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Abstract

We consider the Brezis—Nirenberg problem:

{ —Au=Aiu+ |u|2*_2u in £2,
u=20 on 052,
where £2 is a smooth bounded domain in RV ,N>3,2%= % is the critical Sobolev exponent and A > 0
is a positive parameter.

The main result of the paper shows that if N =4, 5,6 and A is close to zero, there are no sign-changing
solutions of the form

u) = PU(SI,S — PU52,§ + wy,

where PUs; is the projection on Hol(.Q) of the regular positive solution of the critical problem in RV,
centered at a point £ € £2 and w;, is a remainder term.

Some additional results on norm estimates of w)_and about the concentrations speeds of tower of bubbles
in higher dimensions are also presented.
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1. Introduction

In this paper we study the semilinear elliptic problem:

—Au= u+u*"2u in$, (1)
u=0 on 052,

where £2 is a smooth bounded domain in RY, N > 3, A isa positive real parameter and 2* = %

is the critical Sobolev exponent for the embedding of HO1 (£2) into L (£2).

This problem is known as “the Brezis—Nirenberg problem” because the first fundamental re-
sults about the existence of positive solutions were obtained by H. Brezis and L. Nirenberg in
1983 in the celebrated paper [6]. From their results it came out that the dimension was going
to play a crucial role in the study of (1). Indeed, they proved that if N > 4 then there exists a
positive solution of (1) for every A € (0, 11(£2)), A1(£2) being the first eigenvalue of —A in £2
with Dirichlet boundary conditions, while if N = 3 then a positive solution exists only for A away
from zero. In particular, in the case of the ball B they showed that there are no positive solutions
in the interval (0, 2$2)),

Since then several other interesting results were obtained for positive solutions, in particu-
lar, about the asymptotic behavior of solutions, mainly for N > 5 because also the case N =4
presents more difficulties compared to the higher dimensional ones.

Concerning the case of sign-changing solutions, existence results hold if N > 4 both for A €
(0, 11(£2)) and A > A1($2) as shown in [3,9,7].

The case N = 3 presents even more difficulties than in the study of positive solutions. In
particular, in the case of the ball it is not yet known what is the least value A of the parameter A
for which sign-changing solutions exist, neither whether 4 is larger or smaller than A1 (B) /4. This
question, posed by H. Brezis, has been given a partial answer in [5]. However, it is interesting
to observe that in the study of sign-changing solutions even the “low dimensions” N =4,5,6
exhibit some peculiarities. Indeed, it was first proved by Atkinson, Brezis and Peletier in [2] that
if £2 is a ball, there exists A* = A*(N) such that there are no radial sign-changing solutions of
(1) for A € (0, A*). Later this result was re-proved in [1] in a different way.

Moreover, for N > 7 a recent result of Schechter and Zou [13] shows that in any bounded
smooth domain there exist infinitely many sign-changing solutions for any A > 0. Instead, if
N =4,5,6 then only N + 1 pairs of solutions, for all » > 0, have been proved to exist in [9] but
it is not clear whether they change sign.

Coming back to the nonexistence result of [2] and [1], an interesting question would be to see
whether and in which way it could be extended to other bounded smooth domains.

Since the result of [2] and [1] concerns nodal radial solutions in the ball the first issue is to
understand what are, in general bounded domains, the sign-changing solutions which play the
same role as the radial nodal solutions in the case of the ball. A main property of a radial nodal
solution in the ball is that its nodal set does not touch the boundary, therefore, a class of solutions
to consider, in general bounded domains, could be the one made of functions which have this
property.
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Moreover, in analyzing the asymptotic behavior of least energy nodal radial solutions u; in the
ball, as A — 0, in dimension N > 7 (in which case they exist for all A € (0, A1(B)), see [8]) one
can prove (see [10]) that their limit profile is that of a “tower of two bubbles”. This terminology
means that the positive part and the negative part of the solutions u; concentrate at the same
point (which is obviously the center of the ball) as . — 0 and each one has the limit profile, after
suitable rescaling, of a “‘standard” bubble in R¥ ie.ofa positive solution of the critical exponent
problem in R". More precisely, the solutions u; can be written in the following way:

u) = PUs, ¢ — PUs, ¢ + w;, ()

where PUs, ¢,i = 1,2, is the projection on HOl (£2) of the regular positive solution of the critical
problem in R¥ centered at & =0, with rescaling parameter §;, and w, is a remainder term which
converges to zero in H(; (£2).

It is also interesting to observe that, thanks to a recent result of [11], sign-changing bubble-
tower solutions exist also in bounded smooth symmetric domains in dimension N > 7 for A close
to zero, and they have the property that their nodal set does not touch the boundary of the domain.

In view of all these remarks we are entitled to assert that in general bounded domains sign-
changing solutions which behave as the radial ones in the ball, at least for A close to zero, are the
ones which are of the form (2). Hence, a natural extension of the nonexistence result of [2] and
[1] would be to show that, in dimension N =4, 5, 6, sign-changing solutions of the form (2) do
not exist in any bounded smooth domain.

This is indeed the main aim of this paper. Let us also note that in the 3-dimensional case a
similar nonexistence result was already proved in [5]. Indeed, in studying the asymptotic behavior
of low-energy nodal solutions it was shown in [5] that their positive and negative part cannot
concentrate at the same point, as A tends to a limit value % > 0. In the case N > 4 this question
was left open in [4]. Therefore, our results also complete the analysis made in these last two
papers.

To state precisely our result, let us recall that the functions

N-2
5252
Us(x) =ay —, §>0, £eRY, 3)
2 +x—&2 7

ay :=[N(N —2)] =N , describe all regular positive solutions of the problem

{—AU:U%—% in RV,
U(x)— 0, as |x| — +oo.

Then, denoting by PUj their projection on H& (£2), and by |u|| := f_Q [Vu|? dx for any u €
HO1 (£2), we have:

Theorem 1. Let N =4, 5, 6 and let & be a point in the domain $2. Then, for A close to zero, Prob-
lem (1) does not admit any sign-changing solution u;, of the form (2) with §; =8;(A), i =1, 2,
N-2 N

such that 55 = 0(81), ||wy]| = 0 and |w,| = 0(81_7), [Vw, | = 0(81_7) uniformly in compact
subsets of §2, as A — 0.
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. . v . .
The previous notations mean that Iw_x_l’ Vil converge to zero as A — 0 uniformly in com-
v W
$ )
1

pact subsets of £2.

The proof of the above theorem is based on a Pohozaev identity and fine estimates which are
derived in a different way in the case N =4 or N =5, 6. We would like to point out that it cannot
be deduced by the proof of Theorem 3.1 of [5] which holds only in dimension three.

Concerning the assumption on the C!-norm in compact subsets of 2 of the remainder term
w;,, whose gradient is only required not to blow up too fast, in Section 4 we show that it is almost
necessary.

Note that we do not even require that w; — 0 uniformly in £2 neither that it remains bounded
as A — 0, but only a control of possible blow-up of |w;, | and |[Vw, |. We delay to the next sections
some further comments and comparisons with the case N > 7.

Finally, in the last section we show that in dimension N > 7 if (u,) is a family of solutions of
type (2) with |w, |, [Vw, | as in Theorem 1 and §; = d; 1%, for some positive numbers d; = d; (1)
with 0 < c| < d; < ¢3, for all sufficiently small X, and 0 < o] < &>, then necessarily:

1 3N - 10

:m, azzm. (4)

o]

In other words, we prove that if the concentration speeds are powers of A then necessarily the
exponent must be as in (4). Note that these are exactly the type of speeds assumed in [11] to
construct the tower of bubbles in higher dimensions.

2. Some preliminary results

Lemma 1. Let 2 be a smooth bounded domain of RN and let (8, E)eRT x 2. A58 — 0, it
holds:

N=2 N=2

PUse(x)=Use(x) —and 7 H(x,§)+0(877 ), xef
C!-uniformly on compact subsets of §2, where H is the regular part of the Green function for the
Laplacian. Moreover, setting @5 ¢(x) 1= Us ¢ (x) — PUs £ (x), the following uniform estimates

hold:

() 0<gse <Usg,
(i) llgsell> = 02N,

where d = d (&, 082) is the Euclidean distance between & and the boundary of S2.

Proof. See [12, Proposition 1] and its proof. O

Lemma 2. Let N > 4 and let (u,) be a family of sign-changing solutions of (1) satisfying
luz > > 28V, as 2 — 0.

Then, for all sufficiently small ). > 0, the set 2 \ {x € 2; u, (x) =0} has exactly two connected
components.



4184 A. lacopetti, F. Pacella / J. Differential Equations 258 (2015) 4180—4208

Proof. Let us consider the nodal set Z) := {x € £2; u;(x) = 0} and let £2; be a connected
component of £2 \ Z,. Multiplying (1) by u, and integrating on £21, we get that

/ Vi |* dx > SN2(1 + o(1)),
21

where we have used the Sobolev embedding and the fact that A — 0 and A (£21) f 2 u% dx <
f-Ql |Vuy|? dx, where A1 (£21) is the first Dirichlet eigenvalue of —A on £2.
Since ||uy || — 25N/2, as A — 0, then for all sufficiently small A > 0, we deduce that £2 \ Z,

can have only two connected components. O
We recall now the Pohozaev identity for solutions of semilinear problems which are not nec-

essarily zero on the boundary. Let D be a bounded domain in RY, N > 3, with smooth boundary
and consider the equation

—Au= f(m) inD, 5
where s — f(s) is a continuous function. Denoting F(s) := fos f(t) dt, we have:

Proposition 1. Let u be a C?-solution of (5), then

/{NF(u) _N- zuf(u)} dx

:/{

aD i=1

N N
1 au N -2 du
E xi”i<F(U)_§|Vu|2>+5 Elxiuxi‘f‘ ) Ma do, (6)
=

where v denotes the outer normal to the boundary and u,, is the partial derivative with respect
to x;i of u.

The following lemma gives information on the asymptotic behavior of the nodal set Z, of
solutions of (1) as A — 0.

Lemma3. Let N > 4, & € 2 and let (u;,) be a family of solutions of (1), such that uy = PUs, ¢ —
PUs, £ + wj, with 81 = 81 (A) and 8 = 82(A) satisfying

S =0(81) and |wy] — 0, as A — 0.

_N=2
Moreover, assume that w), satisfies |w;.| = 0(8; * ) uniformly in compact subsets of $2. Then,

for all small € > 0, there exists Le > 0 such that the nodal set Z,, is contained in the annular

1_. 1
region Ay, (§) :={x € 2; ri <|x —&| <r}, forall » € (0, A¢), where r| :=§; 6822+6, ry =
5%*632%‘5.



A. lacopetti, F. Pacella / J. Differential Equations 258 (2015) 4180-4208 4185

Proof. Without loss of generality we assume that £ = 0. In order to simplify the notation we

write Ugj instead of Us 7,05 for j =1,2. Let us fix a small € > 0 and a compact neighborhood

of the origin K. Thanks to the assumptions and Lemma 1, we have the following expansion
N=2

uy(x) = Us, (x) — Us,(x) +0(8; * ), which is uniform with respect to x € K and to all small

A > 0. By definition, for all sufficiently small A > 0, we have that A,, ,,(0) C K. For x such that

|x| =r1, we have:

5 5
Us, (x) = ay TN = L
(82 +8,7°6,) 7

_N=2 N—2 _N=2/§ 1+2¢ _N=2/§ 14+2¢
oy a2 (5) +o(81 2 (i) )

N-2 N-2 N-2

L N2 N2 (N-2)e

Us, (¥) = ay g f
(5§+811—2€8;+2E)T

N
3\ 142671252
[1+(2)1+2€]%

and

N-2
—N22_(N-2)e
1 8,

[+ ()25

8

N2 N—2
L e

:aN -
[+ ()27

B 8_NT_2 8_2 —(N—2)e_ N_28_¥ 5_2 1-Ne
TN 5 INTHTA 5

N2 /§ 1—Ne
+o(al z (6_2> )
1

Hence, for x € K, such that |[x| =r{, we have

_N-2 8\ “(N—2e N2
u(x) =ay 8, ’ (1—<g> >+0(81 2) <0

for all sufficiently small A > 0. On the other hand, by similar computations (just changing the
sign of € in every term of the previous equations), for x such that |x| = r,, we have

_N-2 82 +(N—-2)e N2
u(x)=an 8, * (1—<g) )—i—o((Sl 2 )>0

for all sufficiently small A > 0.
From Lemma 2 and since u, is a continuous function, we deduce that Z, C A, ,(0) for all
sufficiently small . > 0. O

3. Proof of the nonexistence result

We begin considering the case N =35, 6 since the case N = 4 requires different estimates.
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Proof of Theorem 1 for N =5, 6. Arguing by contradiction let us assume that such a family
of solutions exists and, without loss of generality set £ = 0. Defining r := /5152, we apply
the Pohozaev formula (6) to u, in the ball B, = B, (0). Since u, is a solution of (1), we set
f) := Au + |u|P~ lu with p = 2* — 1, and hence, using the notation of Proposition 1, we
have F(u) = éuz + 55 |u |P+1. By elementary computations' (see the footnote), we get that the
left-hand side of (6) reduces to

A / u% dx.

For the right-hand side

N
81“ 814)L N-2 814)L
XV F(u)——|Vu|> xXi— + u,— ¢ do,
/{Z”< g En ;’ax, 2

3B, i=1

since dB, is a sphere, we have v;(x) = IXTl\ for all x € BBr, i =1,...,N, and hence,

N .
Y iy Xivi = |x|. Furthermore, since LU Vu,, - \Xl and Z, | Xi 3x = (Vu,, - ‘x|)|x| we get

that
N N 2
ouy, 814)L X
_ Yu § L ,
v = < " |x|) - i ( “ |x|> .

ou;, X
Up—— = Uy VM)L~—.
i =V )

Thus, Eq. (6) rewrites as

)\/uidx

B,

1 2 x\? N-=-2 X
:/{|x|(F(u,\)—§|VuA|) (Vuk X |) |x| + 5 uk<Vuk X |>}d0. 7
9B

-

We estimate the left-hand side of (7). Let us fix a compact subset K C §2; for A > 0 sufficiently

small, we get that B, C K. Thanks to Lemma 1, we have PUgj = Ug]. — @5, where ¥s; =
N2

[0I¢) ; 2 ), for j =1, 2, and this estimate is uniform for x € K, in particular, for x € B,. Thus, as

A — 0, we get that

N -2 A 1 N -2
NF(u) - uf ) =1v<5u2 + ﬁ|u|1’+‘) = = (e P

N N-2 N N-2
=(=- a4 | —— — — ) |uPH!
2 2 p+1 2
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/(PU(;I — PUs, +0(81_¥))2 dx
B,

=2

_N=2
ZA/(U(M — Us, — 95, + s, +0(81 ’ ))2 dx

B,

N2

= A/(Ugl — Us, +0(81_T))2 dx

_ A/(Ugl + U2 —2Us,Us, +0(8, 7 Us,)+0(6;

B,

N=2 N=2

B,

=A+B+C+D+E+F.

We estimate every term of the previous decomposition.

(SN -2 5 (N=2)
A:A/ R S / dx
N+ 1x)N-2 = <1+|x/61|2)N 2
B

-

1
242 242
=ayAd ——————dy <ayAdy|B; /S
NT / (1+Iy|2)N 2 4V =N 1B /5]

)
= cyr8? ,
- (51 )

vl

4187

where we have set cy = azszTN’ wy 1s the measure of the (N — 1)-dimensional unit sphere

SN
2 591—2 2 8 v
B:A/a —————dx =« A/—d
N85+ Ix N2 (1 |x/8 )N =2
B, B,
—i [ e
N2 A IyPN?
B /3>
2,62 1 2 TN
=ayAd ——————dy+ 0[S ————d
w 2/ (T ppv2 @O / T+ vz
N
* (1)
)
=a1A85 + O( 183 5 )
where we have set a; := alz\, fRN W dy. We point out that since N =5 or N = 6 the
function W e L'(RY), while this is not true when N = 4.
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2 A
8 8
2 1 2
|C|=kaN/ 5 e 2N__2dx
5 @GP 7 (8 +[x]%) 2
= i
1) 1)

2 1 2
:)\,(YN/ 2u 5 : 2udy
B./5, I+ 1y 2 65+ 671yl 2

_N=6 N2
1) 1)
2 1 2
ZAaN/ 2852 82 oz
B./5, A+ 7 (G +1y19) 2

IA
>
R
20
N
=S
N———"
J

2/ 1 d
1 N2 Yy

22 N2
B8 (T+1y15) 2 |yl

s
Gh'?

N2
s = N-1
=0 x<—2> 52 / W
81 S 4y eN2
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Now we estimate the right-hand side of (7). Remembering that F(u)) = %u% + —

we get that the first term is equal to
Ao 1 1] 2
/ |x|(5uk+p+1|uk|1’+ —§|VMA| do
3B,
We observe that by definition of r it is immediate to see that
Us, (x) = Us, (x),
for all x € 0 B,, and hence, we have
A A —N22 L,
/ Eu% |x| do = 3 /(U51 —Us,+0(8, *)) Ixldo
9B, 9B,
A N2,
=2 [loler T Ixl o
JdB,
:o(Ml_(N_z) / |x] dcr)
B,
5\
_ 0<x(_2) a%).
31
As in the previous case, we have
+1 2t
FES [ ol de = / [Us, = Us, +0(8; 7 )" xldo

+1 /| 6 ) o
p 0B,

:0<81_N33/r |x|d0)
~((3)’)

To complete the estimate of the first term, it remains to analyze

1/|V Plxl d
—_— u X o.
) A

B,

As before, writing PU5j = U,gj — @5 for j =1, 2, we have
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where we have set @, := —g@s, + ¢s, + w;. Hence, we get that
s [ i
—— u|“|x| do
5 A
0B,

1 1
Z_E/WUMZ |x|do—§/|VU52|2 |x|da+/VU51.VU52 x| do
3B, 9B, 9B,

1
—/VU(SI.chA |x|da+fVU52.v<pA |x|da—§/|V<D;L|2 x| do

3B, 3B, 3B,
=A1+B1+Ci+ D1+ E+ Fr. 9)
By elementary computations, foralli =1,..., N, j =1, 2, we have:
aUs, N-2 :
() = —ay(N = 28,7 ——
0xi 62+ 1x%)?
VU, 2 = a2 (N — 2)28 2 xI? (10)
"=« — N—2_ ™7
S T @Y

Thus, we get that

N+2
s 2N = 2)2 5y N 3
1 =—a}, | x P do
2 1+ (3 )]

2([\/_2)2 8 —(N+2) N+2 %

=—« WN 86, &
N2 [+ 2

N+2 N+4

__a(N=22 (8 AR
TN CON<51> +0<(31> )

(N —2)28) 27NN
Bl: 12\] 5N /|x|3 do
2 [1+ ()]

2 2 ; ;
= —q5, — +O -
N 2 @N (8]) <<81)

5,7 6,7 6Vs 2s;
Cr=a(N -2 2 /|x|3da
[1+(2 )]2[1+( )]2

i

N\Z
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(i
i @n

s\ 2 S\ 2
:afv(N—z)sz<8—2> 0((§> )

1

=ak (N —2)%w

4191

Taking into account the assumptions on the remainder term w; and thanks to Lemma 1, we have

_N
|V®; | =0(8, *), uniformly on 3 B,. Thus, we have the following:

|D1| < / IVUs, [IV®.llx| do
9B,

=0< /|x| da)
<82+6182>z
N2 N N
:0(514611\]51_7/“:'2610_)
[1+ (3912

3B,
N+1
() 7)
=0 _ ,
)

|E1|§f|VU52||V<PA||X|dU

B,
N

3, 228
=0( /|x| da)
[1+(52>]z %
8 o
=o| | = .
<<31> )

And finally, the last term of (9) is trivial:

n-A(2)')
[ (5o %)zm do.

B,

oz

Now we analyze the term

As before, we write u = Us, — Us, + @, and we have

(1)
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x\? x\? x\?
Vuy, - — ) lx|=(VUs, - — | x|+ | VUs,- |x|
|x| |x] x|
X X
— 2<VU51 . —) (VU52 . )|x|
|x| x|
X X
+2<VU51 . —) (VCDA . —>|x|
|x| x|
X X
— 2<VU(;2 . —) (Vcbx . —>|x|
|x| |x]
2
X
+(V¢A R |> |x].
By elementary computations we see that for j =1, 2
2
X 2
< Us; - x |) lx| = VUs; | |x],

—2<VU51 X |)(VU52 B |> x| = —2(VU31 ~VU32) |x],

and for the remaining terms, we have

‘ﬁ<w’3 x |><W* x |>'x'
(vos )

< 2|VUs; ||V @yllx],

< |V, |x].

(12)

Thus, in order to estimate (11) it suffices to apply the estimates of the previous case, and

hence, we get that

N2 N=-2

2 N—2 N2
X 5\ 2 5\ 2
Vu, - —) |x|dc7:oe2 (N—2)2a)N<—> +0<(—>
/ ( x| N 51 51
3B,

To complete our analysis of (7) it remains only to study the term

NT_Z/ (V”” ||)do

-

T (e )
—— [ u; | Vu, - do
2 x|

-

N-=-2 X
:T (U(S] _U52+¢)L) (VU31 _VU52+V¢)‘)H do
9B,
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N_2/¢> VUs, - — ) d N_2/¢> VUs, - — ) d
- [ o — — R o
) A 81 x| D) A 82 x|

B, B,

N-2 X
~|——‘/<DA V&, - — | do
2 |x|

0B,
=Ar+ By + (5. (13)

(N —2)? 6, 7 s
Azl <o /prxllxldd

2 n+(2 )]z
N-2
_ 812 51_ S N2—2 d
_0([1+<5—2)ﬂ/' - 0)
41 9B,
—N
(1412
(%))
=0 — .
)
( )25 2 5 %8 %
|B2| < a3, Lo |¢A||x|da
2
[+ 2 )]

N

N-2 _N _N

8,7 8, %68, 7 _N=2
=0<7f81 2 |x|do>

[1+( )17

~((3)7)

(N =2)
|C2|§Tf|¢k||v¢k|d0

0B,

Summing up all the estimates, from (6), for all sufficiently small A > 0, we deduce the fol-
lowing equation:

N=2 N-2

2 —_—= A S——)
air83 +o(r83) = wa\,(i—?) 2 +0<<§—?) i > (14)
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From (14), we deduce that

N-2 2 N—6
2 )

alkéf(l+o(1))=a,2\,¥w1v827(1+0(1)), (15)

for all sufficiently small A > 0. Since N = 5, 6, it is clear that (15) is contradictory; in fact,
passing to the limit as A — 0, the left-hand side goes to zero while the right-hand side goes to a
positive constant, when N = 6 and diverges to +00 when N = 5. The proof is complete. 0O

Now we turn to the case N =4

Proof of Theorem 1 for N = 4. Again, without loss of generality we assume that £ = 0. We
repeat the scheme of the proof for the previous case, but some modification is needed. In fact,
since N =4, we have to change the estimate of the term B in (8):

B _)\/‘QZLCM_QZ;\ / Lg‘*dy
k — =
NOENRE ! (1+]y2)? 72
B B, /8,

GH

1 r’
24 92 2 2
=azA8 ————— dy = ajw4Ad /7dr
" 4 (A pypy @ TSR ] Ay
r /02

It is elementary to see that

(b

/(1+r2>2 UG ) )
0
ES)
B, =018 1log| — ) ). (16)
)

Thus, summing up (16) with the other estimates made in the previous case (in which we take
N =4), from (6), we deduce the following asymptotic relation:

5 5 5 5
0 r8210g( =2 ) ) + o 26210g( =2 ) ) = 20204 2 ) + 0 =2 ). (17)
[p) 52 51 31

It is clear that (17) gives a contradiction. In fact, dividing each side of (17) by (g—f), we have

8 5
0 (mlaz 10g<8—1>) + o(m]az 1og<8—1)) = 202w+ o(1). (18)
2 2

Passing to the limit as A — 0 in (18), taking into account that §, = 0(81), we deduce that 0 =
20(%(1)4 which is a contradiction. O

and hence, we have that
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Remark 1. In [4,5] sign-changing solutions u; of (1) with low energy were studied, namely,
solutions such that

/ |Vuy)? dx — 28N/2.
2

For this kind of solutions it is not difficult to show (see [4, Theorem 1.1]) that there exist two
points a; = aj(A), ap = az(X) in §2 (one of them is the global maximum point of |u;|) and two
positive real numbers 8; = &1 (A), 62 = §2(A), such that for N > 4, as A — 0, we have

s, — PUs, 4y + PUs, a4, || = 0, 87 'd(a;,882) — +oo, fori=1,2,

where d(a;, 0§2) is the Euclidean distance between a; and the boundary of £2. Hence, these
solutions are of the form (2) but with possibly different concentration points. In [4], assuming
that the concentration speeds of ur and u, were comparable, it was proved that the positive and
the negative part of u, had to concentrate in two different points.

Since here we assume that the concentration speeds are different, our result also completes
the study made in [4].

4. About the estimate on the C!-norm of w,

Here we show that the hypotheses of Theorem 1 on the C'-norm of the remainder term w;,
are almost necessary. Indeed, we have:

Theorem 2. Let 2 be a bounded open set of RN with smooth boundary, N > 4, and let & € £2.
Let u; be a solution of (1) of the form

Uy = PU&,S — Png,g + wy,

with 82 = 0(81) as . — 0. Assume that the remainder term w;_is uniformly bounded with respect
to A in compact subsets of 2. Then for any open subset 2" CC §2 such that § € 2" and for all
sufficiently small € > 0, there exists a positive constant C = C (e, N, 2" such that

N=2
—=7 140
lwiller o < €8 2 8510,

for all sufficiently small A > 0.
Proof. Without loss of generality we assume that £ = 0. By definition w),_ satisfies the following:

—Awj = hwy + A(PUs, — PUs) + U, = Ul +|us|* 2w, in 2, (19)
wy =0 on ds2.

Letusset f3 :=Awy +A(PUs, — PUs,) + U({; — Ug + |u)\|2*_2uk. Since w; and u;, are smooth,
applying the Calderén—Zygmund inequality, we deduce that for any p € (1, 00), for any 2” CC
£2' cc £2 itholds:

lwillz, p,r < C(lwilp,o + 1 filp.or) (20)
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where C depends on 2/, N, p, £2”. Thanks to the Sobolev embedding theorem, for any € > 0, if
p = N + €, we have that W2P(82) is continuously embedded in Cl7(£2), where y=1-— NIY‘_E .
Let us consider two open subsets £2”, 2’ of £2 such that 0 € 2”7 and 2" cC 2’ CC £2. Thanks
to (19) and (20), in order to estimate ||w; || 157, We have to estimate the following quantities:
Wi Nte.25 | falN+e s

Thanks to the assumptions on w;, we deduce immediately that |w; |yt o = O(1), uniformly
with respect to A. For the other term, we argue as it follows: we set g(s) := |s|2*_25, D, =

wy + @2 — @1, where ¢ 1= Ug_,. — PU(gj, for j =1, 2, and we write

[falnte 2 S Mwalnge @ + A PUs INte, 2 + AMPUs,) I Nye 2 + |U£ |N+E’_Q/
+]g(Us) = Us, + ®3) — g(=Us,) |y e
< Mwalnte. o +APUs Inte.o + M PUs INte.o +|Us |y e o
+|gWs, — Us, + 1) — g(=Us,) — g'(=Us)) Us, + D) |y
+ |8/ (=Usy) s, + Py s
=A+B+C+D+E+F.

The term A has been estimated before, and hence, A |wy |y+e o’ = O(L). For B and C, we use
the following estimates:

N2 (N+e)
N+e J
faN N-2 dx
2 2y Y52 (N+e)
o (85 +1x[7) 2
S—NT_Z(N+6)+N
:alf\jﬂ / 5 2\ YF2 (N +e) dy
/s (I+1[yl5)2
J

4N N N2 1
=ay"s;? o / g P
. €
o A+

+00 N—1
Lofs TV / L —
J (1 4+ r2y 2 WN+e '

1/8;

Thus, for all € > 0 sufficiently small, we have

N2 (N+e) 1

5~ N+e
PU, r < aNte / dx
|PUslw+eq = <./ N (5; + |x|2)¥(N+€)

Q/

1

4N 1 e 4N
a5 +0(e></ dy) o5, 0.

A (L) e




A. lacopetti, F. Pacella / J. Differential Equations 258 (2015) 4180-4208 4197

M40 BN 10

), C = 0(As, ). Concerning the term D,

From this we deduce that B = O (A4,
with similar computations we see that

NE2 (N +e)

1
NE2 oy s Wre
|PU§:|N+€Q/§(/O(N2 (N+e) 1 dx>
s J (52+|x|2) 2 (N+e)

1

_N 1 N+e _N

—als 5+0(€) dy +0(8 2+0(e))’

N™1 > (N+e) 1
Lo+ 1yl )7

N
Y10 . .
and hence, D = 0 (5, * * (E)). In order to estimate E, we remember that by elementary inequal-

ities, we have |g(u +v) — g(u) — g’ (u)v| < c|v|?, for all u, v € R, for some constant depending
only on p, and hence, we get that

E <c||®y|” =0(1).

‘ N+e, 2/
For the last term, we have the following:

N i (Vo)

N-2
= 7= (N+e€)
N+e N+f N2 (N+e) 82

l

/
& (U32)U51|N+ =P ay’ TN
- 4 (82 4 [x )72 TN+ (82 4 |j2) TN+
N-2
—2(N+e) —55=(N+e)
_ N+ea¥(N+E) 8, 8 ° dx
N S AF /8PP0 (g sy ) TV
N+2 _N=2 1
Ne, 2 (N+€) (=72 (N+€) (—2(N+€)+N
=rev ” U+ e/mpra
2'/8
Nt2 _N=2 1
N+ (N+e) (N+€) c—N—2
=p EO‘NZ 81 ’ 8 ‘ / (1+|y|2)2(N+5)dy
2'/8,
N+2 _N=22 1
_ _N+e 2 (N+o 7= (N+€) o N—2¢
=p oy 3 % /(1+|y|2)2(1v+e)dy
RN
+o00
N=2 N-—1
=555 (N+e€) . N—2¢ r
+0(51 | W)
1/62

Hence, we get that

1

N2 N Nte
T —140¢(e)
|8’ WUs)Us\ |y 1o o < Pty 81 8, (/ (1+|y|2)2(N+e)dy>
RN

+ 0(81—NT82—1+0(5))
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By the same computations we see that

140
|g/(U‘32)q§)‘|N+e,Q’ = 0(32 " (6))'
Thus, we get that
_ N2
IFl<c(N,p)s, 7 §,'10©.

Summing up all these estimates, from (20) and Sobolev embedding theorem, we deduce that

N-2
——7 140
||wx ||C1(_(_2//) < C8] 2 82 (6),

where C is a positive constant depending on €, N, 2, 2'. O
A straightforward consequence of the previous theorem is the following result:

Corollary 1. Under the assumptions of Theorem 2, for all sufficiently small € > 0, we have

N—4
) 2
/ IV, ?|x| do sC<e,N)(8—2) 57,
1
3B,

for all sufficiently small A > 0, where B, is the ball centered at & having radius r = \/§163.
5. Concentration speeds for N > 7

We consider, as in the previous sections, sign-changing solutions of Problem (1) which are
of the form uy = PUs, ¢ — PUs, ¢ + wy, with §;1 = §1(1), 82 = 62(A) satisfying 6, = 0(81) as
A — 0. In addition, we assume that §;, for i = 1, 2, is of the form

8 = dir™, 21

where d; = d; ()) is a strictly positive function such that d; — d; > 0, as A — 0, and the expo-
nents «; satisfy 0 < a1 < ay. Following the ideas contained in [12] and applying the asymptotic
relation (14), found in the proof of Theorem 1, we determine precisely the exponents o, o)
in the case N > 7. We observe that these speeds are exactly the same used in [11] to construct
solutions of (1) of the form (2).

Theorem 3. Let 2 be a bounded open set of RN with smooth boundary, N > 7, and let £ € £2.
Let uy, be a solution of (1) such that u;, is of the form u, = PUs, ¢ — PUs, ¢ + w;, where §;, for
i =1,2, is of the form (21) with oy > o1 > 0, w), € V), ¢, Vy ¢ is the subspace ofHO1 (£2):

aUs;, .
Vig = {veHol(.Q); (0, PUs,.&) i) = <v,P 35~§> =0, z=1,2}.
I/ Hy ()

_N=2 _N
Moreover, assume that lw; | = o(8, 2), |[Vwy| = o(8, ), uniformly in compact subsets of 2.

3N—-10

_ 1 _
Then o) = =, 02 = (N-H(N-6)"
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In order to prove Theorem 3 we need some preliminary lemmas. Without loss of generality
we assume that & = 0. The first one is the following:

Lemma 4. Let 2 be a bounded open set of RN with smooth boundary and assume that 0 € 2,
N > 5. Then, as § — 0, we have

2
/(3PU5> (x-v)do =adVN 2 + 0(8N72),

Jav
FYo;

for some positive real number ay, depending only on N and S2.

Proof. We multiply the equation —APUs = U} by ZIN: | Xi 35);_]‘3 and we integrate on £2. On

one hand, integrating by parts we obtain

N
dPU
/—APU(gin . = dx
i=1 Xi

2
N 1 APUs\>
=<1——>/|VPU5|2dx——/< 5) (x-v) do
2 2 EM
2 982
N 1 APUs\>2
:(1—?>/U§PU5dx—§/( - )(x~v)da. (22)
2

82

On the other hand, we have

N

N
dPUs —19Us
p ) _ p 7P
/Ua ;x, ox; dx = ;/<U8 + px;iUg ox; )PU5 dx
Q = =lg

N
_10Us

=—N/U6”PU5 dx—p;/x,-Ug’ o PUsdx. (23

2 =

By elementary computations we see that

N
_,0Us N =2 U
S U S = Us + 58—,
iz ax,- 2 204

and hence, from (23), we get that
N

dPU.
/USPZX,- 8x,~8 dx

o i=1

N-2 19U
:_N/Ug’PUs dx+pT/Ug’PU5 dx+p5ng’ 18—;PU5 dx
2

2 2



4200 A. lacopetti, F. Pacella / J. Differential Equations 258 (2015) 4180—4208

N L0U
=(1 —E>/U5”PU5 dx+p5/U§ 18—;PU5 dx. (24)
2

We analyze the last term of (24). Applying Lemma | and since it is well known that

U,
ng’a—; dx =0,

]RN
we have
U U U,
p(s/Ug’ 1223 pyq dx:p(s/Ug’ 1220 s dx—paNs%/Ug’ Y220 i (x,0) dx
3 33 36
2 2 2
U,
+o(5%/ug” 18—;H(x,0) dx)
2
U U,
— s / U;’a—; dx—paNa%fU;’ la—;H(x,O)dx
RV\£2 2
U,
+o(5’§/U§ 13—;H(x,0) dx), 25)
2

where H denotes, the regular part of the Green function for the Laplacian. By definition it is easy
to see that

N+2 N-2 Y
‘—pS / Uf%dxlfaﬁll\];za / 2 822M522”x| 22|dx
¥\ pig G2 HIED (024 )2
cgptiNE2 / SN X =87
-2 be[N¥2 x|V
RN\
=0(s" ). (26)

Moreover, by the usual change of variable and applying the mean value theorem, we have

U,
paNﬁ/Ug’ 18—;H(x,0) dx
2

2 N-2 2 2
_ o Pl N2 8 87 (lx]” —d%)
=pay 82 /(82+|x|2)2 ; S H(x,0)dx
J 02+ 15 ¥

il N2 5T 821X — 1)

52
= pa 37/ H(x,0) dx
N J FA+IF? sV 4127
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_ pal s 2/ Iy =1 H(sy.0) dy
! <1+|y|2>2(1+|y|2)2

2
pHIgN - 2/ (yI*=D
e H(0,0) dy
N (1+|y|2)2(1+|y|2)%

_ 1 (yl> =1
+0<5N ‘/ (VH(y,0)-y) dy)
S A+ (14 1y

_ 1 (yl*—1)
p+loN-2
= pai's / — +H(0,0) dy
1 AR
o TEI a4 yp)

+05N2/ A )H(OO)d
L+ (1 4 2)%

1/8

1 21
+O<8N_1/ 1+ Y1) oy (Vw0 dy)
2/5

(I+1y»H2
p+1 N-2 (y* =1 N—1
= pah' H(0,0)3 /7+d +0(s" ). 27)
(I+y»H™—

Finally, from (22)—(27) we get that

24
/(WU“) (x-v) do =2pal T H(0, 008V~ 2/L)+d +o(s 1,

ov 2
FYe) (I+]yl9)

and the proof is complete. O
Another preliminary lemma is the following:

Lemma 5. Under the assumptions of Theorem 3, as A — 0, we have

2
(Y
av
a2

Proof. The first step is the following:

)
/— (x-v)do
av
082
aw)L 2 Bw;t 2
5/ = |x~v|do§/ |X|d0<C(~Q)/ do.
982 082

= 0(A*81) +0(87 7).
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Thus, we need to estimate fa of 35%)2 do . Let us consider a smooth function ¢ : RY — R such

that 0 <¢ <1, ¢(x) =0 for |x| < % and ¢(x) =1 for |x| > 1. We set n(x) := ;(m). It is
elementary to see that nw;, is a solution of the following problem:

{—A(nwx)=/\nwx+gx in £2, 28)

rlwk:o on 452,

where g, =n(APUs, —APUs, — Ug: + U(;’; + Iu,\|2*’2u,\) —2Vn - Vw, —w;, An. Since nw,, is
a solution of (28), the following inequality holds (see Appendix C in [12]):

2 2

8wA

2,082 v

d 2
i <C , 29
'81) (mw,.) <Clgl 1\%119 (29)

2,002

where C is a positive constant depending only on §2 and N. Hence, in order to complete the

2N
proof, it suffices to estimate the L ¥+T (£2)-norm of g, . We point out that, thanks to the multipli-
cation by the cut-off function 7, what occurs around the origin does not count anymore and this
will make the boundary estimate sharper. By elementary inequalities, we get that

g1l < c(PIn(AUs, +2Us, + U5 + U +wil?) +2|Vnl[Vws| + |Anlws].

1
Thus, we have to estimate the following quantities:
AlnUs. , 044 , forj=1,2, and
InUs;| 2v. o In 5f|/5—11’9 J
p
w , Vn||lVw , Anllw .
[mwil? | an g ViVl oy o [1anlwal] 2 o

This is a long computation already made by O. Rey (see Appendix C of [12]), in the case of
positive solutions of the form u; = PUjs + wj. In that paper it is shown that

|r1U3pj|2l%’Q=o(5§V—2)’ InkUa,IZ —O()LZ(;;V—Z),

w2
2 2
IValVwil| oy o =0(lwill?),  [IAnllwal| 2y o = O(llwall?). (30)
N+1° N+1»
Moreover, by the same computations of Appendix C in [12] we see that
s —o(sN2
sty =o(sY ).

In order to complete the proof we need to estimate the quantities in (30), and hence, we have to
study the asymptotic behavior of ||w, |. An estimate for ||w; || is contained in [4]; in particular,
by the proof of Lemma 3.3 of [4] we see that

lwall < C[Z(mf”‘”/z +5772) + ez (log el—;)(’v‘zw}, 31)

i
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where €1, is defined by €15 := (g—i + g—f)(z_N)/z. Since % — 0 as A — 0 we see that

T ()T
2 2
612—<81> +0(81>

Moreover, by the assumptions on the growth of Vw; and w;, and thanks to (14), we get that €
is of the same order as )»8%, hence, since §, = 0(81) as A — 0, we have that

€12 (log ele)(N_2)/N = 0()»8%).
Thus, from (31), and since N > 7, we deduce that for all sufficiently small A it holds
lwall < e (87 7%+ 287). (32)
Summing up all these estimates, we deduce the desired relation. O

Lemma 6. Let 2 be a bounded open set of RN with smooth boundary and assume that 0 € 2,

N > 5. Then, as § — 0, we have
IPUs\>
/( ) do=0(8"7?).
av

082

Proof. We consider a smooth function 7 : RN — R having the same properties as the one con-
sidered in the previous proof. By elementary computation we see that n P U satisfies

{—A(TIPUS):—(An)PUs—Vn~VPU5+nU5p in £, 33

nPUs =0 on df2.

Since n P Us is a solution of (33), the following inequality holds:

g _‘BPU(;Z

ad
Z(PU
‘av(n 5) ™

2
= CllAnIPUs + |V - VPUs | +0U [y o, (34)

2,02 2,082

where C is a positive constant depending only on §2 and N. In order to complete the proof, we
have to estimate the quantities: |(An) P Us| 2 g , V- VPUs%, o UL %0 o Using the
N+T N+

N+T
same computations made by O. Rey in [12], and since n = 0 in a neighborhood of the origin, we
get that

_ 2
nUf o o =0(" 7). [IValIVPUsIPox o = O(1PUs Bruppion)-
[1A011PUs s o = O(IPUs i gnauppcon)- (35)

Applying Lemma 1 and taking account of (10), since Vi =0 in an open neighborhood of the
origin, we have
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2
1P Us I rsuppvy = / [V(Us — 9s)|” dx
£2Nsupp(Vn)

< / VU 2dx +2 / IV Us | Vs dx

£20supp(Vn) £20supp(Vn)

+ / |Vos|*dx
$£20supp(Vn)

=0(sV72). (36)

From (34), (35) and (36), we deduce that

dPUs|?
Jv

— 0((SN—2),
2,082

and the proof is complete. O

Proof of Theorem 3. We apply the Pohozaev’s identity to u; = PUs, — PUs, + w,. Since u;,
is a solution of Problem (1), we have

P d 37
/”)\ x_zf(a)(x v)do. 37
2

82

For the left-hand side of (37), as in the previous proofs, we set @, := wy — @s, + ¢s,, where
@s; =Us; — PUs, for j =1,2, and we have

x/ui dx =A/(PU31 — PUs, + w;)* dx =A/(U51 — Us, + ®3)? dx
2 2

=1 /(U§1 + Ug, — 2Us, Us, + 2Us, @5 — 2Us, @5 + ®; ) dx
2
=A+B+C+D+E+F. (38)

In order to estimate A and B, we use the following:

sTIN-D) —(N 2)

U dx =\ =A
/“ ! "‘N/<1+|x/a =2 4 “N/ arppred @

2
N-—1
=ra387 | ———————d (0] )»52/707
o /(1+| P2 T ( A+ N2 )

1/8;

=k Z/deo(m’v ). 39
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We point out that since we are assuming that N > 5, the first integral in the last line of (39)
converges. To estimate C we apply the following:

N+2 N=-2

8,2 8,2
k/U81U52 dx z)‘alzv / ! N=2 5 22 vz 4y
J gy (DT G +5yPD) T
P 8 )

d
N N=2 N-2
2y 7 (9232 2y 45
a7, THID T (G2 + 1y

2 1
2
81 [ 1 > szz N—2 dy
s, (LF D= Iyl

S\ T 1
=Aa12V(—2) 5%/ v Ay
1 BN T+ 1y19) 77 |yl

N2
+ o(x@—?) 5{“). (40)

In order to estimate D, E, F, thanks to (32), Holder’s inequality and Poincaré’s inequality, we
get that

_ 2
/wfgclnwuﬁgcz(af’ 24 087)" 41)
2

N2
We observe that, by Lemma 1 and since N > 5, we have |¢s;[2,.0 = O(Sj > )=o0(3;). Thus, by

definition of &, and (41), we deduce that

/CD)% dx = /(wk +§062 - §051)2 dx = 0(812)’ (42)
2 2

and hence,

F =o0(x8}). (43)
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Moreover, by the same computations of (39), we have f oU 521 =a 8]2. + 0(83), for some positive
constant a1. Hence, by Holder’s inequality and (42), we get that

|D| = 0(167),
and
|E| = 0(28182) = 0(A87).

We analyze now the right-hand side of (37): by definition, we have

1 [ ou\? 1 [(dPUs, 0PUs, @

—/ o (x-v)da:—/ b h T s (x v) do
2 ov 2 ov v av

382 382

1 [ (0PUs 1 ((0PUs\*
_2/< ™ )(x.v)da+2/< 3 (x-v)do
082 982

_/3PU51 8PU52(x.v)da+/ dPUs, aw;\( "

av ov ov
982 a2
9PUs, Bw;L 1w
_ | 22 d _ A ) d
/ v ow V) 0+2/<8v) (- v) do
982 082
=A1+B1+Ci+D1+E|+ Fi. 44)

Thanks to Lemma 4, we have:

A= 25 o)),

a
B = 7255*2 +o(sY72). (45)

Thanks to Lemma 6 and applying Holder inequality, we get that

dPUs ||3PU
|C1|</‘ SN2 x| do
1 1
IPU;, |? 2 APU;, |? 2
< diam(32) f—‘sl do /—82 do
av av
a2 982
N2 N2
=0(5,2 8,7 ). (46)

Thanks to (29), Lemma 5, Lemma 6 and applying Holder inequality, we get that
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8wA

D] </ 8Un
- ov ov
082

. 3PU5]
< diam(0£2) oy
v
082

|x-v|do

>%

o) (5] 4

—o(A83) +o(8)2); (47)
|E1|5/'3PU62 W ix vl do
§diam(8[2)(/‘% ) </‘awA )7
v
982

= O(AS%) + 0(8{\’_2); (48)

1 8w)L 2 N-=-2
|F]|=§/< P~ ) (x -v) do =0(A87) +0(8] 7). (49)

982

Summing up all the estimates, from (37) and since 6, = 0(81) as A — 0, we deduce the following
equality:

a1r8? +o(x87) = a8 2 +0(5) 7). (50)
Since §; is of the form (21), we deduce that oy must satisfy the equation
14201 =(N —2)aq,

and hence, we get that o] = ﬁ. Moreover, from (14), we deduce that o1, op must satisfy the
following algebraic equation:

N-=2
1420 = (g — ay). (28

Thus, combining this result with (51), we get that ay = % and the proof is com-
plete. O
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