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4 GQE—Le Moulon, INRAe, Université Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France

☯ These authors contributed equally to this work.

¤a Current address: Transactiva Srl, Parco Scientifico e Tecnologico "L. Danieli", Udine Italy

¤b Current address: University of Bristol, School of Biological Sciences, Bristol, United Kingdom

* Lucio.Conti@unimi.it

Abstract

Expansion of the maize growing area was central for food security in temperate regions. In

addition to the suppression of the short-day requirement for floral induction, it required

breeding for a large range of flowering time that compensates the effect of South-North gra-

dients of temperatures. Here we show the role of a novel florigen gene, ZCN12, in the latter

adaptation in cooperation with ZCN8. Strong eQTLs of ZCN8 and ZCN12, measured in 327

maize lines, accounted for most of the genetic variance of flowering time in platform and

field experiments. ZCN12 had a strong effect on flowering time of transgenic Arabidopsis

thaliana plants; a path analysis showed that it directly affected maize flowering time together

with ZCN8. The allelic composition at ZCN QTLs showed clear signs of selection by breed-

ers. This suggests that florigens played a central role in ensuring a large range of flowering

time, necessary for adaptation to temperate areas.

Author summary

The cultivation of maize in temperate climates required the suppression of photoperiod

sensitivity and the selection of a wide range of flowering time for the adaptation to local

environmental constraints. Photoperiodic flowering requires the production of a systemic

protein signal referred to as the florigen, which is transcriptionally activated in leaves. A

key question is to what extent the expression of the florigen gene can explain flowering

time variability of temperate maize, where photoperiod sensitivity has been eliminated by

artificial selection. Our results reveal large variability in two related florigen genes which

is strongly correlated with variability in flowering time. Using association genetics

approaches we could detect genomic regions responsible for the expression of the two flo-

rigens that precisely co-localise with flowering time-related regions, thereby supporting
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the significance of quantitative changes in florigen levels in driving flowering time vari-

ability. Markers associated with florigen expression/flowering time display significant sig-

natures of selection indicating that variable patterns of florigen accumulation underpin

the adaptation of temperate maize flowering.

Introduction

Maize was domesticated 9000 years ago in central Mexico from teosinte (Zea mays subsp. par-
viglumis), a tropical plant that only flowers under short days [1]. In contrast to its wild ances-

tor, modern maize shows a large geographic distribution from 0 to 50˚ N. Adaptation to

temperate latitudes, with long days during summer, required breeders to first suppress the

short-day requirement for floral induction, but a second adaptation was also required. Because

the time to flowering strongly depends on temperature, it is shorter for a given non-photoperi-

odic genotype at lower than at higher latitudes of the temperate area. A long intrinsic cycle

duration is necessary to counteract this effect in warmest areas, thereby avoiding decreases in

cumulated photosynthesis and biomass. Conversely, a short intrinsic duration is needed in the

coolest areas to avoid grain filling to occur in Autumn with low light and temperature [2].

Accordingly, the range of time to flowering in current germplasm typically ranges from 35 to

90 days after sowing in a given site [3].

About ninety quantitative trait loci (QTLs) in the maize genome account for the natural

diversity in flowering time [4–8] and most of them explain a small proportion of the pheno-

typic variance, with prevalently additive effects [4]. The molecular characterization of a few

large-effect alleles helped uncover key events underpinning the flowering adaptation of maize

from tropical to temperate climates [9]. These alleles were found to regulate the expression of

florigens, i.e. floral genes expressed in the leaf vasculature. Florigen proteins are members of

the Phosphatidyl Ethanolamine Binding Proteins (PEBPs) family that include FLOWERING

LOCUS T in Arabidopsis and Heading date 3a in rice that move systemically to promote flow-

ering at the shoot apex [10]. The maize genome encodes several florigen genes, including ZEA
CENTRORADIALIS 8 (ZCN8) that acts as major florigen [9,11–13]. Its expression only occurs

under short-day conditions in tropically adapted maize, but not in long days [13]. The uncou-

pling of ZCN8 expression from short day-dependent activation occurred in a stepwise manner

through the selection of mutations in the ZCN8 expression regulatory processes. For example,

independent transposon insertions at two related ZmCCT genes (9 and 10) reduce maize flow-

ering photoperiod sensitivity [14,15]. The active (expressed) alleles of ZmCCT9 and 10 of trop-

ical maize delay flowering under long days by repressing ZCN8 [13,16]. The gradual

northbound expansion of maize was also driven by variations at cis-regulatory sequences of

the ZCN8 promoter [9], which modify the binding landscape for different transcription factors

[17]. Another ZCN8 regulatory node involves ZmMADS69, which in turn represses the ZCN8
negative regulator Related to apetala2.7 (Rap2.7) [18]. Both ZmMADS69 and Rap2.7 map

within well-characterized QTLs of flowering time suggesting that allelic variations at these

genes control part of the diversity of flowering time of temperate maize [19–22]. Classic muta-

genesis screens also identified major genes that affect flowering time, thereby helping to refine

the ZCN8 regulatory pathway with additional components. These include Indeterminate1
(Id1) and delayed flowering 1 (dlf1) that encode, respectively, an upstream regulator required

for ZCN8 expression [23,24] and a bZIP transcription factor presumably required for ZCN8

protein signalling at the shoot apex [13,25].
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Although the above studies reveal a prominent role for ZCN8 activation in the control of

flowering time in short vs long days, its contribution to the genetic variability of flowering

time in non-photoperiodic temperate maize varieties is less clear. Indeed, it has been argued

that the variability in flowering time in temperate maize is controlled by other pathways that

act in parallel to or downstream of ZCN8 transcriptional activation [26]. Two elements chal-

lenge this view: (i) the downregulation of ZCN8 in temperate maize leads to a significant delay

in flowering time (albeit less prominent compared to id1 or dlf1 mutants) [13,16,18], (ii) QTL

mapping shows that flowering time is linked to allelic variations at a genomic region that har-

bours ZCN8 (also known as the Vgt2 QTL) [6,19,27,28].

A genome-wide study of temperate maize germplasm was necessary to reconcile these

views on the potential role of florigen expression in the control of flowering time of temperate

maize. Here we address this question by jointly measuring flowering time and the expression

of ZCN8, and of two related genes with unknown variability, ZCN7 and ZCN12 [12], in a panel

of 327 maize temperate lines. Our study revealed large variations in ZCN8 and ZCN12 tran-

script levels, which closely correlate to flowering time. Regulatory regions for ZCN8 and

ZCN12 coincided with flowering time QTLs and we detected signatures of selection for some

of these regions. Collectively, these results suggest that the adaptation of maize within temper-

ate regions derives from the control of florigen pathways.

Results

ZCN8 levels highly correlate with flowering time in temperate maize

We first measured the time from germination to pollen shedding on florets (anthesis), to the

emergence of silks from the ear (silking) and also the final leaf number which reflects the dura-

tion from germination to floral transition, in four experiments in a phenotyping platform and

in the field. Large variability was observed in two platform experiments for anthesis (BLUES

ranging from 56 to 99 d20˚C), silking (from 57 to 101 d20˚C) and leaf number (from 13 to 25)

(S1A and S1B Fig), resulting in narrow-sense heritability up to 0.80 (S1 Table). Field experi-

ments provided similar results to those obtained in the platform (Fig 1A, S1C Fig, S1 Table).

Fig 1. ZCN8 contributes to flowering time variability in temperate maize lines. (A) Relationship between genotypic values for anthesis in field (2015–2016) and

platform (2014) experiments. (B) Anthesis time plotted against ZCN8 expression after the floral transition (platform experiment in 2014). (C) Relationship between

anthesis measured in the field (2015–2016) and ZCN8 expression in the platform experiment (2014). In (A), (B) and (C) n = 313 lines. Genotypic values are BLUEs.

Anthesis time expressed in equivalent days at 20˚C after germination. The red triangle represents genotypic values for the reference line B73. Correlation coefficients are

displayed together with their significance (��� p< 10−4).

https://doi.org/10.1371/journal.pgen.1008882.g001
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We then measured florigen expression of the same lines, in samples collected from fully

expanded leaves of plants grown in the phenotyping platform. Samples were collected in the

early morning at two dates, when leaves 4 and 7 reached ligulation, representing bona fide pre

and post floral transition [13]. Care was taken to precisely record the harvest time of each indi-

vidual sample and to record the developmental stage of every sampled plant, which slightly dif-

fered between plants because of the genetic variability of the phyllochron [29]. Mixed models

including a fixed effect of sampling date and time of day (both of them small, S2A–S2D Fig),

together with spatial effects in the greenhouse, were used to extract genotypic values for each

line (S3C and S3D Fig).

The ZCN8 expression displayed large genetic variability. The four biological replicates, ana-

lysed at two sampling dates, provided highly correlated expression levels (up to r = 0.88) when

values were normalised by those of the housekeeping genes UBIQUITIN-CONJUGATING
ENZYME E2 (UCe) and ELONGATION FACTOR 1 ALPHA (EF1a) (S3A and S3B Fig). ZCN8
accumulation significantly increased between the two sampling dates (S4B Fig), consistent

with previous studies [13], with higher heritability in the second than in the first date (h2 =

0.64 and 0.58, respectively). Still, we could detect a significant correlation in ZCN8 accumula-

tion between the two sampling dates (r = 0.53, S4A Fig). We thus focused on ZCN8 expression

detected at the second sampling date (leaf 7 stage).

Anthesis time was significantly correlated with the BLUEs of ZCN8 (r = -0.6, Fig 1B) and so

was the total leaf number (r = -0.65, S5A Fig). The ranking of genotypes for ZCN8 was con-

firmed in an independent platform experiment (year 2015) on a subset of genotypes (n = 4 rep-

licates for 276 lines, r = 0.63, S5C Fig). ZCN8 transcript levels detected in the phenotyping

platform were also highly correlated with flowering times measured in field experiments (Fig

1C and S5A and S5B Fig). For any given expression level at the second sampling date, lines

characterised by a strong increase in expression flowered earlier than the other lines (r = -0.36,

S4C Fig). This suggests that constitutively high levels of ZCN8 and an increase in ZCN8 expres-

sion during development both contribute to early flowering time in temperate maize.

ZCN12 is a novel regulator of maize flowering and it is co-expressed with

ZCN8
Although ZCN12 levels have not been documented so far for their role in flowering time, they

showed high heritability (narrow-sense h2 = 0.67, S1 Table) and displayed a strong correlation

with anthesis time (r = -0.64, Fig 2A) and leaf number in all platform and field experiments

(S6A Fig). ZCN12 expression also tightly correlated with that of ZCN8 (r = 0.76, Fig 2B and

S6B Fig), suggesting common regulatory mechanisms. This was in contrast to the ZCN7
expression that displayed low heritability (narrow sense h2 = 0.11, S1 Table) and a weaker cor-

relation with flowering time (r = -0.31, S6C Fig) than ZCN8, despite synteny [30] and shared

biochemical functions [31]. ZCN7 and ZCN8 expressions were also weakly correlated (S6C

Fig). The accumulation of ZmCONZ1, a putative upstream regulator of the florigen genes in

maize [32], was not linked to ZCN8 or ZCN7 expressions, nor with flowering time (S6D Fig).

In order to demonstrate the role of ZCN12 on flowering time, we cloned the ZCN12 gene

for over-expression studies in Arabidopsis thaliana. This demonstrated a strong florigenic

activity for the ZCN12 protein. Transgenic lines overexpressing ZCN12 flowered significantly

earlier compared with control plants (Fig 2C–2E). Sixteen of the 40 transgenic plants showed

an extremely early flowering phenotype characterised by the conversion of the shoot apical

meristem in a terminal flower, with no observable vegetative leaves. The same transformation

for the ZCN8 gene also caused significantly earlier flowering, but with only two cases of

extreme early flowering.
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Fig 2. ZCN12 is a novel maize florigen co-regulated with ZCN8. ZCN12 expression correlates with anthesis time

(platform experiment 2014), (A), and with ZCN8 expression (B). Genotypic values are BLUEs. Pearson’s correlation

coefficients are indicated with their significance (���, p< 10−4). The red triangle represents genotypic values for the

reference line B73. In (A) and (B), n = 173. (C) Arabidopsis T1 plants overexpressing ZCN12 but not ZCN8 show an

extreme early flowering phenotype compared to empty vector transformation (Vect.); plants were photographed 3 weeks

after sowing, horizontal bar, 1 cm. (D) ZCN8 and ZCN12 T1 over-expressing plants are earlier flowering than wild type
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Direct roles of ZCN12 and ZCN8 in the control of flowering time

We then showed that ZCN12 had a direct effect on maize flowering time. Indeed, structural

equation modelling rejected models in which ZCN12 had an upstream effect by controlling

ZCN8 and/or ZCN7 expressions, which would in turn control anthesis (Fig 3A and 3B, S7A

and S7B Fig). Conversely, our analysis supported models in which ZCN12 accumulation had a

direct effect on anthesis time, with either ZCN12 being controlled by ZCN8, or ZCN8 being

controlled by ZCN12 or co-variation of both genes (Fig 3C, S7C Fig). The latter models dis-

played good indices of fit (RMSEA < 0.05, comparative fit index > 0.95). They were consid-

ered as equally plausible, thereby supporting the existence of a two-tier florigen system in

maize in which ZCN12 acts in parallel with ZCN8.

ZCN8 and ZCN12 regulators map to region controlling maize flowering

time

We then analysed to which extent genomic regions controlling florigens expression co-local-

ised with regions controlling flowering time. A genome-wide association study (GWAS) iden-

tified 570 QTLs which largely overlapped between field and greenhouse experiments (S2 and

S3 Tables), resulting in 214 meta-QTLs that harboured at least one QTL (Fig 4A) of flowering

time, in either field or greenhouse experiments. An eQTL GWAS detected 52 meta-QTLs for

ZCN8, among which half co-localised with flowering time QTLs. We also detected 85 meta-

(p< 0.01, one-way ANOVA with post-hoc Tukey HSD test). Horizontal bars, mean values of rosette leaves number.

n = 37, 38 and 14 for, respectively, 35S:HA:ZCN8 35S:HA:ZCN12 and wild type (empty vector). (E) RT-PCR analysis on

ZCN8/12 transcripts derived from independent T2 transgenic plants of the indicated genotypes. Amplification of vectors

(Vect) harbouring genomic versions of ZCN8 and ZCN12 afforded a positive control whereas untransformed wild type

and no DNA reactions (-) were used as negative controls. Actin expression was used for normalization (lower panel).

Numbers on the left are kb based on DNA ladder (Mk) migration. Amplifications were conducted for 25 cycles.

https://doi.org/10.1371/journal.pgen.1008882.g002

Fig 3. ZCN12 directly affects anthesis. Three families of path diagrams were tested against the whole dataset (BLUEs, platform experiment of 2014). Models in which

ZCN12 has an indirect effect on anthesis (A and B) were rejected, whereas models in which both ZCN8 and ZCN12 directly affect anthesis were accepted, with an

indirect effect of ZCN7 (C). Arrows, linear functional relationships between anthesis and florigen expression. Simple-headed arrows, relationships are considered as

causal by the model. Double-headed arrows, free correlations. Standardized path coefficients are indicated on each arrow with the level of significance (���: P< 0.001,

ns: not significant). Other models tested are displayed in S7 Fig.

https://doi.org/10.1371/journal.pgen.1008882.g003
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Fig 4. ZCN eQTLs are major contributors to the genetic variance of flowering time. (A) ZCN-related QTLs overlap

with flowering time QTLs. Venn diagram highlights ‘meta-QTLs’ shared among flowering-related traits and ZCN
transcripts accumulation. “Flowering” meta-QTLs are defined as regions containing at least one QTL among anthesis,

silking, total number of leaves in at least one experiment (platform, field, years). “ZCN-” meta-QTLs are defined as

regions containing at least one ZCN- eQTL in at least one experiment (platform 2014–2015) and leaf stage. (B)
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QTLs for ZCN12 and 38 for ZCN7 (Fig 4A). 12 meta-QTLs were shared between ZCN8 and

ZCN12, of which 7 mapped to flowering time QTLs (Fig 4A). They also overlapped with flow-

ering time QTLs detected in published studies [7] (S4 Table). ZCN eQTLs had a high contribu-

tion to the genetic variance of flowering time as shown by mixed-models applied to individual

experiments (S5 Table). Indeed, in the platform experiment of 2014, the 19 ZCN eQTLs that

co-localised with anthesis QTLs accounted for 57% of the genetic variance of anthesis in the

platform experiment (vs 75% for all 43 QTLs of anthesis). Similar results were found when

considering anthesis in the field, or total leaf number in each experiment (S5 Table).

We inspected the ZCN eQTLs for the presence of candidate genes or QTLs already known

to control flowering time. In the Bin 3.05 hotspot region known for flowering time regulation

[21,33], we identified five ZCN-related eQTLs which co-localised with at least one QTL of

flowering time (S3 Table). An eQTL of ZCN8/12 (158.73–159.93Mb) was located at a genomic

position compatible with the newly described transcriptional regulator ZmMADS69 (GRMZM
2G171650) [18,21,34] (Fig 4B and 4C). Another eQTL region (Bin 8.05) comprised the gene

GRMZM2G700665 (also known as Rap2.7) (S8B Fig and S4 Table), encoding a floral repressor

[19] and negative regulator of ZCN8 [18].

Analysis of published whole-genome expression datasets [35] was used to check if tran-

scripts whose expression correlated with ZCN8 were over-represented at ZCN eQTLs posi-

tions. We confirmed significant correlations between anthesis and ZCN8/12/7 expression

(n = 181 lines, r = up to - 0.54) (S9A–S9C Fig). Furthermore, these datasets revealed strong

patterns of co-regulation not only between ZCN8 and ZCN12 but also between ZCN8 and

ZCN7 (n = 204 lines, r = up to 0.76) (S9D–S9F Fig). Additional 549 transcripts showed a signif-

icant correlation with ZCN8 expression levels (S6 Table). These were parsed in two clusters

composed of genes with opposite trends to ZCN8 gene expression and correspondingly oppo-

site association with anthesis (S9G Fig). Neither ZmMADS69 nor Rap2.7 nor any other gene in

the eQTLs regions within Bin 3.05 were co-expressed with ZCN8, and co-expressed transcripts

were not particularly enriched in eQTLs regions (S4 Table).

Signs of selection at ZCN8 and ZCN12 eQTLs to control maize flowering

time

The genetic groups in the studied panel showed markedly different values of ZCNs expression

levels and anthesis dates (S10A,S10B, S10D and S10E Fig), and clear co-expression of ZCN8
and ZCN12 within each group (S10C and S10F Fig). The observed differences in flowering

time between admixture groups may be due to selection by past breeding of temperate maize

lines. Consistent with this hypothesis, we found significant differences, between the seven

genetic groups, in allelic distribution at QTLs showing co-location between ZCN8/12 expres-

sion and flowering time (Fig 5A). Alleles for increased expression of ZCN8 and ZCN12 were

more frequent in genetic groups bred for early maturity (Fig 5A). Hence, a pool of early matu-

rity alleles was represented within all genetic groups, but in different proportions, suggesting

that some combinations were preferentially selected in different groups.

Regional association plot for one meta-QTL on chromosome 3. Distribution of the -log10(pval) for all variants in the

region. The dotted grey line corresponds to–log10(pval) = 4.5 for anthesis-related traits evaluated in the field (purple)

and platform (orange) and 4 for the expression traits evaluated in the platform (green). (C), linkage disequilibrium

(LD) heat map of all SNPs in the QTL showing the local LD (r2) between all the variants; Black lines represent the

distribution of the SNPs and the blue boxes represents the genes mapped for the region. Red asterisks represent the

position of the most significant SNPs. (See also S4 Table for candidate genes). Grey areas represent sub-regions

harbouring the most significant SNPs and genes and having low LD between them on average.

https://doi.org/10.1371/journal.pgen.1008882.g004
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Fig 5. Flowering time precocity of temperate maize derives from selection at ZCN8/12 regulatory regions. (A) Allelic distributions

within genetic groups for 8 major QTLs. The SNPs displayed belong to the core set of 19 QTLs common to anthesis in the platform
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We further tested for genome-wide deviation from neutrality in our panel for the chromo-

somes 3 and 8 harbouring major meta-QTLs. Fst outliers approach using BayeScan highlighted

SNPs under selection in the ZCN-related QTLs and other regions that might contribute to flow-

ering time (Fig 5B and S7 Table). When comparing all six populations (excluding the admixture

group ‘diverse dent’), the BayeScan revealed SNPs under selection ranging from a log10(PO)—

posterior odds—of 0.5 to 1 (substantially significant) to higher than 1 (highly significant). Most

importantly, this analysis revealed SNPs under selection comprised in the ZCN-related QTLs

regions, further indicating the contribution of ZCN8/12 regulation to flowering variability.

Discussion

ZCN12 and ZCN8 are co-regulated by trans-acting factors to control

temperate maize flowering

Our study provides an example for how shifts in reproductive development that enable local

adaptation can emerge through different florigen levels. Besides confirming the role of ZCN8
in flowering time regulation we also uncover the role of ZCN12 in this process. Interestingly

ZCN12 is more distantly related to ZCN8 than ZCN7 [12] and located in a region which is not

syntenic to ZCN8 [30], yet it underwent a similar regulatory trajectory to ZCN8 as shown by

the strong co-variation across different lines and experiments.

GWAS approaches support the major contribution of trans-acting factors in driving the

expression of ZCN8 and ZCN12 in temperate maize. We also detected a SNP associated with

anthesis and silking located approximately 1.7 kbp upstream of ZCN8 (i.e. AX-91100620, S2

Table). However, this and eight other SNPs located in this putative regulatory region were not

associated with ZCN8 transcript levels. It is unlikely that the absence of cis-type eQTLs for

ZCN8 could depend on insufficient coverage of the genetic diversity, since they were discovered

on a large set of diverse inbred lines: 32,758 accessions for 6 GBS markers, [36] and 30 acces-

sions for 3 Affymetrix Axiom markers [34]. Multiple trans-acting genes and complex long-

range regulatory interactions are thus more likely responsible for the accumulation of ZCN8/

ZCN12. Supporting this hypothesis, we detected trans-eQTLs for ZCN8/ZCN12 that colocalize

with two genomic regions—Vgt1 and Vgt3—carrying genes involved in flowering time variation

(Fig 4B, S8B Fig). These regions include transcriptional regulators known to be under selection

in maize latitudinal adaptation, namely ZmMADS69/Vgt3 [18,21,33] and Rap2.7/Vgt1 [19,22].

We did not detect any obvious candidate genes associated with photoperiodic signalling (e.g.

ZmCCT10), suggesting its small contribution in ZCN8/12 regulation in our panel.

ZmMADS69 and Rap2.7 did not show significant trends of co-expression with their trans-

regulated targets ZCN8/12. It is thus possible that that there are many more genes of smaller

effect contributing to ZCN variations which were not captured in our GWAS. These loci could

affect the activity or accumulation of some of the abovementioned transcription factors. For

example, microRNA172s are known to interfere with the translation of APETALA2 genes [37]

(such as Rap2.7), indicating that transcript accumulation of Rap2.7 may not reflect its gene

product levels. Another not mutually exclusive explanation may be that regulatory networks

that impact on ZCNs levels are transient or highly tissue-specific, which would make it difficult

to compare independent expression datasets.

experiment in 2014, and ZCN transcript accumulations. At each locus the orange colour corresponds to the ’late allele’ (i.e. conferring

delayed anthesis), which is for all 8 SNPs the B73 allele. Genetic groups are listed according to the flowering time phenology (late to early,

top to bottom). (B) Genome-wide distribution of FST Bayescan (FSTBS) along chromosome 3 and 8. SNPs under selection are highlighted

in different colors to reflect the different level of confidence for selection (Black: low confidence, Orange: substantial, Red: strong).

Regions shaded in blue correspond to meta-QTLs intervals.

https://doi.org/10.1371/journal.pgen.1008882.g005
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We found limited numbers of genes located within eQTLs regions and co-expressed with

ZCN8 and 12 (S4 Table). These included a putative RNA binding protein GRMZM2G107491
(underlying a ZCN12-specific eQTL), and two chloroplast-associated proteins (underlying dif-

ferent ZCN8 eQTLs), implying carbon metabolism in ZCN8 regulation. Carbon status is linked

to the transcriptional regulation of the Arabidopsis florigen FLOWERING LOCUS T [38] inde-

pendent of photoperiod conditions. Moreover, recent studies indicate that temperate maize

flowering is associated with expression of genes involved in carbon partitioning (which pro-

vides a different molecular signature from photoperiodic flowering induction) [24]. We note

that patterns of co-variations may not necessarily define causal, but also indirect relationships.

Also, since ZCN8 levels are linked to flowering, our list of ZCN8 co-expressed genes would

lead to overemphasizing the association between gene expression and flowering. Thus, co-

expressed genes might also be associated with a different, more biologically distal phenotype.

Overall, our data support the contribution of carbon metabolism upstream of ZCN8 and pro-

vide an initial framework for the identification of photoperiod independent mechanisms that

shape ZCN8 levels across temperate maize varieties.

ZCN8/12 levels underpin independent events of selection for flowering

adaptation

A large body of evidence highlights the importance of the regulation of gene expression in

maize evolution and adaptation [39,40] and the contribution of the expressed genome to the

heritable phenotypic variance [41]. It is hypothesised that temperate maize is the product of a

northbound expansion through North America which was driven by the accumulation of an

increasing number of early flowering alleles [42,43]. Rap2.7 and many other loci were under

selection during the adaptation to high latitudes [22,27] and general patterns of differentiation

for flowering time precocity closely followed the proportion of early alleles found in northern

flints (earliest), corn belt dents (intermediate) and tropical maize genomes (late maturity).

Besides revealing that at least some of these loci exert their effects on flowering time by affect-

ing ZCNs levels, our study indicates that diversification in flowering can be imposed by combi-

natorial allelic effects in a relatively small number of ZCN-related eQTLs regions. While

flowering time may represent the main trait under selection, these alleles (through their effect

on florigen levels) may also affect other phenotypic outputs, for example florigen levels have

been related to inflorescence development in other grasses [44]. We finally provide evidence

for different signatures of selection in the main regions previously mapped in the genetic con-

trol of flowering time, thus confirming their potential contribution in the adaptation process.

Conclusion

We show that florigen genes play an essential role in the genetic variability of flowering time in

those lines in which breeding suppressed photoperiodism. We reveal the role of a novel flori-

gen, ZCN12, a non-syntenic paralog of ZCN8, whereas other related candidates had no clear

role. Our study points to combinations of trans-type regulatory mechanisms underpinning

selection for flowering time in different genetic groups through florigen levels.

Materials and methods

Plant material

A maize collection of 354 lines was assembled in the frame of the DROPS (European project

FP7-244374) and Amaizing projects (French National Agency ANR-10-BTBR-01). It consists

of historical and breeding American and European dent lines from the main founder group of
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modern hybrids [33]. Lines were genotyped using 50K Infinium HD Illumina array [45], a

600K Axiom Affymetrix array [34] and a set of 500K markers obtained by Genotyping by

Sequencing (GBS) [33]. Genotyping data were filtered and missing data were imputed using

Beagle V3.3.2 [46] after assembling three sub-matrices and removing duplicate loci based on

their physical position. After quality control, 758,863 polymorphic single-nucleotide polymor-

phisms (SNPs) were retained for GWAS analyses. All physical positions referred to hereafter

are based on the B73 reference genome [47] RefGen_V2. Based on the 50K [33], seven genetic

groups were identified using the ADMIXTURE software. These groups were constituted by:

(i) 53 lines in the Non Stiff Stalk (Iodent) family traced by PH207, (ii) 18 European dent in the

one traced by D06, (iii) 38 lines in the Lancaster family traced by Mo17, (iv) 17 in the one

traced by Oh43, (v) 39 lines in the stiff stalk family traced by B73, (vi) 43 lines in the one traced

by B14a, and (vii) 146 lines that did not fit into the six primary heterotic groups, such as

W117, NC358, and F252 (referred to as “diverse dent”). B73 was considered as the reference

line [47].

Assessment of flowering related traits in the field

The panel was assessed in two consecutive field experiments for flowering related traits. Exper-

iments were conducted at Saint Martin de Hinx (INRA experimental station, 43˚N, 1.3˚W,

France) in spring-summer 2015 and 2016, using alpha-lattice designs with two replicates

under well-watered conditions piloted by soil sensors. Male (anthesis) and female (silking)

flowering dates, as well as the total number of leaves (including the ones lost) produced were

measured for all the lines. Air temperature was measured every hour in each experiment at 2m

height over a reference grass canopy, and the progression of the crop cycle site was character-

ized via thermal time after emergence, expressed in equivalent days at 20˚C (d20˚C) [48].

Flowering-related traits measurements in the platform

Two subpanels of 327 lines and 276 lines were grown in the Phenoarch platform [49] (https://

www6.montpellier.inrae.fr/lepse_eng/M3P) respectively in autumn 2014 and spring 2015

under natural fluctuating daylength conditions (with a minimum daylength of 14 hours). The

two subpanels were optimized using the algorithm described in Rincent et al. [50] that allows

to maximise genetic information by discarding individuals that might be more easily predict-

able. Five plants per line were grown under well-watered conditions and daily assessed for

developmental traits. The number of visible and ligulated leaves of every plant was scored

twice a week. Anthesis, silking (in d20˚C) and the total number of leaves produced (including

the ones lost) were assessed for all the lines.

Tissue sampling for transcripts expression analysis

Maize leaves were sampled at two developmental stages, ligulated leaf 4 and 7 (L4 and L7,

respectively) from plants growing in the platform. The sampling day was decided based on

B73 stage, which was used as a morphological reference. Four plants were sampled for each

line. Samples deprived of the midvein were collected in the distal portion of fully expanded

leaves (with clearly visible ligule) of each plant at approximately the same time of the day

(within 90 minutes from sunrise). Sampling was conducted over three consecutive days for

each sampling stage, and the fourth sampling was done soon after the third one. The collected

material was kept in liquid nitrogen and the tubes were stored at -80˚C.
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RNA extraction and cDNA synthesis

The frozen samples were ground at high speed with glass beads in a TissueLyser II apparatus

(Qiagen). Qiazol reagent (Qiagen) was added to individual tubes and total RNA was extracted

using the Direct-zol™-96 kit (Zymo Research); on-column DNase I digestion was performed

following the kit protocol. Total RNA was then quantified using a NanoDrop One instrument

(ThermoFisher) and 1000 ng of each RNA sample were used for retrotranscription with the

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). The cDNA samples

were diluted 1:5 with water before proceeding to qPCR experiments.

TAQMAN and SYBR green assays design, implementation and analysis

The genomic and coding sequences of the targets GRMZM2G179264 (ZCN8), GRMZM2G1
41756 (ZCN7), GRMZM2G103666 (ZCN12) and GRMZM2G405368 (ZmCONZ1) and that of

reference genes GRMZM2G102471 (UBIQUITIN CARRIER PROTEIN) [51], and GRMZM2G
153541 (ELONGATION FACTOR 1Α) [52], were retrieved from the MaizeGDB website. Probe

design was done by Bio-Rad specialists and PrimePCR Probe Custom Assay (Bio-Rad) were

synthesized accordingly; the main features of probes and primers are listed in S8 Table. qPCR

experiments were carried out in a CFX96 Real-time PCR System (Bio-Rad) using SsoAd-

vanced Universal Probes Supermix (Bio-Rad) and following manufacturer’s specifications.

Amplification curves were evaluated using the instrument’s software (Vs 3.1) and relative gene

expression was calculated by applying the ΔCt method [53–55]. Gene expression was estimated

by averaging the ΔCt values computed against either GRMZM2G102471, GRMZM2G153541
or the mean of both as references. Expression in the 2015 experiment was evaluated using

solely GRMZM2G153541 as a reference. ZCN12 expression levels derived from 173 of the 327

lines studied, because the detection assay was impaired by a three-nucleotide deletion in the

5’UTR of ZCN12 coinciding with the forward primer annealing site (S11 Fig). Nevertheless,

these 173 lines distributed across the genetic groups of our panel in similar proportions as the

initial 327 lines. This small deletion had no effects on ZCN12 transcript accumulation as fur-

ther assayed by qPCR using the QuantiNova SYBR Green PCR Kit (Qiagen) on a subpopula-

tion of lines characterised by the presence/absence of the deletion.

Mixed-models, BLUEs and heritability calculation

Analyses were performed using the R software version 3.4.3 [56]. Preliminary data exploration

(ANOVA) was conducted to assess the effects of sampling day and time, as well as the actual

developmental stage at sampling, on transcripts accumulation (S2 Fig). For all traits measured

in the field and platform experiments (flowering-related traits and transcript accumulation),

models were selected among several mixed-models to calculate genotypic means. Models were

fitted with ASReml-R [57] (version 3), including the line and replicate effects as fixed, random

spatial effects, spatially correlated errors, and other fixed effects (year for the field experiments;

sampling date or sampling period for transcript accumulation in the platform). For each trait

measured in the field and platform experiments (flowering-related traits and transcript accu-

mulation), the best mixed-model was selected to estimate the best linear unbiased estimations

(BLUEs) of the genotypic means, which were then used in the rest of the analyses. The same

model, but considering the line effects as random, was used to estimate variance components,

which were used to calculate broad-sense heritability. Narrow-sense heritability was estimated

with a model assuming additive SNP effects using the R-package Heritability [58] (version 1.2)

and a relatedness matrix as in Millet et al., [59].
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Structural equation modelling

Structural equation modelling is a generalized method for the analysis of covariance relation-

ships and is used to evaluate the fit of data to a priori causal hypotheses about the functioning

of a system [60–62]. These multivariate hypotheses are represented as graphical path models.

Structural equation modelling then allows the assessment of the degree of fit between the

observed and expected covariances structures, which is expressed as a goodness-of-fit χ2. Here,

the aim was to impose a theoretical structure relating the direct and indirect relationships

between ZCN8, ZCN12 and ZCN7 transcripts accumulation and flowering taking into account

the results of bivariate correlations. BLUEs from the platform experiment (2014) were used

and the assumption of univariate as well as multivariate normality were verified. Network

structures tested were constructed as follow: (i) anthesis was placed downstream of genes

expression based on previous knowledge (flowering is a consequence of florigens expression),

(ii) then testing for all possible network structures between the 3 florigens acting upstream of

anthesis. Models tested are detailed in the results section. Structural equation models were

tested in R using the lavaan structural equation modelling package [63] (version 0.6–5), which

uses the standard maximum likelihood estimator. A significant goodness-of-fit χ2 statistic

indicates that the model does not fit the data. Once a model has not been rejected and consid-

ered biologically plausible, parameter estimates can be used to study direct, as well as indirect,

effects of the variables. Standardized path coefficients quantify the strength of a relationship,

whereas the effects of the other variables are held constant. Parameter estimates are tested for

significance using z statistics. Root mean square error approximation (RMSEA) and compara-

tive fit index (CFI) indices are used to assess the closeness of fit. Good models have a

RMSEA < 0.05 and CFI > 0.95.

GWAS analysis

GWAS was performed on individual traits for each experiment as previously described [59].

Briefly, we used the single locus mixed model:

Y ¼ mþ Xbþ Gþ E

where Y is the vector of phenotypic values, μ the overall mean, X is the vector of SNP scores, β
is the additive effect, and G and E represent random polygenic and residual effects. As in Rin-

cent et al. [64], the variance-covariance matrix of G was determined by a genetic relatedness

(or kinship) matrix, derived from all SNPs except those on the chromosome containing the

SNP being tested. The SNP effects β were estimated by generalized least squares, and their sig-

nificance (H0: β = 0) tested with an F-statistic. This model accounting for relatedness was

found the best to control for confounding factors as compared to models accounting for struc-

ture or relatedness plus structure. Analyses were performed with FaST-LMM v2.07 [65]. Physi-

cal positions of significant SNPs were projected on the consensus genetic map for Dent genetic

material [66]. Candidate SNPs distant less than 0.1 cM were considered as belonging to a com-

mon QTL, described via the most significant SNP in the QTL and the interval between all

SNPs belonging to the QTL. Co-localizations between QTLs (across traits and experiments)

were identified using the same 0.1cM window.

Regional plot definition

Annotated genes located within QTLs were identified according to maize annotation version 2

(MaizeGDB). For the entire QTL, the pairwise LD (R2) between all variants was estimated

using the r-package snpStat [67] (version 1.33.0) and plotted with LDheatmap [68] (version
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0.99–7) here shown as a triangle plot. Based on the LD pattern and the levels of significance of

SNPs, the QTL were split into sub-regions.

Exploration of selective pressure for flowering-related traits and

transcripts accumulation

Allelic distributions within the population were explored at SNPs representative of the core-set

of QTLs and revealed strong contrasts across genetic groups. An FST study was then under-

taken for identifying outlier loci that would differentiate the genetic groups more than the

average genomic background. Bayescan version 2.1 [69] decomposes the Locus-population

FST into a component specific for the population shared by all loci (beta) and a component

specific for the locus shared by all the populations (alpha). Departure from neutrality at any

given locus is assumed when alpha is significantly different from zero. Decisions about the

chance of each locus being under selection are made based on posterior odds (PO) comparing

the models with and without alpha component. We used as evidence of SNPs under selection

markers with log10(PO) > 0.5 which corresponds to markers considered substantially signifi-

cant [27].

Re-analysis of RNAseq data

Expression counts relative to RNA-seq experiments and flowering time [35] were downloaded

from the Cyverse Discovery Environment under the directory: https://datacommons.cyverse.

org/browse/iplant/home/shared/commons_repo/curated/Kremling_Nature3RNASeq282_

March2018. We used data for post-sexual maturity leaves during the day (LMAD) because

expression counts for ZCN7/8/12 at earlier stages (e.g. leaf 3) were extremely low and not avail-

able for all lines. We included transcripts accumulation dataset for 204 dent lines (with no bio-

logical replicates), of which 182 had also data available for anthesis (BLUPs). We discarded

extreme outliers (respectively ZCN8> 400, ZCN12> 350 and ZCN7> 150 expression

counts). We thus obtained correlations between the expression counts of each annotated gene

in the maize genome and ZCN8 was calculated (correlation coefficient (r) and associated p-

value). The same method was applied to establish the relationship between the expression of

each gene and anthesis data. Co-expression data were further reduced by applying a Bonfer-

roni correction and analysed with a k-means clustering approach [70].

Gene cloning, transformation and growth of Arabidopsis
ZCN12 and ZCN8 were amplified from genomic DNA from B73 with oligonucleotides

lcm116, 117, 118 and 119 as detailed in S7 Table. These primers incorporate sequences for

Gateway-based cloning (Invitrogen) and include start and stop codons. PCR products were

subject to a second round of PCR amplification with adapters art77 and art78. Gel-purified

PCR products were cloned into Gateway pDONR221 vector through BP-mediated recombina-

tion and sequenced. ZCN12 and ZCN8 entry clones were finally recombined into the binary

destination vector pEarleyGate201 [71] via LR clonase. We used the floral dip method to trans-

form wild-type Columbia Arabidopsis and primary transformants were selected on soil by

continuous applications of Basta. T1 plants that yielded enough seeds were analysed in T2 to

monitor transgene-derived expression by RT-PCR. Plants were grown in a climatic chamber

under long-day conditions (16 hours of light, 8 hours of dark), a mean daily temperature of 23

degrees (night-day) and 60% humidity, light was provided by fluorescent tubes and PAR

(photosynthetically active radiation) was approximately 90 μmol m-2 s-1.
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Supporting information

S1 Fig. A wide flowering time variability conserved across different environments. (A)

Genotypic values of anthesis time, silking and total number of leaves per genetic group, during

the platform experiment in 2014. Genetic groups are represented by the name of their founder.

D06: n = 14; PH207: n = 42; diverse dents (d.d.): n = 128; Oh43: n = 16; Mo17: n = 35; B14a:

n = 41; B73: n = 37. (B) Relationship between genotypic values of the flowering traits (respec-

tively anthesis, silking and total number of leaves) in platform experiments conducted over

two consecutive years (2014 and 2015). n = 273 lines in common between both years. (C) Rela-

tionship between genotypic values for silking (left panel) and the total number of leaves (right

panel) measured in the platform (2014) and field (2015–2016). n = 313 lines. In (A), (B) and

(C), genotypic values are BLUEs. Correlation coefficients are displayed together with their sig-

nificance (��� p< 10−4).

(TIF)

S2 Fig. ZCN8 transcript accumulation is not consistently affected by day of sampling, time

of sampling within a day, or actual leaf stage at sampling. (A, C) ZCN8 transcript accumula-

tion over three consecutive days per sub-period of ca. 30 minutes (covering 1.5 to 3 hours after

dawn within each sampling day) at stage ligulated leaf 7 (A) or 4 (C). The number of individu-

als that were sampled is indicated for each day together with the time window of sampling. (B,

D) Distribution of the actual number of ligulated leaves within the population at the sampling

stage ligulated leaf 7 (B) or 4, (D). Insets show the absence of correlation between ZCN8 tran-

script accumulation and the actual number of ligulated leaves.

(TIF)

S3 Fig. Three methods of normalization of ZCN8 transcript accumulation show highly

consistent results. (A, B) Correlation between anthesis and expression of ZCN8 transcript

accumulation—respectively measured at stage leaf 7 (A) or leaf 4 (B)—normalized either by

EF1a, by UCe, or by the average (“ave”) of EF1a and UCe transcript accumulations, for individ-

ual data (n = 980 plants). (C, D) Correlation between anthesis and expression of ZCN8 tran-

script accumulation—respectively measured at stage leaf 7 (C) or leaf 4 (D)—normalized

against EF1a, UCe, or the average (“ave”) of EF1a and UCe transcripts accumulation, for geno-

typic values (n = 320 lines). In each panel, the X and Y axes show the units of the variable dis-

played in the main diagonal. Transcript accumulation is expressed as ΔCt. Anthesis time

expressed in equivalent days at 20˚C after germination Pearson’s correlation coefficients are

indicated with their significance (���, p< 10−4).

(TIF)

S4 Fig. ZCN8 accumulation increases between stage ligulated leaves 4 and 7 in a genotype-

dependent fashion. (A, B) Genotypic values of ZCN8 accumulation at stages ligulated leaf 4

and 7 in the platform experiment of 2014. n = 320 lines. The effect of stage (L4 vs L7) on ZCN8
accumulation was found significant (p< 0.001) by ANOVA. (C) Relationship between the

residuals extracted from the regression between ZCN8 at stage ligulated leaf 4 vs. 7 displayed

in (A), and anthesis time measured in the same platform experiment. Genotypic values are

BLUEs. Pearson’s correlation coefficients are indicated with their significance (���, p< 10−4).

(TIF)

S5 Fig. Strong correlation between ZCN8 accumulation and flowering time is confirmed

across different environments. (A) Relationship between genotypic values of ZCN8 accumu-

lation measured at stage ligulated leaf 7 in the platform in 2014 and the total number of leaves

respectively measured in the same experiment (left panel) or the field in 2015–2016 (right
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panel). n = 313 lines. (B) Relationship between genotypic values of ZCN8 accumulation in the

platform experiment of 2015 on a subset of lines (n = 273 lines) and flowering traits respec-

tively measured during the same experiment (left panel, anthesis; middle panel, total number

of leaves) or in the field in 2015–2016 (anthesis, right panel). (C) Relationship between geno-

typic values of ZCN8 accumulation in platform experiments of 2014 and 2015. n = 273 lines.

(D) Relationship between genotypic values of ZCN8 accumulation measured at stage ligulated

leaf 4 in the platform (2014) and flowering traits either measured in the same experiment (left

panel, anthesis; middle panel, total number of leaves) or the field (right panel, anthesis).

n = 313 lines. Genotypic values are BLUEs. Pearson’s correlation coefficients are indicated

with their significance (���, p< 10−4).

(TIF)

S6 Fig. Strong correlation between ZCN12 accumulation and maize flowering is confirmed

across different environments whereas ZCN7 and ZmCONZ1 have a weak or no effect. (A)

Relationship between genotypic values of ZCN12 accumulation measured at stage ligulated

leaf 7 in the platform in 2014 and flowering traits measured in the same experiment (total

number of leaves, left panel) or the field in 2015–2016 (total number of leaves and anthesis,

middle and right panels). n = 173 lines. (B) Relationship between genotypic values of ZCN12
accumulation in the platform experiment of 2015 on a subset of lines (n = 160 lines) and,

respectively, accumulation of ZCN8 measured during the same experiment (left panel) or

accumulation of ZCN12 measured in the first platform experiment (right panel). (C) Relation-

ship between genotypic values of ZCN7 and anthesis time (left panel) and ZCN8 accumulation

(right panel) in the platform in 2014. (D) Relationship between genotypic values of anthesis

measured in the platform in 2014 and ZmCONZ1 accumulation. Genotypic values are BLUEs.

Pearson’s correlation coefficients are indicated with their significance (���, p< 10−4). The red

triangle represents genotypic values for the reference line B73.

(TIF)

S7 Fig. Path diagrams indicate possible direct routes of ZCN12 to activate flowering. Mod-

els in which ZCN12 has an indirect effect on anthesis (A) were rejected, whereas models in

which both ZCN8 and ZCN12 directly affect anthesis were accepted, with an indirect effect of

ZCN7 (B and C). Arrows represent linear functional relationships between anthesis and flori-

gen expression. Simple-headed arrows represent causal relationships, and double-headed

arrows represent free correlations. Standardized path coefficients are indicated on each arrow

with their level of significance (���: P < 0.001, ns: not significant). All three models were tested

against our data on BLUEs and results are given in the upper part of each panel. See also Fig 3.

(TIF)

S8 Fig. ZCN eQTLs are major contributors to the genetic variance of flowering time in the

platform experiment of 2014. (A) Number of QTLs shared between anthesis in the platform

experiment (2014) and ZCN eQTLs. Anthesis was recorded in the platform in 2014 and ZCN8/

7/12 levels were measured in the platform, in 2014 and 2015 at different leaf stages. GWAS was

conducted for every trait/experiment, and significant SNPs were grouped according to genetic

distances, with a threshold at 0.1 cM to define QTLs. The number of these QTLs is italicised

within brackets outside of VENN diagram. The number of common QTLs between traits is

italicised within brackets inside each VENN area. QTLs detected were then gathered into

‘meta-QTLs’ regions containing overlapping individual QTLs. The number of common ‘meta-

QTLs’ is shown in plain text outside and inside the circles, and a common ‘meta-QTL’ is

defined as regions containing at least one QTL of each trait considered. (B) Regional associa-

tion plot for one meta QTL on chromosome 8. Distribution of the -log10(pval) for all variants
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in the region. The dotted grey line corresponds to–log10(pval) = 4.5 for anthesis-related traits

evaluated in the field (purple) and platform (orange) and 4 for the expression traits evaluated

in the platform (green). Bottom panel, linkage disequilibrium (LD) heat map of all SNPs in the

QTL showing the local LD (r2) between all the variants; Black lines represent the distribution

of the SNPs and the blue boxes represents the genes mapped for the region. Red asterisks rep-

resent the position of the most significant SNPs. (See also S4 Table for candidate genes). Grey

areas represent sub-regions harbouring the most significant SNPs and genes and having low

LD between them on average.

(TIF)

S9 Fig. Strong patterns of co-regulation are verified in independent datasets. (A to C) Re-

analysis of publicly available data profiling whole genome expression variations from different

maize varieties. Comparisons between anthesis and accumulation of respectively ZCN8 (A,

n = 182 lines), ZCN12 (B, n = 180 lines) (B), and ZCN7 (C, n = 178 lines) (C). (D-F) Pairwise

comparisons between ZCNs transcripts accumulation, respectively ZCN8 vs ZCN12 (D,

n = 200), ZCN8 vs ZCN7 (E, n = 198), and ZCN12 vs ZCN7 (F, n = 198). Genotypic values

(BLUPs) are displayed for anthesis, whereas individual values (no biological replicates) were

reported for ZCN8, ZCN12 and ZCN7 accumulation. Pearson’s correlation coefficients are

indicated with their significance (���, p< 10−4). (G) k-means cluster analysis on the 549

ZCN8-coregulated genes based on their degree of correlation with both ZCN8 expression and

flowering time.

(TIF)

S10 Fig. ZCN8 and ZCN12 accumulation follows the flowering time precocity of different

admixture groups. (A-C) Biplots of genetic group values for anthesis vs ZCN8 accumulation

(A), anthesis vs ZCN12 accumulation (B), and ZCN8 vs ZCN12 accumulation (C). Means and

standard deviations of genetic group values are calculated from the BLUEs in the platform

experiment of 2014. Genetic groups are represented by the name of their founder and the col-

our code reflects flowering time phenology as in Fig 5A. D06: n = 14; PH207: n = 42; diverse

dent: n = 128; Oh43: n = 16; Mo17: n = 35; B14a: n = 41; B73: n = 37. (D-F) Within-group rela-

tionship between anthesis and accumulation of respectively ZCN8 (D), ZCN12 (E) and accu-

mulation of ZCN8 vs ZCN12 (F).

(TIF)

S11 Fig. A polymorphism in the ZCN12 region affects amplification efficiency. (A)

Sequence alignment of the ZCN12 region targeted for amplification in different maize lines.

Nucleotides highlighted in grey boxes correspond to forward and reverse primers, respectively

whereas the green box corresponds to the probe. Nucleotides highlighted in yellow indicate

polymorphisms. Marker AX-90845493 was used to differentiate the B73 from the alternative

haplotype in our lines. (B) ZCN12 Taqman assay using genomic DNA derived from lines car-

rying the B73 allele (black) or the alternative allele (green). UCe amplification was used for

normalization and to derive—ΔCt values. (C) ZCN8 transcript amplification performed on a

reduced panel and with a different amplification assay.

(TIF)

S12 Fig. Graphical abstract of the experiments conducted in this study and of the associ-

ated datasets. Phenotypic data at the plot level in each field experiment (1a) and at the geno-

typic level in each field experiment and for both field experiment together (1b). Transcripts

data at the plant level in each platform experiment (2a) and at the genotypic level in each plat-

form experiment (2b). Phenotypic data at the plant level in each platform experiment (3a) and

at the genotypic level in each platform experiment (3b). Description of the genotypic material
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used (4). The maize 3D canopy is adapted from Pradal et al., [72]. The maize 3D plant is

adapted from Fournier and Andrieu [73].

(TIF)

S1 Table. Statistical indicators of the genotypic variability for flowering related traits and

florigens transcripts accumulation in individual experiments. Genotypic and residual vari-

ance components were estimated with the mixed-model fitted per experiment accounting for

fixed replicate effect, random variety and spatial effects and spatially correlated errors. They

were used to estimate an interval of broad-sense heritability such as H2
low = varG/(varG

+ varRes/n) and H2
high = varG/(varG + varRes/n + varSpatial), with varG the genotypic vari-

ance, varRes the residual variance and varSpatial the spatial variance. Mean values were calcu-

lated using BLUEs estimated with the same mixed model but with variety in fixed effect. The

same BLUEs were used to estimate narrow sense heritability with a model assuming additive

SNP-effects. Units are as follow: anthesis and silking in thermal time (days at 20˚C), transcript

accumulation in -ΔCt.

(XLSX)

S2 Table. Complete set of QTLs for flowering related traits and florigens transcript accu-

mulation. GWAS was performed on individual traits and significant SNPs were grouped

according to genetic distances, with a threshold at 0.1 cM to define QTLs. Each line contains

the information of one QTL with its chromosome (Chr), bin and region (in physical and

genetic position), the SNP with the highest P-value (SNP Name), its position (SNP Position),

-log10(p) and the allelic effect of the allele of the reference line B73. Physical positions are

based on the B73 reference genome RefGen_v2 and were projected on the consensus genetic

map for Dent genetic material to obtain the genetic position.

(XLSX)

S3 Table. Set of ‘meta-QTLs’ for flowering-related traits and florigen transcript accumula-

tion. 346 main regions containing overlapping individual QTLs were identified from S2 Table

and defined as ‘meta-QTLs’. Each meta-QTL is defined by its Bin, start position in Mbp, end

position in Mbp.

(XLSX)

S4 Table. Core set of QTLs for flowering related traits and florigens transcript accumula-

tion. List of QTLs for anthesis, silking and total leaf number that colocalize with eQTLs for

ZCN8 and/or ZCN7 and/or ZCN12 accumulation. Each QTL is described by flowering trait,

name of the peak SNP, chromosome, bin, coordinate of the peak SNP, physical coordinates

(start and end), genetic coordinates (start and end), florigen accumulation trait. For these

QTLs, putative candidate genes are proposed, selected among the list of ZCN8-coexpressed

genes (in red) and of known flowering time genes (in green). The established function accord-

ing to MaizeGDB or a tentative description inferred from the function of the rice/sorghum/

Arabidopsis orthologs are also shown. Overlaps with flowering time regions detected in Li

et al., [7] are listed. DA = days to anthesis, DS = days to silking (DS), ASI = anthesis–silking

interval (ASI), DACV = coefficient of variation of DA, DSCV = coefficient of variation of DS

as in [7].

(XLSX)

S5 Table. Variance components of the different nested models for anthesis (A, B), silking

(C, D) and total number of leaves (E, F) in the platform and the field. Variance components

were estimated with a mixed model with random effects for genotype (G), spatial effects, spa-

tially correlated errors and residual error variances (Res) and a fixed effect for replicate (model
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M1). In model M2, the complete set of QTLs of the considered flowering trait (e.g. 43 for

anthesis in the platform (A)) was added to the fixed terms. In model M3 (respectively M4 and

M5), only those QTLs, among the set of the flowering QTLs, which co-localized with eQTLs

for ZCN8 accumulation (respectively ZCN12 and ZCN7) were added to the fixed terms. In

model M6, only those QTLs, among the set of anthesis QTLs, which colocalized with ZCN8
and/or ZCN12 and/or ZCN7 accumulation were added to the fixed terms. The proportion of

variance retained by the candidate QTLs was estimated by comparing respectively models M2,

M3, M4, M5 and M6 to model M1.

(XLSX)

S6 Table. List of ZCN8 coregulated genes and their relation to flowering time. Correlation

coefficients (r) as well as statistical parameters (p-value and FDR), are shown to describe rela-

tionships between the level of transcript for each gene and either ZCN8 expression and or

anthesis.

(XLSX)

S7 Table. Fst analysis for SNPs under selection. List of significant SNPs under selection

(log10 posterior odds (PO) > 0.5) for chromosomes 3 and 8. SNPs were found after compari-

son of the whole population (pop). Rows highlighted in yellow denote SNPs overlapping with

core-QTL intervals (QTL). Rows highlighted in green show SNPs that lie within a region that

encompasses a coding sequence in an interval of +/- 5 kb. Prob signifies the posterior probabil-

ity for the model including selection. log10(PO), the logarithm of Posterior Odds to base 10 for

the model including selection. Alpha is the estimated alpha coefficient indicating the strength

and direction of selection. Fst is the coefficient estimated by BayeScanFST. The established

function according to MaizeGDB or a tentative description inferred from the function of the

rice/sorghum/Arabidopsis orthologs are also shown.

(XLSX)

S8 Table. Primers and assays information used in this study.

(XLSX)
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