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Abstract. We study the asymptotic behavior, as λ → 0, of least energy radial sign-changing

solutions uλ, of the Brezis–Nirenberg problem{
−∆u = λu+ |u|2∗−2u in B1

u = 0 on ∂B1,

where λ > 0, 2∗ = 2n
n−2

and B1 is the unit ball of Rn, n ≥ 7.

We prove that both the positive and negative part u+λ and u−λ concentrate at the same point

(which is the center) of the ball with different concentration speeds. Moreover, we show that

suitable rescalings of u+λ and u−λ converge to the unique positive regular solution of the critical

exponent problem in Rn.
Precise estimates of the blow-up rate of ‖u±λ ‖∞ are given, as well as asymptotic relations

between ‖u±λ ‖∞ and the nodal radius rλ.

Finally, we prove that, up to constant, λ
− n−2

2n−8 uλ converges in C1
loc(B1 − {0}) to G(x, 0),

where G(x, y) is the Green function of the Laplacian in the unit ball.

1. Introduction

Let n ≥ 3, λ > 0 and Ω be a bounded open subset of Rn with smooth boundary. We consider
the Brezis–Nirenberg problem {

−∆u = λu+ |u|2∗−2u in Ω

u = 0 on ∂Ω,
(1)

where 2∗ = 2n
n−2 is the critical Sobolev exponent for the embedding of H1

0 (Ω) into L2∗(Ω). Problem

(1) has been widely studied over the last decades, and many results for positive solutions have
been obtained.

The first existence result for positive solutions of (1) has been given by Brezis and Nirenberg
in their classical paper [10], where, in particular, the crucial role played by the dimension was
enlightened. They proved that if n ≥ 4 there exist positive solutions of (1) for every λ ∈ (0, λ1(Ω)),
where λ1(Ω) denotes the first eigenvalue of −∆ on Ω with zero Dirichlet boundary condition. For
the case n = 3, which is more delicate, Brezis and Nirenberg [10] proved that there exists λ∗(Ω) > 0
such that positive solutions exist for every λ ∈ (λ∗(Ω), λ1(Ω)). When Ω = B is a ball, they also

proved that λ∗(B) = λ1(B)
4 and a positive solution of (1) exists if and only if λ ∈ (λ1(B)

4 , λ1(B)).

Moreover, for more general bounded domains, they proved that if Ω ⊂ R3 is strictly star-shaped
about the origin, there are no positive solutions for λ close to zero. We point out that weak
solutions of (1) are classical solution. This is a consequence of a well-known lemma of Brezis and
Kato (see for instance Appendix B of [23]).

The asymptotic behavior for n ≥ 4, as λ → 0, of positive solutions of (1), minimizing the
Sobolev quotient, has been studied by Han [18], Rey [21]. They showed, with different proofs,
that such solutions blow up at exactly one point, and they also determined the exact blow-up rate
as well as the location of the limit concentration points.

Concerning the case of sign-changing solutions of (1), several existence results have been ob-
tained if n ≥ 4. In this case, one can get sign-changing solutions for every λ ∈ (0, λ1(Ω)), or even
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λ > λ1(Ω), as shown in the papers of Atkinson–Brezis–Peletier [4], Clapp–Weth [14], Capozzi–
Fortunato–Palmieri [11]. The case n = 3 presents the same difficulties enlightened before for
positive solutions and even more. In fact, differently from the case of positive solutions, it is not
yet known, when Ω = B is a ball in R3, if there are sign-changing solutions of (1) when λ is smaller
than λ∗(B) = λ1(B)/4. A partial answer to this question posed by H. Brezis has been given in
[8].

The blow-up analysis of low-energy sign-changing solutions of (1) has been done by Ben Ayed–
El Mehdi–Pacella [7], [8]. In [8] the authors analyze the case n = 3. They introduce the number
defined by

λ̄(Ω) := inf{λ ∈ R+; Problem (1) has a sign-changing solution uλ,with ‖uλ‖2Ω−λ|uλ|22,Ω ≤ 2S3/2},

where ‖uλ‖2Ω =
∫

Ω
|∇uλ|2 dx, |uλ|22,Ω =

∫
Ω
|uλ|2 dx and S is the best Sobolev constant for the

embedding H1
0 (Ω) into L2∗(Ω). To be precise, they study the behavior of sign-changing solutions

of (1) which converge weakly to zero and whose energy converges to 2S3/2 as λ → λ̄(Ω). They
prove that these solutions blow up at two different points ā1, ā2, which are the limit of the
concentration points aλ,1, aλ,2 of the positive and negative part of the solutions. Moreover, the
distance between aλ,1 and aλ,2 is bounded from below by a positive constant depending only on
Ω and the concentration speeds of the positive and negative parts are comparable. This result
shows that, in dimension 3, there cannot exist, in any bounded smooth domain Ω, sign-changing
low-energy solutions whose positive and negative part concentrate at the same point.

In higher dimensions (n ≥ 4), the same authors, in their paper [7], describe the asymptotic
behavior, as λ → 0, of sign-changing solutions of (1) whose energy converges to the value 2Sn/2.
Even in this case, they prove that the solutions concentrate and blow up at two separate points, but
they need to assume the extra hypothesis that the concentration speeds of the two concentration
points are comparable, while in dimension three, this was derived without any extra assumption
(see Theorem 4.1 in [8]). They also describe in [7] the asymptotic behavior, as λ → 0, of the
solutions outside the limit concentration points proving that there exist positive constants m1,m2

such that

λ−
n−2
2n−8uλ → m1G(x, ā1)−m2G(x, ā2) in C2

loc(Ω− {ā1, ā2}), if n ≥ 5,

‖uλ‖∞uλ → m1G(x, ā1)−m2G(x, ā2) in C2
loc(Ω− {ā1, ā2}), if n = 4,

where G(x, y) is the Green’s function of the Laplace operator in Ω. So for n ≥ 4 the question
of proving the existence of sign-changing low-energy solutions (i.e., such that ‖uλ‖2Ω converges to

2Sn/2 as λ→ 0) whose positive and negative part concentrate and blow up at the same point was
left open.

To the aim to contribute to this question as well as to describe the precise asymptotic behavior
of radial sign-changing solutions, we consider the Brezis–Nirenberg problem in the unit ball B1,
i.e., {

−∆u = λu+ |u|2∗−2u in B1

u = 0 on ∂B1.
(2)

It is important to recall that Atkinson–Brezis–Peletier [3], Adimurthi–Yadava [1] showed, with
different proofs, that for n = 3, 4, 5, 6 there exists λ∗ = λ∗(n) > 0 such that there is no radial
sign-changing solution of (2) for λ ∈ (0, λ∗). Instead, they do exist if n ≥ 7, as shown by Cerami–
Solimini–Struwe in their paper [13]. In Proposition 1 (see also Remark 1) we recall this existence
result and get the limit energy of such solutions as λ→ 0.

In view of these results, we analyze the case n ≥ 7 and λ → 0. More precisely, we consider a
family (uλ) of least energy sign-changing solutions of (2). It is easy to see that uλ has exactly two
nodal regions. We denote by rλ ∈ (0, 1) the node of uλ = uλ(r) and, without loss of generality,
we assume uλ(0) > 0, so that u+

λ is different from zero in Brλ and u−λ is different from zero in

the annulus Arλ := {x ∈ Rn; rλ < |x| < 1}, where u+
λ := max(uλ, 0), u−λ := max(0,−uλ) are,

respectively, the positive and the negative part of uλ.

We set Mλ,+ := ‖u+
λ ‖∞, Mλ,− := ‖u−λ ‖∞, β := 2

n−2 , σλ := Mβ
λ,+rλ, ρλ := Mβ

λ,−rλ. Moreover,
for µ > 0, x0 ∈ Rn, let δx0,µ be the function δx0,µ : Rn → R defined by

δx0,µ(x) :=
[n(n− 2)µ2](n−2)/4

[µ2 + |x− x0|2](n−2)/2
. (3)
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Proposition 3 states that both Mλ,+ and Mλ,− diverge, uλ weakly converge to 0 and ‖u±λ ‖2B1
→

Sn/2, as λ→ 0. The results of this paper are contained in the following theorems.

Theorem 1. Let n ≥ 7 and (uλ) be a family of least energy radial sign-changing solutions of

(2) and uλ(0) > 0. Consider the rescaled functions ũ+
λ (y) := 1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)
in Bσλ , and

ũ−λ (y) := 1
Mλ,−

u−λ

(
y

Mβ
λ,−

)
in Aρλ , where Bσλ := Mβ

λ,+Brλ , Aρλ := Mβ
λ,−Arλ . Then:

(i): ũ+
λ → δ0,µ in C2

loc(Rn) as λ→ 0, where δ0,µ is the function defined in (3) for µ =
√
n(n− 2).

(ii): ũ−λ → δ0,µ in C2
loc(Rn − {0}) as λ→ 0, where δ0,µ is the same as in (i).

From this theorem, we deduce that the positive and negative parts of uλ concentrate at the
origin. Moreover, as a consequence of the preliminary results for the proof of Theorem 1, we show

that Mλ,+ and Mλ,− are not comparable, i.e.,
Mλ,+

Mλ,−
→ +∞ as λ → 0, which implies that the

speed of concentration and blowup of u+
λ and u−λ are not the same, and hence, the asymptotic

profile of uλ is that of a tower of two ”bubbles.” Indeed, we are able to determine the exact rate
of Mλ,− and an asymptotic relation between Mλ,+, Mλ,− and the radius rλ (see also Remark 6).

Theorem 2. As λ→ 0 we have the following:

(i): M2−2β
λ,+ rn−2

λ λ→ c(n),

(ii): M2−2β
λ,− λ→ c(n),

(iii):
M2−2β
λ,−

M2−2β
λ,+ rn−2

λ

→ 1,

where c(n) :=
c21(n)
c2(n) , c1(n) :=

∫∞
0
δ2∗−1
0,µ (s)sn−1ds, c2(n) := 2

∫∞
0
δ2
0,µ(s)sn−1ds, µ =

√
n(n− 2).

The last result we provide is about the asymptotic behavior of the functions uλ in the ball B1,

outside the origin. We show that, up to a constant, λ−
n−2
2n−8uλ converges in C1

loc(B1 − {0}) to
G(x, 0), where G(x, y) is the Green function of the Laplace operator in B1.

Theorem 3. As λ→ 0 we have

λ−
n−2
2n−8uλ → c̃(n)G(x, 0) in C1

loc(B1 − {0}),

where G(x, y) is the Green function for the Laplacian in the unit ball, c̃(n) is the constant defined

by c̃(n) := ωn
c2(n)

n−2
2n−8

c1(n)
4

2n−8
, ωn is the measure of the (n − 1)-dimensional unit sphere Sn−1 and

c1(n), c2(n) are the constants appearing in Theorem 2.

The proof of the above results is technically complicated and often rely on the radial character
of the problem. We would like to stress that the presence of the lower-order term λu makes our
analysis quite different from that performed in [9] for low-energy sign-changing solution of an
almost critical problem.

Since we consider nodal solutions, our results cannot be obtained by following the proofs for the
case of positive solutions ([5], [6],[18], [21]). In particular, in order to analyze the behavior of the
negative part u−λ , which is defined in an annulus, we prove a new uniform estimate (Propositions 7,
11), which holds for any dimension n ≥ 3 and is of its own interest (see Remark 3 and Proposition
8).

For the sake of completeness, let us mention that our results, as well as those of [9], show a big
difference between the asymptotic behavior of radial sign-changing solutions in dimension n > 2
and n = 2. Indeed, in this last case, the limit problems as well as the limit energies of the positive
and negative part of solutions are different (see [17]).

Finally, we point out, that in view of the above theorems, it is natural to ask whether solutions
of (1) which behave like the radial ones exist in other bounded domains. More precisely, it would
be interesting to show the existence of sign-changing solutions whose positive and negative part
concentrate at the same point but with different speeds, each one carrying the same energy.

In [19] we answer positively this question at least in the case of some symmetric domains in
Rn, n ≥ 7.
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We point out that this type of bubble tower solutions have interest also for the associated
parabolic problem, since, as proved in [20], [12], [15], they induce a peculiar blow-up phenomenon
for the initial data close to them.

We conclude observing that with similar proofs, it is possible to extend our results to the case of
radial sign-changing solutions of (2) with k nodal regions, k > 2, and such that ‖uλ‖2B1

→ kSn/2,
as λ→ 0. As expected, the limit profile will be that of a tower of k bubbles with alternating signs.
Moreover, with the same methods applied here, we can deduce analogous asymptotic relations as
those of Theorem 2.

The paper is divided into 6 sections. In Sect. 2, we give some preliminary results on radial
sign-changing solutions. In Section 3, we prove estimates for solutions with two nodal regions and,
in particular, prove the new uniform estimate of Proposition 11.

In Sect. 4, we analyze the asymptotic behavior of the rescaled solutions and prove Theorem 1.
Section 5 is devoted to the study of the divergence rate of ‖u±λ ‖∞, as λ → 0 and to the proof of
Theorem 2. Finally, in Sect. 6, we prove Theorem 3.

2. Preliminary results on radial sign-changing solutions

In this section, we recall or prove some results about the existence and qualitative properties
of radial sign-changing solutions of the Brezis–Nirenberg problem (2).

We start with the following:

Proposition 1. Let n ≥ 7, k ∈ N+ and λ ∈ (0, λ1), where λ1 is the first eigenvalue of −∆ in
H1

0 (B1). Then, there exists a radial sign-changing solution uk,λ of (2) with the following properties:

(i): uk,λ(0) > 0,
(ii): uk,λ has exactly k nodal regions in B1,

(iii): Iλ(uk,λ) = 1
2

(∫
B1
|∇uk,λ|2 − λ|uk,λ|2 dx

)
− 1

2∗

∫
B1
|uk,λ|2

∗
dx→ k

nS
n/2 as λ→ 0, where S

is the best constant for the Sobolev embedding H1
0 (B1) ↪→ L2∗(B1).

Proof. The existence of radial solutions of (2) satisfying (i) and (ii) is proved in [13]. It remains
only to prove (iii). To do this, we need to introduce some notations and recall some facts proved
in [13] and [10]. Let k ∈ N+ and 0 = r0 < r1 < . . . < rk = 1 any partition of the interval [0, 1], we
define the sets Ω1 := Br1 = {x ∈ B1; |x| < r1} and, if k ≥ 2, Ωj := {x ∈ B1; rj−1 < |x| < rj} for
j = 2, . . . , k.

Then, we consider the set

Mk,λ :=
{
u ∈ H1

0,rad(B1); there exists a partition 0 = r0 < r1 < . . . < rk = 1

such that: u(rj) = 0, for 1 ≤ j ≤ k, (−1)j−1u(x) ≥ 0, u 6≡ 0 in Ωj , and∫
Ωj

(
|∇uj |2 − u2

j − |uj |2
∗
)
dx = 0, for 1 ≤ j ≤ k

}
,

where H1
0,rad(B1) is the subspace of the radial functions in H1

0 (B1) and uj is the function defined

by uj := u χ
Ωj

, where χ
Ωj

denotes the characteristic function of Ωj . Note that for any k ∈ N+

we have Mk,λ 6= ∅, so we define

ck(λ) := inf
Mk,λ

Iλ(u).

In [13] the authors prove, by induction on k, that for every k ∈ N+ there exists uk,λ ∈ Mk,λ

such that Iλ(uk,λ) = ck(λ) and uk,λ solves (2) in B1. Moreover, they prove that

ck+1(λ) < ck(λ) +
1

n
Sn/2. (4)

Note that for k = 1 u1,λ is just the positive solution found in [10], since by the Gidas, Ni and
Nirenberg symmetry result [16] every positive solution is radial, and from [2] or [22] we know that
positive solutions of (2) are unique.

To prove (iii) we argue by induction. Since c1(0) = 1
nS

n/2, by continuity we get that c1(λ) →
1
nS

n/2, as λ→ 0, so that (iii) holds for k = 1.

Now assume that ck(λ)→ k
nS

n/2, and let us to prove that ck+1(λ) = Iλ(uk+1,λ)→ k+1
n Sn/2.
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Let us observe that ck+1(λ) ≥ (k + 1)c1(λ). In fact, w := uk+1,λ achieves the minimum for
Iλ over Mk+1,λ, so that, by definition, it has k + 1 nodal regions and wj := wχΩj

belongs to

H1
0,rad(B1) for all j = 1, . . . , k + 1. Since w ∈ Mk+1,λ we have, depending on the parity of

j, that one between w+
j and w−j is not zero and belongs to M1,λ, we denote it by w̃j . Then,

Iλ(w̃j) ≥ c1(λ) for all j = 1, . . . , k + 1 and hence

ck+1(λ) = Iλ(w) =

k+1∑
j=1

Iλ(w±j ) ≥ (k + 1)c1(λ).

Combining this with (4) we get

ck(λ) +
1

n
Sn/2 > ck+1(λ) ≥ (k + 1)c1(λ).

Since by induction hypothesis ck(λ)→ k
nS

n/2 as λ→ 0 and we have proved that c1(λ)→ 1
nS

n/2

we get that ck+1(λ)→ k+1
n Sn/2, and the proof is concluded. �

Remark 1. Let k ∈ N+ and (uλ) be a family of solutions of (2), satisfying (iii) of Proposition 1,
then ‖uλ‖2B1

=
∫
B1
|∇uλ|2 dx→ kSn/2, as λ→ 0.

This comes easily from Proposition 1, and the fact that uλ belongs to the Nehari manifold Nλ
associated with (2), which is defined by

Nλ := {u ∈ H1
0 (B1); ‖u‖2B1

− λ|u|22,B1
= |u|2

∗

2∗,B1
}.

The first qualitative property we state about any radial sign-changing solution uλ of (2) is that
the global maximum point of |uλ| is located at the origin, which is a well-known fact for positive
solutions of (2), as consequence of [16].

Proposition 2. Let uλ be a radial solution of (2), then we have |uλ(0)| = ‖uλ‖∞.

Proof. Since uλ = uλ(r) is a radial solution of (2), then it solves{
u′′λ + n−1

r u′λ + λuλ + |uλ|2
∗−2uλ = 0 in (0, 1)

u′λ(0) = 0, uλ(1) = 0.
(5)

Multiplying the equation by u′λ we get

u′′λu
′
λ + λuλu

′
λ + |uλ|2

∗−2uλu
′
λ = −n− 1

r
(u′λ)2 ≤ 0.

We rewrite this as
d

dr

[
(u′λ)2

2
+ λ

u2
λ

2
+
|uλ|2

∗

2∗

]
≤ 0.

Which implies that the function

E(r) :=
(u′λ)2

2
+ λ

u2
λ

2
+
|uλ|2

∗

2∗

is not increasing. So E(0) ≥ E(r) for all r ∈ (0, 1), where E(0) = λ (uλ(0))2

2 + |uλ(0)|2
∗

2∗ . Assume
that r0 ∈ (0, 1) is the global maximum for |uλ|, so we have u′λ(r0) = 0, |uλ(r0)| = ‖uλ‖∞ and

E(r0) = λ
‖uλ‖2∞

2 +
‖uλ‖2

∗
∞

2∗ .

Now we observe that, for all λ > 0, the function g(x) := λ
2x

2 + 1
2∗x

2∗ , defined in R+ ∪ {0},
is strictly increasing; thus, we have E(r0) ≥ E(0) and hence, E(r0) = E(0). Since g is strictly
increasing, we get |uλ(0)| = |uλ(r0)| = ‖uλ‖∞ and we are done. �

A consequence of the previous proposition is the following:

Corollary 1. Assume uλ is a nontrivial radial solution of (2). If 0 ≤ r1 ≤ r2 < 1 are two points
in the same nodal region such that |uλ(r1)| ≤ |uλ(r2)|, u′λ(r1) = u′λ(r2) = 0, then necessarily
r1 = r2.
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Proof. Assume by contradiction r1 < r2. By the assumptions and since the function g(x) :=
λ
2x

2 + 1
2∗x

2∗ is a strictly increasing function (in R+ ∪ {0}), we have E(r1) = g(|uλ(r1)|) ≤
g(|uλ(r2)|) = E(r2). But, as proved in Proposition 2, E(r) is a decreasing function, so necessarily
E(r1) = g(|uλ(r1)|) = g(|uλ(r2)|) = E(r2) from which we get |uλ(r1)| = |uλ(r2)|. Since r1, r2

are in the same nodal region from |uλ(r1)| = |uλ(r2)| we have uλ(r1) = uλ(r2), and thus, there
exists r∗ ∈ (r1, r2) such that u′λ(r∗) = 0, and, since E(r) is a decreasing function, we have
E(r1) ≥ E(r∗) ≥ E(r2). From this, we deduce g(|uλ(r1)|) ≥ g(|uλ(r∗)|) ≥ g(|uλ(r2)|), and hence,
uλ(r1) = uλ(r∗) = uλ(r2). Therefore, uλ must be constant in the interval [r1, r2] and, being a
solution of (2), it must be zero in that interval. In fact, since (2) is invariant under a change of
sign, we can assume that uλ ≡ c > 0. Then, by the strong maximum principle, uλ must be zero
in the nodal region to which r1, r2 belong. This, in turn, implies that uλ is a trivial solution of
(2) which is a contradiction. �

3. Asymptotic results for solutions with 2 nodal regions

3.1. General results. Let (uλ) be a family of least energy radial, sign-changing solutions of (2)
and such that uλ(0) > 0.

We denote by rλ ∈ (0, 1) the node, so we have uλ > 0 in the ball Brλ and uλ < 0 in the annulus
Arλ := {x ∈ Rn; rλ < |x| < 1}. We write u±λ to indicate that the statements hold both for the
positive and negative part of uλ.

Proposition 3. We have:

(i): ‖u±λ ‖2B1
=
∫
B1
|∇u±λ |2 dx→ Sn/2, as λ→ 0,

(ii): |u±λ |2
∗

2∗,B1
=
∫
B1
|u±λ |

2n
n−2 dx→ Sn/2, as λ→ 0,

(iii): uλ ⇀ 0, as λ→ 0,
(iv): Mλ,+ := max

B1

u+
λ → +∞, Mλ,− := max

B1

u−λ → +∞, as λ→ 0.

Proof. This proposition is a special case of Lemma 2.1 in [7]. �

Let’s recall a classical result, due to Strauss, known as ”radial lemma”:

Lemma 1 (Strauss). There exists a constant c > 0, depending only on n, such that for all
u ∈ H1

rad(Rn)

|u(x)| ≤ c
‖u‖1/21,2

|x|(n−1)/2
a.e. on Rn, (6)

where ‖ · ‖1,2 is the standard H1-norm.

Proof. For the proof of this result see for instance [24]. �

We denote by sλ ∈ (0, 1) the global minimum point of uλ = uλ(r), so we have 0 < rλ < sλ,
u−λ (sλ) = Mλ,−. The following proposition gives an information on the behavior of rλ and sλ as
λ→ 0.

Proposition 4. We have sλ → 0 (and so rλ → 0 as well), as λ→ 0.

Proof. Assume by contradiction that sλm ≥ s0 for a sequence λm → 0 and for some 0 < s0 < 1.
Then, by Lemma 1 we get

Mλm,− = |uλm(sλm)| ≤ c
‖uλm‖

1/2
1,2,B1

s
(n−1)/2
λm

≤ c
‖uλm‖

1/2
1,2,B1

s
(n−1)/2
0

,

where c is a positive constant depending only on n. Since |∇uλ|22,B1
→ 2Sn/2 as λ→ 0 it follows

that Mλm,− is bounded, which is a contradiction. �

We recall another well-known proposition:

Proposition 5. Let u ∈ C2(Rn) be a solution of{
−∆u = |u|2∗−2u in Rn

u→ 0 as |y| → +∞.
(7)
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Assume that u has a finite energy I0(u) := 1
2 |∇u|

2
2,Rn − 1

2∗ |u|
2∗

2∗,Rn and u satisfies one of these
assumptions:

(i): u is positive (negative) in Rn,
(ii): u is spherically symmetric about some point.

Then, there exist µ > 0, x0 ∈ Rn such that u is one of the functions δx0,µ, defined in (3).

Proof. A sketch of the proof can be found in [13], Proposition 2.2. �

3.2. An upper bound for u+
λ , u−λ . In this section, we recall an estimate for positive solutions

of (2) in a ball and we generalize it to get an upper bound for u−λ , which is defined in the annulus
Arλ := {x ∈ Rn; rλ < |x| < 1}.
Proposition 6. Let n ≥ 3 and u be a solution of

−∆u = λu+ u
n+2
n−2 in BR

u > 0 in BR

u = 0 on ∂BR,

(8)

for some positive λ. Then, u(x) ≤ w(x, u(0)) in BR, where

w(x, c) := c

{
1 +

c−1f(c)

n(n− 2)
|x|2
}−(n−2)/2

,

and f : [0,+∞)→ [0,+∞) is the function defined by f(y) := λy + y
n+2
n−2 .

Proof. The proof is based on the results contained in the papers of Atkinson and Peletier [5],
[6]. Since the solutions of (8) are radial (see [16]) we consider the ordinary differential equation
associated with (8) which, by some change of variable, can be turned into an Emden–Fowler
equation. For it is easy to get the desired upper bound. All details are given in the next Proposition
7. �

Remark 2. The previous proposition gives an upper bound for u+
λ . In fact, taking into account

that u+
λ is defined and positive in the ball Brλ and u+

λ (0) = Mλ,+, we have

u+
λ (x) ≤ Mλ,+

{
1 +

M−1
λ,+ f(Mλ,+)

n(n− 2)
|x|2
}−(n−2)/2

= Mλ,+

1 +
λ+M

4
n−2

λ,+

n(n− 2)
|x|2

−(n−2)/2

,

(9)

for all x ∈ Brλ .

Proposition 7. Let uλ be as in Sect. 3.1 and ε ∈ (0, n−2
2 ). There exist δ = δ(ε) ∈ (0, 1), δ(ε)→ 1

as ε→ 0 and a positive constant λ = λ(ε), such that for all λ ∈ (0, λ) we have

u−λ (x) ≤Mλ,−

{
1 +

M−1
λ,− f(Mλ,−)

n(n− 2)
c(ε)|x|2

}−(n−2)/2

, (10)

for all x ∈ Aδ,λ, where Aδ,λ := {x ∈ Rn; δ−1/Nsλ < |x| < 1}, c(ε) = 2
n−2ε, sλ is the global

minimum point of uλ, Mλ,− = u−λ (sλ) and f is defined as in Proposition 6.

Remark 3. The statement of the above proposition holds also for lower dimensions. More pre-
cisely, with small modification to the proof of Proposition 7 we have:

Proposition 8. Let 3 ≤ n ≤ 6 and set

λ̃(n) := inf{λ ∈ R+; Problem (1) has a radial sign-changing solution uλ}.
There exists ε̄ ∈ (0, n−2

2 ) such that for all ε ∈ (0, ε̄) there exists δ = δ(ε) ∈ (0, 1), with δ(ε)→ 1 as

ε→ 0, such that, for all λ in a right neighborhood of λ̃(n), (10) holds, where Mλ,− = u−λ (sλ), sλ
is the global minimum point of uλ in the last nodal region. 1

1We assume without loss of generality that uλ is negative in that region.
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Proof of Proposition 7. Let vλ the function defined by vλ(s) := u−λ (s+ sλ), s ∈ (0, 1− sλ). Since

u−λ is a positive radial solution of (2) then vλ is a solution of{
v′′λ + n−1

s+sλ
v′λ + λvλ + v2∗−1

λ = 0 in (0, 1− sλ)

v′λ(0) = 0, vλ(1− sλ) = 0.
(11)

To eliminate λ from the equation, we make the following change of variable, ρ :=
√
λ (s + sλ),

and we define wλ(ρ) := λ−
n−2

4 vλ( ρ√
λ
− sλ) = λ−

n−2
4 u−λ ( ρ√

λ
). By elementary computation, we see

that wλ solves {
w′′λ + n−1

ρ w′λ + wλ + w2∗−1
λ = 0 in (

√
λ sλ,

√
λ)

w′λ(
√
λ sλ) = 0, wλ(

√
λ) = 0.

(12)

Making another change of variable, precisely t :=
(
n−2
ρ

)n−2

, and setting yλ(t) := wλ

(
n−2

t
1

n−2

)
we

eliminate the first derivative in (12). Thus, we get
y′′λ t

k + yλ + y2∗−1
λ = 0 in

(
(n−2)n−2

λ
n−2

2

, (n−2)n−2

λ
n−2

2 sn−2
λ

)
,

y′λ

(
(n−2)n−2

λ
n−2

2 sn−2
λ

)
= 0, yλ

(
(n−2)n−2

λ
n−2

2

)
= 0.

(13)

where k = 2
n− 1

n− 2
> 2. To simplify the notation, we set t1,λ := (n−2)n−2

λ
n−2

2

, t2,λ := (n−2)n−2

λ
n−2

2 sn−2
λ

,

Iλ = (t1,λ, t2,λ) and γλ := yλ(t2,λ) = λ−
n−2

4 Mλ,−. Observe also that 2∗ − 1 = 2k − 3.

We write the equation in (13) as y′′λ + t−k(yλ + y2k−3
λ ) = 0, which is an Emden–Fowler type

equation y′′ + t−kh(y) = 0 with h(y) := y + y2k−3. The first step to prove (10) is the following
inequality:

(y′λt
k−1y1−k

λ )′ + tk−2y−kλ t1−k2,λ γλh(γλ) ≤ 0, for all t ∈ Iλ. (14)

To prove (14) we differentiate y′λt
k−1y1−k

λ . Since y′′λ + t−kh(yλ) = 0 we get

y′′λt
k−1y1−k

λ + y′λ(k − 1)tk−2y1−k
λ − (k − 1)(y′λ)2tk−1y−kλ

= −t−k(yλ + y2k−3
λ )tk−1y1−k

λ + y′λ(k − 1)tk−2y1−k
λ − (k − 1)(y′λ)2tk−1y−kλ

= −t−1y2−k
λ − t−1yk−2

λ + y′λ(k − 1)tk−2y1−k
λ − (k − 1)(y′λ)2tk−1y−kλ

= −2(k − 1)tk−2y−kλ

(
1

2(k−1) t
1−ky2

λ + 1
2(k−1) t

1−ky2k−2
λ − 1

2yλy
′
λ + 1

2 t(y
′
λ)2
)

= −2(k − 1)tk−2y−kλ

(
1

2(k−1) t
1−kyλh(yλ)− 1

2yλy
′
λ + 1

2 t(y
′
λ)2
)
.

Now, we add and subtract the number 1
2(k−1) t

1−k
2,λ γλh(γλ) inside the parenthesis, so we have

(y′λt
k−1y1−k

λ )′

= −2(k − 1)tk−2y−kλ

(
1

2(k−1) t
1−kyλh(yλ)− 1

2yλy
′
λ + 1

2 t(y
′
λ)2 − 1

2(k−1) t
1−k
2,λ γλh(γλ)

)
−tk−2y−kλ t1−k2,λ γλh(γλ).

Setting Lλ(t) := 1
2(k−1) t

1−kyλh(yλ)− 1
2yλy

′
λ + 1

2 t(y
′
λ)2 − 1

2(k−1) t
1−k
2,λ γλh(γλ) we get

(y′λt
k−1y1−k

λ )′ + tk−2y−kλ t1−k2,λ γλh(γλ) = −2(k − 1)tk−2y−kλ Lλ(t).

If we show that Lλ(t) ≥ 0 for all t ∈ Iλ we get (14). By definition it’s immediate to verify that
Lλ(t2,λ) = 0, also by direct calculation, we have L′λ(t) = 1

2(k−1) t
1−ky′λ[yλh

′(yλ)− (2k−3)h(yλ)] =
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1
2(k−1) t

1−ky′λ[(4 − 2k)yλ]. Since yλ > 0, y′λ ≥ 0 in Iλ
2 and k > 2 we have L′λ(t) ≤ 0 in Iλ, and

from Lλ(t2,λ) = 0 it follows Lλ(t) ≥ 0 for all t ∈ Iλ.
As second step, we integrate (14) between t and t2,λ, for all t ∈ Iλ. Then, since y′λ(t2,λ) = 0 we

get

−y′λ(t)tk−1y1−k
λ (t) +

∫ t2,λ

t

sk−2y−kλ (s) t1−k2,λ γλh(γλ) ds ≤ 0.

We rewrite this last inequality as

y′λ(t)tk−1y1−k
λ (t) ≥ t1−k2,λ γλh(γλ)

∫ t2,λ

t

sk−2y−kλ (s) ds.

Since u−λ ≤Mλ,− by definition, it follows y−kλ ≥ γ−kλ , so

y′λ(t)tk−1y1−k
λ (t) ≥ t1−k2,λ γ

1−k
λ h(γλ)

∫ t2,λ

t

sk−2 ds

=
γ1−k
λ h(γλ)

k − 1

tk−1
2,λ − tk−1

tk−1
2,λ

=
γ1−k
λ h(γλ)

k − 1

[
1−

(
t

t2,λ

)k−1
]
.

Multiplying the first and the last term of the above inequality by t1−k we get

1

2− k
(y2−k
λ )′(t) = y′λ(t) y1−k

λ (t) ≥
γ1−k
λ h(γλ)

k − 1

(
t1−k − 1

tk−1
2,λ

)
,

for all t ∈ Iλ. Integrating this inequality between t and t2,λ we have

γ2−k
λ

2− k
−
y2−k
λ (t)

2− k
≥

γ1−k
λ h(γλ)

k − 1

∫ t2,λ

t

(
s1−k − 1

tk−1
2,λ

)
ds

=
γ1−k
λ h(γλ)

k − 1

(
t2−k2,λ

2− k
− t2−k

2− k
− 1

tk−2
2,λ

+
t

tk−1
2,λ

)
.

We rewrite this last inequality as

y2−k
λ (t)

k − 2
−
γ2−k
λ

k − 2
≥

γ1−k
λ h(γλ)

k − 1

(
t2−k

k − 2
+

t

tk−1
2,λ

− k − 1

k − 2

1

tk−2
2,λ

)

≥
γ1−k
λ h(γλ)

k − 1
t2−k

[
1

k − 2
+

(
t

t2,λ

)k−1

− k − 1

k − 2

(
t

t2,λ

)k−2
]
.

(15)

To the aim of estimating the last term in (15) we set s :=
(

t
t2,λ

)k−1

and study the function

g(s) := 1
k−2 + s − k−1

k−2s
k−2
k−1 in the interval [0, 1]. Clearly, g(0) = 1

k−2 = n−2
2 > 0, g(1) = 0

and g is a decreasing function because g′(s) = 1 − s−
1
k−1 < 0 in (0, 1). In particular, we have

g(s) > 0 in (0, 1). Let’s fix ε ∈ (0, n−2
2 ), by the monotonicity of g we deduce that there exists

only one δ = δ(ε) ∈ (0, 1) such that g(s) > ε for all 0 ≤ s < δ, g(δ) = ε and δ → 1 as ε → 0.

Now remembering that s =
(

t
t2,λ

)k−1

, we have
(

t
t2,λ

)k−1

< δ if and only if t < δ
1
k−1 t2,λ and

t1,λ < δ
1
k−1 t2,λ if and only if sn−2

λ < δ
1
k−1 which is true for all 0 < λ < λ, for some positive

number λ = λ(ε). Setting c(ε) := (k − 2)ε, from (15) and the previous discussion, we have

y2−k
λ (t)− γ2−k

λ ≥
γ1−k
λ h(γλ)

k − 1
t2−kc(ε), (16)

2y′λ ≥ 0 because (u−λ )′(r) ≤ 0 for sλ < r < 1 as we can easily deduce from Corollary 1.
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for all t ∈ (t1,λ, δ
1
k−1 t2,λ), 0 < λ < λ. Now from (16) we deduce the desired bound for u−λ . In

fact, we have

y2−k
λ (t) ≥ γ2−k

λ +
γ1−k
λ h(γλ)

k − 1
t2−kc(ε),

from which, since k > 2, we get

yλ(t) ≤

(
γ2−k
λ +

γ1−k
λ h(γλ)

k − 1
t2−kc(ε)

)− 1
k−2

= γλ

(
1 +

γ−1
λ h(γλ)

k − 1
t2−kc(ε)

)− 1
k−2

(17)

Now, by definition, we have yλ(t) = λ−
n−2

4 u−λ

(
ρ√
λ

)
= λ−

n−2
4 u−λ (s + sλ), γλ = λ−

n−2
4 Mλ,−,

k − 2 = 2
n−2 , k − 1 = n

n−2 , t =
(
n−2
ρ

)n−2

=
(

n−2√
λ(s+sλ)

)n−2

, in particular t2−k = t−
2

n−2 =(√
λ(s+sλ)
n−2

)2

= λ(s+sλ)2

(n−2)2 . Thus, we get

γ−1
λ h(γλ)

k − 1
t2−kc(ε) =

λ
n−2

4 M−1
λ,−

(
λ−

n−2
4 Mλ,− + λ−

n+2
4 M

n+2
n−2

λ,−

)
n

n− 2

c(ε)
λ(s+ sλ)2

(n− 2)2

=
M−1
λ,−

(
λMλ,− +M2∗−1

λ,−

)
n(n− 2)

c(ε)(s+ sλ)2

=
M−1
λ,− f (Mλ,−)

n(n− 2)
c(ε)(s+ sλ)2,

where f(z) := λz + z2∗−1. Also, by direct computation, we see that the interval (t1,λ, δ
1
k−1 t2,λ),

corresponds to the interval (δ−
1
n sλ, 1) for s + sλ = ρ√

λ
= n−2
√
λ t

1
n−2

. Thus, from the previous

computations and (17) we have

λ−
n−2

4 u−λ (s+ sλ) ≤ λ−
n−2

4 Mλ,−

(
1 +

M−1
λ,− f (λMλ,−)

n(n− 2)
c(ε)(s+ sλ)2

)−n−2
2

.

Finally, dividing each term by λ−
n−2

4 and setting r := s+ sλ we have

u−λ (r) ≤

(
1 +

M−1
λ,− f (λMλ,−)

n(n− 2)
c(ε)r2

)−n−2
2

,

for all r ∈ (δ−
1
n sλ, 1), which is the desired inequality since u−λ is a radial function. �

4. Asymptotic analysis of the rescaled solutions

4.1. Rescaling the positive part. As in Sect. 3, we consider a family (uλ) of least energy radial,

sign-changing solutions of (2) with uλ(0) > 0. Let us define β := 2
n−2 , σλ := Mβ

λ,+ · rλ; consider

the rescaled function ũ+
λ (y) = 1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)
in Bσλ . The following lemma is elementary but

crucial.

Lemma 2. We have:

(i): ‖u+
λ ‖2Brλ = ‖ũ+

λ ‖2Bσλ ,

(ii): |u+
λ |2
∗

2∗,Brλ
= |ũ+

λ |2
∗

2∗,Bσλ
,

(iii): |u+
λ |22,Brλ = 1

M2∗−2
λ,+

|ũ+
λ |22,Bσλ
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Proof. To prove (i) we have only to remember the definition of ũλ and make the change of variable
x→ y

Mβ
λ,+

. Taking into account that by definition ∇yũ+
λ (y) = 1

M1+β
λ,+

(∇xu+
λ )( y

Mβ
λ,+

) and 2 + 2β =

2 + 4
n−2 = n 2

n−2 = nβ = 2∗, we get

‖u+
λ ‖2Brλ =

∫
Brλ

|∇xu+
λ (x)|2dx =

1

Mnβ
λ,+

∫
Bσλ

∣∣∣∣∣∇xu+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2

dy

=
M2+2β
λ,+

Mnβ
λ,+

∫
Bσλ

|∇yũλ(y)|2 dy = ‖ũ+
λ ‖2Bσλ .

The proof of (ii) is simpler:∫
Brλ

|u+
λ (x)|2

∗
dx =

∫
Bσλ

1

Mnβ
λ,+

∣∣∣∣∣u+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2∗

dy

=

∫
Bσλ

|ũ+
λ (y)|2

∗
dy.

The proof of (iii) is similar:∫
Brλ

|u+
λ (x)|2dx =

∫
Bσλ

1

Mnβ
λ,+

∣∣∣∣∣u+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2

dy

=

∫
Bσλ

1

Mnβ−2
λ,+

∣∣∣∣∣ 1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2

dy

=
1

M2∗−2
λ,+

∫
Bσλ

|ũ+
λ (y)|2dy.

�

Remark 4. Obviously, the previous lemma is still true if we consider any radial function u ∈
H1
rad(D), where D is a radially symmetric domain in Rn, and for any rescaling of the kind ũ(y) :=

1
M u

(
y
Mβ

)
, where M > 0 is a constant.

The first qualitative result concerns the asymptotic behavior, as λ → 0, of the radius σλ =

Mβ
λ,+ · rλ of the rescaled ball Bσλ . From Proposition 4 we know that rλ → 0 as λ → 0, so this

result gives also information on the growth of Mλ,+ compared to the decay of rλ.

Proposition 9. Up to a subsequence, σλ → +∞ as λ→ 0.

Proof. Up to a subsequence, as λ→ 0, we have three alternatives:

(i): σλ → 0,
(ii): σλ → l > 0, l ∈ R,
(iii): σλ → +∞.

We will show that (i) and (ii) cannot occur. Assume, by contradiction, that (i) holds then writing
|u+
λ |2
∗

2∗,Brλ
in polar coordinates we have

|u+
λ |

2∗

2∗,Brλ
= ωn

∫ rλ

0

[u+
λ (r)]2

∗
rn−1dr

≤ ωn M
2∗

λ,+

∫ rλ

0

rn−1dr

= ωn (Mβ
λ,+)n

rnλ
n

=
ωn
n

(Mβ
λ,+ rλ)n → 0 as λ→ 0.
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But from Proposition 3 we know that |u+
λ |2
∗

2∗,Brλ
→ Sn/2 as λ→ 0, so we get a contradiction.

Next, assume, by contradiction, that (ii) holds. Since the rescaled functions ũ+
λ are solutions of

−∆u = λ

M2β
λ

u+ u2∗−1 in Bσλ

u > 0 in Bσλ
u = 0 on ∂Bσλ .

(18)

and (ũ+
λ ) is uniformly bounded, then by standard elliptic theory, ũ+

λ → ũ in C2
loc(Bl), where Bl is

the limit domain of Bσλ and ũ solves{
−∆u = u2∗−1 in Bl

u > 0 in Bl.
(19)

Let us show that the boundary condition ũ = 0 on ∂Bl holds. Since Mλ,+ is the global maximum

of uλ (see Proposition 2) then the rescaling ũλ(y) := 1
Mλ,+

uλ

(
y

Mβ
λ,+

)
of the whole function uλ is

a bounded solution of −∆u = λ

M2β
λ

u+ |u|2∗−2u in BMβ
λ,+

u = 0 on ∂BMβ
λ,+
.

So as before we get that ũλ → ũ0 in C2
loc(Rn), where ũ0 is a solution of −∆u = |u|2∗−2u in Rn.

Obviously, by definition, we have ũλ(y) = ũ+
λ (y) for all y ∈ Bσλ , ũλ(y) = 0 for all y ∈ ∂Bσλ and

ũλ(y) < 0 for all y ∈ BMβ
λ,+
−Bσλ . Passing to the limit as λ→ 0, since Bl is a compact set of Rn

we have ũλ → ũ0 in C2(Bl), now since ũ = ũ0 > 0 in Bl and ũ0 = 0 on ∂Bl, it follows ũ = 0 on
∂Bl. Since Bl is a ball, by Pohozaev’s identity, we know that the only possibility is ũ ≡ 0 which
is a contradiction since ũ(0) = 1. So the assertion is proved. �

Proposition 10. We have:

ũ+
λ (y) ≤

{
1 +

1

n(n− 2)
|y|2
}−(n−2)/2

, (20)

for all y ∈ Rn.

Proof. From (9) for all x ∈ Brλ we have

u+
λ (x) ≤Mλ,+

1 +
λ+M

4
n−2

λ,+

n(n− 2)
|x|2

−(n−2)/2

.

Dividing each side by Mλ,+ and setting x = y

Mβ
λ,+

= y

M
2

n−2
λ,+

we get

1
Mλ,+

u+
λ

(
y

Mβ
λ,+

)
≤

{
1 +

λ+M
4

n−2
λ,+

M
4

n−2
λ,+ n(n−2)

|y|2
}−(n−2)/2

=

{
1 + λ

M
4

n−2
λ,+ n(n−2)

|y|2 + 1
n(n−2) |y|

2

}−(n−2)/2

≤
{

1 + 1
n(n−2) |y|

2
}−(n−2)/2

,

for all y ∈ Bσλ . Thus, we have proved (20) for all y ∈ Bσλ . Since ũ+
λ is zero outside the ball Bσλ

and the second term in (20) is independent of λ, this bound holds in the whole Rn. �
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4.2. An estimate on the first derivative at the node. In this subsection, we prove an
inequality concerning (u+

λ )′(rλ) (or (u−λ )′(rλ)) that will be useful in the next sections.

Lemma 3. There exists a constant c1, depending only on n, such that

|(u+
λ )′(rλ)rn−1

λ | ≤ c1 r
n−2

2

λ (21)

for all sufficiently small λ > 0. Since (u−λ )′(rλ) = −(u+
λ )′(rλ) the same inequality holds for

(u−λ )′(rλ).

Proof. Since u+
λ = u+

λ (r) is a solution of −[(u+
λ )′rn−1]′ = λu+

λ r
n−1 + (u+

λ )2∗−1rn−1 in (0, rλ) and

(u+
λ )′(0) = 0 by integration, we get

(u+
λ )′(rλ)rn−1

λ = −
[∫ rλ

0

λu+
λ r

n−1dr +

∫ rλ

0

(u+
λ )2∗−1rn−1dr

]

= −

[
λ

ωn

∫
Brλ

u+
λ (x) dx+

1

ωn

∫
Brλ

[u+
λ (x)]2

∗−1 dx

]
,

where, as before, ωn denotes the measure of the (n − 1)-dimensional unit sphere Sn−1. Using
Hölder’s inequality and observing that meas(Brλ) = ωn

n r
n
λ we deduce∣∣(u+

λ )′(rλ)rn−1
λ

∣∣ ≤ λ

(n ωn)
1
2

r
n
2

λ |u
+
λ |2,Brλ +

1

n
n−2
2n ω

n+2
2n
n

r
n−2

2

λ

[
|u+
λ |

2∗

2∗,Brλ

] 2∗−1
2∗

.

From Proposition 3 we know that both |u+
λ |2,Brλ , |u+

λ |2
∗

2∗,Brλ
are bounded, moreover from Proposi-

tion 4 we have rλ → 0 as λ→ 0. So there exists a constant c1 = c1(n) such that for all sufficiently
small λ > 0 (21) holds. �

4.3. Rescaling the negative part. Now, we study the rescaled function ũ−λ (y) := 1
Mλ,−

u−λ

(
y

Mβ
λ,−

)
in the annulus Aρλ := {y ∈ Rn;Mβ

λ,−rλ < |y| < Mβ
λ,−}, where ρλ := Mβ

λ,−rλ. This case is more
delicate than the previous one since the radius sλ, where the minimum is achieved, depends on
λ. Thus, roughly speaking, we have to understand how rλ and sλ behave with respect to the

scaling parameter Mβ
λ,−. This means that we have to study the asymptotic behavior of Mβ

λ,−rλ

and Mβ
λ,−sλ as λ→ 0. It will be convenient to consider also the one-dimensional rescaling

zλ(s) :=
1

Mλ,−
u−λ

(
sλ +

s

Mβ
λ,−

)
,

which satisfies {
z′′λ + n−1

s+Mβ
λ,−sλ

z′λ + λ

M2β
λ,−

zλ + z2∗−1
λ = 0 in (aλ, bλ)

z′λ(0) = 0, zλ(0) = 1,
(22)

where aλ := Mβ
λ,− · (rλ − sλ) < 0, bλ := Mβ

λ,− · (1− sλ) > 0. We define γλ := Mβ
λ,−sλ.

Since sλ → 0 as λ → 0, we have bλ → +∞; for the remaining parameters aλ, γλ it will suffice
to study the asymptotic behavior of γλ as λ→ 0.

Up to a subsequence, we have three alternatives:

(a): γλ → +∞,
(b): γλ → γ0 > 0,
(c): γλ → 0.

Lemma 4. γλ → +∞ cannot happen.

Proof. Assume γλ → +∞; up to a subsequence, we have aλ → ā ≤ 0, as λ → 0, where ā ∈
R ∪ {−∞}.

If ā < 0 or ā = −∞ then passing to the limit in (22) as γλ = Mβ
λ,− · sλ → +∞ we have that

zλ → z in C1
loc(ā,+∞), where z solves the limit problem{

z′′ + z2∗−1 = 0 in (ā,+∞)

z′(0) = 0, z(0) = 1.
(23)
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Since zλ → z in C1
loc(ā,+∞) and being zλ > 0, then by Fatou’s lemma we have

lim inf
λ→0

∫ bλ

aλ

[zλ(s)]2
∗
ds ≥

∫ +∞

ā

[z(s)]2
∗
ds ≥ c1 > 0.

In particular, being aλ < 0, by the same argument it follows that for all small λ > 0∫ bλ

0

[zλ(s)]2
∗
ds ≥

∫ +∞

0

[z(s)]2
∗
ds ≥ c2 > 0.

Now, we have the following estimate:

|u−λ |
2∗

2∗,Arλ
= ωn

∫ 1

rλ

[u−λ (r)]2
∗
rn−1dr ≥ ωns

n−1
λ

∫ 1

sλ

[u−λ (r)]2
∗
dr

= ωns
n−1
λ M2∗

λ,−

∫ 1

sλ

[
1

Mλ,−
u−λ (r)

]2∗

dr = ωns
n−1
λ M2∗−β

λ,−

∫ bλ

0

[zλ(s)]2
∗
ds

= ωnγ
n−1
λ

∫ bλ

0

[zλ(s)]2
∗
ds ≥ ωnγ

n−1
λ c2,

having used the change of variable r = sλ + s

Mβ
λ,−

. Since |u−λ |2
∗

2∗,Arλ
→ Sn/2 while γλ → +∞, as

λ→ 0, we get a contradiction.
If instead ā = 0 we consider the rescaled function ũ−λ which solves{

−∆ũλ = λ

M2β
λ,−

ũλ + ũ2∗−1
λ in Aρλ

ũ = 0 on ∂Aρλ ,
(24)

and is uniformly bounded. We observe that since aλ → 0 then ρλ = aλ+γλ → +∞. By definition,
we have ũ−λ (ρλ) = 0, ũ−λ (γλ) = 1, for all λ ∈ (0, λ1). Thus, we have

|ũ−λ (ρλ)− ũ−λ (γλ)|
|ρλ − γλ|

=
1

|aλ|
→ +∞ as λ→ 0.

From standard elliptic regularity theory, we know that ũ−λ is a classical solution, so by the mean
value theorem,

|ũ−λ (ρλ)− ũ−λ (γλ)|
|ρλ − γλ|

= |(ũ−λ )′(ξλ)|,

for some ξλ ∈ (ρλ, γλ); thus, |(ũ−λ )′(ξλ)| → +∞ as λ → 0. From Corollary 1 it follows that

(ũ−λ )′ > 0 in (ρλ, γλ) for all λ > 0.
By writing (24) in polar coordinates, we get:

(ũ−λ )′′ +
n− 1

r
(ũ−λ )′ +

λ

M2β
λ,−

ũ−λ + (ũ−λ )2∗−1 = 0.

From this, since ũ−λ > 0 and (ũ−λ )′ > 0 in (ρλ, γλ), we get (ũ−λ )′′ < 0 in (ρλ, γλ). Thus, (ũ−λ )′(ρλ) >

(ũ−λ )′(ξλ) > 0, for all λ > 0. In particular, (ũ−λ )′(ρλ)→ +∞ as λ→ 0.

Since, by elementary computation, we have (ũ−λ )′(ρλ) = 1

M1+β
λ,−

(u−λ )′(rλ), by Lemma 3 we get

|(ũ−λ )′(ρλ)| ≤ c 1

M1+β
λ,− r

n/2
λ

for a constant c independent from λ. Remembering that 1+β = 1+ 2
n−2 = β · n2 , and the definition

of ρλ we have the following estimate

|(ũ−λ )′(ρλ)| ≤ c 1

ρ
n/2
λ

.

Since ρλ → +∞, as λ→ 0, we deduce that (ũ−λ )′(ρλ) is uniformly bounded, against (ũ−λ )′(ρλ)→
+∞ as λ→ 0. Thus, we get a contradiction. �

Thanks to Lemma 4 we deduce that (γλ) is a bounded sequence. The following proposition states
an uniform upper bound for ũ−λ .
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Proposition 11. Let’s fix ε ∈ (0, n−2
2 ), and set M̄ := supλ γλ. There exist h = h(ε) and

λ̄ = λ̄(ε) > 0 such that

ũ−λ (y) ≤ Uh(y) (25)

for all y ∈ Rn, 0 < λ < λ̄, where

Uh(y) :=

1 if |y| ≤ h[
1 + 1

n(n−2)c(ε)|y|
2
]−(n−2)/2

if |y| > h,
(26)

with c(ε) = 2
n−2ε.

Proof. We fix ε ∈ (0, n−2
2 ), so by Proposition 7 there exist δ = δ(ε) ∈ (0, 1) and λ(ε) > 0 such that

u−λ (x) ≤Mλ,−

{
1 +

M−1
λ,− f(Mλ,−)

n(n− 2)
c(ε)|x|2

}−(n−2)/2

,

for all x ∈ Aδ,λ = {x ∈ Rn; δ−1/Nsλ < |x| < 1}, for all λ ∈ (0, λ), where c(ε) = 2
n−2ε. The same

proof of Proposition 10 shows that

ũ−λ (y) ≤
{

1 +
1

n(n− 2)
c(ε)|y|2

}−(n−2)/2

,

for all y ∈ Ãδ,λ = {y ∈ Rn; Mβ
λ,−δ

−1/Nsλ < |y| < Mβ
λ,−}. Now, since by definition ũ−λ is uniformly

bounded by 1, we get an upper bound defined in the whole annulus Ãρλ = {y ∈ Rn; Mβ
λ,−rλ <

|y| < Mβ
λ,−}; to be more precise ũ−λ (y) ≤ Uλ(y), where

Uλ(y) :=

1 if Mβ
λ,−rλ < |y| ≤M

β
λ,−δ

−1/Nsλ[
1 + 1

n(n−2)c(ε)|y|
2
]−(n−2)/2

if Mβ
λ,−δ

−1/Nsλ < |y| < Mβ
λ,−.

(27)

Since γλ = Mβ
λ,−sλ ≤ M̄ , then setting h := δ−1/NM̄ we get that δ−1/NMβ

λ,−sλ ≤ h. Therefore,

from (27), since ũ−λ is zero outside Ãρλ , we deduce (25). �

Lemma 5. γλ → γ0 > 0, γ0 ∈ R, cannot happen.

Proof. Assume that γλ → γ0 > 0, γ0 ∈ R. Since 0 < rλ < sλ there are only two possibilities for
aλ. To be precise, up to a subsequence we can have:

(i): aλ → 0,
(ii): aλ → ā < 0, ā ∈ R.

We will show that both (i) and (ii) lead to a contradiction.
If we assume (i) the same proof of Lemma 4 gives a contradiction. We point out that now

ρλ → γ0, as λ → 0, so as before we get a contradiction since (ũ−λ )′(ρλ) is uniformly bounded,

against (ũ−λ )′(ρλ)→ +∞ as λ→ 0.
Assuming (ii) we have aλ → ā < 0 and γλ → γ0 > 0. We define m := ā+ γ0. Clearly, we have

0 ≤ m < γ0 and ρλ → m as λ → 0. Assume m > 0 and consider the rescaling ũ−λ in the annulus

Aρλ defined as before. Since ũ−λ satisfies (24) and (ũ−λ ) is uniformly bounded then passing to the

limit as λ → 0 we get ũ−λ → ũ in C2
loc(Π), where Π is the limit domain Π := {y ∈ Rn; |y| > m}

and ũ is a positive radial solution of

−∆ũ = ũ2∗−1 in Π (28)

By definition ũ−λ (γλ) = 1, (ũ−λ )′(γλ) = 0 for all λ, so as λ→ 0 we get ũ(γ0) = 1, ũ′(γ0) = 0 because

of the convergence of ũ−λ → ũ in C2(K), for all compact subsets K in Π, and γ0 > m. In particular,
we deduce that ũ 6≡ 0. We now show that ũ can be extended to zero on ∂Π = {y ∈ Rn; |y| = m}.
Thanks to Lemma 3 and since we are assuming m > 0, which is the limit of ρλ as λ→ 0, we get
that (ũ−λ )′(ρλ) is uniformly bounded by a constant M , and by the monotonicity of (ũ−λ )′ the same

bound holds for (ũ−λ )′(s) for all s ∈ (ρλ, γλ). It follows that in that interval ũ−λ (s) ≤ M(s − ρλ).
Passing to the limit as λ→ 0 we have ũ(s) ≤M(s−m) for all s ∈ (m, γ0) which implies ũ can be
extended by continuity to zero on ∂Π. We use the same notation ũ to denote this extension.
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Observe that ũ has finite energy, in particular, using Fatou’s lemma and thanks to Lemma 2,
Remark 4, Proposition 3, we get∫

Π

|∇ũ|2dy ≤ lim inf
λ→0

∫
Aρλ

|∇ũ−λ |
2dy = lim inf

λ→0

∫
Arλ

|∇u−λ |
2dx = Sn/2, (29)

∫
Π

|ũ|2∗dy ≤ lim inf
λ→0

∫
Aρλ

|ũ−λ |
2∗dy = lim inf

λ→0

∫
Arλ

|u−λ |
2∗dx = Sn/2. (30)

Moreover, since ũ−λ → ũ in C2
loc(Π) and thanks to the uniform upper bound given by Proposition

11, by Lebesgue’s theorem, we have∫
Π

|ũ|2∗dy = lim
λ→0

∫
Arλ

|u−λ |
2∗dx = Sn/2. (31)

Since ũ ∈ H1(Π) ∩ C0(Π̄) and is zero on ∂Π, then ũ ∈ H1
0 (Π) and thanks to (29), (31) it follows

that ũ achieves the best constant in the Sobolev embedding on Π, which is impossible (see for
instance [23], Theorem III.1.2). This ends the proof for the case m > 0.

Assume now m = 0, then ũ−λ converges in C2
loc(Rn − {0}) to a radial function ũ which is a

positive bounded solution of

−∆ũ = ũ2∗−1 in Rn − {0} (32)

Since ũ is a radial solution of (32), then integrating −(ũ′(r)rn−1)′ = ũ2∗−1(r)rn−1 between
δ > 0 sufficiently small and γ0 we get

ũ′(δ)δn−1 =

∫ γ0

δ

ũ2∗−1rn−1dr.

Since the right-hand side is a positive and decreasing function of δ, we get ũ′(δ)δn−1 → l̃ > 0 as
δ → 0. Thus, ũ′(δ) behaves as δ1−n near the origin, and this is a contradiction since

∫
Rn |∇ũ|

2dy =

ωn
∫ +∞

0
|ũ′(r)|2rn−1dr is finite, and the proof is complete. �

As a consequence of Lemma 4 and Lemma 5 we have proved:

Proposition 12. Up to a subsequence, we have γλ → 0 as λ→ 0.

4.4. Final estimates and proof of Theorem 1. From Proposition 12 we know that, up to a

subsequence, γλ = Mβ
−,λsλ → 0 as λ→ 0. The rescaled function ũ−λ (y) := 1

Mλ,−
u−λ

(
y

Mβ
λ,−

)
in the

annulus Aρλ := {y ∈ Rn;Mβ
λ,−rλ < |y| < Mβ

λ,−} solves (24) and the functions (ũ−λ ) are uniformly

bounded. Since γλ → 0 as λ → 0, in particular the limit domain of Aρλ is Rn − {0} and by
standard elliptic theory ũ−λ → ũ in C2

loc(Rn − {0}), where ũ is positive, radial and solves

−∆ũ = ũ2∗−1 in Rn − {0} (33)

As in the proof of Lemma 5 by Fatou’s Lemma, it follows that ũ has finite energy I0(ũ) =
1
2 |∇ũ|

2
2,Rn− 1

2∗ |ũ|
2∗

2∗,Rn . Moreover, thanks to the uniform upper bound (25), by Lebesgue’s theorem,
we have

lim
λ→0

∫
Aρλ

|ũ−λ |
2∗dy =

∫
Rn
|ũ|2∗dy,

so, by Lemma 2, Remark 4 and Proposition 3 we get∫
Rn
|ũ|2∗dy = Sn/2.

The next two lemmas show that the function ũ = ũ(s) can be extended to a C1([0,+∞)) function
if we set ũ(0) := 1 and ũ′(0) := 0.

Lemma 6. We have

lim
s→0

ũ(s) = 1.
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Proof. Since ũ−λ is a radial solution of (24) and ũ−λ ≤ 1, then

[(ũ−λ )′sn−1]′ = − λ

M2β
λ,−

ũ−λ (s)sn−1 − [ũ−λ (s)]2
∗−1sn−1

≥ − λ

M2β
λ,−

sn−1 − sn−1

≥ −2sn−1.

Integrating between γλ and s > γλ (with s < Mβ
λ,−) we get

(ũ−λ )′(s)sn−1 ≥ −2

∫ s

γλ

tn−1dt ≥ − 2

n
sn.

Hence, (ũ−λ )′(s) ≥ − 2
ns for all s ∈ (γλ,M

β
λ,−). Integrating again between γλ and s we have

ũ−λ (s)− 1 ≥ − 1

n
(s2 − γ2

λ) ≥ − 1

n
s2.

Hence, ũ−λ (s) ≥ 1− 1
ns

n for all s ∈ (γλ,M
β
λ,−). Since γλ → 0 and Mβ

λ,− → +∞, then, passing to

the limit as λ→ 0, we get ũ(s) ≥ 1− 1
ns

2, for all s > 0. From this inequality and since ũ ≤ 1 we
deduce lims→0 ũ(s) = 1. �

Lemma 7. We have

lim
s→0

ũ′(s) = 0.

Proof. As before, from the radial equation satisfied by ũ−λ , integrating between γλ and s > γλ
(with s < Mβ

λ,−) we get

−(ũ−λ )′(s)sn−1 =
λ

M2β
λ,−

∫ s

γλ

ũ−λ t
n−1dt+

∫ s

γλ

(ũ−λ )2∗−1tn−1dt.

Since ũ ≤ 1, and γλ → 0 it follows that for all λ > 0 sufficiently small

|(ũ−λ )′(s)sn−1| ≤ λ

M2β
λ,−

∫ s

γλ

tn−1dt+

∫ s

γλ

tn−1dt ≤ 2
sn

n
.

Passing to the limit, as λ→ 0, we get |ũ′(s)| ≤ 2
s

n
for all s > 0, hence lims→0 ũ

′(s) = 0. �

From Lemma 6 and Lemma 7 it follows that the radial function ũ(y) = ũ(|y|) can be extended
to a C1(Rn) function. From now on, we denote by ũ this extension. Next lemma shows that ũ is
a weak solution of (33) in the whole Rn.

Lemma 8. The function ũ is a weak solution of

−∆ũ = ũ2∗−1 in Rn (34)

Proof. Let’s fix a test function φ ∈ C∞0 (Rn). If 0 /∈ supp(φ) the proof is trivial so from now
on we assume 0 ∈ supp(φ). Let B(δ) be the ball centered at the origin having radius δ > 0,
with δ sufficiently small such that supp(φ) ⊂⊂ B(1/δ). Applying Green’s formula to Ω(δ) :=
B(1/δ)−B(δ), since ũ is a C2

loc(Rn − {0}) solution of (33) and φ ≡ 0 on ∂B(1/δ), we have∫
Ω(δ)

∇ũ · ∇φ dy =

∫
Ω(δ)

φ ũ2∗−1 dy +

∫
∂B(δ)

φ

(
∂ũ

∂ν

)
dσ. (35)

We show now that
∫
∂B(δ)

φ
(
∂ũ
∂ν

)
dσ → 0 as δ → 0. In fact since ũ is a radial function, we have

∂ũ
∂ν (y) = ũ′(δ) for all y ∈ ∂B(δ), and from this relation, we get∣∣∣∣∣

∫
∂B(δ)

φ

(
∂ũ

∂ν

)
dσ

∣∣∣∣∣ ≤ |ũ′(δ)|
∫
∂B(δ)

|φ| dσ

≤ ωn|ũ′(δ)|δn−1||φ||∞.
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Thanks to Lemma 7 we have |ũ′(δ)|δn−1 → 0 as δ → 0. To complete the proof, we pass to the
limit in (35) as δ → 0. We observe that

|∇ũ · ∇φ| χΩ(δ) ≤ |∇ũ|2 χ{|∇ũ|>1}|∇φ|+ |∇ũ| χ{|∇ũ|≤1}|∇φ|

≤ |∇ũ|2 χ{|∇ũ|>1}|∇φ|+ χ{|∇ũ|≤1}|∇φ|.
(36)

Since
∫
Rn |∇ũ|

2dy ≤ Sn/2 and φ has compact support, the right-hand side of (36) belongs to

L1(Rn). Hence, from Lebesgue’s theorem, we have

lim
δ→0

∫
Ω(δ)

∇ũ · ∇φ dy =

∫
Rn
∇ũ · ∇φ dy. (37)

Since φ has compact support by Lebesgue’s theorem, we have

lim
δ→0

∫
Ω(δ)

φ ũ2∗−1 dy =

∫
Rn
φ ũ2∗−1 dy. (38)

From (35), (37), (38) and since we have proved
∫
∂B(δ)

φ
(
∂ũ
∂ν

)
dσ → 0 as δ → 0 it follows that∫

Rn
∇ũ · ∇φ dy =

∫
Rn
φ ũ2∗−1 dy,

which completes the proof. �

Now, we have all the tools to prove Theorem 1.

Proof of Theorem 1. We start proving (i). By Proposition 9, arguing as in the previous proofs, we
know that (ũ+

λ ) is an equi-bounded family of radial solutions of (18) and converges in C2
loc(Rn) to

a function ũ which solves −∆u = u2∗−1 in Rn. From (20) we deduce that ũ→ 0 as |y| → +∞. To
apply Proposition 5 we have to check that ũ has finite energy, but this is an immediate consequence
of Fatou’s lemma and the assumption that uλ has finite energy (for the details see (29) and (30)).
Thus, ũ = δx0,µ for some x0 ∈ Rn, µ > 0. Since ũ is a radial function, we have x0 = 0. Moreover,

since ũ(0) = 1, by an elementary computation, we see that µ =
√
n(n− 2).

Now we prove (ii). As we have seen at the beginning of this section, the equi-bounded family
(ũ−λ ) converges in C2

loc(Rn−{0}) to a function ũ which solves (33). From Lemma 6 and Lemma 7
we have that ũ can be extended to a C1(Rn) function such that ũ(0) = 1, ∇ũ(0) = 0. Moreover,
from Lemma 8 we know that ũ is a weak solution of (34) and from Fatou’s lemma, as seen in
(29), (30), we have that ũ has finite energy. Also, from Proposition 11 we deduce that ũ → 0 as
|y| → +∞.

By elliptic regularity (see for instance Appendix B of [23]) since ũ is a weak solution of (34) we
deduce that ũ ∈ C2(Rn). Thanks to Proposition 5, since ũ is a radial function and ũ(0) = 1, we
have ũ = δ0,µ, where µ > 0 is the same as in (i). �

5. Asymptotic behavior of Mλ,+, Mλ,− and proof of Theorem 2

We know from Proposition 3 that Mλ,+,Mλ,− → +∞ as λ → 0, in addition in the last two

sections we have proved that Mβ
λ,+rλ → +∞ while Mβ

λ,−rλ → 0, as λ→ 0. Thus,
Mλ,+

Mλ,−
→ +∞ as

λ → 0; in other words Mλ,+ goes to infinity faster than Mλ,−. In this section, we determine the
order of infinity of Mλ,− as negative power of λ and also an asymptotic relation between Mλ,+,
Mλ,− and the node rλ.

Proposition 13. As λ→ 0 we have

(i): Mλ,+|(u+
λ )′(rλ)|rn−1

λ → c1(n);

(ii): λ−1M2β
λ,+r

n
λ |(u

+
λ )′(rλ)|2 → c2(n);

(iii): M2−2β
λ,+ rn−2

λ λ→ c3(n),

where c1(n) =
∫∞

0
δ2∗−1
0,µ (s)sn−1ds, c2(n) = 2

∫∞
0
δ2
0,µ(s)sn−1ds, c3(n) =

c21(n)
c2(n) .
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Proof. To prove (i) we integrate the equation −[(u+
λ )′rn−1]′ = λu+

λ r
n−1 + (u+

λ )2∗−1rn−1 between

0 and rλ and multiply both sides by Mλ,+. Since (u+
λ )′(0) = 0 we have

Mλ,+|(u+
λ )′(rλ)|rn−1

λ = λMλ,+

∫ rλ

0

u+
λ r

n−1 dr +Mλ,+

∫ rλ

0

(u+
λ )2∗−1rn−1 dr. (39)

We first prove that λMλ,+

∫ rλ
0
u+
λ r

n−1 dr → 0 as λ → 0. In fact by the usual change of variable
r = s

Mβ
λ,+

we have

λMλ,+

∫ rλ

0

u+
λ (r) rn−1 dr = λ

1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0

1

Mλ,+
u+
λ

(
s

Mβ
λ,+

)
sn−1 ds

= λ
1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0

ũ+
λ (s)sn−1 ds

Thanks to the uniform upper bound (20) we have

λ
1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0

ũ+
λ sn−1 ds ≤ λ

1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0

{
1 +

1

n(n− 2)
s2

}−(n−2)/2

sn−1ds

≤ λ
1

M2∗−2
λ,+

∫ 1

0

sn−1ds

+ λ
1

M2∗−2
λ,+

[n(n− 2)](n−2)/2

∫ Mβ
λ,+rλ

1

s−(n−2)sn−1ds

= Iλ,1 + Iλ,2.

Since Mλ,+ → +∞ and
∫ 1

0
sn−1ds = 1

n it’s obvious that Iλ,1 → 0, as λ → 0. Now, we show that

the same holds for Iλ,2. In fact, setting C1(n) := [n(n− 2)](n−2)/2 we have

Iλ,2 = λ
1

M2∗−2
λ,+

C1(n)

∫ Mβ
λ,+rλ

1

s ds

= λ
1

M2∗−2
λ,+

C1(n)

(
M2β
λ,+r

2
λ

2
− 1

2

)

= λr2
λ

C1(n)

2
− λ 1

M2∗−2
λ,+

C1(n)

2
→ 0, as λ→ 0,

since by definition, 2β = 4
n−2 = 2∗−2. To complete the proof of (i) we show thatMλ,+

∫ rλ
0

(u+
λ )2∗−1rn−1 dr →∫∞

0
δ2∗−1
0,µ (s)sn−1ds as λ→ 0. In fact, as before, by the change of variable r = s

Mβ
λ,+

we have

Mλ,+

∫ rλ

0

[u+
λ (r)]2

∗−1 rn−1 dr =
1

M2∗−1
λ,+

∫ Mβ
λ,+rλ

0

[
u+
λ

(
s

Mβ
λ,+

)]2∗−1

sn−1 ds

=

∫ Mβ
λ,+rλ

0

[ũ+
λ (s)]2

∗−1sn−1 ds.

Since ũ+
λ → δ0,µ in C2

loc(Rn), in particular we have [ũ+
λ (s)]2

∗−1 → [δ0,µ(s)]2
∗−1 as λ → 0, for

all s ≥ 0, and thanks to the uniform upper bound (20), by Lebesgue’s dominated convergence

theorem, it follows that
∫Mβ

λ,+rλ
0 [ũ+

λ (s)]2
∗−1sn−1 ds→

∫∞
0
δ2∗−1
0,µ (s)sn−1ds so by (39) the proof of

(i) is complete.
Now, we prove (ii). Applying Pohozaev’s identity to u+

λ , which solves −∆u = λu + u2∗−1 in
Brλ , we have

λ

∫
Brλ

[u+
λ (x)]2 dx =

1

2

∫
∂Brλ

(x · ν)

(
∂u+

λ

∂ν

)2

dσ,
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where ν is the exterior unit normal vector to ∂Brλ . Since u+
λ is radial, we have also

(
∂u+

λ

∂ν

)2

=[
(u+
λ )′(rλ)

]2
so, passing to the unit sphere Sn−1, we get

λ

∫
Brλ

[u+
λ (x)]2 dx =

1

2
rn−1
λ

∫
Sn−1

rλ
[
(u+
λ )′(rλ)

]2
dω

=
1

2
ωnr

n
λ

[
(u+
λ )′(rλ)

]2
.

Thus, we have

λ−1rnλ
[
(u+
λ )′(rλ)

]2
= 2 ω−1

n

∫
Brλ

[u+
λ (x)]2 dx. (40)

Now, performing the same change of variable as in (i) we have∫
Brλ

[u+
λ (x)]2 dx =

1

M2∗−2
λ,+

∫
Bσλ

[
1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)]2

dy

=
1

M2∗−2
λ,+

∫
Bσλ

[
ũ+
λ (y)

]2
dy,

Thus, we get

M2β
λ,+

∫
Brλ

[u+
λ (x)]2 dx =

∫
Bσλ

[
ũ+
λ (y)

]2
dy. (41)

As in (i) since ũ+
λ → δ0,µ in C2

loc(Rn) and thanks to the uniform upper bound (20) we have∫
Bσλ

[
ũ+
λ (y)

]2
dy →

∫
Rn

[δ0,µ(y)]2 dy = ωn

∫ +∞

0

[δ0,µ(r)]2rn−1 dr.

From this, (40) and (41) we deduce that λ−1M2β
λ,+r

n
λ

[
(u+
λ )′(rλ)

]2 → 2
∫ +∞

0
[δ0,µ(r)]2rn−1 dr, and

(ii) is proved.
The proof of (iii) is a trivial consequence of (i) and (ii). �

Now, we state a similar result for Mλ,−.

Proposition 14. As λ→ 0 we have the following:

(i): Mλ,−|(u−λ )′(1)| → c1(n);

(ii): λ−1M2β
λ,−
{

[(u−λ )′(1)]2 − [(u−λ )′(rλ)]2rnλ
}
→ c2(n);

(iii): λ−1M2β
λ,−[(u−λ )′(rλ)]2rnλ → 0;

(iv): M2−2β
λ,− λ→ c3(n),

where c1(n), c2(n) and c3(n) are the constants defined in Proposition 13.

Proof. The proof of (i) is similar to the proof of (i) of Proposition 13. Here, we integrate the
equation −[(u−λ )′rn−1]′ = λu−λ r

n−1 + (u−λ )2∗−1rn−1 between sλ and 1. Since (u−λ )′(sλ) = 0 we
have

(u−λ )′(1) = λ

∫ 1

sλ

u−λ rn−1 dr +

∫ 1

sλ

(u−λ )2∗−1rn−1 dr.

By Mβ
λ sλ → 0 and thanks to the uniform upper bound (25), arguing like in the proof of (i) of

Proposition 13, we have

Mλ,− λ

∫ 1

sλ

u−λ rn−1 dr → 0

and

Mλ,−

∫ 1

sλ

(u−λ )2∗−1rn−1 dr =

∫ Mβ
λ,−

Mβ
λ,−sλ

(ũ−λ )2∗−1sn−1 ds→
∫ +∞

0

δ2∗−1
0,µ sn−1 ds,

as λ→ 0. The proof of (i) is complete.
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The proof of (ii) is similar to the corresponding one of Proposition 13. This time we apply
Pohozaev’s identity to u−λ in the annulus Arλ = {x ∈ Rn; rλ < |x| < 1} whose boundary has two
connected components, namely {x ∈ Rn; |x| = rλ} and the unit sphere Sn−1. Thus, we have

λ

∫
Arλ

[u−λ (x)]2dx =
1

2

∫
∂Arλ

(x · ν)

(
∂u−λ
∂ν

)2

dσ

=
1

2
ωn
{

[(u−λ )′(1)]2 − [(u−λ )′(rλ)]2rnλ
}
.

Thus, multiplying each member by M2β
λ,− and rewriting the previous equation, we have

M2β
λ,−λ

−1
{

[(u−λ )′(1)]2 − [(u−λ )′(rλ)]2rnλ
}

= 2ω−1
n M2β

λ,−

∫
Arλ

[u−λ (x)]2dx

= 2ω−1
n M2β

λ,−
1

Mnβ
λ,−

∫
Aσλ

[
u−λ

(
y

Mβ
λ,−

)]2

dy

= 2

∫ Mβ
λ,−

Mβ
λ,−rλ

[
ũ−λ (s)

]2
sn−1ds.

Since 2
∫Mβ

λ,−

Mβ
λ,−rλ

[
ũ−λ (s)

]2
sn−1ds→ 2

∫∞
0
δ2
0,µ(s)sn−1ds as λ→ 0 we are done.

To prove (iii) we write

λ−1M2β
λ,−[(u−λ )′(rλ)]2rnλ =

λ−1M2β
λ,−[(u−λ )′(rλ)]2rnλ

λ−1M2β
λ,+[(u+

λ )′(rλ)]2rnλ
· λ−1M2β

λ,+[(u+
λ )′(rλ)]2rnλ

=
M2β
λ,−

M2β
λ,+

· λ−1M2β
λ,+[(u+

λ )′(rλ)]2rnλ → 0

since
Mλ,−
Mλ,+

→ 0 and λ−1M2β
λ,+[(u+

λ )′(rλ)]2rnλ → c2(n) as λ→ 0 (by (ii) of Proposition 13).

Finally, the proof of (iv) is trivial. In fact from (ii) and (iii) it immediately follows that

λ−1M2β
λ,−[(u−λ )′(1)]2 → c2(n).

From this and (i), we get (iv). �

Remark 5. By elementary computation 2 − 2β = 2 − 4
n−2 = 2n−8

n−2 so by (iv) of Proposition 14

we have that Mλ,− is an infinite of the same order as λ−
n−2
2n−8 .

From (iii) of Proposition 13 and (iv) of Proposition 14 we deduce the following result which
gives an asymptotic relation between Mλ,+, Mλ,− and rλ.

Proposition 15.
M2−2β
λ,−

M2−2β
λ,+ rn−2

λ

→ 1, as λ→ 0.

Proof of Theorem 2. It suffices to sum up the results contained in Proposition 13, Proposition 14
and Proposition 15. �

Remark 6. We point out that in order to determine the explicit rate of Mλ,+ or, equivalently, that
of rλ, some difficulties arise. The techniques used in the previous proofs of integrating the equation
and using the Pohozaev’s identity do not seem to be sufficient to this purpose. Nevertheless, as a
consequence of the methods applied in [19] we get, for n ≥ 7 and for all sufficiently small λ, the
existence of radial sign-changing solutions of (1) with the shape of a tower of two bubbles, and

the parameters µ1, µ2 of these two bubbles are given. The lowest order bubble diverges as λ−
n−2
2n−8 ,

which is the same order of Mλ,−, while the other diverges as λ−
(3n−10)(n−2)
(2n−8)(n−6) . Moreover, in a paper

in preparation, we show, under some additional hypotheses, that the previous speeds are the only

possible ones, for n ≥ 7. Hence, we conjecture that Mλ,+ ' λ−
(3n−10)(n−2)
(2n−8)(n−6) .
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6. Proof of Theorem 3

This section is entirely devoted to the proof of Theorem 3.

Proof of Theorem 3. We want to prove that λ−
n−2
2n−8uλ → c̃(n)G(x, 0) in C1

loc(B1−{0}). We begin

from the local uniform convergence of λ−
n−2
2n−8uλ. The same argument with some modifications will

work for the local uniform convergence of its derivatives. Thanks to the representation formula,
since −∆uλ = λuλ + |uλ|2

∗−2uλ in B1, we have

λ−
n−2
2n−8uλ(x) = −λ−

n−2
2n−8λ

∫
B1

G(x, y)uλ(y) dy − λ−
n−2
2n−8

∫
B1

G(x, y)|uλ|2
∗−2uλ(y) dy. (42)

Since λ−
n−2
2n−8λ = λ

n−6
2n−8 , splitting the integrals we have

λ−
n−2
2n−8uλ(x) = −λ

n−6
2n−8

∫
Brλ

G(x, y)u+
λ (y) dy + λ

n−6
2n−8

∫
Arλ

G(x, y)u−λ (y) dy

−λ−
n−2
2n−8

∫
Brλ

G(x, y)[u+
λ (y)]2

∗−1 dy + λ−
n−2
2n−8

∫
Arλ

G(x, y)[u−λ (y)]2
∗−1 dy

= I1,λ + I2,λ + I3,λ + I4,λ.

Let K be a compact subset of B1−{0}. We are going to prove that I1,λ, I2,λ, I3,λ → 0 uniformly
in K, as λ→ 0. We begin with I1,λ. For all x ∈ K we have

|I1,λ| ≤

∣∣∣∣∣λ n−6
2n−8

∫
Brλ

G(x, y)u+
λ (y) dy

∣∣∣∣∣
=

∣∣∣∣∣∣λ n−6
2n−8

1

Mnβ
λ,+

∫
B
M
β
λ,+

rλ

G

(
x,

y

Mβ
λ,+

)
u+
λ

(
y

Mβ
λ,+

)
dy

∣∣∣∣∣∣
≤ λ

n−6
2n−8

1

M2∗−1
λ,+

∫
B
M
β
λ,+

rλ

∣∣∣∣∣G
(
x,

y

Mβ
λ,+

)∣∣∣∣∣ ũ+
λ (y) dy.

Since K is a compact subset of B1 − {0} and | y

Mβ
λ,+

| < rλ by an elementary computation, we see

that for all x ∈ K, for all λ > 0 sufficiently small

∣∣∣∣G(x, y

Mβ
λ,+

)∣∣∣∣ ≤ c(K) for all y ∈ BMβ
λ,+rλ

,

where c = c(K) is a positive constant depending only on K and n. Now, thanks to the uniform
upper bound (20) we have

λ
n−6
2n−8

1

M2∗−1
λ,+

∫
B
M
β
λ,+

rλ

∣∣∣∣∣G
(
x,

y

Mβ
λ,+

)∣∣∣∣∣ ũ+
λ (y) dy

≤ c(K)λ
n−6
2n−8

1

M2∗−1
λ,+

∫
B
M
β
λ,+

rλ

{
1 +

1

n(n− 2)
|y|2
}−(n−2)/2

dy

= c(K)λ
n−6
2n−8

1

M2∗−1
λ,+

ωn

∫ Mβ
λ,+rλ

0

{
1 +

1

n(n− 2)
s2

}−(n−2)/2

sn−1 ds

≤ c1(K)λ
n−6
2n−8

1

M2∗−1
λ,+

∫ Mβ
λ,+rλ

0

s−(n−2)sn−1 ds = c1(K)λ
n−6
2n−8

1

M2∗−1
λ,+

∫ Mβ
λ,+rλ

0

s ds

= c2(K)λ
n−6
2n−8

1

M2∗−1
λ,+

M2β
λ,+r

2
λ = c2(K)λ

n−6
2n−8

1

Mλ,+
r2
λ → 0, as λ→ 0.

Since this inequality is uniform respect to x ∈ K we have ‖I1,λ‖∞,K → 0 as λ → 0. The proof
that ‖I3,λ‖∞,K → 0 is quite similar to the previous one, in fact with small modifications we get
the following uniform estimate:
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|I3,λ| ≤ λ
n−6
2n−8

1

Mλ,+

∫
B
M
β
λ,+

rλ

∣∣∣∣∣G
(
x,

y

Mβ
λ,+

)∣∣∣∣∣ [ũ+
λ (y)]2

∗−1 dy

≤ c(K)λ
n−6
2n−8

1

Mλ,+

∫
B
M
β
λ,+

rλ

{
1 +

1

n(n− 2)
|y|2
}−(n+2)/2

dy

≤ c(K)λ
n−6
2n−8

1

Mλ,+

∫
Rn

{
1 +

1

n(n− 2)
|y|2
}−(n+2)/2

dy

= c1(K) λ
n−6
2n−8

1

Mλ,+
, as λ→ 0.

The proof for I2,λ is more delicate since for all small λ > 0 the Green function is not bounded
when x ∈ K, y ∈ Arλ . We split the Green function in the singular part and the regular part so
that

I2,λ = λ
n−6
2n−8

∫
Arλ

Gsing(x, y)u−λ (y) dy + λ
n−6
2n−8

∫
Arλ

Greg(x, y)u−λ (y) dy.

The singular part of the Green function is given by 1
(2−n)ωn

1
|x−y|n−2 , we want to show that

λ
n−6
2n−8

1

(2− n)ωn

∫
Arλ

1

|x− y|n−2
u−λ (y) dy → 0

uniformly for x ∈ K. The usual change of variable gives

λ
n−6
2n−8

1

(2− n)ωn

∫
Arλ

1

|x− y|n−2
u−λ (y) dy

=
λ
n−6
2n−8

M2∗
λ,−

1

(2− n)ωn

∫
Ãrλ

1

|x− w

Mβ
λ,−
|n−2

u−λ

(
w

Mβ
λ,−

)
dw.

Let η be a positive real number such that η < min{d(0,K)
2 ; d(K,∂B1)

2 }, where d(·, ·) denotes the
Euclidean distance. It is clear that for all λ > 0 sufficiently small, we have B(x, η) ⊂⊂ Arλ , for

all x ∈ K. Thus, B(Mβ
λ,−x,M

β
λ,−η) ⊂⊂ Ãrλ , for all x ∈ K, and we split the last integral in two

parts as indicated below:

λ
n−6
2n−8

M2∗
λ,−

1

(2− n)ωn

∫
Ãrλ

1

|x− w

Mβ
λ,−
|n−2

u−λ

(
w

Mβ
λ,−

)
dw

=
λ
n−6
2n−8

M2∗
λ,−

1

(2− n)ωn

∫
|Mβ

λ,−x−w|<M
β
λ,−η

1

|x− w

Mβ
λ,−
|n−2

u−λ

(
w

Mβ
λ,−

)
dw

+
λ
n−6
2n−8

M2∗
λ,−

1

(2− n)ωn

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

1

|x− w

Mβ
λ,−
|n−2

u−λ

(
w

Mβ
λ,−

)
dw

=
λ
n−6
2n−8

M2∗−1
λ,−

1

(2− n)ωn

∫
|Mβ

λ,−x−w|<M
β
λ,−η

M
(n−2)β
λ,−

|Mβ
λ,−x− w|n−2

ũ−λ (w) dw

+
λ
n−6
2n−8

M2∗−1
λ,−

1

(2− n)ωn

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

M
(n−2)β
λ,−

|Mβ
λ,−x− w|n−2

ũ−λ (w) dw := ĨA,λ + ĨB,λ.

Let’s show that ĨA,λ → 0, uniformly for x ∈ K, as λ → 0. First, by making the change of

variable z := w −Mβ
λ,−x we have

ĨA,λ =
λ
n−6
2n−8

M2∗−1
λ,−

1

(2− n)ωn

∫
|z|<Mβ

λ,−η

M
(n−2)β
λ,−

|z|n−2
ũ−λ

(
z +Mβ

λ,−x
)
dz.
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Let us fix ε ∈ (0, n−2
2 ) and set C = 2

n−2ε. Thanks to the uniform upper bound (25), since

|Mβ
λ,−x+ z| ≥ |Mβ

λ,−|x| − |z|| = Mβ
λ,−|x| − |z| ≥M

β
λ,−(|x| − η) > Mβ

λ,−
d(0,K)

2
≥Mβ

λ,−η, (43)

for all x ∈ K, for all z such that |z| < ηMβ
λ,−, then for all sufficiently small λ we have

|ĨA,λ| ≤
λ
n−6
2n−8

M2∗−1
λ,−

1

(n− 2)ωn

∫
|z|<Mβ

λ,−η

M
(n−2)β
λ,−

|z|n−2

[
1 +

1

n(n− 2)
C|z +Mβ

λ,−x|
2

]−(n−2)/2

dz

≤ λ
n−6
2n−8

M2∗−1
λ,−

c1

∫
|z|<Mβ

λ,−η

M
(n−2)β
λ,−

|z|n−2

[
M2β
λ,−η

2
]−(n−2)/2

dz

=
λ
n−6
2n−8

M2∗−1
λ,−

c2(K)ωn

∫ Mβ
λ,−η

0

r dr =
λ
n−6
2n−8

M2∗−1
λ,−

c2(K)ωn
M2β
λ,−η

2

2

= c3(K)
λ
n−6
2n−8

Mλ,−
→ 0, as λ→ 0.

Thus, ĨA,λ → 0, uniformly for x ∈ K, as λ→ 0. Now, we prove that the same holds for ĨB,λ.

|ĨB,λ| ≤
λ
n−6
2n−8

M2∗−1
λ,−

1

(n− 2)ωn

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

1

|η|n−2
ũ−λ (w) dw

≤ λ
n−6
2n−8

M2∗−1
λ,−

c(K)

∫
Ãrλ

ũ−λ (w) dw

≤ λ
n−6
2n−8

M2∗−1
λ,−

c(K)

∫
|w|≤h

1 dw +
λ
n−6
2n−8

M2∗−1
λ,−

c(K)

∫
h<|w|<Mβ

λ,−

[
1 +

1

n(n− 2)
C|w|2

]−(n−2)/2

dw

≤ λ
n−6
2n−8

M2∗−1
λ,−

c1(K) +
λ
n−6
2n−8

M2∗−1
λ,−

c2(K)

∫ Mβ
λ,−

h

r dr

=
λ
n−6
2n−8

M2∗−1
λ,−

c1(K) +
λ
n−6
2n−8

M2∗−1
λ,−

c2(K)

(
M2β
λ,−

2
− h2

2

)
→ 0, as λ→ 0,

having used again (25). Since this estimate is uniform for x ∈ K we have proved that ĨB,λ → 0 in

C0(K) and from this and the analogous result for ĨA,λ we have λ
n−6
2n−8

∫
Arλ

Gsing(x, y)u−λ (y) dy → 0

in C0(K). To complete the proof of I2,λ → 0 in C0(K) it remains to prove that λ
n−6
2n−8

∫
Arλ

Greg(x, y)u−λ (y) dy →
0 in C0(K). This is easy because the regular part of the Green function for the ball is uniformly
bounded, to be precise let l(K) := sup{d(0, x), x ∈ K}, clearly, being K a compact subset of
B1 − {0}, we have l(K) < 1 and since it is well known that

Greg(x, y) =
1

(2− n)ωn

1

|(|x||y|)2 + 1− 2x · y|
n−2

2

,

we have for all x ∈ K, y ∈ Arλ

1

|(|x||y|)2 + 1− 2x · y|
n−2

2

≤ 1

|(1− |x||y|)2|
n−2

2

≤ 1

|1− l(K)|n−2 .

(44)
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Thus we have∣∣∣∣∣λ n−6
2n−8

∫
Arλ

Greg(x, y)u−λ (y) dy

∣∣∣∣∣ ≤ c(K)λ
n−6
2n−8

∫
Arλ

|u−λ (y)| dy

= c(K)
λ
n−6
2n−8

M2∗
λ,−

∫
Ãrλ

∣∣∣∣∣u−λ
(

w

Mβ
λ,−

)∣∣∣∣∣ dw
= c(K)

λ
n−6
2n−8

M2∗−1
λ,−

∫
Ãrλ

∣∣ũ−λ (w)
∣∣ dw.

As in the previous case, we see that c(K)
λ
n−6
2n−8

M2∗−1
λ,−

∫
Ãrλ

∣∣ũ−λ (w)
∣∣ dw → 0 and the proof of I2,λ → 0

in C0(K) is complete.
Now to end the proof, we need to show that I4,λ → c̃(n)G(x, 0) in C0(K). We start making

the usual change of variable

I4,λ = λ−
n−2
2n−8

1

Mλ,−

∫
Ãrλ

G

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 dw.

We split the Green function in the singular and the regular part, so that

I4,λ =
1

(2− n)ωn

λ−
n−2
2n−8

Mλ,−

∫
Ãrλ

1

|x− w

Mβ
λ,−
|n−2

[ũ−λ (w)]2
∗−1 dw

+
λ−

n−2
2n−8

Mλ,−

∫
Ãrλ

Greg

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 dw

We begin with the singular integral which is more delicate. We want to show that

λ−
n−2
2n−8

Mλ,−

1

(2− n)ωn

∫
Ãrλ

1

|x− w

Mβ
λ,−
|n−2

[ũ−λ (w)]2
∗−1 dw → c̃(n)Gsing(x, 0) in C0(K). (45)

As in the previous case, we consider the ball B(Mβ
λ,−x,M

β
λ,−η) ⊂⊂ Ãrλ , where η > 0 is the same

as before. Thus, we have

λ−
n−2
2n−8

Mλ,−

1

(2− n)ωn

∫
Ãrλ

1

|x− w

Mβ
λ,−
|n−2

[ũ−λ (w)]2
∗−1 dw

=
λ−

n−2
2n−8

Mλ,−

1

(2− n)ωn

∫
|Mβ

λ,−x−w|<M
β
λ,−η

M
(n−2)β
λ,−

|Mβ
λ,−x− w|n−2

[ũ−λ (w)]2
∗−1 dw

+
λ−

n−2
2n−8

Mλ,−

1

(2− n)ωn

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

M
(n−2)β
λ,−

|Mβ
λ,−x− w|n−2

[ũ−λ (w)]2
∗−1 dw

:= ĨC,λ + ĨD,λ.

We show that ĨC,λ → 0 in C0(K). As before, using the uniform upper bound (25) and (43) we
get
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|ĨC,λ| =
λ−

n−2
2n−8

Mλ,−

1

(n− 2)ωn

∫
|z|<Mβ

λ,−η

M
(n−2)β
λ,−

|z|n−2

[
ũ−λ

(
z +Mβ

λ,−x
)]2∗−1

dz

≤ λ−
n−2
2n−8

Mλ,−

1

(n− 2)ωn

∫
|z|<Mβ

λ,−η

M
(n−2)β
λ,−

|z|n−2

[
1 +

1

n(n− 2)
C|z +Mβ

λ,−x|
2

]−(n+2)/2

dz

≤ λ−
n−2
2n−8

Mλ,−
c1

∫
|z|<Mβ

λ,−η

M
(n−2)β
λ,−

|z|n−2

[
M2β
λ,−η

2
]−(n+2)/2

dz

=
λ−

n−2
2n−8

Mλ,−
c2(K)

∫ Mβ
λ,−η

0

M
(n−2)β
λ,−

rn−2
M
−(n+2)β
λ,− rn−1 dr

=
λ−

n−2
2n−8

Mλ,−
c2(K)

1

M4β
λ,−

∫ Mβ
λ,−η

0

r dr =
λ−

n−2
2n−8

Mλ,−
c2(K)

1

M4β
λ,−

M2β
λ,−η

2

2

= c3(K)
λ−

n−2
2n−8

Mλ,−

1

M2β
λ,−

.

Since λ
− n−2

2n−8

Mλ,−
is bounded (see Proposition 14 (iv) and Remark 5) then ĨC,λ → 0 uniformly for

x ∈ K. Now, we show that ĨD,λ → c̃(n)Gsing(x, 0) in C0(K). We have

ĨD,λ =
λ−

n−2
2n−8

Mλ,−

1

(2− n)ωn

∫
{|x− w

M
β
λ,−
|≥η} ∩ Ãrλ

1

|x− w

Mβ
λ,−
|n−2

[ũ−λ (w)]2
∗−1 dw

The first step is to prove that for all w ∈ Rn − {0}

χ(w){
{|x− w

M
β
λ,−
|≥η} ∩ Ãrλ

} 1

(2− n)ωn

1

|x− w

Mβ
λ,−
|n−2

[ũ−λ (w)]2
∗−1 → Gsing(x, 0)δ2∗−1

0,µ (w), (46)

uniformly for x ∈ K. First, observe that we need only to show that

1

|x− w

Mβ
λ,−
|n−2

[ũ−λ (w)]2
∗−1 → 1

|x|n−2
δ2∗−1
0,µ (w) in C0(K). (47)

In fact, if we fix w ∈ Rn − {0}, and λ > 0 is sufficiently small so that w ∈ Ãrλ and w

Mβ
λ,−

< d(0,K)
2

then we have |x− w

Mβ
λ,−
| ≥ η, for all x ∈ K. Hence we get∣∣∣∣∣∣∣χ(w){
{|x− w

M
β
λ,−
|≥η} ∩ Ãrλ

} − 1

∣∣∣∣∣∣∣ = χ(w){
{|x− w

M
β
λ,−
|<η}∪Ãcrλ

} = 0,

for all x ∈ K, for all λ > 0 sufficiently small, from which we deduce that

χ(w){
{|x− w

M
β
λ,−
|≥η} ∩ Ãrλ

} → 1 in C0(K).

Now, the proof of (47) is trivial if we show that, for any fixed w ∈ Rn − {0}∣∣∣∣∣∣∣∣∣
1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣n−2 −
1

|x|n−2

∣∣∣∣∣∣∣∣∣ ≤ c(K)

∣∣∣∣∣ w

Mβ
λ,−

∣∣∣∣∣ (48)

for all x ∈ K and for all λ > 0 sufficiently small. This is an elementary computation but for the

sake of completeness, we give the proof. We observe that the segment σ

(
x, x− w

Mβ
λ,−

)
joining x
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and x− w

Mβ
λ,−

is an uniformly bounded set and stays away from the origin. In fact for all x ∈ K,

t ∈ [0, 1] and for all λ > 0 sufficiently small, we have∣∣∣∣∣x− t w

Mβ
λ,−

∣∣∣∣∣ ≤ |x|+ |t|
∣∣∣∣∣ w

Mβ
λ,−

∣∣∣∣∣ < 1 +
d(0,K)

2
(49)

∣∣∣∣∣x− t w

Mβ
λ,−

∣∣∣∣∣ ≥
∣∣∣∣∣|x| − |t| |w|Mβ

λ,−

∣∣∣∣∣ ≥ d(0,K)− td(0,K)

2
≥ d(0,K)

2
. (50)

Thus, setting g(x) := 1
|x|n−2 , by the mean value theorem, we have

g

(
x− w

Mβ
λ,−

)
− g(x) = ∇g(ξλ,x) ·

(
− w

Mβ
λ,−

)
,

where ξλ,x lies on σ

(
x, x− w

Mβ
λ,−

)
. By (49) and (50) we deduce that |∇g(ξλ,x)| is uniformly

bounded3 and (48) is proved.
To complete the first part of the proof, we apply Lebesgue’s theorem. For all x ∈ K, w ∈

Rn − {0} we have ∣∣∣∣∣∣∣χ{
{|x− w

M
β
λ,−
|≥η} ∩ Ãrλ

} 1

(2− n)ωn

1

|x− w

Mβ
λ,−
|n−2

[ũ−λ (w)]2
∗−1

∣∣∣∣∣∣∣
≤ η−(n−2) 1

(n− 2)ωn

1

|x|n−2
[Uh(w)]2

∗−1

= c1(K)[Uh(w)]2
∗−1,

where Uh is the function defined in (26). Since (Uh)2∗−1 ∈ L1(Rn) and thanks to (46), (iv)
of Proposition 14, by Lebesgue’s theorem we deduce (45), where Gsing(x, 0) = 1

(2−n)ωn
1

|x|n−2 ,

c̃(n) = (limλ→0
λ
− n−2

2n−8

Mλ,−
)
∫
Rn δ

2∗−1
0,µ (w) dw. It’s an elementary computation to see that c̃(n) equals

the expected constant ωn
c2(n)

n−2
2n−8

c1(n)
4

2n−8
, where c1(n), c2(n) are the constants defined in Proposition 13.

And the proof of (45) is done.
Finally, we prove that

λ−
n−2
2n−8

Mλ,−

∫
Ãrλ

Greg

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 dw → c̃(n)Greg(x, 0) in C0(K). (51)

Since

Greg

(
x,

w

Mβ
λ,−

)
=

1

(2− n)ωn

1∣∣∣∣|x|2 |w|2M2β
λ,−

+ 1− 2x · w

Mβ
λ,−

∣∣∣∣n−2
2

by the mean value theorem, repeating a similar argument as in the proof of (48), we deduce that
for any fixed w ∈ Rn − {0}

Greg

(
x,

w

Mβ
λ,−

)
→ Greg(x, 0) in C0(K).

Thus, for any w ∈ Rn − {0} we have

Greg

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 → Greg(x, 0)δ2∗−1
0,µ (w) in C0(K).

3by ‖∇g‖∞,R(K), where R(K) is the compact annulus R(K) := {x ∈ Rn;
d(0,K)

2
≤ |x| ≤ 1 +

d(0,K)
2
}
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Thanks to (44) we know that Greg

(
x, w

Mβ
λ,−

)
is uniformly bounded, moreover, as we have done

in the proof of (45), thanks to the upper bound (25), Proposition 14 we deduce (51).

To prove the local uniform convergence of λ−
n−2
2n−8∇uλ to c̃(n)∇G(x, 0) we simply derive (42)

and repeat the previous proof, taking into account that for i = 1, . . . , n we have

∂xiGsing(x, y) =
1

ωn

xi − yi
|x− y|n

.

�

References

[1] Adimurthi, Yadava, S.L.: Elementary proof of the nonexistence of nodal solutions for the semilinear elliptic
equations with critical Sobolev exponent. Nonlinear Anal. 14 (9), 785–787 (1990)

[2] Adimurthi, Yadava, S.L.: An elementary proof of the uniqueness of positive radial solutions of a quasilinear

Dirichlet problem. Arch. Ration. Mech. Anal. 127, 219–229 (1994)
[3] Atkinson, F.V., Brezis, H., Peletier, L.A.: Solutions d’equations elliptiques avec exposant de Sobolev critique

qui changent de signe. C. R. Acad. Sci. Paris Sér. I Math. 306 (16), 711–714 (1988)

[4] Atkinson, F.V., Brezis, H., Peletier, L.A.: Nodal solutions of elliptic equations with critical Sobolev exponents.
J. Differ. Equ. 85 (1), 151–170 (1990)

[5] Atkinson, F.V., Peletier, L.A.: Emden–Fowler equations involving critical exponents. Nonlinear Anal. Theory

Methods Appl. 10 (8), 755–776 (1986)
[6] Atkinson, F.V., Peletier, L.A.: Large solutions of elliptic equations involving critical exponents. Asymptot.

Anal. 1, 139–160 (1988)

[7] Ben Ayed, M., El Mehdi, K., Pacella, F.: Blow-up and symmetry of sign-changing solutions to some critical
elliptic equations. J. Differ. Equ. 230, 771–795 (2006)

[8] Ben Ayed, M., El Mehdi, K., Pacella, F.: Blow-up and nonexistence of sign-changing solutions to the Brezis–
Nirenberg problem in dimension three. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (4), 567–589 (2006)
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