering

work by Frenkel (1) has shown that the response of a liquid is
basically indistinguishable from that of an amorphous solid, pro-
vided the frequency of mechanical oscillation is sufficiently high.
The idea here is that at short times (high frequency) the diffu-
sive component of the liquid motion is absent and liquids behave
as solids. This has become an accepted view (2). However, later
experiments have challenged this view (3–7) and found a remark-
able solid-like property of liquids to support shear stress at very
low frequency, albeit in confinement. This phenomenon is not
currently understood. This is a limitation for the full devel-
opment of small-scale nano-, micro-, and submillimeter flow
technologies.

High-frequency mechanical response of liquids is typically
measured with ultrasonic techniques in the megahertz range cor-
responding to shear elastic moduli of the order of gigapascals (8).
The behavior is well described by Frenkel’s theory, which links it
to transverse acoustic phonons and their vanishing at a charac-
teristic internal time scale, the Frenkel time, which is related to
the viscoelastic Maxwell time. Conversely, low-frequency shear
elasticity has been identified fairly recently (in view of the long
history of liquid research), starting with the pioneering work
of Derjaguin et al. (3, 4) and of Noirez and coworkers (6, 7).
The low-frequency elasticity of liquids is weaker, on the order
of 1− 103 Pa, and is strongly dependent on the submillimeter
confinement length scale of the liquid.

Here we provide a description of liquid elasticity inspired
by Frenkel’s ideas on the phonon theory of liquids, combined
with recent developments in the microscopic theory of elasticity
of amorphous materials. The resulting framework allows us to
decompose the various contributions to liquid elasticity based on
wavevector k , and thus to identify how the shear modulus of a
liquid changes upon varying the confinement length L.

Following previous literature (9), we introduce the Hessian
matrix of the system H

ij
=−∂2U/∂q̊

i
∂q̊

j
and the affine force

field Ξi,κχ = ∂f
i
/∂ηκχ, where ηκχ is the strain tensor. Here,

q̊i is the coordinate of atom i in the initial undeformed frame
(denoted with the ring notation), whereas f

i
= ∂U/∂q

i
repre-

sents the force acting on atom i in the affine position, that is,
in the initial frame subject to macroscopic deformation, hence
the name ”affine” force field. Greek indices refer to Cartesian
components of the macroscopic deformation (i.e., κχ= xy for
shear). For a liquid, the Hessian H

ij
is typically evaluated in

a reference state obtained from averaging over nonfully equi-
librated configurations to include instantaneous normal modes
(imaginary frequencies) (9).

As shown previously, the equation of motion of atom i , in
mass-rescaled coordinates, can be written (9, 10)

d2x i

dt2
+ ν

dx i

dt
dt +H

ij
x j = Ξi,κχηκχ, [1]

where η is the Green–Saint Venant strain tensor and ν is a
microscopic friction coefficient which arises from long-range
dynamical coupling between atoms mediated by anharmonicity
of the pair potential. The term on the right-hand side phys-
ically represents the effect of the disordered (noncentrosym-
metric) environment leading to nonaffine motions: A net force
acts on atom i in the affine position (i.e., the position pre-
scribed by the external strain tensor ηκχ). As a consequence,
in order to keep mechanical equilibrium on all atoms through-
out the deformation, an additional nonaffine displacement is
required in order to relax the force fi acting in the affine posi-
tion. This displacement brings each atom i to a new (nonaffine)
position.

The above equation of motion can be derived from a model
particle-bath Hamiltonian as shown in previous work (9). Fur-
thermore, {x i(t) = q̊

i
(t)− q̊

i
}, as an expansion around a refer-

ence state q̊
i
. Following standard manipulations, which involve

Fourier transformation and eigenmode decomposition from
time to eigenfrequency (10), and applying the definition of elas-
tic stress, one obtains the following expression for the complex
elastic constants (9, 10):

Cαβκχ(ω) =C Born
αβκχ−

1

V

∑
n

Ξ̂n,αβΞ̂n,κχ

ω2
p,n −ω2 + iων

, [2]

where C Born
αβκχ denotes the affine part of the elastic constant, that

is, what survives in the high-frequency limit. Also, ω denotes
the oscillation frequency of the external strain field, whereas ωp

Author contributions: A.Z. and K.T. designed research; A.Z. performed research; A.Z. and
K.T. analyzed data; and A.Z. and K.T. wrote the paper.y

The authors declare no competing interest.y

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).y
1 To whom correspondence may be addressed. Email: alessio.zaccone@unimi.it.y

First published August 3, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.2010787117 PNAS | August 18, 2020 | vol. 117 | no. 33 | 19653–19655

D
ow

nl
oa

de
d 

at
 B

IO
-R

E
S

E
A

R
C

H
 L

IB
 o

n 
O

ct
ob

er
 2

0,
 2

02
0 

http://orcid.org/0000-0002-6673-7043
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:alessio.zaccone@unimi.it
https://www.pnas.org/cgi/doi/10.1073/pnas.2010787117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2010787117&domain=pdf


denotes the internal eigenfrequency of the liquid [which results,
e.g., from diagonalization of the Hessian matrix (9)]. We use the
notation ωp to differentiate the eigenfrequency from the external
oscillation frequency ω.

In liquids, a microscopic expression for G∞≡C Born
xyxy is pro-

vided by the well-known Zwanzig–Mountain (ZM) formula (11),
in terms of the pair potential V (r) and the radial distribution
function g(r). The sum over n in Eq. 2 runs over all 3N degrees
of freedom (for a monoatomic liquid with central-force pair
interaction). Also, we recognize the typical form of a Green’s
function, with an imaginary part given by damping and poles ωp,n

which correspond to the eigenfrequencies of the excitations.
As usual when dealing with eigenmodes, the sum over n (label-

ing the eigenmode number) can be replaced with a sum over
wavevector k, with k2 = k2

x + k2
y + k2

z , and kx =πnx/L. We then
recall that the numerator of the Green’s function, which is given
by the eigenfrequency spectrum of the affine force field, can be
expressed as Γ(ωp) = 〈Ξ̂n,xy Ξ̂n,xy〉n∈{ωp ,ωp+δωp}≈Aω2

p , where
A≈ (1/15)κR2

0 with κ the spring constant for the intermolecu-
lar bond and R0 the bonding distance, as proved analytically in
ref. 12. This parabolic law holds up to high eigenfrequencies as
shown in simulations (9).

We thus rewrite Eq. 2 in terms of a sum over k as follows:

G∗(ω) =G∞−
A

V

∑
k

ω2
p,k

ω2
p,k−ω2 + iων

, [3]

where A is a numerical prefactor.
In isotropic media, eigenmodes can be divided into longitudi-

nal (L) and transverse (T) modes. Therefore we can split the sum
in Eq. 3 into a sum over L modes and a sum over T modes,

G∗(ω) =G∞−A
∑
kλ

ω2
p,kλ

ω2
p,kλ−ω2 + iων

, [4]

where λ=L,T . Furthermore, we introduce continuous vari-
ables for the eigenfrequencies ωp(k), by invoking appropriate
dispersion relations ωp,L(k) and ωp,T (k) for L and T modes,
respectively (as discussed below). Hence, the discrete sum over
eigenstates can be replaced, as is standard in solid-state physics,
with a continuous integral in k -space,

∑
k . . .→

V
(2π)3

∫
. . . d3k :

G∗(ω)=G∞−B

∫ kD

0

ω2
p,L(k)

ω2
p,L(k)−ω2 + iων

k2dk [5]

−B

∫ kD

0

ω2
p,T (k)

ω2
p,T (k)−ω2 + iων

k2dk ,

the upper limit of the integral is set by the Debye cutoff wavevec-
tor kD , which, in any condensed matter system (be it solid or
liquid), sets the highest frequency of atomic vibration.

One should note that while k is in general not a good quan-
tum number in amorphous materials (as the connection between
energy and wavevector is no longer single-valued as it is in crys-
tals where Bloch’s theorem holds), it still can be used to provide
successful descriptions of the properties of amorphous materials
and liquids (13).

We now discuss the dispersion relations for longitudinal and
transverse excitations in liquids. For the longitudinal modes, one
can resort to the Hubbard–Beeby theory of collective modes in
liquids (14), which has been shown to provide a good description
of experimental data, and use equation 43 in ref. 14. As will be
shown below, the final result for the low-frequency G ′ does not
depend on the form of ωp,L. However, for the mathematical com-
pleteness of the theory it is important to specify which analytical
forms for the dispersion relations can be used.

Differently from the gapless longitudinal dispersion relations
and generally from phonon dispersion relations in solids, liquids
have the gap in k -space in the transverse phonon sector. This
follows from the dispersion relation (15),

ωp,T (k) =

√
c2k2− 1

4τ2
, [6]

where τ is the liquid relaxation time and c is the transverse speed
of sound.

Eq. 6 follows from the Maxwell–Frenkel approach to liquids
where the starting point of liquid description includes both elas-
tic and viscous response (15) and implies that transverse modes
in liquids propagate above the threshold value kg = 1

2cτ
, thus set-

ting the gap in momentum space, as ascertained on the basis of
molecular dynamics simulations in liquids (16). At the atomistic
level, the Frenkel theory attributes τ to the average time between
molecular rearrangements in the liquid (1). In the limit of large
τ or viscosity, Eq. 6 becomes gapless and solid-like.

In a large system, kg sets the infrared cutoff in a sum or integral
over k -points. In a confined system with a characteristic size L,
the lower integration limit becomes

kmin = max

(
kg ,

1

L

)
. [7]

Then,

G∗(ω)=G∞−B

∫ kD

1
L

ω2
p,L(k)

ω2
p,L(k)−ω2 + iων

k2dk [8]

−B

∫ kD

kmin

ω2
p,T (k)

ω2
p,T (k)−ω2 + iων

k2dk ,

where the lower integration limit for the longitudinal modes
in the second term is given by the system size L. The lower
integration limit for the transverse modes in the third term is
given by kmin in Eq. 7. We take the real part of G∗ which
gives the storage modulus G ′ and focus on low external oscil-
lation frequencies ω�ωp used experimentally. In both integrals
numerator and denominator cancel out, leaving the same expres-
sion in both integrals. Therefore, as anticipated above, the final
low-frequency result does not depend on the form of ωp,L(k),
nor of ωp,L(k), although the latter, due to the k -gap, plays an
important role (see Eq. 7) in controlling the infrared cutoff of
the transverse integral. In the experiments where the size effect
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Fig. 1. Low-frequency (≈ 0.01 Hz) storage modulus G′ as a function of
confinement length L. Experimental data refer to short-chain liquid crys-
talline (LC) polymer liquids PAOCH3 (in the isotropic state) well above Tg (6),
whereas the solid line is the prediction from Eq. 10.
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of confinement is seen, kg� 1
L

(17), and kmin = 1
L

according to
Eq. 7, leading to

G ′=G∞−α
∫ kD

1/L

k2dk =G∞−
α

3
k3
D +

β

3
L−3. [9]

Here the only term which depends on the system size is the last
term, while α and β are numerical prefactors. In a liquid in ther-
modynamic equilibrium, using the stress-fluctuation version of
the nonaffine response formalism [the two versions have been
shown to be equivalent (18)] and equilibrium statistical mechan-
ics, it has been shown in ref. 19 that the affine term G∞ and
the negative nonaffine term (here, −α

3
k3
D ) cancel each other

out exactly, such that G ′(ω→ 0) = 0 for L→∞ (bulk liquids).
Therefore, for liquids under submillimiter confinement, only the
third term in the above equation survives, and we obtain

G ′≈β′L−3, [10]

where β′=β/3 is a numerical prefactor. It should be noted that
G∞ does not depend on L because in, for example, the ZM for-
mula it is given as an integral that contains dV (r)/dr , which is
zero after few molecular diameters.

We now compare Eq. 10 to available experimental data of
low-frequency G ′ of confined liquids as a function of the con-
finement length L using the data of the LC short-chain polymer
in the isotropic state (note that Eq. 2 has been successfully tested
also for polymer melts in ref. 9). In Fig. 1 we compare the
trend for the storage modulus G ′ as a function of confinement
length L predicted by Eq. 10, with well-controlled experimental
data of confined LC-polymer (PAOCH3) liquids (in the isotropic
state), well above the glass transition temperature Tg , taken from

ref. 6. It is evident that the experimental data follow the L−3

law predicted in this work. Other experimental systems in the
literature are also well compatible with the predicted G ′∼L−3

scaling. These include ionic liquids (20), nonentangled polymer
liquids (21), and even nanoconfined water probed by atomic
force microscopy such as the data in figure 2(b′) of ref. 5. Also,
in the limit L→∞, the above equation Eq. 10 recovers the well-
known result for liquids, that is, G ′= 0 at low frequency because
the third term on the right-hand side vanishes while the first
two terms (affine and nonaffine, respectively) cancel each other
out exactly in equilibrium liquids as rigorously demonstrated
in ref. 19.

In conclusion, we have developed an analytical theory of
the shear modulus of liquids based on nonaffine atomic defor-
mations. This approach allows us to decompose the nonaffine
elasticity of the liquid into different phonon-like contribu-
tions in terms of their momentum k . Since the overall non-
affine/relaxational contribution to the low-frequency shear mod-
ulus is negative, and is expressed as an integral over k , the effect
of confinement leads to an infrared (long-wavelength) cutoff of
the k -integral. which is inversely proportional to confinement
size L. This explains why reducing the confinement size L effec-
tively increases the shear rigidity by suppressing long-wavelength
nonaffine relaxations that soften the response. The predicted
G ′∼L−3 law is followed by many different experimental systems
and may open up new avenues for the controlled manipulation of
liquids at the micro and nanoscale (5).

Data Availability. All study data are included in the article.
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