ASYMPTOTIC ANALYSIS FOR RADIAL SIGN-CHANGING SOLUTIONS OF
THE BREZIS-NIRENBERG PROBLEM

ALESSANDRO IACOPETTI

ABSTRACT. We study the asymptotic behavior, as A — 0, of least energy radial sign-changing
solutions u), of the Brezis—Nirenberg problem

u=20 on 0B,

where A > 0, 2* = 2% and By is the unit ball of R", n > 7.

‘We prove that both the positive and negative part u;\r and u, concentrate at the same point
(which is the center) of the ball with different concentration speeds. Moreover, we show that
suitable rescalings of u;\r and u) converge to the unique positive regular solution of the critical
exponent problem in R™.

Precise estimates of the blow-up rate of ||u§\‘:||oo are given, as well as asymptotic relations

{—Au =Xu+[u)2" "2y in B;

between ||uf||oO and the nodal radius ry.

n—2
Finally, we prove that, up to constant, A~ 2n=8uy converges in C. (B1 — {0}) to G(z,0),
where G(z,y) is the Green function of the Laplacian in the unit ball.

1. INTRODUCTION

Let n >3, A > 0 and 2 be a bounded open subset of R" with smooth boundary. We consider
the Brezis—Nirenberg problem

—Au=Xu+|ul? 2y inQ
{ [ul Q)

u=20 on 0,
where 2 = -2 is the critical Sobolev exponent for the embedding of H{(€2) into L?" (). Problem
(1) has been widely studied over the last decades, and many results for positive solutions have
been obtained.

The first existence result for positive solutions of (1) has been given by Brezis and Nirenberg
in their classical paper [10], where, in particular, the crucial role played by the dimension was
enlightened. They proved that if n > 4 there exist positive solutions of (1) for every A € (0, A1(£2)),
where A\ (£2) denotes the first eigenvalue of —A on  with zero Dirichlet boundary condition. For
the case n = 3, which is more delicate, Brezis and Nirenberg [10] proved that there exists A, (2) > 0
such that positive solutions exist for every A € (A.(Q), A\1(2)). When Q = B is a ball, they also
proved that A\.(B) = # and a positive solution of (1) exists if and only if A € (/\1£(LB) ,A1(B)).
Moreover, for more general bounded domains, they proved that if Q C R? is strictly star-shaped
about the origin, there are no positive solutions for A close to zero. We point out that weak
solutions of (1) are classical solution. This is a consequence of a well-known lemma of Brezis and
Kato (see for instance Appendix B of [23]).

The asymptotic behavior for n > 4, as A — 0, of positive solutions of (1), minimizing the
Sobolev quotient, has been studied by Han [18], Rey [21]. They showed, with different proofs,
that such solutions blow up at exactly one point, and they also determined the exact blow-up rate
as well as the location of the limit concentration points.

Concerning the case of sign-changing solutions of (1), several existence results have been ob-
tained if n > 4. In this case, one can get sign-changing solutions for every A € (0, A\1(2)), or even
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A > A1(f2), as shown in the papers of Atkinson—Brezis—Peletier [4], Clapp—Weth [14], Capozzi—
Fortunato—Palmieri [11]. The case n = 3 presents the same difficulties enlightened before for
positive solutions and even more. In fact, differently from the case of positive solutions, it is not
yet known, when Q = B is a ball in R3, if there are sign-changing solutions of (1) when \ is smaller
than \.(B) = A1(B)/4. A partial answer to this question posed by H. Brezis has been given in
[8].

The blow-up analysis of low-energy sign-changing solutions of (1) has been done by Ben Ayed—
El Mehdi—Pacella [7], [8]. In [8] the authors analyze the case n = 3. They introduce the number
defined by

A(Q) := inf{\ € R*; Problem (1) has a sign-changing solution uy, with \|u>\||?2—)\|u>\|§ﬂ < 28%/2},

where [[ux|g, = [ [Vual® dz, [ual3o = [q [us|* do and S is the best Sobolev constant for the
embedding Hg (2) into L**(Q). To be precise, they study the behavior of sign-changing solutions
of (1) which converge weakly to zero and whose energy converges to 25%/2 as A — \(Q). They
prove that these solutions blow up at two different points a;, as, which are the limit of the
concentration points ay 1, a2 of the positive and negative part of the solutions. Moreover, the
distance between ay,; and ay 2 is bounded from below by a positive constant depending only on
Q and the concentration speeds of the positive and negative parts are comparable. This result
shows that, in dimension 3, there cannot exist, in any bounded smooth domain €2, sign-changing
low-energy solutions whose positive and negative part concentrate at the same point.

In higher dimensions (n > 4), the same authors, in their paper [7], describe the asymptotic
behavior, as A — 0, of sign-changing solutions of (1) whose energy converges to the value 25m/2,
Even in this case, they prove that the solutions concentrate and blow up at two separate points, but
they need to assume the extra hypothesis that the concentration speeds of the two concentration
points are comparable, while in dimension three, this was derived without any extra assumption
(see Theorem 4.1 in [8]). They also describe in [7] the asymptotic behavior, as A — 0, of the
solutions outside the limit concentration points proving that there exist positive constants mq, mso
such that

A" s uy = my Gz, a1) — meGla, az) in C2,(Q — {ay,a}), if n > 5,

lurllootr — m1G(x,a1) — moG(x,az) in C}(Q— {a1,as}), if n =4,
where G(z,y) is the Green’s function of the Laplace operator in Q. So for n > 4 the question
of proving the existence of sign-changing low-energy solutions (i.e., such that ||u,||3 converges to
2572 ag X\ — 0) whose positive and negative part concentrate and blow up at the same point was
left open.

To the aim to contribute to this question as well as to describe the precise asymptotic behavior
of radial sign-changing solutions, we consider the Brezis—Nirenberg problem in the unit ball By,
ie.,

—Au = u+|u?’ 2u in B 5
u=20 on 0B;. 2)

It is important to recall that Atkinson—Brezis—Peletier [3], Adimurthi-Yadava [1] showed, with
different proofs, that for n = 3,4,5,6 there exists A* = A*(n) > 0 such that there is no radial
sign-changing solution of (2) for A € (0, A*). Instead, they do exist if n > 7, as shown by Cerami—
Solimini-Struwe in their paper [13]. In Proposition 1 (see also Remark 1) we recall this existence
result and get the limit energy of such solutions as A — 0.

In view of these results, we analyze the case n > 7 and A — 0. More precisely, we consider a
family (u)) of least energy sign-changing solutions of (2). It is easy to see that u) has exactly two
nodal regions. We denote by r) € (0,1) the node of uy = uy(r) and, without loss of generality,
we assume uy(0) > 0, so that u is different from zero in B,, and u) is different from zero in

the annulus A,, = {z € R"; 7\ < |z| < 1}, where u} := max(uy,0), u, := max(0, —u,) are,
respectively, the positive and the negative part of uy.
We set M) 4 = [|[uy [loos M — = [Ju) |loo, B := %, o) = Mfﬁr,\, Px = Mfifm. Moreover,

for p > 0, zo € R", let d4,,, be the function ¢, , : R™ — R defined by

o oI
wo,u(T) 1= 12+ |z — JUO|2}(TL—2)/2'

3)
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Proposition 3 states that both M) + and M) _ diverge, u) weakly converge to 0 and ||uf||2B1 —
S"/2 as A — 0. The results of this paper are contained in the following theorems.

Theorem 1. Let n > 7 and (uy) be a family of least energy radial sign-changing solutions of

+

(2) and u\(0) > 0. Consider the rescaled functions @y (y) = ﬁux in By, , and

y
M{
ay (y) == ﬁu; (M%> in A,,, where By, = MA’BJFB”, A, = Mf_A“, Then:
= X, — ) ’
(i): @l — o, in C} (R™) as A — 0, where &y, is the function defined in (3) for p = /n(n — 2).
(ii): @y — do, in CE(R™ —{0}) as A — 0, where &, is the same as in (i).

From this theorem, we deduce that the positive and negative parts of u) concentrate at the
origin. Moreover, as a consequence of the preliminary results for the proof of Theorem 1, we show

that M) ; and M, _ are not comparable, i.e., Aﬂﬁf — 400 as A — 0, which implies that the

speed of concentration and blowup of u}f and u) are not the same, and hence, the asymptotic
profile of uy is that of a tower of two "bubbles.” Indeed, we are able to determine the exact rate
of My _ and an asymptotic relation between M) 4, My _ and the radius 7 (see also Remark 6).

Theorem 2. As A\ — 0 we have the following:
(i): Mffﬁr;l*z/\ — ¢(n),
(ii): M} %A = ¢(n),
S 2—28
A—
(lll): m — 1,
A+ T

where c(n) := ZEEZ;, ci(n) = [y (58;;1(5)3"_1ds, ca(n) =2 [;° 63 ,(5)s" ds, = +/n(n —2).

The last result we provide is about the asymptotic behavior of the functions uy in the ball By,

outside the origin. We show that, up to a constant, A~ sy converges in CL_(B; — {0}) to
G(z,0), where G(z,y) is the Green function of the Laplace operator in Bj.

Theorem 3. As A — 0 we have
)f%u)\ — é(n)G(x,0) in Clloc(Bl —{0}),

where G(x,y) is the Green function for the Laplacian in the unit ball, ¢(n) is the constant defined
n—2
by é(n) = wy 2R s the measure of the (n — 1)-dimensional unit sphere S"~! and
cl (TL) 2n—8
c1(n), ca(n) are the constants appearing in Theorem 2.

The proof of the above results is technically complicated and often rely on the radial character
of the problem. We would like to stress that the presence of the lower-order term Au makes our
analysis quite different from that performed in [9] for low-energy sign-changing solution of an
almost critical problem.

Since we consider nodal solutions, our results cannot be obtained by following the proofs for the
case of positive solutions ([5], [6],[18], [21]). In particular, in order to analyze the behavior of the
negative part u, , which is defined in an annulus, we prove a new uniform estimate (Propositions 7,
11), which holds for any dimension n > 3 and is of its own interest (see Remark 3 and Proposition
8).

For the sake of completeness, let us mention that our results, as well as those of [9], show a big
difference between the asymptotic behavior of radial sign-changing solutions in dimension n > 2
and n = 2. Indeed, in this last case, the limit problems as well as the limit energies of the positive
and negative part of solutions are different (see [17]).

Finally, we point out, that in view of the above theorems, it is natural to ask whether solutions
of (1) which behave like the radial ones exist in other bounded domains. More precisely, it would
be interesting to show the existence of sign-changing solutions whose positive and negative part
concentrate at the same point but with different speeds, each one carrying the same energy.

In [19] we answer positively this question at least in the case of some symmetric domains in
R™ n>T.
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We point out that this type of bubble tower solutions have interest also for the associated
parabolic problem, since, as proved in [20], [12], [15], they induce a peculiar blow-up phenomenon
for the initial data close to them.

We conclude observing that with similar proofs, it is possible to extend our results to the case of
radial sign-changing solutions of (2) with k£ nodal regions, & > 2, and such that ||uAHQB1 — kSn/2,
as A — 0. As expected, the limit profile will be that of a tower of k bubbles with alternating signs.
Moreover, with the same methods applied here, we can deduce analogous asymptotic relations as
those of Theorem 2.

The paper is divided into 6 sections. In Sect. 2, we give some preliminary results on radial
sign-changing solutions. In Section 3, we prove estimates for solutions with two nodal regions and,
in particular, prove the new uniform estimate of Proposition 11.

In Sect. 4, we analyze the asymptotic behavior of the rescaled solutions and prove Theorem 1.
Section 5 is devoted to the study of the divergence rate of |[uy||«, as A — 0 and to the proof of
Theorem 2. Finally, in Sect. 6, we prove Theorem 3.

2. PRELIMINARY RESULTS ON RADIAL SIGN-CHANGING SOLUTIONS

In this section, we recall or prove some results about the existence and qualitative properties
of radial sign-changing solutions of the Brezis—Nirenberg problem (2).
We start with the following:

Proposition 1. Letn > 7, k € NT and A € (0, 1), where Ay is the first eigenvalue of —A in
H}(B1). Then, there exists a radial sign-changing solution uy  of (2) with the following properties:
(l): Uk7)\(0) > 0,

(ii): ug . has exactly k nodal regions in By,

(iii): In(upy) = 3 (fBl Vg > = Mug a|? da:) — 5 [, [k A* dz — £S"/2 as X — 0, where S

is the best constant for the Sobolev embedding HY(By) «— L* (By).

Proof. The existence of radial solutions of (2) satisfying (i) and (ii) is proved in [13]. It remains
only to prove (iii). To do this, we need to introduce some notations and recall some facts proved
in [13] and [10]. Let k € NT and 0 = rg <71 < ... < r, = 1 any partition of the interval [0, 1], we
define the sets Qy := B,, = {x € By;|z| <r} and, if k > 2, Q; := {& € By;r;_1 < |z| <r;} for
j=2,...,k

Then, we consider the set

My = {u € Hj ,,q(B1); there exists a partition 0 =rg <73 <...<rp=1
such that: u(r;) = 0,for 1 < j <k, (—1)7"tu(z) > 0,u # 0 in ;, and

/ (|Vuj|2 fu? - |uj|2*) der =0, for1 <5< k}’
Q;

where Hy ,...(Bi) is the subspace of the radial functions in Hg(B;) and u; is the function defined
by u; = u Xa, » where Xo, denotes the characteristic function of ;. Note that for any k € NT
we have My, \ # (), so we define
ck(N) == -Al/lrifk I (u).
In [13] the authors prove, by induction on k, that for every k € N there exists ux \ € M\
such that In(ug,n) = cx(N) and uy, » solves (2) in By. Moreover, they prove that

k1 (A) < ep(N) + %S”m. (4)

Note that for £ =1 uy y is just the positive solution found in [10], since by the Gidas, Ni and
Nirenberg symmetry result [16] every positive solution is radial, and from [2] or [22] we know that
positive solutions of (2) are unique.

To prove (iii) we argue by induction. Since ¢;(0) = %S”/Q, by continuity we get that ¢ (\) —
1.6m/2 as A — 0, so that (iii) holds for k = 1.

Now assume that cg(A) — %S"/z, and let us to prove that cxi1(A) = In(ugg1,0) — %S"/Q.



ASYMPT. ANALYSIS FOR RADIAL SIGN-CHANGING SOLUTIONS OF THE B.-N. PROBLEM 5

Let us observe that cxi1(A) > (k + 1)ca(A). In fact, w := ug41,x achieves the minimum for
I over M1, so that, by definition, it has k + 1 nodal regions and w; := WXq, belongs to

H&md(Bl) for all j = 1,...,k+ 1. Since w € My we have, depending on the parity of
7, that one between u)j+ and w; is not zero and belongs to M x, we denote it by @;. Then,
In(w;) > c1(A) for all j =1,...,k+ 1 and hence

() = L) = 30 L) > (k4 Dea ().
j=1
Combining this with (4) we get
1
cr(\) + 55”/2 > cpp1(A) = (k+ 1)er(N).

Since by induction hypothesis cj(A) — £5m/2 as A — 0 and we have proved that c¢1(\) — %S"/Z
we get that cpy1(A) = £EL.S7/2 and the proof is concluded. O

Remark 1. Let k € NT and (uy) be a family of solutions of (2), satisfying (iii) of Proposition 1,
then |luxlly, = [, [Vual* dz — kS™?, as A — 0.

This comes easily from Proposition 1, and the fact that uy belongs to the Nehari manifold N
associated with (2), which is defined by

Ny = {u € Hy(B1); |Julp, — Alu

53}
The first qualitative property we state about any radial sign-changing solution u) of (2) is that

the global maximum point of |uy| is located at the origin, which is a well-known fact for positive
solutions of (2), as consequence of [16].

%,Bl = |u

Proposition 2. Let uy be a radial solution of (2), then we have |ux(0)] = ||ux]co-

Proof. Since uy = u)(r) is a radial solution of (2), then it solves

T

uy + "_1u’>\ + Auy + |U)\|2*72U>\ =0 in (0,1)
uy(0) =0, wux(l)=0.

Multiplying the equation by u we get

X -1
ulul + Myl + lun]? Pupuh = _n . (uh)? <0.
We rewrite this as
d [(u))? u? NE
P (ORI S D
dr 2 2 2%

Which implies that the function

(wh)? ud | fual®
E(r) = S I W
() 5 TAg T o

is not increasing. So E(0) > E(r) for all r € (0,1), where E(0) = )\(uA(QO))Q + \ux(20*)|2 . Assume
that 7o € (0,1) is the global maximum for |uy|, so we have u)(ro) = 0, |ux(ro)] = |lurlleo and
E(ro) = Al uu;*ni.f.

Now we observe that, for all A > 0, the function g(z) := 322 + 2%, defined in R* U {0},
is strictly increasing; thus, we have E(rg) > E(0) and hence, E(rg) = E(0). Since g is strictly
increasing, we get |ux(0)| = |ux(r0)| = ||ur]|cc and we are done. O

A consequence of the previous proposition is the following:

Corollary 1. Assume uy is a nontrivial radial solution of (2). If 0 < r; < re < 1 are two points
in the same nodal region such that |ux(r1)] < |ua(re)], uy(r1) = ui(re) = 0, then necessarily
rH =To.
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Proof. Assume by contradiction 71 < r2. By the assumptions and since the function g(z) :=
322 + £2% is a strictly increasing function (in R* U {0}), we have E(r1) = g(|ux(r1)]) <
g(lux(r2)|) = E(r2). But, as proved in Proposition 2, E(r) is a decreasing function, so necessarily
E(r1) = g(Jux(r1)]) = g(|lux(r2)]) = E(re) from which we get |ux(r1)| = |ua(r2)|. Since ri, 7
are in the same nodal region from |uy(r1)| = |ux(r2)| we have uy(r1) = ux(rz), and thus, there
exists 7, € (ry,72) such that u)(r.) = 0, and, since E(r) is a decreasing function, we have
E(r1) > E(r+) > E(r2). From this, we deduce g(Jux(r1)]) > g(|Jux(r«)]) > g(Jur(r2)|), and hence,
ux(r1) = ux(r«) = ux(r2). Therefore, uy must be constant in the interval [rq,r2] and, being a
solution of (2), it must be zero in that interval. In fact, since (2) is invariant under a change of
sign, we can assume that uy = ¢ > 0. Then, by the strong maximum principle, u) must be zero
in the nodal region to which rq, ro belong. This, in turn, implies that u) is a trivial solution of
(2) which is a contradiction. O

3. ASYMPTOTIC RESULTS FOR SOLUTIONS WITH 2 NODAL REGIONS

3.1. General results. Let (u)) be a family of least energy radial, sign-changing solutions of (2)
and such that ux(0) > 0.

We denote by 7, € (0,1) the node, so we have uy > 0 in the ball B,, and u) < 0 in the annulus
A,y = {z € R" 7y < |z| < 1}. We write ui to indicate that the statements hold both for the
positive and negative part of wy.

Proposition 3. We have:
(i): ||uf||2B1 = fBl |VuE|? de — 8™/, as A — 0,

(i): [ui[3: 5, = [p, ]2 do — S™/2, as X — 0,
(iii): uy — 0, as A = 0,
(iv): My 4 = n}gaxui — 400, My _ = H}Baxu; — +00, as A = 0.
1 1
Proof. This proposition is a special case of Lemma 2.1 in [7]. O

Let’s recall a classical result, due to Strauss, known as "radial lemma”:

Lemma 1 (Strauss). There exists a constant ¢ > 0, depending only on n, such that for all
u € Hﬁad(Rn)

'y .
lu(z)| < ¢ |72 a.e. on R", (6)
where || - ||1.2 is the standard H'-norm.
Proof. For the proof of this result see for instance [24]. O

We denote by s, € (0,1) the global minimum point of uy = ux(r), so we have 0 < ry < sy,
uy (sx) = My,—. The following proposition gives an information on the behavior of ry and sy as
A — 0.

Proposition 4. We have sy — 0 (and so ry — 0 as well), as A — 0.

Proof. Assume by contradiction that sy, > s for a sequence A,,, — 0 and for some 0 < sp < 1.
Then, by Lemma 1 we get

lux, hom, _ llus, s,
Ms,,,- = |u>\7n(s>\7n)‘ <c (n—1)/2 <c (n—-1)/2 ’
S}\m, SO

where ¢ is a positive constant depending only on n. Since [Vux|3 5, — 2572 as X\ — 0 it follows
that M), _ is bounded, which is a contradiction. O

We recall another well-known proposition:
Proposition 5. Let u € C?(R™) be a solution of
—Au=|u* 2u inR"
u—0 as |y| — +oc.
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Assume that u has a finite energy Io(u) == 3|Vul3gn — 5= u|§:R and u satisfies one of these

assumptions:

(1): u is positive (negative) in R™,
(ii): w is spherically symmetric about some point.
Then, there exist p > 0, xo € R™ such that u is one of the functions 6, ., defined in (3).

Proof. A sketch of the proof can be found in [13], Proposition 2.2. O
3.2. An upper bound for u:\*', uy . In this section, we recall an estimate for positive solutions

of (2) in a ball and we generalize it to get an upper bound for w, , which is defined in the annulus
A, ={z e R"r\ < |z| < 1}

Proposition 6. Let n > 3 and u be a solution of
—AUZ/\U—FU% i Bg
u>0 in Bpg (8)
u = 0 on aBR7

for some positive X. Then, u(z) < w(xz,u(0)) in Br, where

w(z,c) = c{l + M|x|2}(n2)/2 |

and f:[0,400) = [0,400) is the function defined by f(y) := Ay + y%.

Proof. The proof is based on the results contained in the papers of Atkinson and Peletier [5],
[6]. Since the solutions of (8) are radial (see [16]) we consider the ordinary differential equation
associated with (8) which, by some change of variable, can be turned into an Emden—Fowler
equation. For it is easy to get the desired upper bound. All details are given in the next Proposition
7. O

Remark 2. The previous proposition gives an upper bound for uj\' In fact, taking into account
that u} is defined and positive in the ball By, and uj (0) = My ;, we have

_ —(n—2)/2
ML f(Myg)
uy(z) < My {1 + —Tj(n =9 |z|?
. —(n—2)/2 (9)
+ My,
- M A ¥
A+ =+ n(n — 2) |1‘| 5

forallz € B,,.

Proposition 7. Let uy be as in Sect. 3.1 and € € (0, %52). There exist § = §(€) € (0,1), 6(e) — 1
as € — 0 and a positive constant X = X(¢), such that for all X\ € (0, ) we have

_ —(n—2)/2
_ ML f(My-)
uy (z) < My - {1 + Wc(e)lxIQ ) (10)
for all x € A, where A5y = {x € R"; 6 /Ns\ < |z| < 1}, c(e) = -25€, sy is the global
manimum point of ux, My — = u) (sx) and f is defined as in Proposition 6.

Remark 3. The statement of the above proposition holds also for lower dimensions. More pre-
cisely, with small modification to the proof of Proposition 7 we have:
Proposition 8. Let 3 <n <6 and set
A(n) == inf{\ € R*; Problem (1) has a radial sign-changing solution uy}.
There exists € € (0, %52) such that for all € € (0,€) there exists § = &(¢) € (0,1), with 6(e) — 1 as

2 ~
e = 0, such that, for all X in a right neighborhood of A\(n), (10) holds, where My _ = u} (sx), sx

is the global minimum point of uy in the last nodal region. *

LWe assume without loss of generality that u) is negative in that region.



8 ALESSANDRO TACOPETTI

Proof of Proposition 7. Let vy the function defined by vx(s) := uy (s + sx), s € (0,1 — s)). Since
uy is a positive radial solution of (2) then vy is a solution of

vy +)\v)\+v>\7 =0 in (0,1—s))
UA(O)—O, ua(l —sy) =0.

To eliminate A from the equation we make the following change of variable, p := VX (s + s»),

(11)

and we define w) (p) == A\~ "7 v,\(T —8\) = A" = uy (f) By elementary computation, we see
that w, solves
{w';—&—”plwg—l—w,\—kwi*_l =0 in (VXsy V) (12)

wh (VA sx) =0, wa(vVA) =0.

n—2
Making another change of variable, precisely t := ("sz) , and setting y(t) := wy ( n-2 ) we

tn—2

eliminate the first derivative in (12). Thus, we get

n—2 n—2
// th 4 Y + y}\ -1_ in ((n3)2 7 (E) 2) ,
A2 A2 S;L (13)
n—2 n—2
YA ((Tnlr_g)nd) =0, yx (7("_& ) =0.
A2 SX A2
n—1 _oyn—2 _o\n—2
where k = 27 > 2. To simplify the notation, we set t; ) := %, ton 1= %)2,
— A2 2z "

A
Iy = (t12,t20) and Y= Ya(tan) = A~ T M)\ _. Observe also that 2* — 1 = 2k — 3.

We write the equation in (13) as yy +t~ k(yA + y?\k %) = 0, which is an Emden-Fowler type

equation y” +t~*h(y) = 0 with h(y) := y + y**~3. The first step to prove (10) is the following
inequality:

(At L R 2y R %)\kw\h(%\) <0, foralltel,. (14)
To prove (14) we differentiate yktk Ty~ *. Since y +t Fh(yy) = 0 we get

y”tk 1 er)\(kfl)tk 2 1 k (k*l)(y&)%kilyxk
= T T A = DR = (= D ()2 "

— _t—lyifkt _ t—l k 2 + y)\(k _ 1)tk—2y}\7k _ (k/’ _ 1)(y3\)2tk_1y;k

2k = D20 (b3 + st ok + H104)?)

= 20k — D)2y (st Funh(n) — Suash + SH64)?)

Now, we add and subtract the number ﬁt;}k’y,\h(%\) inside the parenthesis, so we have

tk 1y§\ k)

(YA
= “2(k—1)th 2yt (ﬁtkky,\h(y/\) — 30+ 5t(h)? — ﬁt;:\k%h(’h))
—tF 2y MR-
Setting Lx(t) := ﬁtl_kwh(yx) — 30y + 3t(A)? — ﬁté:\kwh(%) we get
(WAL n ) + 2y R k() = —2(k = D)EF Py LA (1),

If we show that Ly(t) > 0 for all t € I, we get (14). By definition it’s immediate to verify that
Ly(t2,1) = 0, also by direct calculation, we have L} (t) = ﬁtl’ky; [yah’(yx) — (2k —3)h(yx)] =
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ﬁtl_ky&[(él — 2k)y,]. Since yy > 0, y4 > 01in I, ? and k > 2 we have L) (¢) < 0 in I, and
from Ly (t2,x) = 0 it follows Ly(¢) > 0 for all ¢ € I,.

As second step, we integrate (14) between ¢ and ¢9 y, for all t € Iy. Then, since ¢} (t2,x) = 0 we
get

tax
—yh (Ot R (1) +/ s 72y M (s) tyFah(a) ds < 0.
t
We rewrite this last inequality as

ta x
YA TE () > 3 k() / s* 72y M (s) ds.
t

Since u, < M) _ by definition, it follows y;k > W/{k, SO

vV

to
U (O () té;’wi*’“hm/ #2 g
t

—k k—1 k—
Y Fh(ya) ton — 7
_ k—1
k 1 t?,)\

- el ()

tlfk

Multiplying the first and the last term of the above inequality by

1, 4 _ R [ 1
TR ORI 0 = k0 1740 > D (0 o)

we get

for all t € Iy. Integrating this inequality between ¢ and t5 5 we have

R & B T GPY) /t“ RS )ds
t

= k—1
2—k 2—k k—1 tz,A

. 2—k -
_ nh(n) [t A + t
k—1 2—k 2—k b2 )0

We rewrite this last inequality as

Bt nTt o ) (Rt k-1
k—2 Ek—2 — E—1 k—2 t’;j\l k—2t’2“j\2

TGV IS S LA NS U (A
- k—1 k—2 to, ) k—2 to ) '

k—1
To the aim of estimating the last term in (15) we set s := (L) and study the function

ta,a

g(s) = 55 +5— %s% in the interval [0,1]. Clearly, g(0) = X5 = 252 > 0, g(1) = 0

2
and ¢ is a decreasing function because ¢'(s) = 1 — sTFT < 0 in (0,1). In particular, we have
g(s) > 0in (0,1). Let’s fix e € (0,252), by the monotonicity of g we deduce that there exists
only one § = §(e) € (0,1) such that g(s) > eforall 0 < s < d, g(d) =ecand § - 1 as e — 0.

k=1 ~1
Now remembering that s = (%) , we have (L) < ¢ if and only if ¢ < 5ﬁt2,,\ and

to t2,>\
i < (5ﬁt2,)\ if and only if 5272 < 67T which is true for all 0< A< X, for some positive
number A = \(e). Setting c(¢) := (k — 2)¢, from (15) and the previous discussion, we have

1—-k
—k kU Th(a) o
) -3tz D) e (16)

2y£\ > 0 because (u, )'(r) <0 for sy <7 <1 as we can easily deduce from Corollary 1.
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for all t € (t1 x, 6ﬁt2,>\), 0 < A < A. Now from (16) we deduce the desired bound for uy. In
fact, we have

1—-k
ko I R o
yi () =+ A= ()

k-1 ’
from which, since k& > 2, we get
1 h(1) s
no) < ( 2y T kg >>
lh( ) _k12 (17)
g ™) Lo- B
= o (1 2 k)

n—2

Now, by definition, we have yx(t) = A7 7 u) (%) = )FanuX(s + 8)), YA = )\*"T%M,\_,

n—2 n—2 2
kJ—QZLk—l: Lt = (=2 = (=2 . in particular t>7F = t" w2 =
? n— 2

P \/X(S+S)\)
(f(s+SA)) Z+Z;2 ThUS, we get
N M (A—"»:?M + A—”“Mﬁ)
_ 4 _ A, —
%\1h(%\) t27}cc(€) —_ A ( ))‘(S+S>\)2
k—1 n (n—2)2
n—2
ML (M- + M2 )
= O c(e)(s+ sx)
Mgl_ f(M)\,*) 2
= n(n—_z)c(e)(s—ks,\) ,
where f(z) := Az + 22 ~1. Also, by direct computation, we see that the interval (1, 5ﬁt2,)\),
corresponds to the interval (5_%3,\, 1) for s + sy = % = \/X"t;% Thus, from the previous
computations and (17) we have
n—2
- - M- f(AM S
/\_T2u;(8 +512) < /\_T2M>\,_ (1 + WC(G)(S + s>\)2>
Finally, dividing each term by A~ and setting r := s + s) we have
_n=2
_ M)TI, f()‘M/\,*> 2 :
’LL)\ (7“) S (1 + W—_Z)C(E)T s
for all r € (6*%3 x> 1), which is the desired inequality since u) is a radial function. O

4. ASYMPTOTIC ANALYSIS OF THE RESCALED SOLUTIONS

4.1. Rescaling the positive part. Asin Sect. 3, we consider a family (uy) of least energy radial,

sign-changing solutions of (2) with ux(0) > 0. Let us define 8 := =5, o) 1= My | - r); consider
the rescaled function @) (y) = Mi,+ uy (M%+> in B,,. The following lemma is elementary but
crucial. '

Lemma 2. We have:
@: lul3,, = HuAHB
(): [uf[5 5., = o513

(iii): |U,\‘23 :Mz* 2|u,\|2B

2*.B oy’
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Proof. To prove (i) we have only to remember the definition of @) and make the change of variable

T — M%‘Jr' Taking into account that by definition Vyﬂj\'(y) = W(VIUD(M%J and 2 + 28 =
2+ 45 = n25 = nf = 2%, we get
2
M, = [ |Voul@)Pds — [ |t (y) "
N Fra MY V., My,

2428
A, - 2 -
= At / Vi) Py = it -

3
M,
1 Yy
+
u
IR ( ﬂ)
B., M}’ MY,

- / ()| d.
B,

EDN
+ Y
A+

/ 1
B
B, MY

TN
The proof of (ii) is simpler:

o

[ i@ day

By

The proof of (iii) is similar:

R ERE

By

1 1 Y
— + d
- nB—2 “,\< 3 ) Y
/B”A M>\7+ M+ M/\,+
S RO
M/\,Jr Bo,

O

Remark 4. Obviously, the previous lemma is still true if we consider any radial function u €
H! (D), where D is a radially symmetric domain in R"™, and for any rescaling of the kind (y) :=

ﬁu (ﬁ), where M > 0 is a constant.

The first qualitative result concerns the asymptotic behavior, as A — 0, of the radius o) =
Mf+ -y of the rescaled ball B,,. From Proposition 4 we know that ry — 0 as A — 0, so this
result gives also information on the growth of M) ; compared to the decay of rj.

Proposition 9. Up to a subsequence, o) — +00 as A — 0.

Proof. Up to a subsequence, as A — 0, we have three alternatives:

(l): oy — 0,

(ii): o = 1>0,l R,

(iii): o) — +o0.

We will show that (i) and (ii) cannot occur. Assume, by contradiction, that (i) holds then writing
luy % Br, in polar coordinates we have

X
B, = @[ WO
0

IN

X
W, Mer/ "y
0
Y

= Wp (va_,'_)n ?

w.
= =2 Mf "0 A—0.
77,( )\7+T)\) as
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But from Proposition 3 we know that |u;|§:73TA — S"/2 as A — 0, so we get a contradiction.

Next, assume, by contradiction, that (ii) holds. Since the rescaled functions ﬂj\' are solutions of

2% —1

—Au = ML?U—Q—u in By,
uw>0 in By, (18)
u=0 on 0B, .

and (@) is uniformly bounded, then by standard elliptic theory, @{ — @ in C2 (B;), where B; is

loc
the limit domain of B,, and @ solves

{—Au =421 inB (19)

u>0 in B,.

Let us show that the boundary condition %@ = 0 on 0B; holds. Since M) 1 is the global maximum

of the whole function wu) is

of uy (see Proposition 2) then the rescaling @y (y) := ﬁu)\ <M§§
, i

a bounded solution of

—Au= Azu+ u* 2u in B,
Pt s,
u=0 on 0B,s .
My
So as before we get that @iy — g in C?_(R™), where 1 is a solution of —Au = |u|?" ~?u in R™.

Obviously, by definition, we have @, (y) = @) (y) for all y € B,,, G(y) = 0 for all y € 0B,, and
ux(y) <Oforally € B,;s — B,,. Passing to the limit as A\ — 0, since By is a compact set of R™
Xt

we have @iy — g in C?(B;), now since @ = 1y > 0 in B; and @p = 0 on 8By, it follows % = 0 on
0B,. Since By is a ball, by Pohozaev’s identity, we know that the only possibility is ¢ = 0 which
is a contradiction since %(0) = 1. So the assertion is proved. (]

Proposition 10. We have:

for all y € R™.

Proof. From (9) for all x € B,, we have

Y —(n—2)/2
+ M3+
(@) < Moy § 14 o
Dividing each side by M) 4+ and setting x = Myg = Lz we get
A MY
MMTLE S
1+ y +My 4 2
woi () = (e e
xt
—(n-2)/2
2
= {1 + %A |y|2 + n(n172) |y| }
M"77 n(n-2)
—(n—2)/2
2
S {1 =1 } :
+

for all y € B,,. Thus, we have proved (20) for all y € B,,. Since @) is zero outside the ball B,
and the second term in (20) is independent of A, this bound holds in the whole R™. 0
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4.2. An estimate on the first derivative at the node. In this subsection, we prove an
inequality concerning (u) )’ (ry) (or (uy)’(rx)) that will be useful in the next sections.

Lemma 3. There exists a constant ¢y, depending only on n, such that
2

(XY ) < ey ™ (21)
for all sufficiently small A > 0. Since (uy)'(ry) = —(uy)'(r\) the same inequality holds for

(uy)'(ra)-

Proof. Since u;\" = uj(?“) is a solution of _[(Uj\r)/rn_l]/ = /\uj\_rn_l + (UI)2*_17“"_1 in (0,7y) and
(uj)’(o) = 0 by integration, we get
X r\
(ui—)/(ﬁ)r;_l = - {/ )\u:\*'r"’lerr/ (u:\*')Q 1T"1dr}
0 0

= - [)\/B uf (z) do + N [u;\"(x)]yfl dx] ,

wn JB,

where, as before, w,, denotes the measure of the (n — 1)-dimensional unit sphere S™~!. Using

Hélder’s inequality and observing that meas(B,,) = “=r} we deduce

@) () <

A sy N (I R
(nw )% T Juy |2,Bm + T%zr,\ “U,\ 2*,3“} :
n n wy

From Proposition 3 we know that both |u} |2, By, luy |3. 5 are bounded, moreover from Proposi-
JBry

tion 4 we have ry, — 0 as A — 0. So there exists a constant ¢; = ¢;1(n) such that for all sufficiently
small A > 0 (21) holds. O

4.3. Rescaling the negative part. Now, we study the rescaled function @) (y) := ﬁu; (M% >
- g

in the annulus A4, := {y € R"; Mf_m <yl < Mf_}, where p) = Mf_?")\. This case is more
delicate than the previous one since the radius s X where the minimum is achieved, depends on
A. Thus, roughly speaking, we have to understand how r) and s) behave with respect to the
scaling parameter M f‘_. This means that we have to study the asymptotic behavior of M ﬁ_m

and M 575 A as A — 0. It will be convenient to consider also the one-dimensional rescaling

1 _ S
za(s) := KU’\ Sx + Ve ,

A,—

which satisfies

" n—1 ! A 2% -1 __ .
2y + S+Mfﬁsxz/\+ M';’fiZAJrZ/\ =0 in (ax,by) (22)
23\(0) =0, Z/\(O) =1,
where a) = Mfif “(ra—8a) <0, by := Mf’f (1 =sy) > 0. We define v, := Mf’fs,\.
Since sy — 0 as A — 0, we have by — +o00; for the remaining parameters ay, vy it will suffice
to study the asymptotic behavior of vy as A — 0.
Up to a subsequence, we have three alternatives:
(a): ya — +o0,
(b): Yr — Yo > Oa
(c): A — 0.
Lemma 4. vy, — +00 cannot happen.
Proof. Assume v, — +o00; up to a subsequence, we have ay — a < 0, as A — 0, where a €
RU {—o0}.
If a < 0 or @ = —oo then passing to the limit in (22) as vy = Mf_y_ - Sy — 400 we have that
zx — z in C}. (@, +00), where z solves the limit problem

{z”—l—zz*_l =0 in (a,+0o0)

Z'(0) =0, 2(0)=1. (23)
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Since z) — z in C}, (@, +00) and being z) > 0, then by Fatou’s lemma we have

A—

ba . +oo .
limigf/ [2a(8)]* ds > / [2(s)]* ds > ¢; > 0.
ax a

In particular, being ay < 0, by the same argument it follows that for all small A > 0

/ObA [2x(5)]* ds > /O+Oo[z(s)]2*d5 > ¢y > 0.

Now, we have the following estimate:

1 1
uy 3 4, = wn/ [uy ()] 7" dr > wnSTI/ [uy, (r)]* dr
TN S\
.71 z ) b .
= s MY / [ u;(r)} dr = wnst ME P / ea(s)]” ds
’ S M)\’* ’ 0
b
_ n—1 A 2% n—1
= Wn7y [2a(8)]” ds > wpyy c,
0

S

having used the change of variable r» = sy + Ve
N

. Since |u;|%:,AU — S™/2 while v5 — +o0, as

A — 0, we get a contradiction.
If instead @ = 0 we consider the rescaled function @, which solves

“Ady = 2 iy 4+ @2 ! in A
{ T en

=0 on 0A

2%

and is uniformly bounded. We observe that since a) — 0 then py = a)+y)x — +o0o. By definition,
we have 1, (px) =0, @, (ya) = 1, for all A € (0, A1). Thus, we have

iy (pr) — iy 1
[y (02) = @, ()| =— — 400 as A = 0.
|P)\ - 'VA‘ |a)\|
From standard elliptic regularity theory, we know that %) is a classical solution, so by the mean
value theorem,
|y (px) =ty (W) s
= (@y)" (&1,
oA =l A
for some £\ € (pa,7a); thus, |(@))'(§x)] = +o0 as A — 0. From Corollary 1 it follows that
(@y ) > 0in (px, ) for all A > 0.
By writing (24) in polar coordinates, we get:

o n—1,_ _ A ot
(@) + == () + @y +(33)7 7 =0.
A, —

From this, since @, > 0 and (@, )’ > 01in (px,a), we get (@, )" < 01in (px,ya). Thus, (@) ) (pr) >
(@y)'(€x) > 0, for all A > 0. In particular, (@) )'(px) = +o00 as A — 0.
Since, by elementary computation, we have (@, )'(px) = W(u;)’(m), by Lemma 3 we get
ar
@) ()] < e—5
D <e—
A Mitﬁ r;/z

for a constant ¢ independent from A. Remembering that 1+8 =1+ % = -5, and the definition
of px we have the following estimate

L 1
[(@y) (pa)] < crz
P
Since py — +00, as A — 0, we deduce that (@, )'(px) is uniformly bounded, against (@, ) (px) —
400 as A — 0. Thus, we get a contradiction. (I

Thanks to Lemma 4 we deduce that () is a bounded sequence. The following proposition states
an uniform upper bound for @, .
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Proposition 11. Let’s fix € € (0,252), and set M := supyvr. There exist h = h(e) and
A = A(e) > 0 such that

iy (y) < Un(y) (25)
for ally € R™, 0 < X\ < \, where

1 if lyl<h
—2)/2 (26)

Unly) == ~(n .
1+ sl o] TED

with c(e) = —25e.

Proof. We fix € € (0, 252), so by Proposition 7 there exist § = §(e) € (0,1) and A(e) > 0 such that

_ —(n—2)/2
ML f(My-)
: c(e)la]? ;

uj (@) < M - {1+ n(n—_Q;’

for all z € A5 = {z € R"; 6 1/Ns\ < |z| < 1}, for all A € (0, ), where ¢(€) = —25¢. The same
proof of Proposition 10 shows that

B ) —(n-2)/2
5 (y) < {1 ; Mc(enyﬁ} ,

forally € Asy = {y € R Ml\ﬁ_J*l/NsA < |yl < Mf_} Now, since by definition @, is uniformly
bounded by 1, we get an upper bound defined in the whole annulus flm = {y € R™; Mfﬁm <
ly| < Mf_}; to be more precise 1, (y) < Ux(y), where

1 if Mfﬁr,\ <yl < Mf’ié_l/Ns,\

Ux(y) := —(n—2)/2
) } if Mfﬁ_é_l/NsA < |yl < Mfﬁ_.

(27)
1+ sk e(e)

Since vy = Mf,_sA < M, then setting h := 6~ /N M we get that 6*1/NM§_5,\ < h. Therefore,

from (27), since i, is zero outside A,,, we deduce (25). O
Lemma 5. vx — v > 0, 7 € R, cannot happen.

Proof. Assume that vy — v9 > 0, 79 € R. Since 0 < r) < s there are only two possibilities for
ax. To be precise, up to a subsequence we can have:

(i): ax — 0,

(ii): ax »a<0,aeR.

We will show that both (i) and (ii) lead to a contradiction.

If we assume (i) the same proof of Lemma 4 gives a contradiction. We point out that now
pr — Y0, as A — 0, so as before we get a contradiction since (@) )'(px) is uniformly bounded,
against (u, )’ (px) = +00 as A = 0.

Assuming (ii) we have ay — @ < 0 and v\ — 7o > 0. We define m := @ + vp. Clearly, we have
0<m < and px = m as A — 0. Assume m > 0 and consider the rescaling @, in the annulus
A,, defined as before. Since @) satisfies (24) and (@) ) is uniformly bounded then passing to the
limit as A — 0 we get @, — @ in C? (II), where II is the limit domain II := {y € R™;|y| > m}

loc
and u is a positive radial solution of

—Aa=a>"1 inII (28)

By definition @) (yx) = 1, (@) )'(7a) = 0 for all A, so as A\ — 0 we get (o) = 1, @' (70) = 0 because
of the convergence of &, — @ in C?(K), for all compact subsets K in II, and 7o > m. In particular,
we deduce that @ # 0. We now show that % can be extended to zero on 9Il = {y € R"; |y| = m}.
Thanks to Lemma 3 and since we are assuming m > 0, which is the limit of p) as A — 0, we get
that (@) )'(px) is uniformly bounded by a constant M, and by the monotonicity of (i) )" the same
bound holds for (u, )'(s) for all s € (px,vx). It follows that in that interval @, (s) < M(s — pa).
Passing to the limit as A\ — 0 we have u(s) < M (s —m) for all s € (m,~p) which implies @ can be
extended by continuity to zero on OII. We use the same notation @ to denote this extension.
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Observe that @ has finite energy, in particular, using Fatou’s lemma and thanks to Lemma 2,
Remark 4, Proposition 3, we get

i2dy < i 'f/ iy |Pdy = i 'f/ N e 2
/H|Vu| dy < imin " |V, |“dy m in " |Vuy [Fdz = ™7, (29)
~ | 2% < limi f/ ~— | 2% = limi f/ — 2% — n/2.
/H\u| dy < imin " @y |**dy imin " luy [**de =S (30)

Moreover, since 4, — @ in ClQOC(H) and thanks to the uniform upper bound given by Proposition
11, by Lebesgue’s theorem, we have

/ || > dy = ;igb/ luy |?*dx = S"/2. (31)
I Ary

Since @ € H'(IT) N C°(II) and is zero on OII, then @ € H}(IT) and thanks to (29), (31) it follows
that @ achieves the best constant in the Sobolev embedding on II, which is impossible (see for
instance [23], Theorem III.1.2). This ends the proof for the case m > 0.

Assume now m = 0, then @ converges in C7 (R™ — {0}) to a radial function @ which is a
positive bounded solution of

~Aa=a*"' in R"—{0} (32)

Since @ is a radial solution of (32), then integrating — (@' (r)r"~')" = @ ~'(r)r"~! between

0 > 0 sufficiently small and vy we get

~—

Yo N
' (6)6" 1 :/ a* e,
5

Since the right-hand side is a positive and decreasing function of §, we get @'(6)6" ! — [>0as
6 — 0. Thus, @' (6) behaves as §'~" near the origin, and this is a contradiction since [, |[Va|*dy =

W, f0+oo |@(r)|?r™~tdr is finite, and the proof is complete. O

As a consequence of Lemma 4 and Lemma 5 we have proved:
Proposition 12. Up to a subsequence, we have v — 0 as A — 0.

4.4. Final estimates and proof of Theorem 1. From Proposition 12 we know that, up to a

)

subsequence, v = M” 18x — 0as A — 0. The rescaled function @, (y) := ﬁu; (M% ) in the
T A

annulus A, = {y € R™; Mf_m < |yl < Mf_} solves (24) and the functions (u) ) are uniformly
bounded. Since vy — 0 as A — 0, in particular the limit domain of A,, is R — {0} and by
standard elliptic theory @y — @ in CZ(R™ — {0}), where @ is positive, radial and solves

~Ad=a*" inR" - {0} (33)
As in the proof of Lemma 5 by Fatou’s Lemma, it follows that @ has finite energy Iy(a) =

3|V |2 g — 5-|7/3. k. Moreover, thanks to the uniform upper bound (25), by Lebesgue’s theorem,
we have

A—0

m [ [ay]2dy = / a2 dy,
Apy R"

so, by Lemma 2, Remark 4 and Proposition 3 we get

[ 1y = s
Rn

The next two lemmas show that the function @ = @(s) can be extended to a C''([0, +o0)) function
if we set 4(0) := 1 and @'(0) := 0.
Lemma 6. We have

lim a(s) = 1.
5—0
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Proof. Since 1, is a radial solution of (24) and @, <1, then

[(@y)'s" 1)

— gy (8)s" 7 = [y ()] s

A n—1 n—1
——55 S — S
2B
M7

—25771

Y

Integrating between v, and s > v (with s < Mff) we get

s 2
(@) (s)s" > —2/ "t > — =5,
I n

Hence, (@, )/(s) > —2s for all s € (7,\,Mf’7). Integrating again between 7, and s we have

1 1
0y (s) —1>—=(s2—~2) > —=s2
U(s) =12 ——(s"=13) 2 — s
Hence, @) (s) > 1 — %s” for all s € (yx, Mf_) Since vy — 0 and Mf_ — +00, then, passing to

the limit as A — 0, we get a(s) > 1 — %52, for all s > 0. From this inequality and since @ < 1 we
deduce limg_,o u(s) = 1. O

Lemma 7. We have

. ~/ _
ilg%)u (s)=0.

Proof. As before, from the radial equation satisfied by i, , integrating between vy and s > vy
(with s < Mf_) we get
A s s .
—(ay) (s)s" ™t = Tﬂ/ a;t”*dwr/ (ay)* ~Hnlae.
M)\yf X 22N

Since u < 1, and ~, — 0 it follows that for all A > 0 sufficiently small

A s s n
@)@ < [ e [etar<a
M5 I Ya n

Passing to the limit, as A — 0, we get |@'(s)| < 2% for all s > 0, hence lims_,o @' (s) = 0. O
n

From Lemma 6 and Lemma 7 it follows that the radial function @(y) = @(|y|) can be extended
to a C1(R™) function. From now on, we denote by @ this extension. Next lemma shows that @ is
a weak solution of (33) in the whole R™.

Lemma 8. The function @ is a weak solution of
—Au=a>"1 inR" (34)

Proof. Let’s fix a test function ¢ € C§°(R™). If 0 ¢ supp(p) the proof is trivial so from now
on we assume 0 € supp(¢). Let B(J) be the ball centered at the origin having radius § > 0,
with § sufficiently small such that supp(¢) CC B(1/6). Applying Green’s formula to Q(0) :=
B(1/5) — B(6), since @ is a C2_(R™ — {0}) solution of (33) and ¢ = 0 on dB(1/6), we have

loc

Vi Vo dy = o dy +/ o <8“> do. (35)
Q(5) Q(5) dB(5) ov

We show now that faB(é) 10) (%) do — 0 as § — 0. In fact since 4 is a radial function, we have
94 () = @' (8) for all y € B(J), and from this relation, we get

ov
ou
¢ <) do
/013(5) v

IN

@' (9))| 6| do
dB(6)

IN

wn @' (8)]6" |6
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Thanks to Lemma 7 we have |@'(§)[6"~* — 0 as § — 0. To complete the proof, we pass to the
limit in (35) as & — 0. We observe that

Vi - Vol xas)

IN

(Val* x(va>13 Vel + Vil xqvaj<i3| Vol 36)

IA

IVal® x(va=111Vol + xqvai<iy| Vel

Since [, [Val|?dy < S™/2 and ¢ has compact support, the right-hand side of (36) belongs to
L(R™). Hence, from Lebesgue’s theorem, we have
lim / Vi-Vody= | Vi Vé dy. (37)
6—0 9(5) Rn

Since ¢ has compact support by Lebesgue’s theorem, we have

lim o dy=| o> dy. (38)
5—0 Q(&) R™

From (35), (37), (38) and since we have proved [} 5 ¢ (9%) do — 0 as 6 — 0 it follows that

Va-Vody= [ ¢a>"dy,
R™ R™

which completes the proof. O
Now, we have all the tools to prove Theorem 1.

Proof of Theorem 1. We start proving (i). By Proposition 9, arguing as in the previous proofs, we
know that (@) is an equi-bounded family of radial solutions of (18) and converges in C7 .(R") to
a function @ which solves —Awu = u? ~! in R”. From (20) we deduce that @ — 0 as |y| — +o0. To
apply Proposition 5 we have to check that u has finite energy, but this is an immediate consequence
of Fatou’s lemma and the assumption that uy has finite energy (for the details see (29) and (30)).
Thus, @& = d4,,, for some xo € R™, u > 0. Since @ is a radial function, we have ¢ = 0. Moreover,
since 4(0) = 1, by an elementary computation, we see that u = y/n(n — 2).

Now we prove (ii). As we have seen at the beginning of this section, the equi-bounded family
(@y ) converges in C?,(R™ — {0}) to a function @ which solves (33). From Lemma 6 and Lemma 7
we have that @ can be extended to a C*(R™) function such that @(0) = 1, Va(0) = 0. Moreover,
from Lemma 8 we know that @ is a weak solution of (34) and from Fatou’s lemma, as seen in
(29), (30), we have that @ has finite energy. Also, from Proposition 11 we deduce that & — 0 as
ly| — +o0.

By elliptic regularity (see for instance Appendix B of [23]) since @ is a weak solution of (34) we
deduce that @ € C*(R™). Thanks to Proposition 5, since @ is a radial function and @(0) = 1, we
have @ = d¢,,,, where p > 0 is the same as in (i). O

5. ASYMPTOTIC BEHAVIOR OF M) 4, M) _ AND PROOF OF THEOREM 2

We know from Proposition 3 that M) 4, My _ — +oo as A — 0, in addition in the last two
sections we have proved that Mf 7y — 0o while Mf ry — 0, as A = 0. Thus, J]\Vf + 5 400 as
A — 0; in other words M) 4 goes to infinity faster than M) _. In this section, we determine the
order of infinity of M) _ as negative power of A and also an asymptotlc relation between M) .,

M) _ and the node rj.

Proposition 13. As A — 0 we have
(): MA,+\(12J)’(m)|r§‘l — c1(n);
(1) ATIME R () (ra) 2 — ea(n);
(iii): M;, 2‘* n- 2)\—>03( ),

where c1(n fo (52 _1 s"Lds, co(n) = Qfo 60# s)s"1ds, c3(n) = Cf(n).

ca(n)
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Proof. To prove (i) we integrate the equation —[(u)/ 7"~} = Mufr"=1 + (uy)? ~17"~! between
0 and 7, and multiply both sides by M, 4. Since (u})’(0) = 0 we have

X X
N A e R ()
0 0
We first prove that AMy 4 [;* uf7"~! dr — 0 as A — 0. In fact by the usual change of variable
r = —%— we have
M{
AM / Yy td P /Mm S ) P
At uy\r)r T= AT o uy | —5— | s s
o M§,+2 0 Mg Mf,+
B
1 M>\Y+7'>\
= )‘W/ @y (s)s" ! ds
My " Jo

Thanks to the uniform upper bound (20) we have

B 8 o
1 M 47 1 My A 1 (n—2)/2
)\ﬁ/ ﬁ;\” sn—l ds < )\ﬁ/ {]_ + 82} sn—lds
M 0 My+=Jo n(n —2)

1 1
)\ﬁ / SnildS
MA;&- 0

6
1 M , X
+ A—=[n(n— 2)]("_2)/2/ T g g g

2*—2
M3+ 1

= I+ 1o

IN

Since M) + — +oo and fol s""lds = L it’s obvious that I; — 0, as A — 0. Now, we show that
the same holds for Iy o. In fact, setting Cy(n) := [n(n — 2)]*~2)/2 we have

I Ay )/Mfw d
A2 = . 1(n S as
M§,+ ’ L
28 2
1 Moy 1
= A—m=Ci(n) A
My L 2 2
C 1 C
= a2 1) e M) 0, as a0,
2 My | 2
since by definition, 28 = —45 = 2*—2. To complete the proof of (i) we show that M 1 [;* (uf)?* ~1r"~1dr —
fooo 557#_1(5)5”*1&9 as A — 0. In fact, as before, by the change of variable r = M% we have

A+

X 1 Mf+’l“)\ 2"-1
* , S
Mx,+/ [ ()~ hdr = ﬁ/ [uf ( )] s" ds
0 My Jo Mf\g,+

M)[fﬁ_?")\ N
_ / fif ()2 15" ds.
0

Since @} — &, in C2 (R"), in particular we have [@{(s)]2 ™1 — [5p,.(s)]> ~! as A — 0, for
all s > 0, and thanks to the uniform upper bound (20), by Lebesgue’s dominated convergence
g or * 00 9
theorem, it follows that fOM*’Jr Mg ()2 "t ds — 85, ' (s)s""1ds so by (39) the proof of
(i) is complete.
Now, we prove (ii). Applying Pohozaev’s identity to u;\", which solves —Au = Au + v ~1 in

B, , we have
1 oui\”
/\/ u"'xzdaz:f/ T-v ()‘> do,
@Rz [ e (G
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2
. . . . . . ouf
where v is the exterior unit normal vector to dB,,. Since u} is radial, we have also (%) =

[(uj{)’(r,\)]2 so, passing to the unit sphere S"~!, we get

s e = st [ o] a

Thus, we have

AL [(uf)(ry)] =2 w;l/B [ul ()] da. (40)

LY

Now, performing the same change of variable as in (i) we have

2
1 1 Y
[uf (2)]* dz = 7*,/ ul | —— dy
/B A M)\27+2 Bo M)\,-‘r A MB

A A+
1 / Ly 2
= = uy (y)] dy,
]\4}2\7+ 2 BUA [ A ( )}
Thus, we get
~ 2
M2, /B i (@) do = /B i} (1)]° dy. (41)

T PN

As in (i) since @y — 0o, in CZ(R™) and thanks to the uniform upper bound (20) we have

2 +oo
/ [ﬁ;\“ (y)} dy — [50’#(y)]2 dy = Wn/ [50#(7’)]27”_1 dr.
B 0

oy ]Rn

From this, (40) and (41) we deduce that )Flei_rZ [(uj\')’(m)]Q — 2f0+oo[5oyﬂ(r)]2r”*1 dr, and
(ii) is proved.
The proof of (iii) is a trivial consequence of (i) and (ii). O

Now, we state a similar result for My _.

Proposition 14. As A — 0 we have the following:
(): MA,—l(Y;X)'(l)I — c1(n);
(i): AT MY {[(u3) (D] = [(uy) (m)]Pre ) = ea(n);
(ii): AT M [y ) (ra)r} — 0;
(iv): Mi;m)\ — c3(n),
where c¢1(n), ca(n) and c3(n) are the constants defined in Proposition 13.
Proof. The proof of (i) is similar to the proof of (i) of Proposition 13. Here, we integrate the
equation —[(uy)'r" 1) = Auyr" ! + (uy)? "1™ between sy and 1. Since (uy)/(sy) = 0 we
have

1 1 i

(uy)'(1) = /\/ uy ! dr—i—/ (uy)* ~trmtar.
S SX

By MfsA — 0 and thanks to the uniform upper bound (25), arguing like in the proof of (i) of
Proposition 13, we have

1
My - )\/ uy mldr =0
Sx

and
1 Mf_7 “+o0 .
M,\7_/ (u;)2 —Lpn=l gy :/ (ﬂ;)Q “Lgn=l s —>/ (5(2),[13”_1 ds,
Sx Mf_s; 0

as A — 0. The proof of (i) is complete.
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The proof of (ii) is similar to the corresponding one of Proposition 13. This time we apply
Pohozaev’s identity to u) in the annulus A,, = {z € R"; r) < |z| < 1} whose boundary has two
connected components, namely {z € R"; || = r)\} and the unit sphere S"~1. Thus, we have

1 s\’
/\/ IO 7/ (@-v) (A) do
A’I‘A 2 8A’"x 6V
1 _
= 5wn {1 WP = [(wy) (r)]Pri )
Thus, multiplying each member by Miﬁ " and rewriting the previous equation, we have
MA@ OF = [0 0P} = 20 M [ fus (@)
1A ’
= 2w;1M2ﬁ_ / uy v dy
3, | \ar

I
[\
; £
| Xw
I
—
<3}
> |
—~
w
N
—
w
3
L
Y
)

5
Since QIIZQ’:U [a;(s)f s""lds — 2 [7 63 ,(s)s"'ds as A — 0 we are done.
To prove (iii) we write
MM [y ) ()P

AN () ()P = NN (g () ()P

M2P

y— - 2 n

= oAM= 0
A+

since M — 0 and A~ 1MQ’8 () (ra)]Pry — ca(n) as A — 0 (by (ii) of Proposition 13).
Fmally, the proof of (iv) is trivial. In fact from (ii) and (iii) it immediately follows that

ATV (G5 Y (D = ea(n).
From this and (i), we get (iv). O

Remark 5. By elementary computation 2 — 23 = 2 — % = 2::28

so by (iv) of Proposition 14
we have that My _ is an infinite of the same order as A\~ =3

From (iii) of Proposition 13 and (iv) of Proposition 14 we deduce the following result which
gives an asymptotic relation between My 4, My _ and ry.

2-28
M

7228 n—2
M T

Proposition 15. —1,as X—0.

Proof of Theorem 2. It suffices to sum up the results contained in Proposition 13, Proposition 14
and Proposition 15. O

Remark 6. We point out that in order to determine the explicit rate of My 4 or, equivalently, that
of rx, some difficulties arise. The techniques used in the previous proofs of integrating the equation
and using the Pohozaev’s identity do not seem to be sufficient to this purpose. Nevertheless, as a
consequence of the methods applied in [19] we get, for n > 7 and for all sufficiently small X\, the
existence of radial sign-changing solutions of (1) with the shape of a tower of two bubbles, and

the parameters 1, puo of these two bubbles are given. The lowest order bubble diverges as A\~ = ,
(3n—10)(n—2)
which is the same order of My _, while the other diverges as A~ @=9==6) . Moreover, in a paper

in preparation, we show, under some additional hypotheses, that the previous speeds are the only
_ (3n—10)(n—2)
possible ones, for n > 7. Hence, we conjecture that My 1 ~ X\~ @n=8("n=6),
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6. PROOF OF THEOREM 3

This section is entirely devoted to the proof of Theorem 3.

Proof of Theorem 3. We want to prove that A~ TSy — é(n)G(z,0) in C} (B1 —{0}). We begin
from the local uniform convergence of A~ Zisy A- The same argument with some modifications will
work for the local uniform convergence of its derivatives. Thanks to the representation formula,
since —Auy = \uy + \u)\|2**2fu>\ in Bi, we have

Gz, y)ur(y) dy — A% / Gla,y)us[ ur(y) dy.  (42)

A" Fimsuy (z) = fx%/\/
B

B

Since A\~ 2i-8 )\ = )\27;68, splitting the integrals we have

PRt = IINC)) Y= /B G(a,y)uf (y) dy + AFs /A G(z,y)u; (y) dy
X

LY

A [ Gyt ) dy + A’%/A Gz, y)[uy W)]* " dy
By X

= Lin+Io+1Is )+ 1y

Let K be a compact subset of B; —{0}. We are going to prove that I x, Iz x, Is.x — 0 uniformly
in K, as A = 0. We begin with I; ). For all x € K we have

n—6
LAl < /\%—8/ Gz, y)uy (y) dy
By,
= |\Ts 1/3/ G(;p, lé )uj <% )dy
My Bug v My + My+
n— 1
S )\25768 o 1/ G(m,%) ’l];\r (y) dy
A+ YBs M,\,+

A4

Since K is a compact subset of B; — {0} and | | < rx by an elementary computation, we see

Y
B
My

that for all z € K, for all A > 0 sufficiently small 'G (x 4 )

’ B8
MA,+

where ¢ = ¢(K) is a positive constant depending only on K and n. Now, thanks to the uniform

upper bound (20) we ha\/e
G (.T, 7% )
ZVI)\,_*_T')\ >\,+

1 Rl
{1 T |yl } dy
B,,s n(n —2)

< ¢(K) for all y € BMf )
»+

af (y) dy

IA
ey
=
NE!
s
2 —
—

M2*71
At A+ T2
B . —(n—2)/2
n— 1 My ra 1 (

= C(K))\znjsg ﬁwn/ {1 + 32} 81’7,—1 ds

M)\7+ 0 TL(TL - 2)

B B
n— 1 My A n— 1 My A
S Cl(K)A%L—GS T/ s_("l—2)8’ﬂ—1 ds = Cl(K))\2"768 T/ S ds
M
A+ 0 A+ 0
= CQ(K))\ZT;iGS % M/\Qiri = CQ(K)A;;:% ! r3 =0, as A — 0.
My 7 M+

Since this inequality is uniform respect to € K we have [|[1 |lco,x — 0 as A\ — 0. The proof
that ||I3x|lco,x — O is quite similar to the previous one, in fact with small modifications we get
the following uniform estimate:
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n—=6 1 Yy _
[Ia] < Azes / Gz —5— || [af W) dy
M+ B, My,
MY LT )

A
2
=
>
S{El
1!
mo
—_
Sa

1 ) —(n+2)/2
14— d
{ ) |y|} y
A

1 ) —(n+2)/2
1+ —— d
{ +n<n_2>y'} y

— 1
= K )\2n78 /\ — 0
c1(K) T as

AN
20
=
N~—
>
SE]
il
mc:
S—

The proof for Iy is more delicate since for all small A > 0 the Green function is not bounded

when x € K, y € A,,. We split the Green function in the singular part and the regular part so
that

n—6 n—6
IZ,)\ = \2n=s / Gsing(xa y)u; (y) dy + Azn=s / Greg(xv y)u; (y) dy
Ary Ary
The singular part of the Green function is given by ﬁ‘x_yﬁ, we want to show that

n—=6 1 1
A\32n-8 / uy (y) dy — 0
(2 — n)wn A, |z —y|n—2 A (y)

uniformly for € K. The usual change of variable gives

n—6 1 1
AFS ~(y) d
@ njn /A gz

Afs 1 / 1 e,
= - TR w.
M,%,f (2-n)wn Ji, |z— W' 27 Mf’,

X

Let n be a positive real number such that 7 < min{==~ d(o K. M} where d(-,-) denotes the
Euclidean distance. It is clear that for all A > 0 sufﬁ01ently small, we have B(z,n) CC A4,,, for

all x € K. Thus, B(Mfﬁx, Mfﬁn) CcC ;1”, for all x € K, and we split the last integral in two
parts as indicated below:

ATE ] / 1 S w Y,
—_— = — U w
MY (2-n)wn Ja, |z — e =2\ g

)\27:;68 1 / 1 B w J
= o ] w
Mi,f (2 - TL) \MB T— w|<MB n |J) B |n 27X Mf’i

M)\=7
' A22_681/ ; uy ( - ) dw
M%i (2 — n)wy, {IM{ _a—w|>M{ _n} 0 A, |z — ﬁ‘n—2 A Mﬁ,
ABE M2
- M7 (2 = n)wn /Mﬂ ewl<n? "W u, (w) dw
AFiE 1 M}(\n_—Q)ﬁ B ) )
+ MM (2 = n)w, /{Mgzpr;n} A A, W Y (w) dwi=Tax+1Ipn.

Let’s show that I:AA — 0, uniformly for x € K, as A\ — 0. First, by making the change of
variable z := w — Mf_:c we have

n—=6 (n—2)p

~ A2n—s8 1 IM)\i 8

fan = - / Sl (z+M _m) dz.
M =H 2 = n)wn Jisem? g -2 A »
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Let us fix € € (0, 252) and set C = —2-¢. Thanks to the uniform upper bound (25), since

d(0, K)
M 2+ 2 > M _|o] = |2]] = MY _|z| — |2 > MY _(Jz| — ) > Mf,,T > M) n, (43)

for all z € K, for all z such that |z| < an’_, then for all sufficiently small A\ we have

=6 (n—2)p —(n—2)/2
N A\Zn=8 1 M, "~ 1 3
I < . : 1 Clz+ M 2 d
Hasl < zwi:lor—mwn/L<Mgn4n2 { Ty M :
n—6 (n—=2)8
A2n-38 M _ —(n-2)/2
< 2*—161/ )\7n72 [Mifinﬂ dz
M)H, \z\<Mf’_n |Z| ’
n—=6 B n—=6 28 2
A2n—8 My A2n—8 M)\ _n
= ]\4}2\*_162(1()&)”/0 rdr= WCQ(KW” 5
)\22—68
= 03(K)M —0, as A — 0.
A, —

Thus, fA’A — 0, uniformly for z € K, as A — 0. Now, we prove that the same holds for fB’)\.

n—6
- \2n=s 1 1
‘IB)\‘ g * / 7_’12_ (’LU) dw
Mi_l (n —2)wy, (M2 _o—w|>ME 0} 0 A, g2 >
< X ) [ ) a
S 51 ¢ _ouy (w w
M; - A
o8 e —(n—2)/2
A2n—8 A2n—8 1
< 7*_6(]:()/ 1dw+ ——— C(K)/ {1 + ———Clwl|? dw
Mi_ ! lw|<h Mi_ ! h<|w| <M _ n(n —2)
PE = ®) PE = ) ME ]
< —ga + —=—C2 / rdr
My Myt n
n=G n=6 23
\2n—8 A2n—8 M)\ a h2
= Mi*_lcl(K)+J\4-§*_102(K)< 5 T g —0, as A =0,

having used again (25). Since this estimate is uniform for € K we have proved that I B — 0in
C°(K) and from this and the analogous result for INA)\ we have \#=8 fA Gsing(z,y)uy (y) dy — 0
7‘)\ - )
in CY(K). To complete the proof of I  — 0 in C°(K) it remains to prove that AZis i Greg(x,y)uy (y) dy —
A

0 in C°(K). This is easy because the regular part of the Green function for the ball is uniformly

bounded, to be precise let I[(K) := sup{d(0,z),z € K}, clearly, being K a compact subset of

B; — {0}, we have [(K) < 1 and since it is well known that

1 1

2= n)wn |(|z||y))2 +1 — 22 T

)

Grcg (ZL’, y) = (

we have for all x € K, y € A,
1 1

n—2 n—2
[(lly)* +1 =22 -y| > (1= lz[ly[)?] >
-

1= 1E)"

IN



ASYMPT. ANALYSIS FOR RADIAL SIGN-CHANGING SOLUTIONS OF THE B.-N. PROBLEM 25

Thus we have

A [ Gy ) | < KNS [ )] dy
Ary Ay

Aznﬁibé _ w

- i () o
/\27;,7—6;3 L

= )y [, ]

n—=6

As in the previous case, we see that c(K)% /ATA @y (w)| dw — 0 and the proof of I x — 0

in C°(K) is complete.
Now to end the proof, we need to show that Iy » — &(n)G(z,0) in C°(K). We start making
the usual change of variable

n—2 1 w *
Iy =\ 2n8 / G|z, —— | [ay (w)]* ! dw.
4, M}\7_ ;\TA ( Mﬁ_) [ A( )]

We split the Green function in the singular and the regular part, so that

1 A 28 1 «
Iy = / - a (w)]? ! dw
S CE e R e R
/\7271728 |
n— w *
+ Greg | ©, —— | [y (w)]? ! dw
v ) ( MAﬁy)[  (w)

We begin with the singular integral which is more delicate. We want to show that

e / 1 [y (w)]* ™! dw = &(n)Gaing(x,0) in CO(K).  (45)
M)\’, (2—n)wn A'r‘k |$— M#l’l’b*Z A sing\ L, .

As in the previous case, we consider the ball B(Mfﬁa:, Mfﬁn) CcC ;1”, where 1 > 0 is the same
as before. Thus, we have

n—2
A 2n-8 1 / 1 o o*_1
dw
M, _ 2—710.)” - T — w nfg[u)\(w)]
e @ i, o= o]
A~ 2nﬁ:28 1 M(n_2)'8

= —— U
M)\77 (2 - n)wn /Mf’_z—w|<Mfy_n |Mf7_l’ — ’Uj|n

ATTes ]

+ J
M>\7— (2 - n)wﬂ {\va_x—w|2M§_n} nA

\MB x —w|*? "
N A, —

= jC,A + jD,)\-

We show that Icy — 0 in C°(K). As before, using the uniform upper bound (25) and (43) we
get
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_ n-2 (n—2)B *
~ A 2n-8 1 M/\_ 8 2" —1
Icy\| = / —_— [1]_ <2+M 73:)} dz
| Mol (=2 hgerg e 3 ET
=2 (n—2)p —(n+2)/2
A 2n-8 1 / MA— l: 1 8 2:|
< . 1+ Clz+ M, =z dz
M (0= 2m Jpensy o 12 | gy M
_n=2 (n—2)B
A\ 2n=s8 M, (n+2)/2
=< 01/ o [Mfﬁ U } dz
My~ " Jipjemg 2]
(n—2)p
A~ T8 =N MA— —(n+2)8 -1
= M}\_ 2(K) / o — M, "7 dr
_ n-2 B _n=2 268 2
A 2n=¢8 1 My _m A\ 2n=s8 1 M/\ ~n
= K d = K :
T )Mfﬁ_/o S TRV
- ATTiEs ]
= 03( )WW
n—2

Since /\;/IT is bounded (see Proposition 14 (iv) and Remark 5) then Ic ) — 0 uniformly for

z € K. Now, we show that Ip x — &(n)Ging(z,0) in CO(K). We have

. P = 1 .
Ipx = / [ (w)]* 7! dw
My,— (2=n)wn J{jz— —Izn} 0 A, |z — Y =2

The first step is to prove that for all w € R™ — {0}

1 1
x(w)
{oe- -

2o iy b= o =
uniformly for x € K. First, observe that we need only to show that

[y, (w)]* ™ = Gaing(x, 0055, (w),  (46)

1 * 1 . .
TR [ty (w))> ! = 9% 262 “(w) in CYK). (47)
o] E
In fact, if we fix w € R™ — {0}, and A > 0 is sufficiently small so that w € A, d(OQ’K)

then we have for all x € K. Hence we get

:0’

R N I (e

for all x € K, for all A > 0 sufficiently small, from which we deduce that

|<n}UAC }

x(w){ } —1 in CY(K).

{|$—7\>n} n A,

Now, the proof of (47) is trivial if we show that, for any fixed w € R™ — {0}

1 1 w

— <ce(K)|—— 48

B n—2 ‘x|n72 — ( ) ‘Mf_ ’ ( )
RV 7

A, —
for all z € K and for all A > 0 sufficiently small. This is an elementary computation but for the

sake of completeness, we give the proof. We observe that the segment o | x,x — Mﬁ‘; > joining x
A
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and x — ng is an uniformly bounded set and stays away from the origin. In fact for all z € K,
A, —

t €[0,1] and for all A > 0 sufficiently small, we have

d(0, K

x—r%}—gmpwﬂg%}—<1+44—l (49)

My _ My _ 2

d(0, K d(0, K
> Jlaf = 11| > a0, 1) -1 Z8ED LK) (50)
i 2 2
,\,— A—
Thus, setting g(z) := \w\" ——z, by the mean value theorem, we have

. ( - Mw) @) = Volena) - (MU’) |

where &, lies on o (.’L’,JJ - Mﬁﬁ) By (49) and (50) we deduce that |Vg(€y ;)| is uniformly
X, —

bounded?® and (48) is proved.
To complete the first part of the proof, we apply Lebesgue’s theorem. For all z € K, w €
R™ — {0} we have

X . . [
{{|1 iz 0 A } (2= n)wy |z - Mz;,, "2

< T g e U
= a(K)[Un(w)]* 7,

where Uj, is the function defined in (26). Since (U)? ~! € L'(R") and thanks to (46), (iv)
of Proposition 14, by Lebesgue’s theorem we deduce (45), where Gging(x,0) = L L

C=—n)wn Ja[*=2>
é(n) = (limx 0 257 AFEs ) Jan 52 “!(w) dw. Tt’s an elementary computation to see that &(n) equals

Cco (n) 2n 8

cl(n)zn g

And the proof of (45) is done.
Finally, we prove that

the expected constant w,, , where ¢1(n), ca(n) are the constants defined in Proposition 13.

n—2
)\_ 2n—8 w
Greg | z, —— | [t 21w — ¢ Greg(x,0 in C%(K). 51
Tl g< M@_>[A<>] (1)Greg(2,0) 0 C°K).  (51)
Since
w 1 1
Gre x, = P
g ( Mf) (2 — n)w, 2 2
|x|2M2ﬁ +1—-22- Mﬁ

by the mean value theorem, repeating a similar argument as in the proof of (48), we deduce that
for any fixed w € R™ — {0}

w
Greg | 2, —— | = Greg(2,0) in C°(K).
(o3 Gt s

Thus, for any w € R™ — {0} we have

w o *_ *_ .
Grcg (1’7 W) [u)\ (w)}Q ! - Grﬁg(z’o)ég,u 1(’11}) m CO(K)
A, —

3by [[V9llso ,R(K)» Wwhere R(K) is the compact annulus R(K) := {z € R™; d(o K) <l|z| <1+ 4, K)}
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s

Thanks to (44) we know that G, (.T, M“ﬁ’) is uniformly bounded, moreover, as we have done

A
in the proof of (45), thanks to the upper bound (25), Proposition 14 we deduce (51).

To prove the local uniform convergence of A" 38 Yy, to ¢(n)VG(x,0) we simply derive (42)

and repeat the previous proof, taking into account that for ¢ = 1,...,n we have
I 2z -y
Op, Gaing(z,y) = — 2=
T; szng( y) W, |.’L‘ — y|n
O
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