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Abstract

We give pointwise gradient bounds for solutions of (possibly non-uniformly) elliptic partial
differential equations in the entire Euclidean space.

The operator taken into account is very general and comprises also the singular and degen-
erate nonlinear case with non-standard growth conditions. The sourcing term is also allowed to
have a very general form, depending on the space variables, on the solution itself, on its gradient,
and possibly on higher order derivatives if additional structural conditions are satisfied.
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1 Introduction

In this paper we consider a very general elliptic equation, set in the whole of the Euclidean space,
and we will establish pointwise gradient bounds for the solutions. The operator taken into account
can be degenerate and singular, and we can also consider the case of the superposition of differential
operators with different homogeneity.

The main result establishes that (a possibly nonlinear function of) the gradient of the solution is
bounded at any point by a suitable potential function. Moreover, the bound obtained, which can be
seen as a generalization of the Energy Conservation Principle to PDEs, is in general sharp, since if
equality is attained in this bound, the solution is shown to be necessarily constant.

Our results comprise, as particular cases, the classical results in [Mod85,CGS94]. The method of
proof is based on Maximum Principles and it can be seen as a refinement of the classical Bernstein
method introduced in [Ber27], as extended in [Pay76,PP80,Spe81]. Namely, one considers a suitable
auxiliary function, called “P -function” in jargon, which is defined in terms of the solution and its
gradient, and shows that such a P -function satisfies a differential inequality: from this and the
Maximum Principle, the desired bounds on the gradient plainly follow.

In spite of its intrinsic simplicity (and unquestionable beauty), the idea of obtaining gradient
bounds via the Maximum Principle turned out to be very effective, and it found several applications
in many topics, including Riemannian geometry (see e.g. [CY75,Ham93,SZ06,FV11]) anisotropic or
nonhomogeneous equations (see e.g. [DG02,BG13,FV14,CFV14,BG15,BG15b]), and also subelliptic
equations (see [Gar09]), and, when the equation is set in a domain, the technique also detects the
geometry of the domain itself (see e.g. [FV10b,CFV12]). Moreover, a novel approach to the Maximum
Principle method has been recently exploited in a very successful way in [AC13, And15, AX18], in
order to obtain oscillation and modulus of continuity estimates. In general, these types of gradient and
continuity estimates are also related to rigidity results for overdetermined problems (see e.g. [GL89,
FV10,FV13b]) and they also provide, as a byproduct, new classification results of Liouville type (see
also [GS99,PQS07]).

In the case under consideration in this paper, given the very general structure of the equation,
one needs to exploit a technique introduced in [FV13]: in our case, such differential inequality will
be satisfied, in general, only up to a reminder, which can be shown to have the appropriate sign in
a number of concrete examples.

Let us now describe in detail the mathematical framework in which we work. We consider the
following PDE in divergence form:

div(Φ′(|∇u|2)∇u) = f(u) + g(∇u, Su) in R
n, (1.1)

where Φ ∈ C
3,α
loc

(

(0,+∞)
)

∩ C
(

[0,+∞)
)

for some α ∈ (0, 1), with Φ(0) = 0, f ∈ C1(R) and g ∈
C1(Rn × R

N−n) ∩ L∞(Rn × R
N−n).

We denote by (ζ, η) ∈ R
n×R

N−n the variables of the function g, i.e., g := g(ζ, η), and we assume
that for all M > 0 we have that

sup
(ζ,η)∈Rn×RN−n

|ζ|≤M

∣

∣gζj (ζ, η)
∣

∣ < +∞, for all j ∈ {1, . . . , n}, (1.2)

where the subscript ζj denotes partial derivative with respect to the variable ζj.
In (1.1) and throughout this article,

S : L∞(Rn) ∩ Cℓ(Rn) 7→
(

Cℓ′(Rn)
)N−n
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will denote an operator1 acting on bounded and smooth functions, with ℓ ∈ [3,+∞] and ℓ′ ∈ [1,+∞],
and we will write S = (S [1], . . . , S [N−n]) where N > n > 1. If N − n = 0, we have that g does not
depend on the variable η.

We stress that S is just a map sending functions into vectorial functions, and it does not necessarily
need to be linear or continuous in any topology. Also, for the sake of simplicity, we will consider
smooth2 solutions u ∈ Cℓ(Rn) of (1.1).

As customary, we will assume that the divergence form operator in (1.1) possesses suitable (possi-
bly singular or degenerate) elliptic structure, which will ensure the validity of the Maximum Principle.
For this, for any σ ∈ R

n, we set

aij(σ) := 2Φ′′(|σ|2)σiσj + Φ′(|σ|2)δij , (1.3)

and we will always assume in this paper that at least one of the following Assumptions A and B is
satisfied:

Assumption A. There exist p > 1, a ≥ 0 and C1, C2 > 0 such that, for every σ, ξ ∈ R
n \ {0},

C1(a+ |σ|)p−2 ≤ Φ′(|σ|2) ≤ C2(a+ |σ|)p−2 (1.4)

and C1(a + |σ|)p−2|ξ|2 ≤
n
∑

i,j=1

aij(σ)ξiξj ≤ C2(a+ |σ|)p−2|ξ|2. (1.5)

Assumption B. We have that Φ ∈ C1([0,+∞)), and there exist C1, C2 > 0 such that, for every σ ∈
R

n and every ξ′ = (ξ, ξn+1) ∈ R
n × R, with ξ′ · (−σ, 1) = 0,

C1(1 + |σ|)−1 ≤ Φ′(|σ|2) ≤ C2(1 + |σ|)−1 (1.6)

and C1(1 + |σ|)−1|ξ′|2 ≤
n
∑

i,j=1

aij(σ)ξiξj ≤ C2(1 + |σ|)−1|ξ′|2. (1.7)

Related structural assumptions on the diffusive operators have been considered in [CGS94,FV13].
We observe that Assumptions A and B will be enforced with σ := ∇u, hence, under a Lipschitz
condition on the solution u, one has that |∇u| ≤ M for some M > 0. So that it will be sufficient
to require Assumptions A and B with σ belonging to the ball of radius M centered at the origin,
which we will denote by BM . Therefore, from now on, when we say that Assumptions A and B are
satisfied, we mean that they are fulfilled when σ ∈ BM , and the constants C1 and C2 can depend

1For instance, in our setting,

S(u) =
(

x, u, x+∇u, u111 − u22 +∆2u, u5

11, x · ∇u+ log(1 + u4

2222) +
√
−∆(arctanu)

)

is an admissible (though not specially meaningful) operator. In this case, N−n = n+1+n+3, that is N = 3n+4. In
our setting, it is an interesting feature that the nonlinear source g can also depend on higher derivatives, on nonlinear
differential operators, on integro-differential operators, etc.

2In this paper, we did not optimize the regularity assumptions on the solution u. For our purposes, it is sufficient
to have sufficient regularity to write (1.1) in the pointwise sense and consider its derivatives. Hence, if the operator S
only involves a finite number of derivatives, then also u is required to have a finite number of derivatives. When S

only involves operators of order 1 or less, in concrete cases one can also apply standard elliptic regularity theory to
obtain the desired regularity of u starting with rather minimal assumptions. Since the minimal regularity assumptions
in this general setting are rather technical, we will not introduce this additional complication in this article, sticking
to the case of sufficiently smooth solutions.
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on M . In particular, when Assumption B is in force, we can reduce to Assumption A with p = 2,
with constants depending on M .

In our setting, we have that Assumptions A and B are satisfied by very general nonlinear operators,
as established by the following result:

Proposition 1.1. Let m ≥ 1 and

Φ(r) :=
m
∑

k=1

(

2ck
pk

(bk + r)
pk
2 − 2ckb

pk
2

k

pk

)

, (1.8)

with
1 ≤ p1 ≤ . . . ≤ pm < +∞, (1.9)

and
ck > 0, for every k ∈ {1, . . . , m}. (1.10)

Then:

(i) If

p1 > 1, b1 ≥ 0

and µb1 ≤ bk ≤ b1

µ
, for all k ∈ {1, . . . , m}, (1.11)

for some µ ∈ (0, 1), then Assumption A holds true.

(ii) If

µ ≤ bk ≤
1

µ
, for all k ∈ {1, . . . , m}, (1.12)

for some µ ∈ (0, 1), then Assumption B holds true.

In view of Proposition 1.1 it follows that Assumptions A and B comprise the important case of
nonlinear operators with non-standard growth conditions and with non-uniform ellipticity properties,
see [AM01,CMM17,BCM18].

In our setting, the bounds on the gradient of the solution u will require the control on the sign
of a suitable reminder. To describe this feature in details, we give some notation. For any r ∈ R, we
define

Λ(r) := 2rΦ′′(r) + Φ′(r). (1.13)
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In this setting, the reminder function that we consider is defined3 on {∇u 6= 0} by

R :=− 2f(u)g(∇u, Su)|∇u|2
Φ′(|∇u|2) + 2|∇u|2

n
∑

k=1

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk
uk

+
2f(u)|∇u|2
Λ(|∇u|2)

n
∑

j=1

gζj(∇u, Su)uj.

(1.14)

As customary, if N − n = 0 the second term in the right hand side of (1.14) is considered to be zero
(equivalently, in this case, the function g does not depend on the variable η).

Given α ∈ (0, 1] we will also denote by C0,α(Rn) the space of functions u ∈ L∞(Rn) such that

sup
x,y∈Rn

x 6=y

|u(x)− u(y)|
|x− y|α < +∞.

In this framework, our pivotal result is the following:

Theorem 1.2. Assume that u ∈ Cℓ(Rn) ∩W 1,∞(Rn) is a solution of (1.1). For every r ∈ R, let

F0(r) :=

∫ r

0

f(τ) dτ, cu := inf
x∈Rn

F0(u(x)) and F (r) := F0(r)− cu. (1.15)

Assume that
Su ∈ C0,α(Rn,RN−n), for some α ∈ (0, 1] (1.16)

and
R(x) ≥ 0, for every x ∈ {∇u 6= 0}. (1.17)

Then,
2Φ′
(

|∇u(x)|2
)

|∇u(x)|2 − Φ
(

|∇u(x)|2
)

≤ 2F (u(x)), for every x ∈ R
n. (1.18)

We observe that, since u is bounded, we have that cu is finite and the setting in (1.15) is well
posed. As a matter of fact, such a setting can be seen as a “gauge” on the potential function that
makes F nonnegative on the range of the solution.

Condition (1.16) can be seen as a regularity assumption on the solution (it can be also relaxed,

for instance, if Su(x) = (x, Tu(x)), with T : L∞(Rn) ∩ Cℓ(Rn) 7→
(

Cℓ′(Rn)
)N−2n

, it is enough to
suppose that g is uniformly C0,α in the x variable and Tu ∈ C0,α(Rn,RN−2n)).

We also point out that Theorem 1.2 comprises, as special cases, some classical results. In particu-
lar, when Φ(r) := r and g vanishes identically, then R also vanishes identically, hence condition (1.17)
is satisfied. In this case, equation (1.1) reduces to

∆u = f(u),

3We take this opportunity to amend a flaw in [FV13]. As a matter of fact, due to a cut-and-paste error, the term

2f(u)|∇u|2
Λ(|∇u|2)

n
∑

j=1

gpj
(x, u,∇u)uj

is missing from formula (1.13) in [FV13]. The proof in [FV13] (which is based on Lemma 2.1 there) is however correct
as it is. Formula (1.11) and Remark 1.4 of [FV13] have also to be corrected by adding the missing term (e.g., saying
that fgpi

pi ≥ 0). Also, for clarity, we point out some minor typos in [FV13]: the statement “w ∈ S” three lines
below (3.4) should be “w ∈ S”, the set V on line 3 of page 625 should be corrected into V , the “neighborhood of xo”
in the last line of the proof of Theorem 1.3 should be the “neighborhood of y”. Also, throughout all [FV13], the
function g is assumed to be uniformly in C0,α with respect to the x variable.
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and (1.18) boils down to
|∇u(x)|2 ≤ 2F (u(x)),

which is precisely the classical result in [Mod85]. Similarly, some results in [CGS94] and [FV13]
are also recovered as particular cases of Theorem 1.2 (and, from the technical point of view, the
setting introduced here simplifies and extends that in [FV13], by keeping track at the same time of
all the derivatives of the nonlinear source g). In particular, recovering the elliptic regularity theory as
mentioned in the footnote on page 3, one can obtain from Theorem 1.2 the classical results in [Mod85],
[CGS94] and [FV13] also for weak solutions.

In some sense, one can consider Theorem 1.2 as an abstract result, in which a very general
framework is taken into account, with minimal structural assumptions on the equation, but under a
fundamental condition on the sign of the reminder function, as given in (1.17). To apply this result
to particular cases of interest, we point out now that condition (1.17) is indeed satisfied in a number
of concrete situations, such as the p-Laplacian operator, the graphical mean curvature operators, and
operators obtained by the superposition of singular and degenerate operators with different scaling
properties, proving gradient bounds under simple structural assumptions on the nonlinear sources.
Indeed, we have the following result:

Proposition 1.3. Let m ≥ 1 and Φ be as in (1.8), under assumptions (1.9) and (1.10), and suppose
that bk ≥ 0 for all k ∈ {1, . . . , m}. Assume that

S(u) := u. (1.19)

Suppose also that

g(ζ, η) ≤ g(ζ, η̃) for all ζ ∈ R
n and η ≤ η̃, (1.20)

and g(λζ, η) = λβg(ζ, η) for all λ > 0, for some β > 0 (1.21)

In addition, assume that one of the following five conditions is satisfied: either

m = 1, β = p1 − 1 and (p1 − 2)f(η)g(ζ, η) ≥ 0, for all ζ ∈ R
n and η ∈ R, (1.22)

or
m = 1, p1 = 2 and (β − 1)f(η)g(ζ, η) ≥ 0, for all ζ ∈ R

n and η ∈ R, (1.23)

or
m = 1, β = 1 and (2− p1)f(η)g(ζ, η) ≥ 0, for all ζ ∈ R

n and η ∈ R, (1.24)

or
β ≥ max{1, pm − 1} and f(η)g(ζ, η) ≥ 0, for all ζ ∈ R

n and η ∈ R, (1.25)

or
b1 = · · · = bm = 0, β ≤ p1 − 1 and f(η)g(ζ, η) ≤ 0, for all ζ ∈ R

n and η ∈ R, (1.26)

or
m = 1, b1 = 0 and β = p1 − 1. (1.27)

Then R ≥ 0.

A concrete example that satisfies assumptions (1.20) and (1.21) is

g(ζ, η) = |ζ |β h(η),
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with β > 1 and h increasing.
Other concrete situations in which one can explicitly check that R ≥ 0 will be discussed in the

forthcoming Remarks 1.5 and 1.6.

Combining Theorem 1.2 with Propositions 1.1 and 1.3, we plainly obtain the following gradient
estimate in a very general, but concrete, situation:

Corollary 1.4. Let m ≥ 1 and

Φ(r) :=
m
∑

k=1

(

2ck
pk

(bk + r)
pk
2 − 2ckb

pk
2
k

pk

)

,

with 1 ≤ p1 ≤ . . . ≤ pm < +∞ and ck > 0 for every k ∈ {1, . . . , m}.
Suppose that either

p1 > 1, b1 ≥ 0

and µb1 ≤ bk ≤
b1

µ
, for all k ∈ {1, . . . , m}, (1.28)

or

µ ≤ bk ≤ 1

µ
, for all k ∈ {1, . . . , m}, (1.29)

for some µ ∈ (0, 1).
Suppose also that g : Rn × R → R satisfies the following monotonicity and homogeneity assump-

tions:

g(ζ, η) ≤ g(ζ, η̃) for all ζ ∈ R
n and η ≤ η̃, (1.30)

and g(λζ, η) = λβg(ζ, η) for all λ, β > 0. (1.31)

In addition, assume that one of the following five conditions is satisfied: either

m = 1, β = p1 − 1 and (p1 − 2)f(η)g(ζ, η) ≥ 0, for all ζ ∈ R
n and η ∈ R, (1.32)

or
m = 1, p1 = 2 and (β − 1)f(η)g(ζ, η) ≥ 0, for all ζ ∈ R

n and η ∈ R, (1.33)

or
m = 1, β = 1 and (2− p1)f(η)g(ζ, η) ≥ 0, for all ζ ∈ R

n and η ∈ R, (1.34)

β ≥ max{1, pm − 1} and f(η)g(ζ, η) ≥ 0, for all ζ ∈ R
n and η ∈ R, (1.35)

or
b1 = · · · = bm = 0, β ≤ p1 − 1 and f(η)g(ζ, η) ≤ 0, for all ζ ∈ R

n and η ∈ R, (1.36)

or
m = 1, b1 = 0 and β = p1 − 1. (1.37)

Assume that u ∈ Cℓ(Rn) ∩W 1,∞(Rn) is a solution of

div(Φ′(|∇u|2)∇u) = f(u) + g(∇u, u), in R
n. (1.38)

For every r ∈ R, let

F0(r) :=

∫ r

0

f(τ) dτ, cu := inf
x∈Rn

F0(u(x)) and F (r) := F0(r)− cu.

Then,
2Φ′
(

|∇u(x)|2
)

|∇u(x)|2 − Φ
(

|∇u(x)|2
)

≤ 2F (u(x)), for every x ∈ R
n. (1.39)
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Remark 1.5. Checking condition (1.17) can be, in principle, not a trivial task in practice. Nev-
ertheless, there are a number of concrete cases in which condition (1.17) is automatically satisfied.
Without any attempt of being exhaustive, and only for the sake of confirming the interest of such a
condition, we list here some of these situations in which condition (1.17) is fulfilled. For simplicity,
we focus here on the case in which f vanishes identically, and thus (1.14) reduces to

R

2|∇u|2 =

n
∑

k=1

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk
uk. (1.40)

(i). An interesting example is given by the equation

div(Φ′(|∇u|2)∇u) = h(u) + c(x) · ∇u in R
n, (1.41)

with h ∈ C1(R), h′ ≥ 0, c = (c1, . . . , cn) ∈ C1(Rn,Rn) ∩ L∞(Rn,Rn), under the assumption that the

matrix
{

∂cj
∂xk

}

j,k∈{1,...,n}
is nonnegative definite.

To check that (1.17) is satisfied in this case, it is convenient to take N := 2n+1, Su := (c, h(u)),
that is

S [j]u :=

{

cj if j ∈ {1, . . . , n},
h(u) if j = n+ 1,

and

g(ζ, η) = g(ζ1, . . . , ζn, η1, . . . , ηn+1) :=
n
∑

j=1

ζjηj + ηn+1.

Notice that, with this choice, the general setting in (1.1) gives precisely (1.41).
To check that condition (1.17) is satisfied in this case, we point out that for every j ∈ {1, . . . , n}

we have that gηj (ζ, η) = ζj, and gηn+1(ζ, η) = 1. Accordingly,

gηj (∇u, Su) =

{

uj if j ∈ {1, . . . , n},
1 if j = n+ 1.

Furthermore,

∂S [j]u

∂xk
=















∂cj

∂xk

if j ∈ {1, . . . , n},

h′(u)uk if j = n + 1.

Consequently, by (1.40),

R

2|∇u|2 =

n
∑

k=1

n+1
∑

j=1

gηj(∇u, Su)
∂S [j]u

∂xk
uk

=
n
∑

k=1

[

n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

uk + gηn+1(∇u, Su)
∂S [n+1]u

∂xk

uk

]

=
n
∑

k=1

[

n
∑

j=1

∂cj

∂xk
uj uk + h′(u) u2

k

]

≥ 0.
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This generalizes the result in (1.10) of [FV13] to more general operators.
(ii). As a further example, one can assume that

g = g(ζ, η) is nondecreasing in η, (1.42)

and consider the projection operator

Su(x) := u(x1, 0, . . . , 0).

In this case, condition (1.17) is satisfied by all solutions which are nondecreasing in the first direction,
since, by (1.40),

R

2|∇u|2 = gη(∇u, Su)
∂Su

∂x1
u1 = gη(∇u, Su) v1u1 ≥ 0,

with v1(x) := u1(x1, 0, . . . , 0).
(iii). Another interesting case is when (1.42) holds true and one considers the integral operator

Su(x) :=

∫ x1

0

u(t, x2, . . . , xn) dt,

and then (1.17) is satisfied by all nonnegative solutions which are nondecreasing in every direction
(i.e., ui ≥ 0 for all i ∈ {1, . . . , n}).

Indeed, in this case we have that

vk(x) :=

∫ x1

0

uk(t, x2, . . . , xn) dt ≥ 0, k = 2, . . . , n

and hence, by (1.40),

R

2|∇u|2 =
n
∑

k=1

gη(∇u, Su)
∂Su

∂xk

uk

= gη(∇u, Su)

(

uu1 +
n
∑

k=2

vkuk

)

≥ 0.

(iv). One can also assume (1.42) and take into account the convolution operator

Su(x) :=

∫

Rn

u(x− y)K(y) dy,

with K ∈ C∞
0 (Rn, [0,+∞)). In this case, condition (1.17) is satisfied by all solutions which are

nondecreasing in every direction, since

vk(x) :=

∫

Rn

uk(x− y)K(y) dy ≥ 0,

and (1.40) gives that

R

2|∇u|2 =

n
∑

k=1

gη(∇u, Su)
∂Su

∂xk
uk = gη(∇u, Su)

n
∑

k=1

vkuk ≥ 0.
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(v). More generally, one can also assume (1.42) and take into account the multi-convolution operator

Su(x) :=

∫

(Rn)d
u(x− y1) . . . u(x− yd)K(y1, . . . , yd) dy1 . . . dyd,

with K ∈ C∞
0 ((Rn)d, [0,+∞)). Then, condition (1.17) is satisfied by all solutions which are nonneg-

ative, and nondecreasing in every direction, since

vk(x) := ∂xk

∫

(Rn)d
u(x− y1) . . . u(x− yd)K(y1, . . . , yd) dy1 . . . dyd

=

d
∑

h=1

∫

(Rn)d
uk(x− yh)







∏

1≤j≤d
j 6=h

u(x− yj)






K(y1, . . . , yd) dy1 . . . dyd

≥ 0,

and hence (1.40) gives that

R

2|∇u|2 =
n
∑

k=1

gη(∇u, Su)
∂Su

∂xk

uk = gη(∇u, Su)
n
∑

k=1

vkuk ≥ 0.

(vi). Another interesting example is given by the equation

div(Φ′(|∇u|2)∇u) = g(∇u, |u|q−1u) in R
n, (1.43)

with q ≥ 1 and g = g(ζ1, . . . , ζn, η) such that gη ≥ 0.
In this case, one takes N := n+ 1 and Su := |u|q−1u. Then

∂Su

∂xk
= q|u|q−1uk,

and hence, by (1.40),

R

2|∇u|2 =

n
∑

k=1

gη(∇u, Su)
∂Su

∂xk
uk = q gη(∇u, Su)|u|q−1|∇u|2 ≥ 0.

Remark 1.6. An interesting example satisfying the structural assumption in (1.17) is provided by
the equation

∆u = f(u) + (c · ∇u) h(u), (1.44)

with c ∈ R
n, f , h ∈ C1(Rn) and h′ ≥ 0. In this case, assumption (1.17) is fulfilled if u is monotone

nondecreasing in direction c, i.e. c · ∇u ≥ 0.
Indeed, in this case we can take Φ(r) := r, N := n + 1, g(ζ, η) = g(ζ1, . . . , ζn, η) := (c · ζ) η

and Su := h(u). Then, the general equation in (1.1) reduces in this setting to the one in (1.44).
We observe that gζj(ζ, η) = cjη for all j ∈ {1, . . . , n} and gη(ζ, η) = c · ζ . Moreover, by (1.13), we

see that Λ(r) = 1. Consequently, we deduce from (1.14) that

R = −2f(u)g(∇u, Su)|∇u|2 + 2|∇u|2
n
∑

k=1

gη(∇u, Su)
∂Su

∂xk
uk + 2f(u)|∇u|2

n
∑

j=1

gζj(∇u, Su)uj

= −2f(u) (c · ∇u) h(u) |∇u|2 + 2|∇u|2
n
∑

k=1

(c · ∇u)h′(u) u2
k + 2f(u)|∇u|2

n
∑

j=1

cjuj h(u)
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= 2|∇u|2
n
∑

k=1

(c · ∇u)h′(u) u2
k

≥ 0,

and thus condition (1.17) is satisfied in this case as well.

Following some classical lines of research in [Mod85,CGS94,FV13] one has that pointwise gradient
bounds are often related to classification results, since attaining the potential gauge at some point
provides a very rigid information that can completely determine the solution. This is the counterpart
of the fact that particles subject to ordinary differential equations remain motionless if they start
with zero velocity at a potential well. In our setting, the corresponding result in this direction goes
as follows:

Theorem 1.7. Let u ∈ W 1,∞(Rn) and let the setting in (1.15) hold true. Assume also that (1.18) is
satisfied.

Let x0 ∈ R
n be such that u(x0) = r0, with F (r0) = 0 and F ′(r0) = 0.

If p > 2 in Assumption A, suppose also that

lim sup
r→r0

|F ′(r)|
|r − r0|p−1

< +∞. (1.45)

Then u is constantly equal to r0.

We observe that condition (1.45) cannot be dropped: indeed, if p > 2 and

β > max

{

2,
p

p− 2

}

,

the function
u : Rn 7→ R, u(x) = |x|β

satisfies

div
(

|∇u|p−2∇u
)

= div
(

(β|x|β−1)p−2|x|β−2βx
)

= βp−1div
(

|x|βp−β−px
)

= βp−1(βp− β − p+ n) |x|βp−β−p = βp−1(βp− β − p+ n) |u|βp−2β−p
β u = F ′(u),

with

F (r) :=
βp(βp− β − p+ n)

(β − 1)p
|r|

(β−1)p
β .

Notice that in this case F (u(0)) = F (0) = 0, and F ′(0) = 0, but u is not constant, and (1.45) is
violated since

lim
r→0

F ′(r)

|r|p−1
= lim

r→0

βp(βp− β − p+ n)

β
|r|− p

β = +∞.

The rest of the paper is organized as follows. In Section 2, we show that Assumptions A and B
are satisfied in several cases of interest, by proving Proposition 1.1.

Section 3 introduces the notion of P -function relative to equation (1.1) and contains the com-
putations needed to check that such a function satisfies a suitable differential inequality, possibly in
terms of the remainder R.

Then, the proof of Theorem 1.2 is presented in Section 4, while Section 5 is devoted to the proofs
of Proposition 1.3 and Corollary 1.4, and Section 6 contains the proof of Theorem 1.7.
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2 Structural assumptions and proof of Proposition 1.1

In this section, we will establish Proposition 1.1. This will be accomplished in Propositions 2.1
and 2.2 (which will give, under suitable structural conditions, the setting in Assumption A), and
in Propositions 2.3 and 2.4 (which will give, under suitable structural conditions, the setting in
Assumption B). The precise computational details go as follows.

Proposition 2.1. Assume (1.9) and (1.10) hold true. Suppose also that

p1 > 1, (2.1)

b1 ≥ 0 and µb1 ≤ bk ≤
b1

µ
, for all k ∈ {1, . . . , m}, (2.2)

for some µ ∈ (0, 1).
Let also

σ ∈ BM \ {0}, (2.3)

for some M ≥ 1. Then we have that

C1(
√

b1 + |σ|)p1−2 ≤ Φ′(|σ|2) ≤ C2(
√

b1 + |σ|)p1−2, (2.4)

where

C1 := c1

(

1

2

)

|p1−2|
2

∈ (0,+∞) (2.5)

and C2 :=

(

2

µ

)

|p1−2|
2

m
∑

k=1

ck

(

b1

µ
+M2

)

pk−p1
2

∈ (0,+∞). (2.6)

Proof. By (1.8), we have

Φ′(r) =
m
∑

k=1

ck(bk + r)
pk−2

2 . (2.7)

As a consequence,

Φ′(|σ|2) =
m
∑

k=1

ck(bk + |σ|2)
pk−2

2 . (2.8)

In addition, we observe

q21 + q22 ≤ (q1 + q2)
2 ≤ 2(q21 + q22) for all q1, q2 ∈ [0,+∞),

therefore
β0 + |σ|2 ≤ (

√

β0 + |σ|)2 ≤ 2(β0 + |σ|2), (2.9)

for all β0 ≥ 0.
Now, to establish the upper bound in (2.4), we use (2.8) and observe that

Φ′(|σ|2) ≤
m
∑

k=1

ck(bk + |σ|2) p1−2
2

(

b1

µ
+M2

)

pk−p1
2

. (2.10)
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Now we claim

(bk + |σ|2)
p1−2

2 ≤ 1

µ
|p1−2|

2

(b1 + |σ|2)
p1−2

2 . (2.11)

Indeed, if p1 ≥ 2, we recall (2.2) and have that

bk + |σ|2 ≤ b1

µ
+ |σ|2 ≤ 1

µ
(b1 + |σ|2),

which gives (2.11). If instead p1 < 2, we use the inequality

bk + |σ|2 ≥ µb1 + |σ|2 ≥ µ(b1 + |σ|2),

and this gives (2.11) in this case as well.
Then, we insert (2.11) into (2.10) and find that

Φ′(|σ|2) ≤ (b1 + |σ|2) p1−2
2

µ
|p1−2|

2

m
∑

k=1

ck

(

b1

µ
+M2

)

pk−p1
2

.

This and (2.9) give

Φ′(|σ|2) ≤
(

2

µ

)

|p1−2|
2

(
√

b1 + |σ|)p1−2
m
∑

k=1

ck

(

b1

µ
+M2

)

pk−p1
2

.

From this and (2.6) we conclude that the upper bound in (2.4) is satisfied, as desired.
Now we check the lower bound in (2.4). For this, by (2.8) and (2.9), we have

Φ′(|σ|2) ≥ c1(b1 + |σ|2)
p1−2

2 ≥ c1

(

1

2

)

|p1−2|
2

(
√

b1 + |σ|)p1−2.

This and (2.5) give the lower bound in (2.4). �

Proposition 2.2. Assume (1.9) and (1.10) hold true. Suppose also that (2.1), (2.2) and (2.3) are
satisfied. Then, for every ξ ∈ R

n we have that

C1(
√

b1 + |σ|)p1−2|ξ|2 ≤
n
∑

i,j=1

aij(σ)ξiξj ≤ C2(
√

b1 + |σ|)p1−2|ξ|2, (2.12)

where

C1 := c1 min{1, p1 − 1}
(µ

2

)

|p1−2|
2 ∈ (0,+∞) (2.13)

and C2 :=

(

2

µ

)

|p1−2|
2

(pm + 1)

m
∑

k=1

ck

(

b1

µ
+M2

)

pk−p1
2

∈ (0,+∞). (2.14)

Proof. First of all, from (2.7), we obtain

Φ′′(r) =
m
∑

k=1

ck(pk − 2)

2
(bk + r)

pk−4

2 . (2.15)
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Accordingly, we have that

aij(σ) =
m
∑

k=1

[

ck(pk − 2)(bk + |σ|2)
pk−4

2 σiσj + ck(bk + |σ|2)
pk−2

2 δij

]

,

and therefore, for every ξ = (ξ1, . . . , ξn) ∈ R
n,

n
∑

i,j=1

aij(σ)ξiξj =
m
∑

k=1

[

ck(pk − 2)(bk + |σ|2)
pk−4

2 (σ · ξ)2 + ck(bk + |σ|2)
pk−2

2 |ξ|2
]

. (2.16)

To prove the upper bound in (2.12) we argue as follows. We exploit (1.9) to see that

n
∑

i,j=1

aij(σ)ξiξj ≤
m
∑

k=1

[

ckpk(bk + |σ|2)
pk−4

2 |σ|2|ξ|2 + ck(bk + |σ|2)
pk−2

2 |ξ|2
]

≤
m
∑

k=1

[

ckpk(bk + |σ|2)
pk−2

2 |ξ|2 + ck(bk + |σ|2)
pk−2

2 |ξ|2
]

=
m
∑

k=1

ck(pk + 1)(bk + |σ|2)
pk−2

2 |ξ|2

≤ (pm + 1)
m
∑

k=1

ck(bk + |σ|2)
pk−2

2 |ξ|2.

(2.17)

Furthermore, in view of (1.9), (2.3) and (2.11), we see that

(bk + |σ|2)
pk−2

2 = (bk + |σ|2)
p1−2

2 (bk + |σ|2)
pk−p1

2 ≤ 1

µ
|p1−2|

2

(b1 + |σ|2)
p1−2

2

(

b1

µ
+M2

)

pk−p1
2

.

Consequently, by (2.9), we have

(bk + |σ|2)
pk−2

2 ≤
(

2

µ

)

|p1−2|
2

(
√

b1 + |σ|)p1−2

(

b1

µ
+M2

)

pk−p1
2

.

Hence (2.17) gives that

n
∑

i,j=1

aij(σ)ξiξj ≤
(

2

µ

)

|p1−2|
2

(pm + 1)|ξ|2(
√

b1 + |σ|)p1−2

m
∑

k=1

ck

(

b1

µ
+M2

)

pk−p1
2

.

This together with (2.14) establishes the upper bound in (2.12), and we now deal with the lower
bound in (2.12). To this end, we observe that if pk ≤ 2, then

ck(pk − 2)(bk + |σ|2)
pk−4

2 (σ · ξ)2 + ck(bk + |σ|2)
pk−2

2 |ξ|2

= −ck(2− pk)(bk + |σ|2)
pk−4

2 (σ · ξ)2 + ck(bk + |σ|2)
pk−2

2 |ξ|2

≥ −ck(2− pk)(bk + |σ|2)
pk−4

2 |σ|2|ξ|2 + ck(bk + |σ|2)
pk−2

2 |ξ|2

≥ −ck(2− pk)(bk + |σ|2)
pk−4

2 (bk + |σ|2)|ξ|2 + ck(bk + |σ|2)
pk−2

2 |ξ|2

= ck(pk − 1)(bk + |σ|2)
pk−2

2 |ξ|2
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≥ ck(p1 − 1)

(

b1

µ
+ |σ|2

)

pk−2

2

|ξ|2

≥ ck µ
2−pk

2 (p1 − 1)
(

b1 + |σ|2
)

pk−2

2 |ξ|2,

thanks to (2.2).
This and (2.16) yield that

n
∑

i,j=1

aij(σ)ξiξj ≥ (p1 − 1)
∑

1≤k≤m
pk≤2

ck µ
2−pk

2 (b1 + |σ|2)
pk−2

2 |ξ|2

+
∑

1≤k≤m
pk>2

[

ck(pk − 2)(bk + |σ|2)
pk−4

2 (σ · ξ)2 + ck(bk + |σ|2)
pk−2

2 |ξ|2
]

≥ (p1 − 1)
∑

1≤k≤m
pk≤2

ck µ
|pk−2|

2 (b1 + |σ|2)
pk−2

2 |ξ|2 +
∑

1≤k≤m
pk>2

ck(bk + |σ|2)
pk−2

2 |ξ|2

≥ (p1 − 1)
∑

1≤k≤m
pk≤2

ck µ
|pk−2|

2 (b1 + |σ|2)
pk−2

2 |ξ|2 +
∑

1≤k≤m
pk>2

ck(µb1 + |σ|2)
pk−2

2 |ξ|2

≥ (p1 − 1)
∑

1≤k≤m
pk≤2

ck µ
|pk−2|

2 (b1 + |σ|2)
pk−2

2 |ξ|2 +
∑

1≤k≤m
pk>2

ck µ
pk−2

2 (b1 + |σ|2)
pk−2

2 |ξ|2

= (p1 − 1)
∑

1≤k≤m
pk≤2

ck µ
|pk−2|

2 (b1 + |σ|2)
pk−2

2 |ξ|2 +
∑

1≤k≤m
pk>2

ck µ
|pk−2|

2 (b1 + |σ|2)
pk−2

2 |ξ|2

≥ min{1, p1 − 1}
m
∑

k=1

ck µ
|pk−2|

2 (b1 + |σ|2)
pk−2

2 |ξ|2

≥ min{1, p1 − 1}c1 µ
|p1−2|

2 (b1 + |σ|2)
p1−2

2 |ξ|2.

From this and (2.9) we obtain

n
∑

i,j=1

aij(σ)ξiξj ≥ c1 min{1, p1 − 1}
(µ

2

)

|p1−2|
2

(
√

b1 + |σ|)p1−2|ξ|2.

This gives the lower bound in (2.12), thanks to the setting in (2.13), and we stress that C1 > 0, in
light of (2.1). �

Proposition 2.3. Assume (1.9) and (1.10) hold true. Suppose also that

µ ≤ bk ≤ 1

µ
, for all k ∈ {1, . . . , m}, (2.18)

for some µ ∈ (0, 1).
Let also

σ ∈ BM \ {0}, (2.19)

for some M ≥ 1. Then we have that

C1(1 + |σ|)−1 ≤ Φ′(|σ|2) ≤ C2(1 + |σ|)−1, (2.20)
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where

C1 := c1µ
p1
2 ∈ (0,+∞) (2.21)

and C2 :=

√

2

µ

m
∑

k=1

ck

(

1

µ
+M2

)

pk−1

2

∈ (0,+∞). (2.22)

Proof. We use (1.9), (2.18) and (2.19) to obtain that

(bk + |σ|2)
pk−2

2 = (bk + |σ|2)− 1
2 (bk + |σ|2)

pk−1

2 ≤ (µ+ |σ|2)− 1
2

(

1

µ
+M2

)

pk−1

2

≤ 1√
µ
(1 + |σ|2)− 1

2

(

1

µ
+M2

)

pk−1

2

.

This and (2.9) yield

(bk + |σ|2)
pk−2

2 ≤
√

2

µ
(1 + |σ|)−1

(

1

µ
+M2

)

pk−1

2

.

Plugging this information into (2.8), we see that

Φ′(|σ|2) ≤
√

2

µ
(1 + |σ|)−1

m
∑

k=1

ck

(

1

µ
+M2

)

pk−1

2

.

This and (2.22) give the upper bound in (2.20).
Furthermore, by (2.8) and (2.18), we have

Φ′(|σ|2) =
m
∑

k=1

ck(bk + |σ|2)
pk−2

2

≥ c1(b1 + |σ|2) p1−2
2

= c1(b1 + |σ|2)− 1
2 (b1 + |σ|2)

p1−1
2

≥ c1

(

1

µ
+ |σ|2

)− 1
2

µ
p1−1

2

≥ c1
√
µ
(

1 + |σ|2
)− 1

2 µ
p1−1

2 .

This and (2.9) lead to

Φ′(|σ|2) ≥ c1 (1 + |σ|)−1
µ

p1
2 .

Hence, recalling (2.21), we obtain the lower bound in (2.20), as desired. �

Proposition 2.4. Assume (1.9) and (1.10) hold true. Suppose also that (2.18) and (2.19) are
satisfied. Then, for every ξ′ = (ξ1, . . . , ξn+1) = (ξ, ξn+1) ∈ R

n × R with ξ · σ = ξn+1, we have that

C1(1 + |σ|)−1|ξ′|2 ≤
n
∑

i,j=1

aij(σ)ξiξj ≤ C2(1 + |σ|)−1|ξ′|2, (2.23)
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where

C1 :=
c1min{1, p1 − 1}

1 +M2
µ

p1
2 ∈ (0,+∞) (2.24)

and C2 :=

√

2

µ

m
∑

k=1

ck(|pk − 2|+ 1)

(

1

µ
+M2

)

pk−1

2

∈ (0,+∞). (2.25)

Proof. The argument is a careful modification of that used in the proof of Proposition 2.2, taking
into special consideration the (n+ 1)th component of the vector ξ′.

To prove the upper bound in (2.23), we recall (2.16) and perform the following computation:

n
∑

i,j=1

aij(σ)ξiξj ≤
m
∑

k=1

[

ck|pk − 2|(bk + |σ|2)
pk−4

2 (σ · ξ)2 + ck(bk + |σ|2)
pk−2

2 |ξ|2
]

≤
m
∑

k=1

ck(|pk − 2|+ 1)(bk + |σ|2)
pk−2

2 |ξ|2

≤
m
∑

k=1

ck(|pk − 2|+ 1)(bk + |σ|2)− 1
2

(

1

µ
+M2

)

pk−1

2

|ξ|2

≤
m
∑

k=1

ck(|pk − 2|+ 1)(µ+ |σ|2)− 1
2

(

1

µ
+M2

)

pk−1

2

|ξ|2

≤ 1√
µ

m
∑

k=1

ck(|pk − 2|+ 1)(1 + |σ|2)− 1
2

(

1

µ
+M2

)

pk−1

2

|ξ|2

thanks to (2.18) and (2.19). Hence, recalling (2.9), we have

n
∑

i,j=1

aij(σ)ξiξj ≤
√

2

µ

m
∑

k=1

ck(|pk − 2|+ 1)(1 + |σ|)−1

(

1

µ
+M2

)

pk−1

2

|ξ|2.

This proves the upper bound in (2.23), in light of (2.25) and the fact that |ξ| ≤ |ξ′|.
Now we prove the lower bound in (2.23). For this, we use (2.19) to see that

|ξ′|2 = |ξ|2 + |ξ · σ|2 ≤ (1 +M2)|ξ|2. (2.26)

Also, if pk ≤ 2, then

ck(pk − 2)(bk + |σ|2)
pk−4

2 (σ · ξ)2 + ck(bk + |σ|2)
pk−2

2 |ξ|2

≥ −ck(2− pk)(bk + |σ|2)
pk−4

2 |σ|2|ξ|2 + ck(bk + |σ|2)
pk−2

2 |ξ|2

≥ −ck(2− pk)(bk + |σ|2)
pk−2

2 |ξ|2 + ck(bk + |σ|2)
pk−2

2 |ξ|2

= ck(pk − 1)(bk + |σ|2)
pk−2

2 |ξ|2.

This and (2.16) give that

n
∑

i,j=1

aij(σ)ξiξj ≥
∑

1≤k≤m
pk≤2

ck(pk − 1)(bk + |σ|2)
pk−2

2 |ξ|2
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+
∑

1≤k≤m
pk>2

[

ck(pk − 2)(bk + |σ|2)
pk−4

2 (σ · ξ)2 + ck(bk + |σ|2)
pk−2

2 |ξ|2
]

≥
∑

1≤k≤m
pk≤2

ck(p1 − 1)(bk + |σ|2)
pk−2

2 |ξ|2 +
∑

1≤k≤m
pk>2

ck(bk + |σ|2)
pk−2

2 |ξ|2

≥ min{1, p1 − 1}
m
∑

k=1

ck(bk + |σ|2)
pk−2

2 |ξ|2

≥ c1min{1, p1 − 1} (b1 + |σ|2) p1−2
2 |ξ|2.

Hence, in view of (2.26), we get

n
∑

i,j=1

aij(σ)ξiξj ≥ c1min{1, p1 − 1}
1 +M2

(b1 + |σ|2)
p1−2

2 |ξ′|2

≥ c1min{1, p1 − 1}
1 +M2

(b1 + |σ|2)− 1
2µ

p1−1
2 |ξ′|2

≥ c1min{1, p1 − 1}
1 +M2

(

1

µ
+ |σ|2

)− 1
2

µ
p1−1

2 |ξ′|2

≥ c1min{1, p1 − 1}
1 +M2

(1 + |σ|2)− 1
2µ

p1
2 |ξ′|2.

This and (2.9) give that

n
∑

i,j=1

aij(σ)ξiξj ≥
c1min{1, p1 − 1}

1 +M2
(1 + |σ|)−1µ

p1
2 |ξ′|2,

that is the lower bound in (2.23), thanks to (2.24). �

By means of the above conclusions, we are in the position of proving Propostion 1.1:

Proof. The claim in (i) of Proposition 1.1 directly follows from Propositions 2.1 and 2.2. Similarly,
the claim in (ii) of Proposition 1.1 is a consequence of Propositions 2.3 and 2.4. �

3 P -function computations

The goal of this section is to introduce an appropriate P -function relative to equation (1.1) and
establish a differential inequality for it (combining this with the Maximum Principle, we will obtain
also the desired gradient bounds). To implement this strategy, for such a solution u, for all x ∈ R

n

we define
P (u; x) := 2Φ′(|∇u(x)|2)|∇u(x)|2 − Φ(|∇u(x)|2)− 2F (u(x)), (3.1)

and we prove the following result:

Lemma 3.1. Let Ω be an open subset of Rn. Let u be a solution of (1.1) in Ω, with ∇u 6= 0 in Ω,
and

Λ(r) > 0 for all r > 0. (3.2)
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Let

dij(σ) :=
aij(σ)

Λ(|σ|2) (3.3)

and

Bi(x) = Bi(u; x) := −2
f(u)

Λ(|∇u|2)

(

1 +
|∇u|2Φ′′(|∇u|2)

Φ′(|∇u|2)

)

∂u

∂xi
− |∇u|2

Λ(|∇u|2)gζi(∇u, Su). (3.4)

Then, we have that

∑

i,j

|∇u|2 ∂

∂xj

(

dij(∇u)
∂P

∂xi

)

+
∑

i

Bi
∂P

∂xi
≥ |∇P |2

2Λ(|∇u|2) + R, in Ω. (3.5)

Proof. By (3.2), the map r 7→ 2Φ′(r)r − Φ(r) is invertible, and we denote by Ψ its inverse. Notice
that

Ψ
(

P (u; x) + 2F (u(x))
)

= |∇u(x)|2. (3.6)

Moreover, by the definition of Ψ and (1.13), we have

1 =
d

dr

(

Ψ
(

2Φ′(r)r − Φ(r)
)

)

= Ψ′
(

2Φ′(r)r − Φ(r)
)

Λ(r),

hence

Ψ′
(

2Φ′(|∇u|2)|∇u|2 − Φ(|∇u|2)
)

=
1

Λ(|∇u|2) . (3.7)

Now, differentiating (3.1) and recalling (1.13), we see that

∂P

∂xi

= 2
(

2Φ′′(|∇u(x)|2)|∇u(x)|2 + Φ′(|∇u(x)|2)
)

|∇u(x)|∂|∇u(x)|
∂xi

− 2f(u)
∂u

∂xi

= 2Λ(|∇u|2)
∑

k

∂2u

∂xi∂xk

∂u

∂xk

− 2f(u)
∂u

∂xi

.
(3.8)

Hence, recalling (3.3), we get

∑

i,j

∂

∂xj

(

dij(∇u)
∂P

∂xi

)

=
∑

i,j

∂

∂xj

(

− 2f(u)dij(∇u)
∂u

∂xi

+ 2Λ(|∇u|2) aij(∇u)

Λ(|∇u|2)
∑

k

∂2u

∂xi∂xk

∂u

∂xk

)

= −2
∑

i,j

∂

∂xj

(

f(u)dij(∇u)
∂u

∂xi

)

+ 2
∑

i,j,k

∂

∂xj

(

aij(∇u)
∂2u

∂xi∂xk

) ∂u

∂xk
(3.9)

+2
∑

i,j,k

aij(∇u)
∂2u

∂xi∂xk

∂2u

∂xj∂xk
.

Also, (1.3) gives that
∂aij

∂σl
(σ) =

∂alj

∂σi
(σ). (3.10)

By (1.1), we obtain
∑

i,j

aij(∇u)
∂2u

∂xi∂xj
= f(u) + g(∇u, Su). (3.11)
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Therefore, by (3.10) and (3.11), for any fixed k, we have

∑

i,j

∂

∂xj

(

aij(∇u)
∂2u

∂xi∂xk

)

=
∑

i,j

(∂aij(∇u)

∂xj

∂2u

∂xi∂xk
+ aij(∇u)

∂3u

∂xi∂xk∂xj

)

=
∑

i,j

∂

∂xk

(

aij(∇u)
∂2u

∂xi∂xj

)

(3.12)

= f ′(u)
∂u

∂xk
+

n
∑

j=1

gζj (∇u, Su)
∂2u

∂xj∂xk
+

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk
.

From (3.9) and (3.12), we find that

∑

i,j

∂

∂xj

(

dij(∇u)
∂P

∂xi

)

= −2
∑

i,j

f ′(u)dij(∇u)
∂u

∂xi

∂u

∂xj

− 2f(u)
∑

i,j

∂

∂xj

(

dij(∇u)
∂u

∂xi

)

(3.13)

+2f ′(u)
∑

k

∂u

∂xk

∂u

∂xk
+ 2

∑

k

[

n
∑

j=1

gζj(∇u, Su)
∂2u

∂xj∂xk
+

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk

+2
∑

i,j,k

aij(∇u)
∂2u

∂xi∂xk

∂2u

∂xj∂xk

.

Furthermore, from (1.13) and (3.3), we obtain

−
∑

i,j

f ′(u)dij(∇u)
∂u

∂xi

∂u

∂xj
+ f ′(u)

∑

k

∂u

∂xk

∂u

∂xk

= −
∑

i,j

f ′(u)

Λ(|∇u|2)
[

2Φ′′(|∇u|2)
( ∂u

∂xi

)2( ∂u

∂xj

)2

+ Φ′(|∇u|2)δij
∂u

∂xi

∂u

∂xj

]

+f ′(u)
∑

k

( ∂u

∂xk

)2

(3.14)

= − f ′(u)

Λ(|∇u|2)
[

2Φ′′(|∇u|2)|∇u|4 + Φ′(|∇u|2)|∇u|2
]

+ f ′(u)|∇u|2

= 0.

Plugging this into (3.13), we conclude that

∑

i,j

∂

∂xj

(

dij(∇u)
∂P

∂xi

)

= −2f(u)
∑

i,j

∂

∂xj

(

dij(∇u)
∂u

∂xi

)

+ 2
∑

k

[

n
∑

j=1

gζj(∇u, Su)ujk (3.15)

+
N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk

+ 2
∑

i,j,k

aij(∇u)
∂2u

∂xi∂xk

∂2u

∂xj∂xk

.
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Also, it follows from (3.3) and (3.11) that

∑

i,j

dij(∇u)
∂2u

∂xi∂xj

=
f(u) + g(∇u, Su)

Λ(|∇u|2) ,

and so (3.16) becomes

∑

i,j

∂

∂xj

(

dij(∇u)
∂P

∂xi

)

= −2f(u)
∑

i,j

∂

∂xj
dij(∇u)

∂u

∂xi
− 2f(u)[f(u) + g(∇u, Su)]

Λ(|∇u|2)

+2
∑

k

[

n
∑

j=1

gζj(∇u, Su)ujk +
N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk
(3.16)

+2
∑

i,j,k

aij(∇u)
∂2u

∂xi∂xk

∂2u

∂xj∂xk
.

Moreover, making use of (1.3), (1.13) and (3.3), we obtain

∑

i,j

∂

∂xj
dij(∇u)

∂u

∂xi

=
∑

i,j

∂u

∂xi

∂

∂xj

2Φ′′(|∇u|2) ∂u
∂xi

∂u
∂xj

+ Φ′(|∇u|2)δij
2Φ′′(|∇u|2)|∇u|2 + Φ′(|∇u|2)

−
∑

i,j

∂u

∂xi

[

2Φ′′ ∂u
∂xi

∂u
∂xj

+ Φ′δij
][

4Φ′′′|∇u|2 + 4Φ′′ + 2Φ′′
]
∑

k
∂u
∂xk

∂2u
∂xk∂xj

[

2Φ′′(|∇u|2)|∇u|2 + Φ′(|∇u|2)
]2 (3.17)

=
2Φ′′

[

Σj |∇u|2 ∂2u
∂x2

j

−∑i,j
∂u
∂xi

∂2u
∂xi∂xj

∂u
∂xj

]

2Φ′′(|∇u|2)|∇u|2 + Φ′(|∇u|2)

=
2Φ′′(|∇u|2)
Λ(|∇u|2)

(

|∇u|2∆u−
∑

i,j

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj

)

.

Also, from (1.3) and (3.11), we get

f(u) + g(∇u, Su) =
∑

i,j

(

2Φ′′(|∇u|2) ∂u
∂xi

∂u

∂xj
+ Φ′(|∇u|2)δij

) ∂2u

∂xi∂xj

= 2Φ′′(|∇u|2)
∑

i,j

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj

+ Φ′(|∇u|2)∆u,

from which we obtain

∆u =
f(u) + g(∇u, Su)

Φ′(|∇u|2) − 2
Φ′′(|∇u|2)
Φ′(|∇u|2)

∑

i,j

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj
.

Therefore, recalling also (3.8), we write (3.17) as

∑

i,j

∂

∂xj
dij(∇u)

∂u

∂xi
=

2Φ′′(|∇u|2)
Λ(|∇u|2)Φ′(|∇u|2)

[

|∇u|2(f + g)− Λ(|∇u|2)
∑

i,j

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj

]
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=
−Φ′′(|∇u|2)

Λ(|∇u|2)Φ′(|∇u|2)
∑

i

∂P

∂xi

∂u

∂xi

+
2gΦ′′(|∇u|2)|∇u|2
Λ(|∇u|2)Φ′(|∇u|2) . (3.18)

Thus, exploiting (3.16), one has

∑

i,j

∂

∂xj

(

dij(∇u)
∂P

∂xi

)

=
2f(u)Φ′′(|∇u|2)

Λ(|∇u|2)Φ′(|∇u|2)
∑

i

∂P

∂xi

∂u

∂xi
− 4fgΦ′′(|∇u|2)|∇u|2

Λ(|∇u|2)Φ′(|∇u|2) − 2f(u)[f(u) + g(∇u, Su)]

Λ(|∇u|2)

+2
∑

k

[

n
∑

j=1

gζj (∇u, Su)ujk +
N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk
(3.19)

+2
∑

i,j,k

aij(∇u)
∂2u

∂xi∂xk

∂2u

∂xj∂xk
.

Now we set

zk =
∑

i

∂2u

∂xi∂xk

∂u

∂xi
,

and we use Schwarz Inequality to see that

|zk| ≤
√

∑

i

( ∂2u

∂xi∂xk

)2
√

∑

i

( ∂u

∂xi

)2

,

and so

∑

i,j,k

∂2u

∂xi∂xk

∂u

∂xi

∂2u

∂xj∂xk

∂u

∂xj
=

∑

k

|zk|2 ≤
∑

k

(

∑

i

( ∂2u

∂xi∂xk

)2
)(

∑

i

( ∂u

∂xi

)2
)

= |∇u|2
∑

i,k

( ∂2u

∂xi∂xk

)2

.

This and (1.3) give that

∑

i,j,k

aij(∇u)
∂2u

∂xi∂xk

∂2u

∂xj∂xk

=
∑

i,j,k

2Φ′′(|∇u|2) ∂2u

∂xi∂xk

∂2u

∂xj∂xk

∂u

∂xi

∂u

∂xj
+
∑

i,j,k

Φ′(|∇u|2) ∂2u

∂xi∂xk

∂2u

∂xj∂xk
δij

≥
∑

i,j,k

2Φ′′(|∇u|2) ∂2u

∂xi∂xk

∂u

∂xi

∂2u

∂xj∂xk

∂u

∂xj
+
∑

i,j,k

Φ′(|∇u|2)
|∇u|2

∂2u

∂xi∂xk

∂u

∂xi

∂2u

∂xj∂xk

∂u

∂xj
(3.20)

=
Λ(|∇u|2)
|∇u|2

∑

i,j,k

∂2u

∂xi∂xk

∂u

∂xi

∂2u

∂xj∂xk

∂u

∂xj
.

Moreover, by (3.8), we have that

∑

i,j,k

∂2u

∂xi∂xk

∂u

∂xi

∂2u

∂xj∂xk

∂u

∂xj

=
1

4Λ2(|∇u|2)
∑

k

( ∂P

∂xk

+ 2f
∂u

∂xk

)2

.
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This and (3.20) lead to

∑

i,j,k

aij(∇u)
∂2u

∂xi∂xk

∂2u

∂xj∂xk
≥ 1

4Λ(|∇u|2)|∇u|2
∑

k

( ∂P

∂xk
+ 2f

∂u

∂xk

)2

=
|∇P |2

4Λ(|∇u|2)|∇u|2 +
f
∑

k
∂P
∂xk

∂u
∂xk

Λ(|∇u|2)|∇u|2 +
f 2

Λ(|∇u|2) .

By substituting this into (3.19), we obtain

∑

i,j

∂

∂xj

(

dij(∇u)
∂P

∂xi

)

≥ 2f(u)Φ′′(|∇u|2)
Λ(|∇u|2)Φ′(|∇u|2)

∑

i

∂P

∂xi

∂u

∂xi
− 4fgΦ′′(|∇u|2)|∇u|2

Λ(|∇u|2)Φ′(|∇u|2) − 2f(u)[f(u) + g(∇u, Su)]

Λ(|∇u|2)

+2
∑

k

[

n
∑

j=1

gζj(∇u, Su)
∂2u

∂xj∂xk
+

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk
+

|∇P |2
2Λ(|∇u|2)|∇u|2

+2
f
∑

k
∂P
∂xk

∂u
∂xk

Λ(|∇u|2)|∇u|2 + 2
f 2

Λ(|∇u|2) .

Therefore, we have that

∑

i,j

∂

∂xj

(

dij(∇u)
∂P

∂xi

)

− 2
f(u)

Λ(|∇u|2)|∇u|2
(

1 +
Φ′′(|∇u|2)|∇u|2

Φ′(|∇u|2)

)

∑

k

∂P

∂xk

∂u

∂xk

≥ −4fgΦ′′(|∇u|2)|∇u|2
Λ(|∇u|2)Φ′(|∇u|2) − 2f(u)g(∇u, Su)

Λ(|∇u|2)

+2
∑

k

[

n
∑

j=1

gζj(∇u, Su)
∂2u

∂xj∂xk
+

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk
+

|∇P |2
2Λ(|∇u|2)|∇u|2 (3.21)

= −2f(u)g(∇u, Su)

Φ′(|∇u|2) + 2
∑

k

[

n
∑

j=1

gζj (∇u, Su)
∂2u

∂xj∂xk
+

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk

+
|∇P |2

2Λ(|∇u|2)|∇u|2 .

Now, for j fixed, we use (3.6) to get that

2
∑

k

∂2u

∂xj∂xk

∂u

∂xk
=

∂|∇u(x)|2
∂xj

= Ψ′(P + 2F )

(

∂P

∂xj
+ 2f(u)

∂u

∂xj

)

.

Consequently, by (3.7), we conclude

2
∑

k,j

gζj(∇u, Su)
∂2u

∂xj∂xk

∂u

∂xk

= Ψ′(P + 2F )
∑

j gζj(∇u, Su)

(

∂P
∂xj

+ 2f(u) ∂u
∂xj

)

= 1
Λ(|u(x)|2)

∑

j gζj (∇u, Su)

(

∂P
∂xj

+ 2f(u) ∂u
∂xj

)

.
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Multiplying both sides of (3.21) by |∇u|2, we see that

∑

i,j

|∇u|2 ∂

∂xj

(

dij(∇u)
∂P

∂xi

)

− 2
f(u)

Λ(|∇u|2)

(

1 +
Φ′′(|∇u|2)|∇u|2

Φ′(|∇u|2)

)

∑

k

∂P

∂xk

∂u

∂xk

≥ −2f(u)g(∇u, Su)|∇u|2
Φ′(|∇u|2) +

|∇P |2
2Λ(|∇u|2)

+2|∇u|2
∑

k

[

n
∑

j=1

gζj(∇u, Su)
∂2u

∂xj∂xk
+

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

]

∂u

∂xk

= −2f(u)g(∇u, Su)|∇u|2
Φ′(|∇u|2) + 2|∇u|2

n
∑

k=1

N−n
∑

j=1

gηj (∇u, Su)
∂S [j]u

∂xk

∂u

∂xk

+
|∇u|2

Λ(|u(x)|2)
∑

j

gζj (∇u, Su)

(

∂P

∂xj
+ 2f(u)

∂u

∂xj

)

+
|∇P |2

2Λ(|∇u|2)

= R(x) +
|∇u|2

Λ(|u(x)|2)
∑

j

gζj(∇u, Su)
∂P

∂xj

+
|∇P |2

2Λ(|∇u|2) .

From this, we obtain the desired result in (3.5). �

4 Proof of Theorem 1.2

This section contains the proof of the pointwise gradient estimate in (1.18). This relies on Lemma 3.1
and the Maximum Principle. The technical details go as follows:

Proof of Theorem 1.2. First of all, we observe that (3.2) holds true. Indeed, taking ξ := (1, 0, . . . , 0)
and σ :=

√
r ξ, we deduce from (1.3) and (1.13) that

n
∑

i,j=1

aij(σ)ξiξj = 2Φ′′(|σ|2)(σ · ξ)2 + Φ′(|σ|2)|ξ|2 = 2Φ′′(r)r + Φ′(r) = Λ(r). (4.1)

Hence, if Assumption A is satisfied, we obtain

Λ(r) =

n
∑

i,j=1

aij(σ)ξiξj ≥ C1(a + |σ|)p−2|ξ|2 = C1(a+
√
r)p−2 > 0. (4.2)

If instead Assumption B is satisfied, we deduce from (4.1) that

Λ(r) =

n
∑

i,j=1

aij(σ)ξiξj ≥ C1(1 + |σ|)−1|ξ′|2 = C1(1 + |σ|)−1
(

|ξ|2 + (σ · ξ)2
)

= C1(1 +
√
r)−1(1 + r) > 0.

(4.3)

This observation and (4.2) show that (3.2) is satisfied, and therefore we are in the position of applying
Lemma 3.1. In this way, recalling (1.17) and (3.5), we see

∑

i,j

∂

∂xj

(

dij(∇u(x))
∂P (u; x)

∂xi

)

+
B(u; x) · ∇P (u; x)

|∇u(x)|2 ≥ 0 (4.4)
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in {∇u 6= 0}, where the notations in (3.1) and (3.4) have been utilized.
From this, we can repeat some classical arguments used also in the proof of Theorem 1.2 in [FV13]

to obtain our Theorem 1.2. We show the arguments in full detail for the facility of the reader. Besides,
in order to address the general case treated in this paper, these classical arguments need to be carefully
adapted, producing a number of additional technical difficulties.

Recalling the notation in (3.1), we define

P0 := sup
x∈Rn

P (u; x). (4.5)

We claim that
P0 ≤ 0. (4.6)

To prove this, we assume by contradiction that

P0 > 0. (4.7)

First, take sequence zk ∈ R
n such that

lim
k→+∞

P (u; zk) = P0. (4.8)

We can define wk(x) = u(x+zk). This function satisfies an elliptic equation with bounded right hand
side and therefore, by elliptic regularity theory (possibly reducing Assumption B to Assumption A
with p = 2), we have that, for every R > 0,

‖wk‖C1,γ(BR) < +∞, (4.9)

for some γ ∈ (0, 1).
Also, from (4.5), we have that

P0 ≥ P (wk; x), for all x ∈ R
n. (4.10)

Furthermore, by (3.1), we get

P (u; zk) = 2Φ′(|∇u(zk)|2)|∇u(zk)|2 − Φ(|∇u(zk)|2)− 2F (u(zk))

= 2Φ′(|∇wk(0)|2)|∇wk(0)|2 − Φ(|∇wk(0)|2)− 2F (wk(0)) = P (wk; 0).

In view of this and (4.8), we conclude that

lim
k→+∞

P (wk; 0) = P0. (4.11)

By the Theorem of Ascoli-Arzelà (and up to a subsequence) and possibly renaming γ, we may suppose
that wk converges to some w in C

1,γ
loc (R

n), and therefore, by (3.1), we see

lim
k→+∞

P (wk; x) = P (w; x), for all x ∈ R
n.

Using this, (4.10) and (4.11), we thereby obtain

P (w; x) = lim
k→+∞

P (wk; x) ≤ P0 = lim
k→+∞

P (wk; 0) = P (w; 0). (4.12)

Now, we define
N := {x ∈ R

n s.t. P (w; x) = P0}.
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We observe that 0 ∈ N , thanks to (4.12), and hence

N 6= ∅. (4.13)

Also, by the continuity of P and w,
N is closed. (4.14)

Here, we denote Ψ−1 by Γ for simplicity, so

Γ(r) := 2Φ′(r)r − Φ(r), (4.15)

and we claim that for all r ∈
[

0, ‖u‖W 1,∞(Rn)

]

Γ(r) ≤ C
√
r. (4.16)

To prove this, we first remark that
Γ(0) = 0, (4.17)

by Φ(0) = 0 and either (1.4) or (1.6). Moreover, taking σ :=
√
re1, ξ := e1, ξn+1 :=

√
r, by (1.3) we

see that

aij(σ)ξiξj =

{

2Φ′′(r)r + Φ′(r) = Γ′(r) if i = j = 1,

0 otherwise,

and accordingly
n
∑

i,j=1

aij(σ)ξiξj = Γ′(r). (4.18)

Now, to prove (4.16) we distinguish two cases, according to whether Assumption A or Assumption B
is satisfied. First of all, if Assumption A is satisfied, we use (1.5) and (4.18) to see that

Γ′(r) ≤ C2(a + |σ|)p−2|ξ|2 = C2(a+
√
r)p−2. (4.19)

We now distinguish two subcases, depending on p. If p ≥ 2, we deduce from (4.19) that

Γ′(r) ≤ C
(

1 + r
p−2
2

)

,

for some C > 0. This and (4.17) yield that

Γ(r) =

∫ r

0

Γ′(ρ) dρ ≤ C

(

r +
2

p
r

p
2

)

= C

(√
r +

2

p
r

p−1
2

) √
r

≤ C

(

√

‖u‖W 1,∞(Rn) +
2

p
‖u‖

p−1
2

W 1,∞(Rn)

) √
r,

for all r ∈
[

0, ‖u‖W 1,∞(Rn)

]

, and this gives (4.16), up to renaming C > 0.
On the other hand, if p ∈ (1, 2), we deduce from (4.19) that

Γ′(r) ≤ C2

(a+
√
r)2−p

≤ C2

r
2−p
2

,

which, together with (4.17), gives that

Γ(r) =

∫ r

0

Γ′(ρ) dρ ≤ 2C2r
p
2

p
≤

2C2‖u‖
p−1
2

W 1,∞(Rn)

p

√
r,
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for all r ∈
[

0, ‖u‖W 1,∞(Rn)

]

, and this gives (4.16).
It remains to prove (4.16) if Assumption B holds true. In this case, we use (1.7) and (4.18) to see

that

Γ′(r) ≤ C2(1 + |σ|)−1|ξ′|2 = C2(1 + |σ|)−1(|ξ|2 + |ξn+1|2) = C2(1 +
√
r)−1(1 + r) ≤ C2(1 + r).

This and (4.17) give that

Γ(r) ≤ C2

(

r +
r2

2

)

≤ C2





√

‖u‖W 1,∞(Rn) +
‖u‖

3
2

W 1,∞(Rn)

2





√
r

for all r ∈
[

0, ‖u‖W 1,∞(Rn)

]

, and the proof of (4.16) is thereby complete.
Now, we claim that

N is open. (4.20)

For this, let y0 ∈ N . We recall that F ≥ 0 on the range of u, thanks to (1.15). Then, in light of (3.1),
(4.15) and (4.16) we see that

P0 = P (w; y0) = 2Φ′(|∇w(y0)|2)|∇w(y0)|2 − Φ(|∇w(y0)|2)− 2F (w(y0))

= Γ(|∇w(y0)|2)− 2F (w(y0)) ≤ Γ(|∇w(y0)|2) ≤ C|∇w(y0)|.
(4.21)

Now, we set

κ :=
P0

2C
,

and, recalling (4.7), we observe that κ > 0. As a consequence, in light of (4.21), it follows that there
exists ̺ > 0 such that

|∇w(x)| ≥ κ, for any x ∈ B̺(y0).

Therefore, there exists k̄ ∈ N such that for all k ≥ k̄ and all x ∈ B̺(y0) we have that

|∇u(x+ zk)| = |∇wk(x)| ≥
κ

2
. (4.22)

In particular, ∇u(x+ zk) 6= 0 and therefore, by (4.4), we get

∑

i,j

∂

∂xj

(

dij(∇u(x+ zk))
∂P (u; x+ zk)

∂xi

)

+
B(u; x+ zk) · ∇P (u; x+ zk)

|∇u(x+ zk)|2
≥ 0. (4.23)

Moreover, by (3.1), we have P (u; x+ zk) = P (wk; x), and therefore we can write (4.23) in the form

0 ≤
∑

i,j

∂

∂xj

(

dij(∇wk(x))
∂P (wk; x)

∂xi

)

+
B(u; x+ zk) · ∇P (wk; x)

|∇u(x+ zk)|2

=
∑

i,j

∂

∂xj

(

dij(∇wk(x))
∂P (wk; x)

∂xi

)

+ βk(x) · ∇P (wk; x),

(4.24)

for all x ∈ B̺(y0), as long as k ≥ k̄, where

βk(x) :=
B(u; x+ zk)

|∇u(x+ zk)|2
. (4.25)
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We stress that, by (3.4), (4.22) and (4.25), we can obtain

sup
k≥k̄

‖βk‖L∞(B̺(y0),Rn)

≤ 4

κ2

[

2‖f‖L∞(u(Rn))

inf
κ/2≤|ζ|≤‖u‖

W1,∞(Rn)

Λ(|ζ |2)

(

1 + sup
κ/2≤|ζ|≤‖u‖

W1,∞(Rn)

|ζ |2 Φ′′(|ζ |2)
Φ′(|ζ |2)

)

‖u‖W 1,∞(Rn)

+
‖u‖2W 1,∞(Rn)

inf
κ/2≤|ζ|≤‖u‖

W1,∞(Rn)

Λ(|ζ |2) sup
j∈{1,...,n}

(ζ,η)∈Rn×RN−n

|ζ|≤‖u‖
W1,∞(Rn)

∣

∣gζj(ζ, η)
∣

∣

]

,

which is bounded, thanks to (1.2) (recall also (4.2) and (4.3)). Therefore, up to subsequences, we
can suppose that

βk converges to some β ∈ L∞(B̺(y0),R
n)

weakly in L2(B̺(y0),R
n) and weakly-∗ in L∞(B̺(y0),R

n).
(4.26)

Furthermore, by (1.1), we conclude

0 = div(Φ′(|∇u(x+ zk)|2)∇u(x+ zk))− f(u(x+ zk))− g(∇u(x+ zk), Su(x+ zk))

= div(Φ′(|∇wk(x)|2)∇wk(x))− f(wk(x))− g(∇wk(x), Su(x+ zk))

= div(Φ′(|∇wk(x)|2)∇wk(x))− f̃k(x),

where
f̃k(x) := f(wk(x)) + g(∇wk(x), Su(x+ zk)).

In view of (1.16) and (4.9), we have that f̃k ∈ C0,γ(B̺(y0)), with

sup
k≥k̄

‖f̃k‖C0,γ(B̺(y0)) < +∞.

Consequently, by (4.22) and uniform elliptic regularity theory, we obtain that

sup
k≥k̄

‖wk‖C2,γ(B̺(y0)) < +∞.

Therefore, up to a subsequence and possibly renaming γ, we can suppose that wk converges to w

in C2,γ(B̺(y0)), as k → +∞.
As a consequence, recalling (3.1), we conclude that

∇P (wk; ·) converges to ∇P (w; ·) in C0,γ(B̺(y0),R
n), as k → +∞. (4.27)

Exploiting (4.24), (4.26) and (4.27), we obtain that

0 ≤
∑

i,j

∂

∂xj

(

dij(∇w(x))
∂P (w; x)

∂xi

)

+ β(x) · ∇P (w; x),

for all x ∈ B̺(y0), in the distributional sense.
Therefore, recalling (4.12), by Maximum Principle (see e.g. [GT83, Theorem 8.19], or [PS07]), it

follows that P (w; x) = P0 for any x ∈ B̺(y0), and this establishes (4.20).
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Now, by (4.13) and (4.20), we infer that N is both closed and open, so that N = R
n, that is

P (w; x) = P0 for any x ∈ R
n. (4.28)

On the other hand, since w is bounded, by following the gradient lines we find a sequence of points
τj such that

lim
j→+∞

∇w(τj) = 0.

By using this in (4.28), we obtain

0 ≥ lim sup
j→+∞

−2F (w(τj)) = lim sup
j→+∞

P (w; τj) = P0,

which is in contradiction with (4.7). This proves (4.6), from which Theorem 1.2 follows at once. �

5 Proofs of Proposition 1.3 and Corollary 1.4

We start by proving Proposition 1.3:

Proof of Proposition 1.3. From the definition of Φ(r) in (1.8) and Λ in (1.13) (recall also (2.7)
and (2.15)) we have that

Λ(r) = 2rΦ′′(r) + Φ′(r) =
m
∑

k=1

[

ck(pk − 2)r(bk + r)
pk−4

2 + ck(bk + r)
pk−2

2

]

=

m
∑

k=1

ck(bk + r)
pk−4

2

[

(pk − 2)r + bk + r
]

=

m
∑

k=1

ck(bk + r)
pk−4

2

[

(pk − 1)r + bk
]

.

Therefore

βΦ′(r)− Λ(r) = β

m
∑

k=1

ck(bk + r)
pk−2

2 −
m
∑

k=1

ck(bk + r)
pk−4

2

[

(pk − 1)r + bk
]

=
m
∑

k=1

ck(bk + r)
pk−4

2

[

β(bk + r)− (pk − 1)r − bk
]

=
m
∑

k=1

ck(bk + r)
pk−4

2

[

(β − 1)bk + (β − pk + 1)r
]

.

(5.1)

Also, by (1.19), we write g = g(∇u, u), referring to ζ ∈ R
n as the variable corresponding to ∇u and

to η ∈ R as the variable corresponding to u. By (1.20), we know that

gη ≥ 0. (5.2)

Moreover, by the homogeneity of g in (1.21), we have that

∇ζg(ζ, η) · ζ = βg(ζ, η). (5.3)

As a consequence, by (1.14), (5.2) and (5.3) (and using short notations whenever possible), we have

R = −2fg|∇u|2
Φ′

+ 2|∇u|4gη +
2f |∇u|2

Λ
∇ζg · ∇u
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≥ −2fg|∇u|2
Φ′

+
2βfg|∇u|2

Λ

=
2fg|∇u|2

Λ Φ′
(βΦ′ − Λ) .

Hence, recalling (5.1), we obtain

R ≥ 2fg|∇u|2
Λ Φ′

m
∑

k=1

ck(bk + |∇u|2)
pk−4

2

[

(β − 1)bk + (β − pk + 1)|∇u|2
]

. (5.4)

Now we claim that

Ξ := fg

m
∑

k=1

ck(bk + |∇u|2)
pk−4

2

[

(β − 1)bk + (β − pk + 1)|∇u|2
]

≥ 0. (5.5)

To prove (5.5) we distinguish six cases, according to the different assumptions in (1.22)-(1.27). To
start with, let us assume that (1.22) is satisfied. Then, we have that

Ξ = fgc1(b1 + |∇u|2) p1−4
2

[

(β − 1)b1 + (β − p1 + 1)|∇u|2
]

= fgc1(b1 + |∇u|2) p1−4
2 (p1 − 2)b1 ≥ 0,

and this proves (5.5) in this case. The same way can be used to discuss cases (1.23) and (1.24), we
omit them here.

If instead (1.25) is satisfied, we find that (β−1)bk+(β−pk+1)|∇u|2 ≥ 0 and consequently Ξ ≥ 0,
which shows (5.5) in this case.

In addition, if (1.26) is satisfied, we see that

β − pk + 1 ≤ β − p1 + 1 ≤ 0,

and thus

Ξ = fg

m
∑

k=1

ck|∇u|pk−4(β − pk + 1)|∇u|2 ≥ 0.

Finally, if (1.27) holds true, we see that

Ξ = fgc1(b1 + |∇u|2)
p1−4

2

[

(β − 1)b1 + (β − p1 + 1)|∇u|2
]

= 0.

This completes the proof of (5.5).
Then, the desired result follows from (5.4) and (5.5). �

With the previous work, we can now establish Corollary 1.4, which gives a series of concrete
situations in which our main gradient estimate holds true.

Proof of Corollary 1.4. By either (1.28) or (1.29) we have the validity of either (1.11) or (1.12) and
consequently, by Proposition 1.1, we deduce that either Assumption A or Assumption B is satisfied.

This is one of the cornerstones to apply Theorem 1.2. The other fundamental ingredient to apply
Theorem 1.2 lies in the reminder estimate (1.17), which we are now going to check. To this end, we
want to exploit Proposition 1.3 and, for this, we need to verify that its assumptions are fulfilled in
our setting. Indeed, we have that (1.20) and (1.21) follow from (1.30) and (1.31). Furthermore, at
least one among (1.22)-(1.27) is satisfied, in light of (1.32)-(1.37). Condition 1.19 is also fulfilled,
due to the structure of g in (1.38). Therefore, all the hypotheses of Proposition 1.3 are satisfied, and
consequently we deduce from Proposition 1.3 that R ≥ 0.

This in turn gives that condition (1.17) is satisfied and, as a consequence, we are in the position
of exploiting Theorem 1.2. In this way, the desired result in (1.39) plainly follows from (1.18). �
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6 Proof of Theorem 1.7

In this section, we prove Theorem 1.7. After our preliminary work, this part follows closely some
arguments in [CGS94,FV13]. We provide full details in the specific case in which we are interested,
for the facility of the reader.

Proof of Theorem 1.7. We take x0 and r0 as in the statement of Theorem 1.7 and we define

V := {x ∈ R
n s.t. u(x) = r0}.

Notice that x0 ∈ V, and hence V 6= ∅. Furthermore, by the continuity of u, we have that V is closed.
We claim that

V is also open. (6.1)

From this, we would obtain that V = R
n, which is the thesis of Theorem 1.7. Therefore we focus on

the proof of (6.1). For this, we fix ŷ ∈ V and ŵ ∈ Sn−1. For any t ∈ R, we define

ϕ(t) := u(ŷ + tŵ)− u(x0).

We claim that there exist positive constants c and C such that

|ϕ′(t)| ≤ C|ϕ(t)|, for all t ∈ (−c, c). (6.2)

For this, we define

p̂ :=

{

p if Assumption A holds with p > 2,

2 otherwise.
(6.3)

We also make use of the function Ψ introduced in the proof of Lemma 3.1, which satisfies the
functional identity

Ψ−1(r) = 2rΦ′(r)− Φ(r), for all r ∈ [0,+∞).

Let also
G(r) := Ψ−1(r)− ǫrp̂/2.

The parameter ǫ > 0 will be chosen conveniently small with respect to M := ‖u‖W 1,∞(Rn) and to the
structural constants given in either (1.5) or (1.7). Observe that if M = 0, then u = 0 in R

n and so
the result is true.

Now we take r ∈ (0,M2], with M > 0, and σ := (
√
r, 0, . . . , 0) ∈ R

n and we use (1.13) and (1.3),
and either (1.5) or (1.7), to see that

Λ(r) = 2rΦ′′(r) + Φ′(r)

= |σ|−2
∑

i,j

aij(σ)σiσj

≥



















C1(a+ |σ|)p−2 if Assumption A holds and p > 2,
C1

(a+ |σ|)2−p
if Assumption A holds and p ∈ (1, 2],

C1

1 + |σ| if Assumption B holds

≥



















C1|σ|p−2 if Assumption A holds and p > 2,
C1

(a+M)2−p
if Assumption A holds and p ∈ (1, 2],

C1

1 +M
if Assumption B holds

(6.4)
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≥











ǫp

2
rp/2−1 if Assumption A holds and p > 2,

ǫ if Assumption A holds and p ∈ (1, 2],
ǫ if Assumption B holds

=
ǫp̂

2
rp̂/2−1,

as long as ǫ is small enough.
Furthermore, notice that, by Φ(0) = 0 and either (1.4) or (1.6), we have that G(0) = 0. Also,

by (1.13), we have

G′(r) := Λ(r)− ǫp̂

2
rp̂/2−1

for any r > 0 and therefore G′(r) ≥ 0 for any r ∈ (0,M2], thanks to (6.4) (as long as ǫ is small
enough). As a consequence, G(r) ≥ 0 and therefore

Ψ−1(r) ≥ ǫrp̂/2 (6.5)

for any r ∈ (0,M2]. By taking r := |∇u(ŷ + tŵ)|2 in (6.5) and using (1.18), we obtain

|ϕ′(t)|p̂ ≤ |∇u(ŷ + tŵ)|p̂

≤ 1

ǫ
Ψ−1(|∇u(ŷ + tŵ)|2)

≤ 2

ǫ
F (u(ŷ + tŵ))

=
2

ǫ

[

F (u(ŷ + tŵ))− F (u(x0))
]

.

(6.6)

Now, we claim that if r is sufficiently close to r0 then there exists C0 > 0 such that

∣

∣F (r)− F (r0)
∣

∣ ≤ C0|r − r0|p̂. (6.7)

To check this we distinguish two cases, according to the value of p̂. First of all, if p̂ = 2, we use a
second order Taylor expansion of F , and we conclude that

∣

∣F (r)− F (r0)
∣

∣ ≤ sup
ρ∈[r0−1,r0+1]

|F ′′(ρ)| |r − r0|2,

from which (6.7) plainly follows in this case.
If, on the other hand, p̂ 6= 2, then the setting in (6.3) gives that Assumption A holds true

with p = p̂ > 2. Then, in this case (6.7) follows from (1.45). The proof of (6.7) is therefore complete.
Now, plugging (6.7) into (6.6), we get that there exists c > 0 small enough such that

|ϕ′(t)|p̂ ≤ 2C0

ǫ
|u(ŷ + tŵ)− u(x0)|p̂ =

2C0

ǫ
|ϕ(t)|p̂, t ∈ (−c, c).

Taking C =
(

2C0

ǫ

)1/p̂
, we obtain (6.2), as desired.

From (6.2) we obtain that the function t 7→ |ϕ(t)|2e−2Ct is non-increasing for small t. Accordingly,
|ϕ(t)| ≤ |ϕ(0)|eCt = 0 for small t, that is ϕ(t) vanishes identically (for small t, independently of ŵ).
By varying ŵ, we obtain that u is constant in a small neighborhood of ŷ. This proves (6.1) and thus
Theorem 1.7. �
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