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In this paper, we present two concise representations of reversible automata. Both rep-

resentations have a size comparable to the size of the minimum equivalent deterministic

automaton and can be exponentially smaller than the size of the explicit representa-
tions of corresponding reversible automata. Using these representations it is possible to

simulate the computations of reversible automata without explicitly writing down their

complete descriptions.

1. Introduction

Reversibility is a fundamental principle in physics: in thermodynamics a transfor-

mation is reversible if, after occurring, it can be inverted in order to recover the

original state of the system. In the study of computational models, reversibility

means that each elementary step can be inverted, thus recovering the previous state

of the system. In other words, every configuration must admit at most one pre-

decessor. As shown by Landauer, the irreversibility in computation leads to heat

dissipations [10], while Toffoli proved that it is ideally possible to build sequen-

tial circuits with zero internal power dissipation [16]. This observation suggested to

study reversible computations in which there is no loss of information.

Reversibility has been studied on various computational models. In the case

of general devices as Turing machines, Bennet proved that each machine can be

simulated by a reversible one [1], while Lange, McKenzie, and Tapp proved that

each deterministic machine can be simulated by a reversible machine which uses

the same amount of space [11]. As a corollary, in the case of a constant amount of

∗This paper is an extended version of [14].
‡Corresponding author.

1157

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
19

.3
0:

11
57

-1
17

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IL
A

N
 o

n 
09

/2
3/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S0129054119400331


September 6, 2019 16:50 112-IJFCS 1940033

1158 G. J. Lavado & L. Prigioniero

space, this implies that each regular language is accepted by a reversible two-way

deterministic finite automaton. Actually, this result was already proved by Kondacs

and Watrous [6]. In the case of one-way automata, the situation is different.a The

class of languages accepted by reversible automata is a proper subclass of the class

of regular languages. For example, the regular language a∗b∗ cannot be accepted by

any reversible automaton [15], even if multiple initial states are allowed. Classical

automata, namely automata with a single initial state and a set of final states, have

been considered in the works by Holzer, Jakobi, and Kutrib [4, 7, 8]. In particular,

they gave a characterization of regular languages which are accepted by reversible

automata [4]. This characterization is given in terms of the structure of the minimum

deterministic automaton, i.e., the smallest deterministic automaton accepting the

language under consideration. Furthermore, the authors provided an algorithm that,

in the case the language is acceptable by a reversible automaton, allows to transform

the minimum deterministic automaton into an equivalent reversible automaton,

which in the worst case is exponentially larger than the given minimum automaton.

In spite of that, the resulting automaton is minimal, namely there are no reversible

automata accepting the same language with a smaller number of states. However, it

is not necessarily unique. In fact, contrary to the minimum deterministic automaton

that is unique for a fixed language, there could exist different reversible automata

with the same (minimal) number of states accepting the same language. Further

results concerning minimality and reducibility for reversible automata have been

proved in Refs. [3, 12].

Due to the above mentioned exponential state gap between deterministic

automata and equivalent reversible automata, an explicit representation of a mini-

mal reversible automaton can be exponentially larger than the representation of the

corresponding minimum deterministic automaton. However, the minimal reversible

automaton produced by the construction provided by Holzer, Jakobi, and Kutrib [4]

is obtained by creating copies of some parts of the minimum automaton. So, its

transition table contains repeated patterns. Thus, it is interesting to investigate

whether it is possible to obtain a concise representation of it, by avoiding to repeat

those patterns. To this aim, in this paper we present two concise representations of

reversible automata, which can be used to simulate reversible computations without

explicitly writing down the description of the reversible automaton.

The first representation is based on a parameter β which is equal to the max-

imum number of incoming transitions with the same letter in each state of the

given deterministic automaton A. Given β and A it is possible to simulate the

computations of a reversible automaton A′ equivalent to A, without explicitly rep-

resenting it. The drawback of this simple representation is that even when the given

aFrom now on, we will consider only one-way automata. Hence we will omit to specify “one-way”
all the times.
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automaton A is minimum, the simulated reversible automaton A′ is not necessar-

ily minimal. This motivates us to look for a different concise representation, which

exploits the fact that all the minimal reversible automata accepting a language

have the same “state structure”, in the sense that, for each given A, there exists

a function c : Q → N, such that for each state q in A, there exist exactly c(q)

states equivalent to q in each minimal reversible deterministic automaton equivalent

to A [12]. The second representation is given in terms of the minimum deterministic

automaton A accepting the language under consideration and such function c. We

prove that, by using such representation, it is possible to simulate the behaviour

of a minimal reversible automaton equivalent to A without explicitly representing

it. Both representations have polynomial size with respect to the size of the given

deterministic automaton A and require a precomputation (of the parameter β and

of the function c, respectively) which can be performed in linear time.

2. Preliminaries

In this section, we recall some basic definitions and results that will be used in the

paper. For a detailed exposition, we refer the reader to [5]. Given a set S, let us

denote by #S its cardinality and by 2S the family of all of its subsets. Given an

alphabet Σ, |w| denotes the length of a string w ∈ Σ∗ and ε the empty string.

A deterministic automaton is a tuple A = (Q,Σ, δ, qI , F ), where Q is the set

of states, Σ is the input alphabet, qI ∈ Q is the initial state, F ⊆ Q is the set

of accepting states, and δ : Q × Σ → Q is the partial transition function. The

function δ can be extended to words in the standard way. The language accepted

by A is L(A) = {w ∈ Σ∗ | δ(qI , w) ∈ F}. The reverse transition function of A is the

function δR : Q × Σ → 2Q, with δR(p, a) = {q ∈ Q | δ(q, a) = p}. A state p ∈ Q
is useful if p is reachable, i.e., there exists w ∈ Σ∗ such that δ(qI , w) = p, and

productive, i.e., if there is w ∈ Σ∗ such that δ(p, w) ∈ F . When the set of states Q

is finite, the automaton A is said to be a deterministic finite automaton (dfa). In

this paper we only consider automata with only useful states.

We say that two states p, q ∈ Q are equivalent if for all w ∈ Σ∗, δ(p, w) ∈ F
exactly when δ(q, w) ∈ F . Two automata A and A′ are said to be equivalent if they

accept the same language, i.e., L(A) = L(A′). By minimal automaton (in a certain

family of automata) we mean an automaton with a minimal number of states. When

the minimal automaton is unique (e.g., for the family of all dfas accepting a certain

regular language) we call it minimum.

A strongly connected component (scc) C of a dfa A = (Q,Σ, δ, qI , F ) is a

maximal subset C of Q such that in the transition graph of A there exists a path

between each pair of states in C. We introduce the relation ≺ on the set of sccs

of A, such that, for two such components C1 and C2, C1 ≺ C2 when no state in C1

can be reached from a state in C2, but a state in C2 is reachable from a state in C1.

As usual, if C1 ≺ C2 or C1 = C2 we write C1 � C2. It can be verified that � is a

partial order.
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Given a dfa A = (Q,Σ, δ, qI , F ), a state r ∈ Q is said to be irreversible

when #δR(r, a) ≥ 2 for some a ∈ Σ. In this case, for each q ∈ δR(r, a), the tran-

sition from q on a is said to be irreversible. If a state is not irreversible, then it is

said to be reversible. The dfa A is said to be irreversible if it contains at least one

irreversible state, otherwise A is reversible (rev-dfa). As pointed out in Ref. [8],

the notion of reversibility for a language is related to the computational model

under consideration. In this paper we only consider dfas. Hence, by saying that a

language L is reversible, we refer to this model, namely we mean that there exists a

rev-dfa accepting L. The following result presents a characterization of reversible

languages:

Theorem 1. [4, Theorem 2] Let L be a regular language and M = (Q,Σ, δ, qI , F )

be the minimum dfa accepting L. Then, L is accepted by a rev-dfa if and only

if there do not exist two states p, q ∈ Q, a letter a ∈ Σ, and a string w ∈ Σ∗ such

that p 6= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

According to Theorem 1, a language L is reversible exactly when the minimum

dfa accepting it does not contain the forbidden pattern consisting of two transitions

on the same letter a entering in the same state r, with one of these transitions

arriving from a state in the same scc as r. An algorithm to convert a minimum

dfa M into an equivalent rev-dfa, if any, was obtained in Ref. [4]. Furthermore,

the resulting rev-dfa is minimal.

We present an outline of the algorithm. It iteratively builds a rev-dfa A in the

following way. At the beginning A is a copy of M . Then, the algorithm considers a

minimal (with respect to �) scc C that contains an irreversible state and replaces

it with a number of copies which is equal to the maximum number of transitions

on the same letter incoming in a state of C. This process is iterated until all the

states in A are reversible.

In Ref. [4], it has also been observed that there are reversible languages hav-

ing several nonisomorphic minimal rev-dfas, while in [12, Lemmata 5 and 6] the

following result has been proved:

Lemma 2. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a reversible

language L. There exists a function c : Q→ N such that for each state q ∈ Q:

• in any rev-dfa equivalent to M there are at least c(q) different states equivalent

to q.

• in any minimal rev-dfa equivalent to M there are exactly c(q) different states

equivalent to q.

Furthermore, if p, q ∈ Q are in the same scc, then c(p) = c(q).

3. A Simple Concise Representation

In this section we present our first concise representation. Let us start with a con-

struction for simulating a dfa by an equivalent rev-dfa, in which we use the
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information about the maximum number of incoming transitions with respect to

the same letter in the irreversible states.

Let A = (Q,Σ, δ, qI , F ) be a dfa with all useful states and let β be the maximum

number of transitions on the same letter incoming in a state of A, i.e.,

β = max {#δR(q, a) | q ∈ Q, a ∈ Σ}.

We observe that β > 1 if and only if A is irreversible. We define the following

automaton with infinitely many states A∞ = (Q×N,Σ, δ′, q′I , F ×N) where:

• q′I = 〈qI , 0〉,
• The transitions are defined as follows:

Let δ(q, a) = p and δR(p, a) = {qj1 , . . . , qjk}, k ≥ 1 for q, p ∈ Q, a ∈ Σ. Then,

for x ≥ 0:

δ′(〈q, x〉, a) =

{
〈p, x〉 if k = 1

〈p, xβ + i− 1〉 otherwise
(1)

where i ∈ {1, . . . , k} is such that q = qji .

Notice that, if δ′(〈q, x〉, a) = 〈p, y〉 then x ≤ y. Roughly speaking, the idea of the

construction is to use the second component of the states of A∞ as labels in order

to distinguish different copies of a state reached from an irreversible transition in A.

The formula used for the second component allow us to obtain this goal, as we will

prove in Theorem 3.

We denote by A′ the automaton obtained by restricting A∞ to useful states.

Theorem 3. Let A = (Q,Σ, δ, qI , F ) be a dfa and A′ = (Q′,Σ, δ′, q′I , F
′) be the

automaton obtained by applying the above construction to A, restricted to useful

states. Then L(A′) = L(A) and A′ is reversible.

Proof. First, it is enough to observe that each state 〈q, x〉 ∈ Q′ is equivalent

to q ∈ Q.

Second, we have to prove that for each a ∈ Σ, 〈q̄1, x1〉, 〈q̄2, x2〉 ∈ Q′,

〈q̄1, x1〉 6= 〈q̄2, x2〉, implies that if both δ′(〈q̄1, x1〉, a) and δ′(〈q̄2, x2〉, a) are defined

then they are different. Observe that δ′(〈q̄i, xi〉, a), for i ∈ {1, 2}, can be undefined

only if δ(q̄i, a) is undefined. We consider the following cases:

• If q̄1 = q̄2 and x1 6= x2 then δ(q̄1, a) = δ(q̄2, a) = p for some p ∈ Q, otherwise M

would be nondeterministic. Let δR(p, a) = {qj1 , . . . , qjk}, k ≥ 1. Then there

exists an i such that q̄1 = q̄2 = qji . Considering (1), δ′(〈q̄1, x1〉, a) = 〈p, y1〉
and δ′(〈q̄1, x2〉, a) = 〈p, y2〉.

– If k = 1 then y1 = x1 and y2 = x2.

– If k > 1 then y1 = x1β + i− 1 and y2 = x2β + i− 1.

Since x1 6= x2 we get y1 6= y2. Hence, 〈p, y1〉 6= 〈p, y2〉.
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• If q̄1 6= q̄2 and δ(q̄1, a) = p1 6= δ(q̄2, a) = p2, then in A′ the states δ′(〈q̄1, x1〉, a) =

〈p1, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p2, y2〉 are different regardless of the values of y1
and y2.

• If q̄1 6= q̄2 and δ(q̄1, a) = δ(q̄2, a) = p, let δR(p, a) = {qj1 , . . . , qjk}, with k > 1.

Then, there exist i, i′, with i 6= i′ such that q̄1 = qji and q̄2 = qji′ . Considering (1),

δ′(〈q̄1, x1〉, a) = 〈p, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p, y2〉, where y1 = x1β+i−1 and y2 =

x2β + i′ − 1. In the case of x1 = x2, since i 6= i′, we get y1 6= y2. In the case

of x1 6= x2, and supposing, without loss of generality, x1 > x2, we get x1β ≥
x2β + β, and hence x1β > x2β + β − 1 ≥ x2β + i′ − 1 (notice that i′ ≤ β).

Then y1 = x1β+i−1 ≥ x1β > x2β+i′−1 = y2. This implies that 〈p, y1〉 6= 〈p, y2〉.

Hence, δ′(〈q̄1, x1〉, a) 6= δ′(〈q̄2, x2〉, a). This allows us to conclude that A′ is

reversible.

We showed that A′ simulates A. We have now to prove that it is finite if and

only if A does not contain the forbidden pattern.

Theorem 4. The automaton A′ = (Q′,Σ, δ, q′I , F
′) obtained by applying the above

construction to a dfa A = (Q,Σ, δ, qI , F ) is infinite if and only if A contains the

forbidden pattern.

Proof. (⇒) If A′ contains infinitely many states then for each m > 0 there exists

a string w ∈ Σ∗ such that δ′(q′I , w) = 〈q, x〉 with x ≥ m and 〈q, x〉 ∈ Q′ is an useful

state. Without loss of generality we can choose w in such a way that the second

component of the state which is reached in A′ by reading any proper prefix of w is

smaller than x. Thus w = w1a1w2a2 · · ·w`a`, with w1, . . . , w` ∈ Σ∗, a1, . . . , a` ∈ Σ,

such that irreversible transitions are used on aˆ̀ only, for ˆ̀= 1, . . . , `.

We consider the path on w in A′. By construction, the second component of a

state is changed only while reading symbols aˆ̀, ˆ̀ = 1, . . . , `: let δ′(〈qI , 0〉, w1) =

〈p1, x0〉, δ′(〈p1, x0〉, a1) = 〈p′1, x1〉, δ′(〈p′1, x1〉, w2) = 〈p2, x1〉, δ′(〈p2, x1〉, a2) =

〈p′2, x2〉, . . . , δ′(〈p`, x`−1〉, a`) = 〈p′`, x`〉. Then, 0 = x0 < x1 < x2 < · · · < x`−1 < x`.

For ` > #Q · #Σ we can find two values i 6= j, such that the pairs (ai, p
′
i)

and (aj , p
′
j) are equal. Without loss of generality suppose i < j. Then in A we

have #δR(p′i, ai) > 1 and δ(p′i, wi+1ai+1, . . . , wjaj) = p′j = p′i, which gives the

forbidden pattern in A.

(⇐) If A contains the forbidden pattern then there exist two useful

states p1, p2 ∈ Q, a ∈ Σ, w ∈ Σ∗ such that p1 6= p2, δ(p1, a) = δ(p2, a)

and δ(p2, aw) = p2. Let r = δ(p1, a) and δR(r, a) = {qj1 , . . . , qjk}. Since p1 6= p2
we get k > 1 and two different indices i, i′ such that p1 = qji and p2 = qji′ . More-

over, β > 1. Now we want to prove that the simulation of the forbidden pattern

bring us to have infinitely many useful states in A′.

Due to p1 6= p2, in A′ there exist two different states of the

form 〈p1, x1〉 and 〈p2, x2〉 such that δ′(〈p1, x1〉, a) = 〈r, x1β + i − 1〉 and
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δ′(〈p2, x2〉, a) = 〈r, x2β + i′ − 1〉. Let x̂2 = x2β + i′ − 1. Since from Theorem 3 A′ is

reversible, we get x1β + i− 1 6= x̂2.

Since r and p2 belong to the same scc, in A′ there exists a path from 〈r, x̂2〉
to some state 〈p2, y2〉 with y2 ≥ x̂2. Due to δ(p2, a) = r, there is a transi-

tion δ′(〈p2, y2〉, a) = 〈r, y2β + i′ − 1〉. Let x̂3 = y2β + i′ − 1. Since β > 1 we

get x̂3 > y2 ≥ x̂2. Thus, we have x̂3 > x̂2. This implies 〈r, x̂2〉 6= 〈r, x̂3〉.
We can iterate this argument by obtaining a sequence of infinitely many useful

states 〈r, x̂`〉, ` ≥ 0 and x̂`−1 < x̂`. This allows us to conclude that A′ contains

infinitely many states.

Two examples related to the previous construction are shown in Figs. 1 and 2,

where β = 2. Let us apply the construction to transform the dfa shown in Fig. 1

through an equivalent rev-dfa. Given for instance δ(q3, b) = q5, we have δR(q5, b) =

{q3, q4}, k > 1 and i = 1. Then δ′(〈q3, 1〉, b) = 〈q5, 2〉.
Now we apply the same construction to the dfa in Fig. 2. Given for

instance δ(q1, b) = q2, we have δR(q2, b) = {qI , q1}, k > 1 and i = 2.

Then δ′(〈q1, 0〉, b) = 〈q2, 1〉. This time taking δ(q2, a) = q3, we have δR(q3, a) =

{q1, q2}, k > 1 and i = 2. Then δ′(〈q2, 1〉, a) = 〈q3, 3〉. Actually, the simulation of a

computation on a string does not require the explicit construction of the automa-

ton A′. In fact, once we have β the computation of the automaton can be obtained,

qI q1

q2

q3 q4

q5

a

a

b
b

a

b
a

a

b
b

a

c

qI , 0 q1, 0

q2, 0 q2, 1

q3, 0 q4, 0 q3, 1 q4, 1

q5, 0 q5, 1 q5, 2 q5, 3

a

ab b

a a

a

a

b
a

a

b

b b b b

a a a a

c

Fig. 1. A dfa where β = 2 and the equivalent rev-dfa obtained by using the construction.
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qI

q1

q2

q3

b

a ab

a

qI , 0

q1, 0

q2, 0

q3, 0

q2, 1

q3, 1

q3, 3

a

b

a

b

a

a

Fig. 2. A dfa where β = 2 and the equivalent rev-dfa obtained by using the construction.

using the transition table of A and (1). For instance on aba we have the following

steps: q′I
a→〈q1, 0〉

b→〈q2, 1〉
a→〈q3, 3〉.

Notice that the second components in the states having the same q are not

necessarily consecutive numbers, in the sense that it is possible to have some gaps

in the numbering as illustrated in Fig. 2 (states of the form 〈q3, x〉 in the automaton

on the right).

We point out that the automaton A′ can be simulated without explicitly con-

structing its transition table. Indeed, to simulate A′ it is enough to know the value

of β, which can be computed from the transition table of A, and to follow the

transitions of A applying (1) to compute the states reached by A′. So, a concise

representation of A′ is given by the value of β and the automaton A. We will dis-

cuss later in this section how to compute β and how much the value of the second

component of a state of A′ can be large.

Even when applied to a minimum dfa, the above construction produces a rev-

dfa which is not necessarily minimal as illustrated in Figs. 3 and 4: in Fig. 3 a

minimum dfa M = (Q,Σ, δ, qI , F ) and an equivalent minimal rev-dfa (obtained

by applying the algorithm in Ref. [4]) are shown. Notice that the minimal rev-dfa

contains five states which are equivalent to q7. Instead, Fig. 4 shows the rev-dfa A′

obtained by the above construction (notice that β = 3 and the chosen order for

each set of states with outgoing transitions to a reversible state with the same

letter is: (q2, q3) for δR(q4, b), (qI , q5, q6) for δR(q7, a), and (q5, q6) for δR(q7, b)). In

particular, A′ contains six states equivalent to q7.

It could be interesting to observe that, by choosing a different order for the

states in δR(q, a), q ∈ Q, a ∈ Σ, and applying the same construction, the minimum

automaton in Fig. 3 is simulated by a minimal rev-dfa. For example, the minimal

rev-dfa in Fig. 5 is obtained by applying the construction to A and consider-

ing the following order: (q3, q2) for δR(q4, b), (q6, q5, qI) for δR(q7, a), and (q6, q5)

for δR(q7, b).
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qI

q1

q2 q3

q4

q5 q6

q7

b

b
a

b
b

b
a

b, a
b, a

a

b

b
a

b b

b
a

b
a

b, a b, a b, a b, a

a

Fig. 3. A minimum dfa and an equivalent minimal rev-dfa.

q′I

q7, 0 q7, 1 q7, 2 q7, 3 q7, 4 q7, 5

b

b
a

b b

b
a

b
a

b
a

b
a

b
a

b
a

a

Fig. 4. A non minimal rev-dfa obtained by applying the construction to the minimum dfa in
Fig. 3 where β = 3.
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qI , 0

q1, 0

q2, 0 q3, 0

q4, 1 q4, 0

q5, 1 q6, 1 q5, 0 q6, 0

q7, 4 q7, 3 q7, 1 q7, 0

q7, 2

b

b
a

b b

b
a

b
a

b, a b, a b, a b, a

a

Fig. 5. A minimal rev-dfa obtained by applying the construction to the dfa in Fig. 3, for a

suitable chosen order for the states with outgoing transitions on the same symbol to irreversible

states.

There also exist cases in which the (non)minimality is not influenced by the

selected order of the states. Let us consider, for example, the automaton in Fig. 6.

Recalling that the simulation increases the value of x in each pair 〈q, x〉 only when an

irreversible transition is encountered along a path, let us show how the construction

works. For the sake of simplicity, we proceed by analyzing the states in topological

order.

Starting from q′I = 〈qI , 0〉 and reading b(a + b), no irreversible state is passed

through, so the second parts of the state pairs do not change. Reading the sym-

bol b, the state q4 can be reached from q2 and q3. Since there are no copies of

these states, the only possible reached states should be 〈q2, 0〉 and 〈q3, 0〉, lead-

ing to the state set {〈q4, 0〉, 〈q4, 1〉}, independently from the chosen order of the

states {q2, q3} = δR(q4, b). Thus, by reading a or b, it is possible to reach the

states {〈q5, 0〉, 〈q6, 0〉, 〈q5, 1〉, 〈q6, 1〉}. Let us now consider the state q7: it can be

reached from 〈qI , 0〉, 〈q2, 0〉, and 〈q3, 0〉 with the letter a, thus leading to the states

in {〈q7, 0〉, 〈q7, 1〉, 〈q7, 2〉} = rq7,a, independently from the chosen order of the ele-

ments in δR(q7, a). Furthermore, q7 can be also reached from the states q5 and q6
by reading the symbol b. Recalling that the only reached states in the simulation

equivalent to q5 and q6 are 〈q5, 0〉, 〈q6, 0〉, 〈q5, 1〉, and 〈q6, 1〉, it is possible to reach

the states in {〈q7, 0〉, 〈q7, 1〉, 〈q7, 3〉, 〈q7, 4〉} = rq7,b by reading a b, independently

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
19

.3
0:

11
57

-1
17

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IL
A

N
 o

n 
09

/2
3/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 6, 2019 16:50 112-IJFCS 1940033

Concise Representations of Reversible Automata 1167

qI

q1

q2 q3

q4

q5 q6

q7

b

b
a

b
b

b
a

a

a

b
b

a

q7 q7q7 q7

b

b
a

b b

b
a

b
a

a abb b b

a

Fig. 6. A minimum dfa for which it is not possible to simulate the rev-dfa by using the con-
struction based on the knowledge of β and an equivalent minimal rev-dfa obtained by applying

the algorithm outlined in Sec. 2.

from the chosen order of the states in δR(q7, b). So, considering all the reached

states of the simulated automaton, it is possible to observe that there are five copies

equivalent to q7, while the minimum number of copies of such a state, obtainable

by applying the algorithm by Holzer, Jakobi, and Kutrib outlined in Sec. 2, would

be four, as shown in Fig. 6, i.e., #(rq7,a ∪ rq7,b) > c(q7), where c(q) denotes the

number of different states equivalent to q in any minimal rev-dfa (cf. Lemma 2).

In Theorem 4 it has been proved that when a dfa A does not contain the forbid-

den pattern, then the automaton A′ obtained by applying the above construction

is finite. Furthermore, by Theorem 3, A′ is reversible and, as already observed, not

necessarily minimal. Hence, it is interesting to know what is the maximum value

of the second component in a state of A′. In order to give a bound we will use the

following lemmata.

Lemma 5. Given a dfa A with at least two states, if the initial state qI is not

reversible or every state other than qI is not reversible, then A contains the forbidden

pattern.

Proof. Let A = (Q,Σ, δ, qI , F ) be a dfa. Since transitions entering the initial

state qI can only arrive from states in the same scc of qI , if the initial state would

be irreversible, then A should contain the forbidden pattern.
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Suppose now that qI is reversible and every state other than qI is irreversible.

Let p0 be one of them. Then, there are two incoming transitions in p0 with the

same letter a0 from two different states. At most one of them could be qI , while the

other one, say p1, must be irreversible. Hence, even in p1 there are two incoming

transitions with the same letter a1 from two different states, where at least one

of them, say p2, is irreversible. By iterating the argument we can construct an

arbitrarily long sequence of irreversible states p0, p1, p2, . . . and letters a0, a1, a2, . . .

such that #δR(p`, a`) > 1 and δ(p`+1, a`) = p` for ` ≥ 0. Since Q is finite, sooner

or later we will find i, j, i < j, such that pj = pi. This implies that there is a

string w = aj−1aj−2 · · · ai+1 such that δ(pj , wai) = pi. Since pi = pj and pi has

two incoming transitions on the same letter ai we conclude that A contains the

forbidden pattern.

We are now ready to prove the following lemma.

Lemma 6. Let A′ = (Q′,Σ, δ′, q′I , F
′) be the automaton obtained by applying the

above construction to a dfa A = (Q,Σ, δ, qI , F ) which does not contain the for-

bidden pattern. Given w ∈ Σ∗ and q = δ(qI , w), let p1, . . . , pk ∈ Q be all the

states reached by irreversible transitions during the computation of A on input w.

Then δ′(q′I , w) = 〈q, x〉, where 0 ≤ x < βk.

Proof. Let w0, . . . , wk be k + 1 strings such that w = w0 · · ·wk and δ(qI , w0) =

p1, δ(p1, w1) = p2, . . . , δ(pk−1, wk−1) = pk, δ(pk, wk) = q. Notice that if q is an

irreversible state, then pk = q and wk = ε.

By construction of A′, there exists the path δ′(〈qI , 0〉, w0) = 〈p1, x1〉,
δ′(〈p1, x1〉, w1) = 〈p2, x2〉, . . . , δ′(〈pk−1, xk−1〉, wk−1) = 〈pk, xk〉, δ′(〈pk, xk〉, wk) =

〈q, x〉. It is possible to observe that, since pk is the last irreversible state along the

path from qI to q, xk = x. Then, from the definition of δ′, we have 0 ≤ x1 < β,

0 ≤ x2 = x1β < β2, 0 ≤ x3 < β3, . . . , 0 ≤ xk−1 < βk−1, 0 ≤ xk = x < βk.

As a consequence of Lemma 6, the value of the second components of states

of A′ is smaller than βk, where k is the maximum possible number of irreversible

states along a path starting in the initial state. Considering Lemma 5, we obtain:

Corollary 7. If a dfa A with #Q ≥ 2 does not contain the forbidden pattern, then

the maximum value of the second component of a state of A′ obtained applying the

above construction to A is smaller than β#Q−2.

Observe that the maximum value of the second component in a state of A′ is

reached when in each irreversible state r of A the maximum number of incoming

transitions for the same letter a is equal to β, i.e., #δR(r, a) = β. Two examples

have been shown in Figs. 1 and 2. The dfa on the left of Fig. 2 has a path from qI
to q3 reading the string w = aba containing all irreversible states.

We also observe that β has an important role in the construction, so we

believe useful to outline how β can be computed (Algorithm 1). Given a
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Algorithm 1. Computation of β from a dfa A = (Q,Σ, δ, qI , F ) where Q =

{q1, . . . , qn}
1: Let C be an array of size n

2: β ← 0

3: for all a ∈ Σ do

4: for i← 1 to n do

5: C[qi]← 0

6: for i← 1 to n do

7: qt ← δ(qi, a)

8: C[qt]← C[qt] + 1

9: m← max{C[qi] | qi ∈ Q}
10: if m ≥ β then β ← m

11: return β

dfa A = (Q,Σ, δ, qI , F ) containing only useful states, we assume that δ resides in a

transition table T of size #Q ·#Σ. The key observation is that a state is irreversible

with respect to a symbol when it occurs more than one time in a column of T .

Hence, the problem can be reduced to find the maximum number of occurrences

of a state in a column of T . The algorithm uses an array in which the number of

occurrences of each state is stored (Lines 4–8). For each column of T we can find the

maximum number of occurrences of some state (Line 9). The value can be stored

in a variable and updated at each iteration. In this way the algorithm keeps in the

variable the current maximum value. The final value of the variable is the value

of β. Since we need to visit each column of T , the overall time is O(#Q ·#Σ), which

is linear in the cardinality of Q.

4. Another Concise Representation

The drawback of the representation described in Sec. 3 is that the reversible automa-

ton is not necessarily minimal. In this section we give a different representation

which avoids such problem. Before proceeding, let us recall the properties related

to minimal rev-dfas shown in Lemma 2. According to these, all the minimal rev-

dfas accepting L have the same “state structure”, in the sense that all of them

should contain exactly c(q) states equivalent to each state q of M .

Here we present an easy way to compute the value of c(q), for each q ∈ Q of

a given automaton M not containing the forbidden pattern, that is summarized in

Algorithm 2.

The algorithm firstly transforms the transition graph of M by decomposing it

in sccs, replacing each scc by a single state, and linking with an edge two sccs C′
and C′′, with C′ 6= C′′, if there exist two states p ∈ C′ and q ∈ C′′ such that δ(p, a) = q

for some symbol a. This is summarized in Line 1. After that, the obtained acyclic
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Algorithm 2. Computation of c(p) for each p ∈ Q.

1: Let SM be the graph representing the sccs of the transition graph of M

2: Let LSM be the list of the sccs of M sorted by topological order �
3: for all sccs C ∈ LSM do

4: max c ← 1

5: for all states q ∈ C do

6: for all letters a ∈ Σ do

7: max c ← max{max c,
∑
p∈δR(q,a)\C c(p)}

8: for all states q ∈ C do

9: c(q)← max c

10: return c

graph SM can be sorted in topological orderb (�, Line 2). For further details about

these constructions see, for example, [2, Chapter 23].

Then, all c(q) are computed by analyzing the sccs in topological order in the

following way (Lines 3–9): when a scc C is considered, first of all the algorithm

computes for each state q ∈ C the maximum number of transitions on the same

symbol a entering q from sccs different from C, where a transition from p to q is

counted c(p) times, i.e., the algorithm computes
∑
p∈δR(q,a)\C c(p), for all q ∈ Q

and a ∈ Σ and stores the maximum of all such values (Lines 5 – 7). This value

is assigned as c(q) to each q ∈ C (Lines 8–9). Note that, analyzing the sccs in

topological order, the value of c(p) is used for all the states p in the set δR(q, a)\C
when the algorithm is going to compute c(q), for q ∈ C. Obviously, for each state q

in the first scc CqI , δR(q, a)\CqI = ∅.
If M does not contain the forbidden pattern, then for each p ∈ CqI , c(p) = 1

and the set δR(p, a)\CqI is empty. As a consequence, the instruction at Line 7 does

not produce any increment of max c for any state in the scc under consideration.

It is easy to see that Algorithm 2 works in polynomial time: it is well known

that operations at Lines 1 and 2 require time O(#V + #E), where V and E are,

respectively the set of vertices and the set of edges of the graph under consideration.

So, in our case, the time for compute SM and LSM is O(#Q). From Line 3 to 9,

the algorithm analyzes the incoming transitions to each state q. This can be done

in time O(#Q) assuming that Σ is fixed. So, the Algorithm 2 uses O(#Q) time.

The following property will be useful for the construction:

Lemma 8. Let δR(p, a) = {qj1 , . . . , qjk}, k ≥ 1, p, qj1 , . . . , qjk ∈ Q, and a ∈ Σ.

Then
∑k
h=1 c(qjh) < c(p) and, consequently,

∑i−1
h=1 c(qjh) + x < c(p), for i =

1, . . . , k, 0 ≤ x < c(qji).

bNotice that the first scc, according to the topological order, is the one containing the initial

state. Hence, there are no edges from other sccs entering it.
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Proof. We observe that the elements of the set {
∑i−1
h=1 c(qjh) +x | 0 ≤ x < c(qji)},

entirely cover an interval [0,m) with m =
∑k
h=1 c(qjh).

We are going to prove that m ≤ c(p).
From the Algorithm 2, m =

∑k
h=1 c(qjh) =

∑
q∈δR(p,a)\C c(q) is the number of

transitions on symbol a entering p when all the components C′ � C, with C′ 6= C,
have been processed (and the algorithm is going to consider the component C).

Since Algorithm 2 computes c(p) for each state p ∈ Cp by selecting the maximum

number of transitions on the same letter entering a state in Cp, we can conclude

that m ≤ c(p).

We are now ready to present the construction which leads to our second concise

representation. Let M = (Q,Σ, δ, qI , F ) be a minimum dfa accepting a reversible

language L. We define the following dfa A′ = (Q′,Σ, δ′, q′I , F
′):

• Q′ = {〈q, x〉 | q ∈ Q, 0 ≤ x < c(q)},
• q′I = 〈qI , 0〉,
• F ′ = {〈q, x〉 | q ∈ F, 0 ≤ x < c(q)},
• The transitions are defined as follows:

Let δ(q, a) = p and δR(p, a) = {qj1 , . . . , qjk}, k ≥ 1 for q, p ∈ Q, a ∈ Σ. Then:

δ′(〈q, x〉, a) =

〈
p,
∑
h<i

c(qjh) + x

〉
, (2)

where i ∈ {1, . . . , k} is such that q = qji and 0 ≤ x < c(q).

Notice that by Lemma 8 the second component is less than c(q). Hence the

function δ′ is well defined.

We will prove that A′ is a minimal rev-dfa equivalent to M .

Two examples related to the construction are shown in Figs. 7 and 8. Let us apply

the construction to the minimum dfa M in Fig. 2, which gives the machine shown

qI , 0

q1, 0

q2, 0

q3, 0

q2, 1

q3, 1

q3, 2

a

b

a

b

a

a

Fig. 7. A minimal rev-dfa obtained by applying the construction based on the knowledge of c(q)
for each q ∈ Q to the minimum dfa in Fig. 2.
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qI q1

q2

q3 q4

q5

a

a

b
b

a

b
a

a

b
b

a

c

qI , 0 q1, 0

q2, 0 q2, 1

q3, 0 q4, 0 q3, 1 q4, 1

q5, 0 q5, 2 q5, 1 q5, 3

a

ab b

a a

a

a

b
a

a

b

b b b b

a a a a

c

Fig. 8. A dfa and an equivalent minimal rev-dfa.

in Fig. 7. The topological order � of the sccs of M clearly is qI � q1 � q2 � q3.c In

particular, c(qI) = c(q1) = 1, c(q2) = 2, c(q3) = 3. Given for instance δ(q1, b) = q2,

δR(q2, b) = {qI , q1}, then δ′(〈q1, 0〉, b) = 〈q2, c(qI) + 0〉 = 〈q2, 1〉.
Notice that, by applying the construction of Sec. 3 to the same dfa (Fig. 2), there

are differences between the second components of the states equivalent to q3. In par-

ticular, in the previous construction, the set of the second components of equivalent

states could contain gaps, even if the resulting automaton was minimal. By applying

the construction described in this section, instead, the set of the second components

of the states equivalent to any state q ∈ A is equal to {0, . . . , c(q)− 1}. Further-

more, we remind the reader that the reversible automaton obtained by applying the

construction described in Sec. 3 is not necessarily minimal.

Now we apply the construction to the minimum dfa M in Fig. 8. The states

of M are grouped into the sccs {qI , q1}, {q2}, {q3, q4}, {q5}. Consider the following

number of copies c(q): c(qI) = c(q1) = 1, c(q2) = c(q3) = c(q4) = 2 and c(q5) = 4.

For instance, given δ(q4, b) = q5, δR(q5, b) = {q3, q4}, we have δ′(〈q4, 0〉, b) =

〈q5, c(q3) + 0〉 = 〈q5, 2〉.

cA generalization of this example in which the number of copies c(q) of a state q ∈ Q follows the
sequence of Fibonacci is given in [4, Example 9].
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Note that, even in this case, it is possible to simulate an irreversible computation

of the rev-dfa A′ without explicitly constructing it: given a letter and knowing the

state in which the automata is, given by the tuple 〈state, index〉, it is always possible

to obtain the next state. As example, consider the minimal dfa showed in Fig. 8 (on

the left) and the input string x = abbab. So, the computation of the simulated rev-

dfa passes through the following states: 〈qI , 0〉
a→ 〈q1, 0〉

b→ 〈q2, 0 + 1〉 = 〈q2, 1〉
b→

〈q3, 1 + 0〉 = 〈q3, 1〉
a→ 〈q4, 1〉

b→ 〈q5, 1 + 2〉 = 〈q5, 3〉.
The main difference between this simulation and the previous one based on

the knowledge of β is that, starting from the minimum dfa accepting a reversible

language, the resulting automaton is minimal. Such a property is proved in the

following theorem.

Theorem 9. Let M = (Q,Σ, δ, qI , F ) be a minimum dfa accepting a reversible

language L. Let A′ = (Q′,Σ, δ′, q′I , F
′) be the dfa obtained by applying the con-

struction to M , then L(A′) = L, and A′ is reversible and minimal.

Proof. First, it is enough to observe that each 〈q, x〉 ∈ Q′ is equivalent to q ∈ Q.

Second, we have to prove that for each a ∈ Σ, 〈q̄1, x1〉, 〈q̄2, x2〉 ∈ Q′,

〈q̄1, x1〉 6= 〈q̄2, x2〉, implies that if both δ′(〈q̄1, x1〉, a) and δ′(〈q̄2, x2〉, a) are defined

then they are different. Observe that δ′(〈q̄i, xi〉, a), for i ∈ {1, 2}, can be undefined

only if δ(q̄i, a) is undefined. We proceed by studying the following cases:

• If q̄1 = q̄2 and x1 6= x2 then δ(q̄1, a) = δ(q̄2, a) = p for some p ∈ Q, other-

wise M would be nondeterministic. Let δR(p, a) = {qj1 , . . . , qjk}, k ≥ 1. Then

there exists i such that q̄1 = q̄2 = qji . Considering (2), we have δ′(〈q̄1, x1〉, a) =

〈p, y1〉 and δ′(〈q̄1, x2〉, a) = 〈p, y2〉, where y1 =
∑
h<i c(qjh) + x1 and y2 =∑

h<i c(qjh)+x2. Since x1 6= x2 we conclude that y1 6= y2, hence 〈p, y1〉 6= 〈p, y2〉.
• If q̄1 6= q̄2 then either δ(q̄1, a) = p1 and δ(q̄2, a) = p2, with p1 6= p2 or δ(q̄1, a) =

δ(q̄2, a) = p.

– If p1 6= p2, then the states δ′(〈q̄1, x1〉, a) = 〈p1, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p2, y2〉
in A′ are different regardless of the values of y1 and y2.

– If δ(q̄1, a) = δ(q̄2, a) = p, then let δR(p, a) = {qj1 , . . . , qjk}, k > 1. Since q̄1 6=
q̄2, there exist i, i′, with i 6= i′ such that q̄1 = qji and q̄2 = qji′ . Hence,

δ′(〈q̄1, x1〉, a) = 〈p, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p, y2〉, where y1 =
∑
h<i c(qjh)+x1

and y2 =
∑
h<i′ c(qjh) + x2, 0 ≤ x1 < c(qji) and 0 ≤ x2 < c(qji′ ). Without loss

of generality, suppose i < i′. Hence, y1 =
∑
h<i c(qjh) + x1 <

∑
h≤i c(qjh) ≤∑

h<i′ c(qjh) ≤ y2. This implies that 〈p, y1〉 6= 〈p, y2〉.

Third, we observe that by Lemma 8, A′ contains at most c(p) copies of any

state p ∈ Q. However since A′ is reversible, by Lemma 2 it should contain at

least c(p) many different states equivalent to p. Hence we conclude that A′ is a

rev-dfa containing exactly c(p) copies of each state p of the minimum dfa M .

According to Lemma 2 this implies that A′ is minimal.
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According to the results in this section, given a minimum dfaM , after comput-

ing c(q) for each state q of M , we can simulate a minimal rev-dfa A′ equivalent

to M , without explicitly representing it, starting from the initial state q′I = 〈qI , 0〉
and using (2) at each step to compute the next state. Since A′ can have expo-

nentially many states with respect to M , this avoids to write down a large

description.

5. Conclusion

We have presented two concise representations of a reversible automaton A′ equiv-

alent to a given dfa A. Both of them allow to simulate the rev-dfa without

explicitly writing down its transition table which, in the worst case, can be expo-

nentially larger. In particular, the algorithm for converting a dfa accepting a

reversible language to an equivalent minimal rev-dfa given in Ref. [4] itera-

tively creates copies of sccs of A in order to eliminate irreversibility. Here, for

the simulation of A′, we follow the computation on A and we use a variable,

updated at each step of computation, containing the copy index of the corresponding

scc in A′.

The first representation in Sec. 3 requires an easy precomputation of a parame-

ter β, but the simulated automaton is not necessarily minimal. Instead, the second

representation in Sec. 4 requires the more involved precomputation of the func-

tion c, but the simulated automaton is minimal. Both precomputations can be done

in polynomial time. Notice that the time required for the simulation of one com-

putation step of a rev-dfa in one of these forms is the same as for the given dfa,

with additional constant time for updating the variable.

Even when the rev-dfa A′ obtained from a minimum dfa A in the first repre-

sentation is not minimal, its size is not too far from the size of a minimal rev-dfa

in the following sense. In Lemma 6 we gave an upper bound of the maximum value

of the second component in a state of A′, i.e., βkp , where kp is the maximum num-

ber of irreversible states on a path in A from the initial state qI to p. Since A′ is

reversible we have c(p) ≤ βkp (Lemma 2). Furthermore, in the path at least two

copies of each irreversible state should be created to obtain a reversible automaton.

Then, 2kp ≤ c(p) ≤ βkp . This implies that A′ has a polynomial number of states

with respect to the number of states of A if and only if each minimal rev-dfa

equivalent to A has a polynomial number of states.

Recently, the definition of reversibility for finite automata has been deepened and

relaxed, thus allowing different degrees of reversibility, the degree one corresponding

to reversible automata [9]. In particular, finite automata whose computations can

be reversed deterministically by knowing the last k symbols read from the input, for

a fixed k (reversed k-lookahead), have led to the notion of weak irreversibility [13]. It

could be interesting to extend the results about the succinctness of representations

of rev-dfa to weakly irreversible automata.
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