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Neural Correlates of Esophageal Speech: An fMRI Pilot StudyQ1 X X
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Summary: Objectives. The esophageal speech is one of the possible alaryngeal voices resulting after total lar-
yngectomy. Its production is made by the regurgitation of the air coming from the esophagus, sonorized through
the passage from the walls of the upper esophageal sphincter. The neural correlates of this voice have never been
investigated, while the neural control of laryngeal voice has been already documented by different studies.
Methods. Four patients using esophageal speech after total laryngectomy and four healthy controls underwent
functional magnetic resonance imaging. The fMRI experiment was carried out using a “Block Design Paradigm.”
Results. Comparison of the phonation task in the two groups revealed higher brain activities in the cingulate
gyrus, the cerebellum and the medulla as well as lower brain activities in the precentral gyrus, the inferior and
middle frontal gyrus and the superior temporal gyrus in the laryngectomized group.
Conclusions. The findings in this pilot study provide insight into neural phonation control in laryngectomized
patients with esophageal speech. The imaging results demonstrated that in patients with esophageal speech,
altered brain activities can be observed. The adaptive changes in the brain following laryngectomy reflect the
changes in the body and in the voice modality. In addition, this pilot study establishes that a blocked design
fMRI is sensitive enough to define a neural network associated with esophageal voice and lays the foundation for
further studies in this field.
Key Words: Esophageal speech−Voice−Neuroplasticity−Larynx−Laryngectomy.

INTRODUCTION
Laryngeal carcinoma is one of the most common malignant
neoplasms in the head and neck area, the incidence of laryn-
geal cancer accounts for about 2.5% of all malignant neo-
plasms in men and 0.5% in women. In 2017, 150,000 cases
were estimated worldwide.1,2 About 20% of laryngeal
tumors can be treated only through total laryngectomy
(TL), which remains the golden standard of treatment for
advanced infiltrative T4 tumors.2−4 The intervention of TL
consists in the complete removal of the larynx4 and involves
the creation of a permanent opening of the trachea at the
cutaneous level in order to ensure a respiratory tract.5−7

The separation of the airways from the digestive ones leads
above all to difficulty of verbal expression.5−8 To communi-
cate in the absence of the larynx, the laryngectomized sub-
ject has to learn a new vocal behavior.

There are several possible ways to restore a "sound emis-
sion": artificial laryngeal voice with a voice prosthesis, tra-
cheo-esophageal speech/voice, and esophageal speech/
voice.8,9 The esophageal speech, or the esophageal voice,
consists in the elaboration of regurgitation of air coming
from the esophagus, sonorized through the passage from
the walls of the upper esophageal sphincter. Sound reso-
nance also occurs in the pharynx, in the mouth, and in the
nose, with simultaneous articulation using tongue, lips, and
teeth.9,10 The neural correlates of this voice have never been

investigated, while the neural control of laryngeal voice has
been already documented by different studies. In fact, in a
typical situation, the vocal production is mainly attributed
to the larynx and from a neural perspective, the larynx sends
and receives information mainly from the X cranial nerve,
the vagal nerve, and from the spinal nerves (Detailed
description in Appendix A).The central control of voice pro-
duction is a hierarchically organized, related to the different
level of complexity and it develops gradually during child-
hood until control of speech production is achieved. This
bottom up neural system goes from the control of innate
vocalization (under lower brainstem control) to the control of
vocalization initiation, motivation, and expression of volun-
tary emotional vocalization (under gray periaqueductal
(PAG), limbic structures and anterior cingulate cortex con-
trol) until the voluntary vocal motor control (under laryngeal
motor cortex and its connections)15,16 (See “Appendix B”).

It can be said that the central control of the oral produc-
tion is conducted by two parallel pathways, the ACC-PAG
pathway, responsible for the control of nonverbal and emo-
tional productions, and the laryngeal motor cortex pathway
(LMC), which represents the highest level of voice control
regulating the motor control of voluntary vocal production,
such as speech and song, as well as the voluntary production
of innate vocalizations.12,13,15−18,21−26

When children grow up, they develop the ability to con-
trol innate vocalizations: shrieking can be produced in the
absence of pain or suppressed in the presence of pain. The
control of innate vocalizations, and thus of emotional states,
become voluntary and for this reason, the nuclei of the
brainstem and the vocal patterns generator require input
from the upper cerebral regions, such as PAG and
ACC.13,15,17,18 PAG received information from ACC and
projects to the reticular formation of the lower brain stem.
PAG represents an obligatory relay station within the ACC-
PAG pathway and plays a gating role in triggering a vocal
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response and modulating its intensity.12 ACC is involved in
the voluntary control of emotional states and that of innate
motor patterns, such as vocal initiation and its emotional
intonation. The destruction of the ACC causes a loss of vol-
untary control of the emotional tones during the conversa-
tion, akinetic mutism, or even motor aphasia, while the
lesions in the PAG lead to mutism. The electrical stimula-
tion of PAG leads to voice production in mammals and in
humans, while the stimulation of ACC affects only
mammals.12,13,17,19,20

The highest level within the hierarchy of the voice control
system is represented by the LMC, and its input and output
structures. The laryngeal motor area has an extensive corti-
cal and subcortical network (resumed in Appendix C) and is
located in the Brodmann 4p area of the ventral primary
motor cortex (M1) in the PreCentral Gyrus (PCG) of the
frontal lobe. Cytoarchitectonically, other studies reported in
a meta-analysis by Simonyan,11 showed an additional peak
of activation in the left premotor cortex (Brodmann area 6),
which is similar to the location of LMC in nonhuman pri-
mates. Neuroanatomically, the laryngeal cortical motor
path dilates in the pyramidal tract, projecting directly bilat-
erally to the ambiguus nucleus of the brainstem, the site of
the laryngeal motor neurons. In fact, due to this bilateral
direct projection, the stimulation of LMC in one hemisphere
yields to both vocal folds adduction in the larynx, a behav-
ior that is independent of other articulatory
movements.11,16,17,21−23 Although the direct LMC-ambi-
gual connectivity has positive characteristics, like the modu-
lation of brainstem activity, it also includes negative sides
such as the inability to control the production of learned
vocalization, when the LMC is lesioned bilaterally in
humans.17,24,27 Besides LMC, the so-called laryngeal areas
include: superior frontal gyrus (SFG), middle frontal gyrus
(MFG) and inferior frontal gyrus (IFG). The frontal gyrus
is the seat of the premotor cortex and the supplementary
motor area (SMA) which plays a role in the sequential coor-
dination of effector during the vocal production and in
motor initiation and planning.13,17

The neuroimaging studies on the voice are not very
numerous and those on voice disorders are even rarer: cur-
rently, the studies in the literature are only related to vocal
pathologies, such as spasmodic dysphonia, especially in par-
kinsonisms, idiopathic unilateral paralysis and muscular
tension dysphonia.14,17,24,29−31 Moreover, almost every pre-
vious study has been focused on the impact of neurological
voice disorders on the CNS, and only a very limited number
of studies investigated the effect of structural dysphonia.29

Each adaptation in the larynx requires adaptation and
updating of neural models for neural plasticity reasons23:
numerous studies have shown that when one part of the
body is deprived, as after amputation of a limb, somatosen-
sory and motor cortices undergo neuroplastic changes lead-
ing to phenomena such as a phantom limb.32 In
laryngectomized patients adaptation of the altered anatomy
occurs, which probably also requires reorganization of cor-
tical input from the central nervous system. However, these

central and adaptive mechanisms have not yet been
described.

The present study attempts to address this problem using
functional magnetic resonance imaging (fMRI). The main
objective is, therefore, to study the brain activity during
phonation in laryngectomized patients with an erigmofonic
voice compared to healthy controls, focusing in particular
on the activation of the laryngeal motor control areas
(LMC, PCG, SFG, MFG, IFG), investigating plasticity
mechanisms. The first (1) hypothesis is to find altered brain
activity related to voice control, due to the absence of lar-
ynx. In particular, we expect a lower activation of laryngeal
areas in laryngectomized subjects. (2) A secondary objective
is to evaluate the activation of other brain areas such as the
medulla oblongata in laryngectomized patients with an erig-
mofonic voice. In the patient with an erigmophonic voice,
the subject vocalizes by performing specific eruptions, tak-
ing air from the stomach and passing it through the esopha-
gus and the pharynx; for this reason, the third (3)
hypothesis is that, in the absence of larynx and vocal func-
tion of the lungs, there could be a greater activation of the
postrema area, located in the medulla oblongata, which is
responsible for the eruption in healthy subjects.33

MATERIAL AND METHODS
From August 2018 to September 2018, 10 subjects who had
undergone TL and using esophageal voices were recruited.

The inclusion criteria adopted were:

1. Subjects whose signature of informed consent has been
collected (also by a neighboring family member)

For the larynctomizedgroup in particular:

1. Having been subjected to a TL.
2. Use of the esophageal speech.

For the control group:

1. The age has to be matched with the case-group.

The exclusion criteria adopted are:

1. Neurological disorders
2. Diagnosis of dementia, or other cognitive impairment
3. Pregnancy
4. Claustrophobia
5. Pacemaker/cardioversion defibrillator
6. Metal clips, that is metal, noncompatible biomedical

devices

Clinical-anamnestic data was anonymised and pseudony-
mised, collected in an excel database and only the study par-
ticipants had access to it.

The protocol of the study has been accepted by the Ethi-
cal Commision of the Hospital “Maggiore della Carit�a” of
Novara, Italy.
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Sample recruitment
The total laryngectomized subjects have been contacted via
the Italian AILAR-laryngectomized association. The study
project was presented during an esophageal voice lesson at
the headquarters of the AILAR association of Novara. Sub-
sequently, the subjects who decided to join the project were
contacted personally by telephone to check the inclusion
and exclusion criteria.

For the control group, the subjects recruited were age-
matched patients. These were already supposed to undergo
morphological MRI for cephalgia and they were asked to
perform fMRI for generic experimental reasons. They have
been kept blinded and signed a dedicated informed consent.

Tasks
Before the starting of the fMRI protocol, each subject met
the speech-language therapist of the Department of Otolar-
yngology of Novara for training in the production of differ-
ent tasks in a natural way, trying to minimize orofacial
movements. An informed consent form, an information
module and the magnetic resonance questionnaire (in the
Italian language) were delivered before the fMRI acquisi-
tion and signed under the Radiologist supervision.

During the study protocol conducted at the Department
of Radiology, the cortical activity of the subjects has been
evaluated through the fMRI, subjecting each subject exam-
ined to vocal tests.

The protocol was inspired by different studies: a study by
Krishtopava and colleagues about phonation in function
muscle dystonia,17 and a study on neural bases of primary
muscle tension dysphonia from Nelson Roy.31

The functional magnetic resonance protocol provides one
unique task to perform in one session of scanners completed
on the same day. The activity has been presented in a block
design in which six 30-seconds rest blocks and six 30-seconds
active blocks alternated for a total of 6 minutes and 30 sec-
onds per activity starting with the rest period. During active
blocks the patient has been instructed to repeat in comfort-
able tones a sustained vowel "i" for about 5 seconds with an
interval of 5 seconds between a vowel and the next, resulting
in 3 productions during the active block of 30 seconds.

The production of the sound /i/ was chosen because this
sound requires a slight labial and dental opening, the posi-
tioning of the tongue at the bottom in an anterior position.
Compared to other sounds, the movement of the orofacial
muscles is minimal. The periods during which the subject
produced the different tasks have been announced through
the MR-compatible headphone.

The data obtained have been stored anonymously in a
virtual database with access restricted to studio employees
only.

Acquisition of functional magnetic resonance data
Magnetic resonance images were acquired with a Philips
Ingenia 3- Tesla magnetic resonance imaging (MRI) at the
Radiodiagnostic Department of the Hospital of Novara.

The subject’s head was firmly secured using a standard head
coil and ‘‘memory’’ pillow. Earplugs were used to help
block out scanner noise and to give commands. Subjects
performed each task as 30 epochs of an oral task alternating
with 30-seconds epochs of rest. During the protocol, the
instructions were communicated via earphones. The alter-
nation of the activity phases and the rest phases and the
beginning and the end of the production of the task in the
active phase have been signaled via headphones. All stimuli
were created and presented using NordicAktiva Software.

The functional magnetic resonance data were obtained
with a sequence T2 *—eco planar weight (EPI) (TR = 3000;
TE = 35; flip angle = 90°; FOV = 230; matrix dimension
94£ 94). 30 slices were acquired in interleaved mode with a
thickness of 4 mm each with a spacing of 1 mm between one
slice and the other and orientation of 30° in a clockwise
direction with respect to the plane passing through the front
and back joints (AC-PC); this to prevent the artifact from
susceptibility

For each subject, the total number of 126/126 of volumes
are acquired for a scan time of 18 minutes.

Image analysis
The images from fMRI were processed off-line to generate
statistical maps of brain activity using IViewBold on propri-
etary workstations (Intellispace, Philips, Belgium) with clus-
ters and thresholds set both at 3 Preliminarily in all
subjects, the functional magnetic resonance images were
motion-corrected in 6 directions by realignment of the set of
images to the first image in the subtracted set. Motion cor-
rection is necessary for fMRI studies to eliminate in-plane
or cross-plane head motion, which produces signal intensity
artifacts that appear identical to brain activity. Imaging
with head movement on the 3 axes over the 3 mm was
excluded from the analysis. The time-series data were con-
volved with a hemodynamic response function incorporat-
ing the hemodynamic delay. Therefore, the onset of activity
resulting from local hemodynamics lags the neural activity
by 6 seconds. Corrections for local and regional variations
in signal and filtering of noise (eg, cardiac- and respiratory
induced noise) were performed by spatially smoothing the
data with a Gaussian smoothing kernel of 8 pixels at full
width half maximum and applying high- and low-pass fil-
ters.The determination of BOLD signal activation maps in
patients after TL and in healthy controls was obtained fol-
lowing a block paradigm, comparing the rest periods with
the active phases within each subject.Then, both images
structural and functional ones have been coregistered. The
statistical maps deriving from the first-level analysis have
been visualized applying a threshold per cluster with a
threshold Z equal to 3 and a threshold of significance of the
cluster of t < 0.001. Subsequently, an analysis was carried
out between groups to search for any differences in BOLD
activation between patients with esophageal speech and
healthy controls; therefore, it was conducted statistical anal-
ysis with t test for unpaired data.
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RESULTS
From the 10 subjects, 6 have been excluded: 4 subjects for
health reasons and 2 because of exclusion criteria, such as
the presence of metallic clips.

In addition, 4 controls of comparable age were examined
and selected among subjects who were supposed to submit
the fMRI for other reasons not related to our study.

A total of 4 laryngectomized subjects and 4 healthy sub-
jects underwent functional imaging in this investigation.
The group of patients has a mean age of 66,25 years old and
contains 100% of males.The control group, on the other
hand, has an average age of years of 65,5 years old and is
also made up by males only. In the case groups, all the par-
ticipants underwent TL at least 2 years ago and they use an
esophageal speech from at least 1 year. More precisely 2
subjects have used it for 6 years, one subject for 2 years and
one for 1 year. This data reflects the different abilities of the
participants in performing the task. The demographic and
clinical data of the participants are summarized in Tables 1
and 2. The group of patients with esophageal voice and the
control group do not show statistically significant differen-
ces in age and sex. Within the group of controls, they do not
differ by age. Within the group of patients, they do not dif-
fer significantly by age but that is a significant difference in
time of acquisition of the voice after the interventionQ4 X X. This
last data reflects the different skill levels of the subjects in
the use of the esophageal voice.

Behavioral analysis
All subjects reported comfortable use of the device. The
average absolute displacement of the head during acquisi-
tion functional images were less than 3 mm for both patients
and controls.

All subjects from the control group have performed the
task correctly.

In the case group, only one subject performs the task
without any modifications. This subject is an esophageal

speech teacher, and therefore he can use and modulate the
voice in a perfect manner. Other two participants emitted a
shorter /i/ in the onset phase. One patient was suffering of
chronic obstructive pulmonary disease and therefore he
couldn’t perform the all task in the laying position, but only
in the standing position, thus he attempted to perform the
task as best as he could. This results in an over activation of
different areas, with several artifacts that were too high to
differentiate them from the areas of interest. One patient
with esophageal speech was therefore excluded from subse-
quent analyses due to overactivation of these areas, but it is
worth analyzing this in the context of further studies.

fMRI analysis
Within-group analysis
From the comparison between active periods and rest peri-
ods in the group of patients with esophageal speech, a signif-
icant bilateral activation with a left dominance emerged at
the level of the STG corresponding with the left
34,38,41,42,43 Brodmann areas (BA) and with the right
41,42,43 BA and at the level of the PCG (4 BA). Significant
activation of the cingulate gyrus (26,29,30,31 BA) and of
the medulla was detected. Hyperactivation of the cerebel-
lum with higher activation of the right side with a peak of
activation in the 3 and 6,7 lobuli, and a lower action in the
left side with the 4 lobulus.

The results are summarized in Table 3.
In the control group, the areas that were significantly

active at comparison between active periods and rest peri-
ods, are represented by the bilateral precentral gyri, with
higher activation in the left hemisphere (3,4 BA) and lower
in the right one (4 BA), and by the inferior and middle fron-
tal cortex, these areas are included in areas 9 and 46 of
Brodmann. The cingulate cortex is significative activated,
and STG is also hyperactive bilaterally with a left

TABLE 1.
Demographic Datas of Case and Control Group

Number Age Sex

Patients 4 66,25 4 M

Controls 4 65,5 4 M

TABLE 2.
Clinical Datas of Patients

TL Time From TL Use of ES

S1 2016 4 1

S2 2012 6 6

S3 2011 7 2

S4 2012 6 6

TABLE 3.
Brain Activation During Phonation in Laryngectomized
Subjects

Phonation in the Laryngectomized Group

Area Brodmann

Area

T peak Dimension

(mm3)

Right precentral

gyrus

4 3,6 46

Left precentral

gyrus

4 3,9 50

Right superior tem-

poral gyrus

41,42,43 3,4 269

Left superior tem-

poral gyrus

38,41,42,43 4,1 740

Cingulate gyrus 26,29,30,31 4,1 1561

Medulla oblongata 3,1 496

Right cerebellum 3,9 293

Left cerebellum 4 4279
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dominance. Significant cerebellar activation is present in
both sides and in this case the activation is greater in the
right cerebellum. The results are summarized in Table 4.

Between-group analysis
Subsequently, a comparative evaluation was carried out
between the case group and the control group. There was a
significant increase in the BOLD response in the control
group in the right STG, in the right middle frontal gyrus
and, particularly, in the left precentral gyrus (medium vol-
ume 1660). The motor laryngeal cortex, corresponding with
4p BA, showed an activation peak (P < 0.001, cluster Z = 3)
in all healthy subjects, unlike the laryngectomized group.
On the contrary, in the BOLD sequences at the subtentorial
level, the medulla was found to be hyperactivated exclu-
sively in the group of laryngectomized patients (Figure 1).
The cingulate gyrus and the cerebellum have been found to
be more active overall in the laryngectomized group with an
hyperactivation of the areas. The activation of the cingulate
was also more distributed in the laryngectomized group
than in the control group. The results are summarized in
Tables 5 and 6.

DISCUSSION
The purpose of this study was to investigate cortical and
subcortical activation changes after TL and therefore plas-
ticity mechanisms and to evaluate the activation of other
brain areas, such as the medulla oblongata. We have
hypothesized about different brain activation in laryngecto-
mized subjects using esophageal speech, particularly, in the
laryngeal motor control areas (LMC, SFG, MFG, IFG,
insula, midbrain) and about a greater activation of the

medulla oblongata, which is responsible for the eructation
in healthy subjects.

Four men after TL with esophageal speech and 4 healthy
men participated in the study. The paradigm explored the
neural control associated with phonation.

In the study, the brain activity in response to phonation of
/i/ shows bilateral activation of the precentral gyrus, the
superior temporal gyri, the cerebellum, the cingulate gyrus
and unilateral activation of the inferior and middle frontal
gyri in healthy subjects. These findings are in line with
recent fMRI studies including simple voice production
tasks17,21−23 (Appendix D).The areas observed in the previ-
ously reviewed studies are specialized for different func-
tions: the precentral gyrus and the middle and inferior gyri
have been, with the proper laryngeal areas, deemed respon-
sible for voice production due to vocal folds movements in
different studies by Kryshtopava.28 These areas, which
include M1 and SMA are involved in the initiation and exe-
cution of voluntary vocalization. Brown has identified the
VI lobule of cerebellum as also being primary areas of
motor laryngeal control.22 The STG and the MTG control
auditory feedback and self-monitoring. The cingulate cortex
activity is associated with the initiation of control and emo-
tional modulation, while the cerebellum is involved in motor
planning and coordination.17,24 In the laryngectomized-sub-
jects group, the main activations were found in the PCG,
the STG, the cingulate cortex, the cerebellum, and the
medulla oblongata. Compared to the healthy group, greater
activation of the cingulate cortex, left cerebellum and
medulla oblongata was observed, while the activation of the
inferior and middle frontal cortex, the left STG and of the
PCG was lower compared to the healthy group.

The imaging results supported the hypothesis that sub-
jects with esophageal speech may have altered brain activity
related to phonation control.

We hypothesized that the laryngeal areas would have
shown a lower activation, while different areas, like the
medulla oblongata, would have shown higher activation in
the laryngectomized subjects using esophageal speech.

The laryngeal areas, including PCG, IFG, and MFG,
allow voluntary modulations of pitch, intensity and harmo-
nious quality of vocal production in healthy subjects. Espe-
cially the IFG and the MFG, seat of the SMA are involved
in the control of more complex voice production, such as
syllable or speech. While MFG and IFG activation was not
significant, the PCG showed significant activation in this
group. Those study findings show that these areas are more
involved in the laryngeal voice, which is a more refined
voice, compared to the esophageal voice, which is rougher
and more transpiring with a low tone and a reduced volume
and which is related to the automatism of eructation. Never-
theless, even if with a lower activation, the PCG has been
involved in the production of alaryngeal voice during our
protocol. There are different explications why this area may
be activated even in the absence of the larynx. First of all,
even if the target of the paradigm was to detect neural corre-
lates of voice production while performing a /i/, the

TABLE 4.
Brain Activation During Phonation in the Healthy Group

Phonation

Area Brodmann

Area

T Peak Dimension

(mm3)

Right precentral

gyrus

4,6 4,1 400

Left precentral

gyrus

4,3 4,6 1350

Right middle fron-

tal gyrus

46 3,5 120

Left inferior frontal

gyrus

9 4,1 120

Cingulate gyrus 31 4 780

Right superior tem-

poral gyrus

41/42/43/38 3,8 588

Left superior tem-

poral gyrus

41/42/43 4,1 564

Right cerebellum 3,6,7 3,6 434

Left cerebellum 4 4,1 88
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TABLE 5.
Areas With Higher Activation in Control Group Compared With Laryngectomized Group

Healthy Group > Laryngectomized Group

Healthy Group Laryngectomized Group

Area BA Cluster (mm3) T value BA Cluster (mm3) T value

Right PCG 4,6 400 4,1 4,6 46 3,6

Left PCG 4,3 1350 4,6 3,4 50 3,9

Right MFG 46 120 3,5 - - -

Left IFG 9 120 4,1 - - -

Right STG 41/42/ 43/38 588 3,8 41,42, 43 269 3,4

FIGURE 1. Activation of the medulla and of the right cerebellum in laryngectomized subjects while performing the /i/ task (P < 0.001,
cluster Z = 3).
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production of this vowel, although requiring less orofacial
movements than other phonemes, involves in minimal part
the movement of the tongue, jaw, and lips. Moreover, in the
esophageal speech, in order to emit a sound, the tongue
injects air into the esophagus and therefore it has to move
even for producing the /i/ vowel. These considerations lead
to the first assumption, according to which an overlapping
activation between orofacial regions in M1 and the LMC
could exist. This has been reported in different studies
resumed in Appendix E. Even hypothesizing that the pro-
posed task does not involve other movements except those
laryngeal and that the localization of the larynx within the
motor cortex is specifically the one observed also in laryn-
gectomized subjects, namely the Brodmann area 4, other
explanations can still be taken in account.14,16,17,21,22,25,26 In
the brain of subjects missing the larynx, a plasticity phe-
nomenon, a reorganization of the brain itself when the sen-
sory input is lost, can occur, but the original functions of a
given brain area are not deleted. Scientists had so far
focused more on the study of the changes of brain images of
the amputee’s remaining limbs, to trace possible modifica-
tions. In a recent ultra-high-field neuroimaging study by
Kikkert and colleagues, individual fingers persist in the pri-
mary somatosensory cortex even decades after arm amputa-
tion. The finding reopens the question of what happens to a
cortical territory once its main input is lost and how long a
continued sensory input is necessary to maintain organiza-
tion in sensorimotor cortex.39 Also in our study, the brain
activity of the laryngectomized was weaker compared to the
control group, but not absent. Moreover, a joint action of
the laryngeal area and the cingulate area may control the
volitional nature of vocal production.

The cingulate area
The cingulate area, compared to the control group, shows a
higher and more distributed activation, with the involve-
ment of the posterior and middle cingulate gyrus and of the
anterior cingulate cortex as well.

This area is associated with voluntary motor control for
phonation, especially during emotional vocal modulations.
The cingulate complex is involved in the voluntary control
of emotional states of innate motor patterns, such as vocal
initiation and its emotional intonation. Moreover, the

middle cingulate cortex is involved in conflict monitoring,
willed action, and action selection. The cingulate cortex and
gyrus as well, take place, with the PAG, in the second level
of the hierarchical organization model proposed in different
studies and already explained in the second chapter. The
automatic vocalization, such as crying, laughter or scream,
is controlled and modulated by the subcortical regions of
the PAG and the cingulate gyri. Thus, the initiation and the
emotional control of esophageal speech production can be
controlled by these areas too. In fact, the esophageal speech
is made by the automatism of eructation.

The hyperactivation of the cingulate gyri could also
reflect the strong will that these subjects invest in producing
a new voice and the importance of the emotional control for
the production of this voice. In fact, the cingulate area is
involved in emotional voluntary control and, when it is
lesioned, leads to a state in which the patient has a defection
of emotional intonation and initiation.40

Medulla oblongata
Significant activation of the medulla has been detected in
the patients group, compared to the control group: this acti-
vation corroborates with the hypothesis of the study and is
not shown in healthy subjects. The medulla is part of the
brainstem, a region of the brain which is responsible for
reflex and innate actions, such as swallowing or eructation.
This finding can be explained with the physiology and neu-
rophysiology of eructation studied by Lang in 2015.33 In
fact, the esophageal speech, produced by laryngectomized
subjects, consists of the elaboration of an eructation of air
coming from the esophagus, sonorized through the passage
from the walls of the upper esophageal sphincter. The physi-
ologic eructation is composed by three independent phases:
gas escape through the lower esophageal sphincter relaxa-
tion, upper barrier elimination through the upper esoph-
ageal sphincter relaxation and gas transport phases. It is a
rapid movement and involves complex motor event of dif-
ferent body systems, that is, the digestive tract, the respira-
tory systems, and the orofacial systems. In esophageal
speech, there’s no involvement of the lungs or of the stom-
ach, only of the esophageal tract and the oral cavity. The
esophageal voice includes only the second phase, because
the air is injected from the mouth and doesn’t have to reach

TABLE 6.
Areas With Higher Activation in Control Group Compared With Laryngectomized Group

Laryngectomized Group > Healthy Group

Healthy Group Laryngectomized Group

Area BA Cluster (mm3) T value BA Cluster (mm3) T value

Cingulate cortex 26,29,

39,31

1561 4,1 31 780 4

Medulla oblongata 4279 4 - - -

Left cerebellum 4279 4 4 88 4,1
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the stomach. Studies in cats have found that by stimulating
the esophageal receptors with air pulse injection, the upper
barrier elimination phase, the area postrema (AP), subnuclei
of the nuclei tractus solitarius and the nucleus ambiguus are
activated.33 One unique aspect of neuronal activation dur-
ing this phase is the very significant activation of localized
areas of the AP, situated in the medulla oblongata. In fact,
It has been hypothesized, based on numerous studies on the
neural control of AP on emesis, that the AP is the major
integration nucleus also for activation of eructation.33

Moreover, the upper part of esophagus is made by striated
muscles, its contraction is initiated and generated by swal-
lowing pattern generator (SPG) located in the brainstem.41

Thus, the higher activation shown in laryngectomized sub-
jects can be due to this assumption. As a voice made by the
production of the eructation, its neural control may be con-
trolled by the lowest level of voice control, that is the brain-
stem. However, the esophageal voice represents a finer and
more structured action than mere belching. For this reason,
the voluntary production of the esophageal voice may
require the intervention of higher brain areas such as the
activation of the cingulate gyrus and of the motor area
which have a joint role in the voluntary production of voice
as mentioned before.

Cerebellum
Increased degrees of activation were also shown in the cere-
bellum. The cerebellum is known to have a role in plastic-
ity42 and to have projections to motor regions in the frontal
lobe, creating a cerebellar feedback loop for muscle move-
ments. Activation in frontal premotor and primary motor
areas and the cerebellum may demonstrate the brain’s skill
in adapting to changes in motor performance.29

Furthermore, the coordination role of the cerebellum has
been studied in depth and the higher activation of this area
may reflect a major need of coordination of the new struc-
tures involved in the esophageal voice, which are different
from the previous ones used for the laryngeal voice pro-
duced before TL.

Superior temporal gyrus
Besides the greater activation of the laryngeal areas, the
fMRI analysis uncovered increased activity in the left STG
in the control group. The STG has been associated with
auditory feedback and self-monitoring of voice produc-
tion.24,28 This hyperactivation in the subjects may be
explained by acoustical reasons. In fact, the laryngeal voice
compared to the esophageal speech, presents a higher tone
and volume which may result in higher auditory feedback.
Moreover, the loud sound of the fMRI may cover the
already low-volume esophageal speech and thus can inter-
fere with the auditory feedback and self-monitoring role of
the STG in laryngectomized subjects. On the contrary this
result may be in controversy with results of an fMRI experi-
ment conducted by Parkinson and colleagues,43 who have
investigated the neural activations related to audio vocal

responses using a pitch-shift perturbation paradigm. In this
study, the STG activation was higher during pitch-shifted
compared with nonshifted vocalization. It had been sug-
gested that a match between expected and actual output
results in suppression and overlapping pattern of activations
in the auditory cortex, while a mismatch between expected
and actual output results in an increase of sensitivity in the
temporal gyrus. The esophageal voice has different vocal
characteristics compared to the laryngeal voice that these
subjects used to have. The sound is reduced in volume and
in tone, thus a mismatch between the output that has always
been expected and the actual output results could have been
reflected in overactivation of the STG. This aspect needs
further studies.

Limitations of study and recommendations for future
research
Although the data presented here provide evidence for the
altered brain activity related to voice control in laryngecto-
mized subjects, this study has several limitations. As a pilot
study, the patient sample size is small and a larger sample
sizes may be needed to confirm whether this finding repre-
sents subject variability. Moreover, there is no detailed clas-
sification of the patient group and this was an important
aspect to consider in further research: in fact, only one sub-
ject managed to perform the task without any modification.
This subject was an esophageal speech teacher, and there-
fore he could use and modulate the voice in a perfect man-
ner. The other two participants emitted a shorter /i/ in the
onset phase. This inability to pronounce a long sound was
probably due to the lying position, for which it was more
complicate to inject aria into the esophagus e regurgitate it.
This ability was related to the time of esophageal speech
use: the teacher has used the voice for 6 years while the other
two subjects for less than 2 years. Noteworthy, an higher
activation of medulla and a lower activation of laryngeal
areas was identified in this patient: this may reflect the
occurrence of more complete plasticity mechanism.

The fact that laryngectomized patients were subjected to
chemotherapy could have represented another limitation: a
study of Saykin and colleagues reports changes in cognitive
functions following chemotherapy which may affect fMRI
results.44

The analysis of the paradigm was performed using IView-
Bold on Intellispace Philips and only compared with SPM
software. In the continuum of the experiment a second level
analysis will be needed to confirm or modify the results.

Additionally, another limitation of the study is that
although the tasks were the same for case and control group
in a general sense, the type of voices was different, laryngeal
and alaryngeal voices requiring different body structures. A
golden standard would have been to compare the esoph-
ageal voice in laryngectomized subjects and healthy subjects
or a subject before and after TL. We have considered the
healthy group as the group before TL, and, therefore with a
larynx. We have considered doing proceed like mentioned

ARTICLE IN PRESS

8 Journal of Voice, Vol.&&, No.&&, 2020

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914



above, but the esophageal speech is difficult to learn while
having the larynx. The research hypothesis for future studies
is to perform a longitudinal study on subjects pre and post
TL, in order to see the changes within the same subjects.
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APPENDIX A

The vocal production is mainly attributed to the larynx and
from a neural perspective, the larynx sends and receives infor-
mation mainly from the X cranial nerve, the vagal nerve, and
from the spinal nerves. The intrinsic laryngeal muscles receive
bilateral motor and sensory innervation from branches of the
vagus nerve: the inner branch of the superior laryngeal nerve
(SLN) and of the inferior laryngeal nerve, also called recurrent

nerve (RLN), ensures sensory innervation, while the external
branch of the recurrent nerve (RLN) guarantees motor inner-
vation. The cricothyroid muscle (responsible for lengthening of
the vocal cords) is an exception, being innervated by the exter-
nal motor branch of the SLN.11−13 The extrinsic muscles of
the larynx are innervated by the cervical plexus (spinal nerves)
or the pharyngeal plexus.14,15
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APPENDIX B

The hierarchical organization is related to the different
level of complexity in voice production. The screech present
at the birth of the newborn, the crying, the laugh of a child,
represent the lowest level of vocal control: these basic innate
vocalizations are completely genetically determined vocal
reactions, which means that an infant doesn’t need to hear
these sounds previously to reproduce them.12,13 Their pro-
duction is due to brainstem activation. The nuclei of the
ambiguous solitary tract, trigeminal, facial, hypoglossal,
solitary and of the spinal cord, thoracic and lumbar ventral
horn, are responsible for the coordination of basic muscular
laryngeal, respiratory and articulatory activity.13,15,17 The
connection of the different nuclei is assigned to the reticular
formation (RF) of the pons and of the lower brain stem.
The RF plays a crucial role in vocal motor coordination
and represents the basic level of the execution of this path.15

When children grow up, they develop the ability to control
innate vocalizations: shrieking can be produced in the

absence of pain or suppressed in the presence of pain. The
control of innate vocalizations, and thus of emotional states,
become voluntary and for this reason, the nuclei of the
brainstem and the vocal patterns generator require input
from the upper cerebral regions, such as PAG and
ACC.13,15,17,18 PAG received information from ACC and
projects to the reticular formation of the lower brain stem.
PAG represents an obligatory relay station within the ACC-
PAG pathway and plays a gating role in triggering a vocal
response and modulating its intensity.12 ACC is involved in
the voluntary control of emotional states and that of innate
motor patterns, such as vocal initiation and its emotional
intonation. The destruction of the ACC causes a loss of vol-
untary control of the emotional tones during the conversa-
tion, akinetic mutism, or even motor aphasia, while the
lesions in the PAG lead to mutism. The electrical stimula-
tion of PAG leads to voice production in mammals and in
humans, while the stimulation of ACC affects only
mammals.12,13,17,19,20
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APPENDIX C

APPENDIX D

Areas Function

Superior frontal gyrus (Supple-

mentary motor area—SMA)

Plays a role in the sequential coordination of effector during the vocal produc-

tion and in motor initiation and planning.13,17

Middle frontal gyrus Vocal self-monitoring and processing12,13,17

Inferior frontal gyrus Responsible for motor planning, in particular, its pars opercularis is responsible

for hierarchical sequencing of linguistic and nonlinguistic sequences. It is

active during production of long sequences, while its activation during pro-

duction of single syllables is less probable.12,22

Superior temporal gyrus (STG) Sensory guidance of movement and regulates the larynx before reaching the

phonatory task. It receives auditory feedback through the RF from the ascend-

ing sensory auditory pathway and it is responsible for speech processing12,13

Middle temporal gyrus (MTG) Self-voice control.12,13

Parietal gyrus- inferior and supe-

rior (IPG-SPG)

These areas are involved in multimodal sensory integration and perpetual

calibration29

Cerebellum Plays a role in the sequential coordination of effector during the vocal

production12,13,17

Antero-lateral parietal lobe

(somatosensory cortex- post-

central gyrus)

It is important for the integration of proprioceptive feedback from oropharyn-

geal, respiratory and laryngeal regions during voice production. The somato-

sensory cortex modulates the orofacial articulators for vocal motor control12

Thalamus With the parietal lobe, thalamus is associated with central monitoring and

modulation.12,13,17

Insula With parietal lobe, it integrates sounds with the emotions and attitudes of the

speaker.17

Activation during phonation

Kryshtopava et al34 Precentral gyrus, the SFG, the posterior cingulate gyrus, the STG, the MTG, the insula, and the

cerebellum, the left MFG, the IFG, and inferior parietal lobe, the cingulate gyrus, lingual gyrus,

and the thalamus

Vigneau et al35 Primary motor, somatosensory, and auditory cortical areas, the medial and lateral premotor

areas, the inferior frontal gyrus, the superior temporal gyrus, the anterior insula, the subcortical

regions including the medial and lateral cerebellum, the basal ganglia, and the thalamus

Indefrey and Levelt36 Primary motor, somatosensory, and auditory cortical areas, the medial and lateral premotor

areas, the inferior frontal gyrus, the superior temporal gyrus, the anterior insula, the subcortical

regions including the medial and lateral cerebellum, the basal ganglia, and the thalamus

Loucks et al21 A study by Loucks and colleagues has shown activation during phonation in the lateral sensory,

motor, and premotor regions of the left hemisphere, the bilateral dorsolateral sensorimotor

regions, the right temporoparietal, cerebellar and thalamic regions, the supplementary motor

area and the anterior cingulate cortex

Studies investigating the neural activity during phonation, which corroborate with our study.
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APPENDIX E

Miyamoto et al26 Dorsoventral somatotopic organization for the lips, jaw, tongue, and pharynx, respectively

J€urgens27 Association with the brodmann area 4p with the whole facial area, responsible for both lips, jaw,

tongue and vocal fold movements

Brown et al22 Also, Brown and colleagues attempted to disentangle articulation and phonation areas in a meta-

analysis in 2009. This analysis confirmed a strong overlap in the larynx motor area, with the only

differences in brain activity being in the rolandic operculum, more connected with the tongue

movements.

Terumitsu et al37 Topographically dorso-ventral ordered positions within the primary sensorimotor cortex for lip and

tongue movements, while the location of a LMC in the primary motor cortex appears less clear

with two recent studies reporting different positions for laryngeal area among lips or tongue

motor areas.

Grabski et al38 Grabski’s research group confirmed that vowel vocalization and nonspeech orofacial movements

have been shown to involve very similar activation of the sensorimotor system, besides specific

auditory and phonological activations in the bilateral temporal cortices for vowel vocalization.

They have identified a functional motor network controlling both laryngeal and supralaryngeal

movements, which include the sensorimotor and premotor cortices and bilaterally, the right infe-

rior frontal gyrus, the supplementary motor area, the left parietal operculum, and the adjacent

inferior parietal lobule, the basal ganglia, and the cerebellum.

Articles investigating the overlapping activation between orofacial regions in M1 and the LMC.
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