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Abstract
Master equations are a useful tool to describe the evolution of open quantum systems. In order to
characterize the mathematical features and the physical origin of the dynamics, it is often useful to
consider different kinds of master equations for the same system. Here, we derive an exact
connection between the time-local and the integro-differential descriptions, focusing on the class
of commutative dynamics. The use of the damping-basis formalism allows us to devise a general
procedure to go from one master equation to the other and vice versa, by working with functions
of time and their Laplace transforms only. We further analyze the Lindbladian form of the
time-local and the integro-differential master equations, where we account for the appearance of
different sets of Lindbladian operators. In addition, we investigate a Redfield-like approximation,
that transforms the exact integro-differential equation into a time-local one by means of a coarse
graining in time. Besides relating the structure of the resulting master equation to those associated
with the exact dynamics, we study the effects of the approximation on Markovianity. In particular,
we show that, against expectation, the coarse graining in time can possibly introduce memory
effects, leading to a violation of a divisibility property of the dynamics.

1. Introduction

Any realistic physical system is unavoidably coupled to some external degrees of freedom and should then
be treated as an open system. This is especially relevant in the realm of quantum physics, which describes
phenomena on small scales, typically fragile under the interaction with the environment. As a consequence,
the theory of open quantum systems [1, 2] has a wide application area, e.g., in quantum chemistry [3],
quantum information [4] and even biophysics [5, 6].

However, accounting for the interaction of the system of interest with the external degrees of freedom
has its price. In particular, the equations of motion describing the evolution of open quantum systems are
either fully characterized, but derived under very restrictive assumptions, or in principle appropriate for a
wide range of dynamical evolutions, but computationally demanding and at least partially unexplored. The
former situation refers to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation [7, 8],
which is associated to quantum dynamical semigroups; the latter is based on more general time-local master
equations or on integro-differential master equations, fixed by a memory kernel. The focus of this paper is
precisely on the connection between the latter types of description.

Both the time-local and the integro-differential descriptions of the open-system dynamics are highly
relevant. The local one is better suited to access some of the properties of the evolution and to conduct
calculations (e.g. numerically), while the approach based on the use of memory kernels often gives a better
insight into the physical processes underlying the dynamics. This is the case, for example, for quantum
semi-Markov processes, where continuous in time quantum evolutions are randomly interrupted by jumps
[9–14]. The structure of the memory kernels for these processes clearly reflects this origin and additionally
guarantees the property of complete positivity (CP) of the corresponding dynamical maps. For a given
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system it is in general of advantage to know both representations of its evolution, as each can extend one’s
knowledge and it is rarely possible to know a priori which is the most suitable one.

The first goal of this paper is to shed some light on the connection between the descriptions given by the
time-local and the integro-differential approach, both treated in an exact way. We use a damping-basis
representation of the generator and memory kernel, which proves to be a powerful tool to characterize their
structural properties, as well as the connection between them [15]. Focusing on commutative dynamics, i.e.,
such that the dynamical maps at different times commute [16, 17], we define a general procedure to go
directly from one form of the master equation to the other, and vice versa. In particular, we give an explicit
link between the damping-basis description of the time-local and the integro-differential master equations,
which only relies on transformations of functions of time and their Laplace transform. Furthermore, our
analysis accounts for the differences and similarities of the structural properties of the time-local and
integro-differential master equations, when expressed in the canonical Lindbladian form [1, 7, 8]. The
possibly different sets of Lindblad operators of the two master equations are traced back to specific relations
among the eigenvalues of the corresponding damping-basis representations. In this way, as shown in the
examples, we provide a common theoretical framework to various models considered in the physical
literature.

The second part of the paper concerns the study of a possible simplified treatment of the
integro-differential master equation, which enforces a time-local structure, and can be seen as an
approximated link between the two different descriptions of the open-system dynamics. Relying on the idea
that the memory kernel is generally localized around the origin, with a width which can be interpreted as
the memory time of the dynamics, one can define a general coarse-graining operation leading to a
time-local master equation, along the lines of the seminal work of Redfield [18]. Here, we first show that the
damping-basis description also enables us to connect this approximated time-local description and the two
original, time-local and integro-differential, ones. Furthermore, we study how moving to a Redfield-like
master equation modifies the (non-)Markovian nature of the dynamics.

In recent years, the investigation of memory effects in the open quantum system dynamics, summarized
under the term ‘non-Markovianity’, has attracted a great interest, among others, in connection with
quantum thermodynamics [19–21], quantum-control theory [22] and quantum metrology [23–26]. Till
now, a wide range of non-equivalent characterizations of quantum non-Markovianity was introduced in the
literature, see [27–29] for recent reviews. A lot of emphasis has been put on the divisibility properties of the
dynamical maps as a possible signature of non-Markovian behavior. In particular, an open-system dynamics
is called (C)P-divisible if the dynamical maps can be decomposed via (completely) positive propagators [30,
31]. CP-divisible dynamics correspond to so-called generalized GKSL master equations, which are
time-local master equations with positive, but time dependent rates [32]; no equivalent general constraint is
known for the memory-kernel master equations. The property of P-divisibility has a physical interpretation
in terms of an information back-flow to the reduced system [33], and appears to be related to a
continuous-measurement interpretation [34]. A characterization of P-divisible dynamics is only known for
time-local generators [28], thanks to a result about positive semigroups [35], while the case of memory
kernels remains undiscovered beyond some special cases.

From the structures of time-local and integro-differential equations one is tempted to conclude that the
first description corresponds to ‘memoryless dynamics’ and the latter introduces some memory effects, but
neither statement is in general true. In particular, one can easily show that the time-local representation is
always possible for dynamics given by invertible maps [32], no matter how much non-Markovian the
evolution is. The time-local and the integro-differential descriptions seem to be somehow complementary:
if one has a well behaving form, the other one is often singular, however both can describe non-Markovian
dynamics. Here, with the help of the damping-basis approach, we will also investigate the relation between
the (C)P-divisibility of the exact and Redfield-like dynamics. Despite the intuition that the coarse graining
in time might wash out the memory effects due to the interaction with the environment, we will show that
imposing the Redfield-like master equation might actually result in going from a CP-divisible dynamics into
a non-CP-divisible one.

The rest of the paper is organized as follows. Section 2 is concerned with the structure of the time-local
generator and the memory kernel associated to the same open-system dynamics. After recalling the
damping-basis formalism in section 2.1, we apply it to the class of commuting dynamics in section 2.2.
Here, the main result of the paper is given: proposition 1, where a direct connection between the
damping-basis representation of the time-local generator and the memory kernel is stated. In section 2.3 we
further analyze the relation between the time-local and the integro-differential descriptions using a
Lindbladian form of the master equation. In section 3, we investigate the main features of the related
Redfield-like master equation. We first work out the structure of the time-local generator obtained by
approximating the exact memory kernel master equation in section 3.1. Finally, in section 3.2 we show that
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this approximation, somehow counter-intuitively, does not always improves the divisibility properties of the
time evolution. Section 4 summarizes our findings.

2. Structure of the master equations

The properties of the open quantum system alone are fixed by its density operator ρ(t), also referred to as
reduced state, at a generic time t. The dynamics of the open system is thus fully characterized by a family of
dynamical maps {Λt}t�0, which map the initial reduced state ρ(0) to the reduced state at later times,
according to ρ(t) = Λt[ρ(0)] (Λ0 = 𝟙). In the time-local description of the dynamics, the family of
dynamical maps satisfies the following equation

d

dt
Λt = KTCL

t Λt , (1)

where the superscript TCL stands for time-convolutionless [1]; instead, the integro-differential approach
builds on the equation

d

dt
Λt =

∫ t

0
dτKNZ

t−τΛτ ≡ (KNZ∗Λ)t , (2)

where the symbol ∗ denotes the convolution in time, KNZ
t is the memory kernel and NZ stands for

Nakajima–Zwanzig [1]. The conditions on the time-local generator KTCL
t and on the memory kernel KNZ

t

guarantying that Λt is a proper dynamical map, i.e. completely positive4 and trace preserving (CPTP), are in
general unknown. Only in some limited cases definite statements in this respect have been obtained, see e.g.
[9, 14, 36–46].

2.1. Damping bases
In this paper, we restrict to the case where the reduced system is associated with a Hilbert space H of finite
dimension N. The set of linear operators on H is denoted as B(H) and it is an N2 dimensional Hilbert
space. Hence, given a linear map Ξ acting on B(H), often referred to as super-operator, and a basis
{σα}α=1,...,N2 of B(H) orthonormal with respect to the Hilbert–Schmidt scalar product,

〈σα,σβ〉 = Tr[ σ†
α σβ] = δαβ , (3)

we can write the action of Ξ on a generic element ω ∈ B(H) as [16, 47]

Ξ(ω) =
N2∑

αβ=1

MΞ
αβTr

[
σ†
βω
]
σα, MΞ

αβ = Tr
[
σ†
αΞ(σβ)

]
. (4)

The matrix MΞ associated to the map Ξ is in general not hermitian and only allows for a spectral
representation in Jordan form, leading to the expression

Ξ(ω) =
M∑

α=1

(
λα

kα∑
μ=1

Tr
[
ς†α,μ ω

]
τα,μ +

kα∑
μ=1

Tr
[
ς†α,μ ω

]
τα,μ−1

)
with ω ∈ B(H), (5)

where M � N2 is the number of eigenvalues each counted with its geometric multiplicity, and kα the
algebraic multiplicity, reducing to one if the matrix can be diagonalized. We define τα,0 = 0, and for kα = 1
we will consider the identifications τα,1 ≡ τα and ςα,1 ≡ ςα. The families of N2 operators {τα,μ}α,μ and
{ςα,μ}α,μ appearing in equation (5) are related according to

〈ςα,μ, τβ,ν〉 = δαβδμν. (6)

The map Ξ is said to be diagonalizable iff the corresponding matrix MΞ is. In this case, according to the
previous identifications we can write

Ξ(ω) =
N2∑
α=1

λαTr
[
ς†α ω
]
τα with ω ∈ B(H), (7)

4 Complete positivity generalizes the property of positivity and takes into account the fact that the open quantum system can be
entangled with some inaccessible degrees of freedom.
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and the two bases of B(H), {τα}α=1,...,N2 and {ςα}α=1,...,N2 , which are not necessarily orthogonal bases, are
sometimes referred to as bi-orthogonal bases, obeying the orthogonality relation

〈ςα, τβ〉 = δαβ. (8)

Within the context of open quantum systems, these bases were introduced in [48] and named damping
bases; in particular, there they were associated with a GKSL generator. In the following we will focus on the
case of diagonalizable maps, which is enough to cover all examples we will consider, corresponding to
relevant physical examples typically considered in the literature, and in particular allows to consistently
consider time dependence of the eigenvalues only.

The damping bases are also strictly connected to the relation between the map Ξ and its dual Ξ′, where
the latter is defined by

〈ω,Ξ(ρ)〉 = 〈Ξ′(ω), ρ〉 ∀ ω, ρ ∈ B(H). (9)

Using the damping bases, one finds

Ξ′(ω) =
N2∑
α=1

λ∗
α Tr
[
τ †α ω

]
ςα ω ∈ B(H), (10)

where c∗ is the complex conjugate of c. From equations (7), (8) and (10) one can then see that the operators
{τα}α=1,...,N2 and {ςα}α=1,...,N2 are the eigenvectors, respectively, of the linear map Ξ and of its dual Ξ′ with
respect to complex conjugates eigenvalues, i.e.

Ξ(τα) = λα τα, Ξ′(ςα) = λ∗
α ςα α = 1, . . . , N2. (11)

Indeed, if Ξ is a normal operator, i.e., [Ξ,Ξ′] = 0, then the damping bases both coincide with a single
orthonormal basis; if Ξ is a Hermitian map, in addition the eigenvalues are real, λα = λ∗

α.
Let us now move to one-parameter families of maps, {Ξt}t�0, which are used to describe the dynamics

of open quantum systems. In general, both the coefficients and the operators in equation (7) will depend on
time. However, it can well happen that the time dependence is enclosed in the eigenvalues only, while the
corresponding damping bases are time-independent, i.e., that one has

Ξt(ω) =
N2∑
α=1

λα(t) Tr
[
ς†α ω
]
τα ω ∈ B(H). (12)

Equation (12) implies that the maps at different times commute,

[Ξt ,Ξs] = 0; (13)

the converse implication holds, if we further assume that the maps Ξs and Ξt are diagonalizable. In
particular, one can consider a one-parameter family of CPTP dynamical maps {Λt}t�0 which commute at
different times (a situation which has been thoroughly investigated in [16, 17]), i.e., such that

[Λt ,Λs] = 0 ∀ t, s � 0. (14)

If the family {Λt}t�0 satisfies a time-local master equation of the form equation (1) then the dynamical
maps satisfy equation (14) if and only if the time-local generator satisfies the analogous commutation
relation [

KTCL
t ,KTCL

s

]
= 0 ∀ t, s � 0. (15)

If we further assume diagonalizability of the dynamical maps and the generator, they will share the same
time-independent damping bases, see equation (12), according to:

KTCL
t =

N2∑
α=1

mTCL
α (t) Tr

[
ς†α ω
]
τα, (16)

Λt =
N2∑
α=1

mα(t) Tr
[
ς†α ω
]
τα, (17)

where

mα(t) = e
∫ t

0dτmTCL
α (τ). (18)
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Let us stress that the dynamics satisfying equation (14) include, but are not restricted to, the case where
equation (1) holds with KTCL

t = γ(t)L, which has been widely studied in the literature [36, 37, 49–51]; as
relevant examples, let us mention pure dephasing, depolarization, spontaneous emission, two-level system
in the presence of an infinite-temperature bosonic bath, photonic losses, as well as the composition of local
evolutions made up of these dynamics.

2.2. Novel connection between time-local and integro-differential representation
Given a diagonalizable commutative dynamics, its damping-basis decomposition sets a representation of
both the dynamical map and the time-local generator in which the time dependence is fully enclosed in the
eigenvalues—i.e., in complex functions of time—but not in the operatorial structure, see equations (16)
and (17). Here, we show that this feature is also shared by the memory kernel, which will allow us to derive
some novel connections between the time-local and the integro-differential master equations associated to a
given dynamics.

Proposition 1. Consider a family of dynamical maps {Λt}t�0 with time-local generator KTCL
t and memory

kernel KNZ
t . Moreover, for any couple of operators τα and ςα let Mα be the linear map acting on B(H) defined

as
Mα(ω) = Tr

[
ς†α ω
]
τα ω ∈ B(H). (19)

The following propositions are equivalent:

(a) The time-local generator KTCL
t has the damping-basis diagonalization

KTCL
t =

N2∑
α=1

mTCL
α (t)Mα. (20)

(b) The memory kernel KNZ
t has the damping-basis diagonalization

KNZ
t =

N2∑
α=1

mNZ
α (t)Mα; (21)

moreover, the corresponding eigenvalues are related by

mNZ
α (t) = I

(
uG̃α(u)

1 + G̃α(u)

)
(t), (22)

mTCL
α (t) =

Gα(t)

1 +
∫ t

0 dτGα(τ)
, (23)

Gα(t) = I

(
m̃NZ

α (u)

u − m̃NZ
α (u)

)
(t), (24)

where we introduced the function

Gα(t) =
d

dt
e
∫ t

0 dτmTCL
α (τ); (25)

f̃t(u) ≡ f̃ u is the Laplace transform of ft and I
(
g(u)
)

(t) the inverse Laplace transform of g(u).

Proof. The proof is given in appendix A. �

Proposition 1 is the central result of this paper. According to it, the time-local generator and the
memory kernel have the same time-independent damping bases, while the time dependence appears in the
eigenvalues only: to go from one master equation to the other, only functions of time (and their Laplace
transforms) are involved, while the operatorial structure is unchanged; see the left part of figure 1.

With reference to the expression equation (17) of the associated time evolution as shown in the proof
proposition 1 comes along with the relations

mα(t) = e
∫ t

0 dτmTCL
α (τ), (26)

mTCL
α (t) =

1

mα(t)

d

dt
mα(t), (27)

as well as

m̃α(u) =
1

u − m̃NZ
α (u)

, (28)

5
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Figure 1. According to propositions 1 and 2, the time-local generator, the memory kernel and the Redfield-like generator of
commutative dynamics have the same time-independent damping bases, while the time dependence appears in the eigenvalues
only: to go from one to the other, only functions of time (and their Laplace transforms) are involved, while the operatorial
structure is unchanged.

m̃NZ
α (u) =

um̃α(u) − 1

m̃α(u)
. (29)

As a consequence, proposition 1 is particularly useful when we want to compare the structures of the
time-local generator and the memory kernel. As a general relevant example, consider the following
corollary, which directly follows from the proposition above.

Corollary 1. Under the same assumptions of proposition 1, consider a diagonalizable GKSL generator L with
only one-nonzero eigenvalue 
, possibly degenerate with degeneracy d, i.e.,

L = 


d∑
α=1

Mα; (30)

then the following identities are equivalent

KTCL
t = γ(t)L; (31)

KNZ
t =

mNZ(t)



L; (32)

where mNZ(t) and G(t) are related as in equations (22) and (24) where now

G(t) =
d

dt
e


∫ t
0 dτγ(τ). (33)

Proof. Simply note that mTCL(t) = γ(t)
 and
∑d

α=1 Mα = L/
, see equation (30); then apply
proposition 1. �

In other terms, if L has only one non-zero eigenvalue, the super-operatorial part of the time-local
generator and the memory kernel are exactly the same; the difference between the master equations is
enclosed in one overall time-dependent factor. A physically relevant example of this situation will be given
below, see example 3.

In proposition 1 we assumed commutativity of the dynamics. As mentioned at the end of section 2.1,
and as we will show explicitly by means of example, such maps account for several dynamics of interest for
open quantum systems. On the other hand, it is indeed natural to ask what happens if we relax this
assumption. While a full-fledged extension of the result goes beyond the scope of this work, we show here
that proposition 1 is indeed also valid for more general dynamics in modified form, in which a
time-dependent damping basis, different for time-local generator and memory kernel, has to be
considered.

A relevant class of non-commutative evolutions for which this is the case is provided by the
phase-covariant qubit dynamics. Under such an evolution, the Bloch ball shrinks into a possibly rotated and
shifted ellipsoid, such that the overall transformation commutes with the rotation about a fixed axis.
Recently, phase-covariant dynamics have attracted considerable attention [25, 26, 44, 52–54], both because
of their clear mathematical meaning and structure, and physical relevance e.g. for metrological tasks [26].
The expression of the time-local and integro-differential master equation for phase-covariant dynamics has
been worked out in [44], and the result indeed complies with equations (22)–(25). One can observe that in
this case the validity of these relations follows from

6
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mTCL
α (t)mTCL

β (t′)MTCL
α (t)MTCL

β (t′) = δαβmTCL
α (t)mTCL

α (t′)MTCL
α (t′), (34)

which is indeed a strictly weaker requirement than commutativity whenever at least one of the eigenvalues
mTCL

α (t) is equal to zero, e.g., if the dynamics has at least one steady state [2]. The linear map MTCL
α (t)

corresponds to the time-dependent damping basis of the time local generator: KTCL
t =

∑
αmTCL

α (t)MTCL
α (t).

Equation (34) warrants that the dynamical map can be written as Λt =
∑

α mα(t)Mα(t) and the memory
kernel as KNZ

t =
∑

α mNZ
α (t)MNZ

α (t), where the connection between mα(t), mTCL
α (t) and mNZ

α (t) is still given
by equations (16) and (17) and proposition 1, though of course now the respective damping bases will not
coincide.

2.3. Lindbladian form
The time-local generator and the memory kernel in corollary 1 are directly proportional to a GKSL
generator of quantum dynamical semigroups. Here we show that, starting from the damping-basis
decomposition in equations (20) and (21), it is always possible to write the time-local generator and the
memory kernel in a way which is directly related to the GKSL generator; we will refer to such form as
Lindbladian. To do so, we essentially apply the general prescription given by lemma 2.3 in [7] to the
situation of interest for us. Besides providing us with a canonical reference structure which eases the
comparison between super-operators, as we show by different examples, the Lindbladian form allows us to
infer the (C)P and the (C)P-divisibility of the dynamics in a more direct way.

Any linear map acting on B(H) can be represented in several ways. A relevant example is given by the
matrix representation in equation (4), which is at the basis of the damping-basis decomposition, see
equation (7). Alternatively, given an orthonormal basis {σα}α=1,...,N2 of B(H), see equation (3), with

σN2 = 𝟙/
√

N, any linear map Ξ acting on B(H) can be uniquely written as

Ξ(ω) =
N2∑

α,β=1

cα,β σαωσ
†
β with ω ∈ B(H). (35)

Note that such a representation is strictly related to the CP of the map Ξ: in fact, the matrix of coefficients
with elements cαβ is positive semidefinite if and only if Ξ is CP, in which case the decomposition in
equation (35) directly leads to the Kraus decomposition of CP maps. Most importantly for us, the
representation in equation (35) gives a general characterization also of the time-local and the
integro-differential master equations associated with open-system dynamics. In fact, let us consider a
time-local generator or a memory kernel Kt . The dynamics {Λt}t�0 resulting from equations (1) and (2) is
trace and Hermiticity preserving (where the latter means that any Hermitian operator ω = ω† is mapped at
any time t into an Hermitian operator Λt(ω) = (Λt(ω))†) if and only if the corresponding time-local
generator and memory kernel satisfy5

Tr [Kt(ω)] = 0 ∀ ω ∈ B(H),

(Kt(ω))† = Kt(ω
†) ∀ ω ∈ B(H).

(36)

Restricting for the sake of convenience to diagonalizable super-operators, in the form

Kt =

N2∑
α=1

mα(t)Mα. (37)

Lemma 2.3 of [7] tells us that the two conditions in equation (36) hold if and only if

Kt(ω) = −i [H(t),ω] +
N2−1∑
α,β=1

καβ(t)

(
σαωσ

†
β −

1

2

{
σ†
βσα,ω

})
, (38)

where the coefficients καβ(t) = κ∗
βα(t) are given by

καβ(t) =
N2∑
γ=1

N2∑
χ=1

mγ(t) Tr
[
σβσ

†
χσ

†
αMγ(σχ)

]
, (39)

5 The conditions in equation (36) have to be satisfied by any time-local generator, if we assume that Λ−1
t exists: this can be checked by

applying equation (1) to a generic initial state ρ0 and then taking the trace, for the first condition, and the Hermitian conjugate, for the
second one, on both sides. Analogously, they have to be satisfied by any memory kernel, if we assume that Λ̃−1

u exists, as can be checked
by applying equation (2) to a generic initial state and taking the Laplace transform.
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while the Hamiltonian H(t) = H †(t) is given by

H(t) =
1

2i
(σ†(t) − σ(t)), σ(t) =

1√
N

N2−1∑
α=1

καN2(t)σα. (40)

In addition, since the matrix with elements καβ(t) is Hermitian, it can be diagonalized by a unitary matrix
V(t) with elements Vαβ(t), so that equation (38) can be rewritten as

Kt(ω) = −i [H(t),ω] +
N2−1∑
α=1

rα(t)

(
Lα(t)ωL†

α(t) − 1

2

{
L†
α(t)Lα(t),ω

})
, (41)

with

rα(t) =
N2−1∑
γ,γ′=1

V†
αγ(t)κγγ′(t)Vγ′α(t) rα(t) ∈ R

Lα(t) =
N2−1∑
β=1

Vβα(t) σβ.

(42)

Equations (39)–(42) provide us with the wanted recipe to get the Lindbladian form, starting from the
damping-basis representation, equations (20) and (21). The main difficulty is that the different non-zero
eigenvalues mα(t) will ‘mix’ in a non-trivial way, so that there is not a direct connection between them and
the coefficients rα(t) in the Lindbladian structure. As a first consequence, one looses the correspondence
between the super-operatorial structures of, respectively, the time-local generator and the memory kernel,
which is guaranteed by corollary 1 in the case of one non-zero eigenvalue; this is shown by the examples
below.

Example 1. Consider the time-local generator

KTCL
t (ω) = γ−(t)

(
σ−ωσ+ − 1

2
{σ+σ−,ω}

)
, (43)

which describes, for example, the reduced dynamics of a two-level system interacting with a
zero-temperature bosonic bath via a Jaynes–Cummings interaction term [47, 52], neglecting for the sake of
simplicity the free Hamiltonian term. This is a special case of the generator treated (for constant
coefficients) in [48]. The dual generator is

(
KTCL

t

)′
(ω) = γ−(t)

(
σ+ωσ− − 1

2
{σ+σ−,ω}

)
, (44)

and the resulting eigenvalues and damping bases are [see equation (11)]6

{
mTCL

α (t)
}
α=1,...,4

=

{
0,−γ−(t),−1

2
γ−(t),−1

2
γ−(t)

}
(45)

{τα}α=1,...,4 =

{
𝟙− σz

2
,σz,σ+,σ−

}
(46)

{ςα}α=1,...,4 =

{
𝟙,

𝟙+ σz

2
,σ+,σ−

}
. (47)

Indeed, the relations in equation (8) are satisfied; moreover, we note that we have now two eigenvalues
different from zero (one two-fold degenerate) and the damping bases are not made of self-adjoint
operators.

The time dependence is enclosed in the eigenvalues only, so that we are in the case of commuting
dynamics treated in the previous sections. In particular, by applying proposition 1, we find that the
integro-differential generator KNZ

t has the same damping bases, equations (46) and (47), with eigenvalues

6 Note that in [48] they used a different duality relation, without the Hermitian conjugate, so that there is a different dual damping
basis with respect to ours.

8
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given by equations (22) and (25) with respect to the functions in equation (45). In other terms, both the
time-local generator and the memory kernel can be written in the form [see equation (7)]

KX
t (ω) =

mX
2 (t)

2
Tr [(𝟙+ σz)ω]σz + mX

3 (t)
(
Tr [σ−ω]σ+ + Tr

[
σ+ω

]
σ−
)

, X = TCL, NZ (48)

with mX
i (t) the corresponding eigenvalues. But, by using equations (39)–(42), one can see that the

generator as in equation (48) corresponds to a Lindbladian form

KX
t (ω) = −mX

2 (t)

(
σ−ωσ+ − 1

2
{σ+σ−,ω}

)
+

1

2
(mX

2 (t) − 2 mX
3 (t)) (σzωσz − ω) . (49)

Crucially, while for KTCL
t one has mTCL

2 (t) = 2 mTCL
3 (t) [see equation (45)], so that the pure dephasing term

cancels out, this is generally not the case for KNZ
t , which will then present a pure-dephasing term, in

addition to the spontaneous-emission term; an explicit example of this is given in [47, 52]. This implies in
particular that at variance with the case of the standard GKSL generator, a direct physical interpretation of
the operatorial contribution is not available.

As anticipated, even though the time-local master equation we started from, equation (43), is in the
form given by equation (31), now the corresponding GKSL generator has more than one eigenvalue
different from 0. As a consequence, the transformation to the memory kernel no longer preserves the
super-operatorial part of the Lindbladian structure (compare with corollary 1), but rather generates one
more term.

Example 2. A somehow opposite example is obtained by starting with a memory kernel of the form

KNZ
t (ω) = k(t) (σ−ωσ+ + σ+ωσ− − ω) , (50)

with k(t) such that the described dynamics is CPTP, as e.g. in [31]. First, we note that such a generator can
be written in a ‘manifest’ Lindbladian structure as

KNZ
t (ω) = k(t)

(
σ−ωσ+ − 1

2
(σ+σ−ω + ωσ+σ−) + σ+ωσ− − 1

2
(σ−σ+ω + ωσ−σ+)

)
, (51)

so that this time we start from a non-local generator in the form KNZ
t = k(t)L [compare with

equation (31)]. Such a generator is self-adjoint,
(
KNZ

t

)′
= KNZ

t , so that the eigenvalues are real, and the
damping bases coincide, yielding an orthonormal basis:{

mNZ
α (t)

}
α=1,...,4

= {0,−k(t),−k(t),−2k(t)} (52)

{τα}α=1,...,4 =

{
𝟙√
2

,
σx√

2
,
σy√

2
,
σz√

2

}
. (53)

Also in this case, since we have two eigenvalues different from 0 we cannot apply corollary 1, which would
guarantee that the time-local equation would have the same Lindbladian structure. Instead, we can apply
proposition 1, so that both the time-local generator and the memory kernel have the form

KX
t (ω) = mX

2 (t)
(
Tr [σxω] σx + Tr

[
σyω
]
σy

)
+ mX

4 (t) Tr [σzω]σz , X = TCL, NZ (54)

where for the memory kernel the eigenvalues are given by equation (52), while for the time-local generator
they are obtained from the latter via equation (24) and (25). Using equations (39)–(42), equation (54) can
be written in Lindbladian form as

KX
t (ω) =− mX

4 (t)

2

(
σ−ωσ+ − 1

2
(σ+σ−ω + ωσ+σ−) + σ+ωσ− − 1

2
(σ−σ+ω + ωσ−σ+)

)
+

1

2
(mX

4 (t) − 2 mX
2 (t)) (σzωσz − ω) . (55)

For the memory kernel mNZ
4 (t) = 2 mNZ

2 (t), so that the pure-dephasing term cancels out, while this will not
generally be the case for the time-local generator. An example is given in [31]. Once again, the multiple
eigenvalues in the damping-basis decomposition generate further terms, this time when going from the
integro-differential to the time-local master equation. Of course, the situation is symmetrical, so that we
could obtain further examples by simply inverting the starting points in the examples above; the only

9
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difference when going, respectively, from the time-local to the integro-differential master equation or vice
versa is the connection between the eigenvalues of the damping-basis decomposition, i.e., whether one
should use equations (22) or (24).

We conclude that proposition 1 and equations (39)–(42) yield a systematic procedure to obtain the
integro-differential master equation from the time-local one and vice versa, whenever we are able to
diagonalize them and the resulting damping bases are time-independent. An example of application for a
higher dimensional system is given in appendix C.

3. Redfield-like master equation

Until now, we compared the time-local and integro-differential master equations in an exact way, i.e.,
without introducing any approximation. On the other hand, as recalled in the introduction, it is useful to
consider situations in which an integro-differential master equation is transformed into a time-local one by
means of some approximations. Here, we focus on a master equation which is obtained via a coarse
graining in time analogous to the one introduced by Redfield in [18].

More precisely, if τR is the relaxation time of the open-system dynamics and KNZ
t is appreciably different

from zero only on a time scale much shorter than τR, one might approximate the dynamical maps Λt with
ΛRed

t , where the latter is obtained by replacing equation (2) with

d

dt
ΛRed

t = KRed
t Λt , KRed

t =

∫ t

0
dτKNZ

τ . (56)

When this approximation is used in the presence of a weak-coupling interaction between the open system
and its environment, the resulting equation is often called Redfield equation [1, 18]. We will refer to
equation (56) as Redfield-like master equation, in order to emphasize that we take it into account without
necessarily restricting to the weak-coupling regime. The Redfield equation is commonly exploited in several
different contexts, such as the study of transport processes in condensed-matter or biophysical systems
[55–59]. Importantly, the Redfield equation might lead to a not well-defined evolution, as studied by now
extensively in the literature [60–62]. We will show how the damping-basis representation enables us to
determine the structural properties of the resulting time-local generator KRed

t , as well as to investigate the
Markovian nature of the dynamics

{
ΛRed

t

}
t�0

.

3.1. Structure of the time-local generator
We first consider the following simple connection between the time-local generator, the memory kernel and
the Redfield-like generator, in the case of commutative dynamics.

Proposition 2. Under the same assumptions of proposition 1, for time-local generator and memory kernel in the
form equations (20) and (21) respectively, the Redfield-like generator KRed

t has the damping-basis
diagonalization

KRed
t =

N2∑
α=1

mRed
α (t)Mα, (57)

with

mRed
α (t) =

∫ t

0
dτmNZ

α (τ). (58)

Moreover, under the same assumptions of corollary 1, the Redfield-like generator KRed
t reads

KRed
t =

mRed(t)



L. (59)

Accordingly, the Redfield-like dynamics has the same operational structure as the exact one, with
time-dependent eigenvalues obtained from the corresponding original ones. This situation is depicted in
figure 1. What is more, the eigenvalues mRed

α (t) can be written in a compact form in terms of the functions
Gα(t) defined in equation (25).

Proposition 3. Under the same assumptions of proposition 1, consider a diagonal time-local generator as in
equation (20). The eigenvalues of the Redfield-like time-local generator satisfy the integral equation

10
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mRed
α (t) = Gα(t) −

∫ t

0
dτGα(t − τ)mRed

α (τ), (60)

whose solution, provided
|G̃α(u)| < 1, (61)

can be written as

mRed
α (t) =

∞∑
j=1

(−)j+1Gα∗ · · · ∗Gα︸ ︷︷ ︸
j times

(t). (62)

Proof. The proof is given in appendix B. �

3.2. Markovianity of the dynamics
As mentioned in the introduction, a highly relevant property of the dynamics of an open quantum system is
its (non-)Markovianity. Quantum non-Markovianity is often defined in terms of the divisibility property,
positive or completely positive, of the corresponding dynamical maps. As we will see below, the
damping-basis representation enables us to make some statements about the preservation of
(C)P-divisibility under the approximation leading to the Redfield-like master equation.

First, we note that the relation in equation (62) directly allows us to infer that (C)P-divisibility is
preserved in the Redfield-like master equation, whenever L has only one non-zero eigenvalue.

Corollary 2. Under the same assumptions of proposition 3, consider a time-local generator of the form
KTCL

t = γ(t)L, such that L has only one eigenvalue 
 different from zero, so that L = 

∑d

α=1 Mα, and assume
equation (61) holds. If {Λt}t�0 is (C)P-divisible, then

{
ΛRed

t

}
t�0

is (C)P-divisible.

Proof. First, we note that the time-local generators, KTCL
t and KRed

t , are of the form

KTCL
t = γ(t)L, KRed

t = γRed(t)L,

where γRed(t) = mRed(t)
l . The dynamics {Λt}t�0 (

{
ΛRed

t

}
t�0

) is (C)P-divisible if and only if γ(t) � 0

(γRed(t) � 0). Thus, since we assume {Λt}t�0 (C)P-divisible, we have γ(t) � 0. Moreover, 
 has to be real
and negative, since it is the only non-zero eigenvalue of L. It follows that the function G(t), see
equation (33),

G(t) = 
γ(t)e
Γ(t)

is negative. But then, from equation (62) we have that mRed(t)/
 is positive and thus
{
ΛRed

t

}
t�0

is
(C)P-divisible. �

Note that the reverse statement, that is that (C)P-divisibility of the Redfield-like dynamics originates
from (C)P-divisibility of the original dynamics, is in general not true (even in the case of a single non-zero
eigenvalue). Indeed, in the next example we will consider two dynamics, which both have a (C)P-divisible
approximated evolution, but only one of them has this property originally.

Example 3. Let us consider the case of a pure dephasing dynamics for a two-level system, characterized by a
monotonic reduction of coherences described by the decoherence function ϕ(t). Starting from the
expression of the dynamics we can easily work out the corresponding time-local generator, which takes the
form

KTCL
t = γ(t)L, (63)

with

γ(t) = − ϕ̇(t)

ϕ(t)
(64)

and
L = σ+σ− · σ+σ− + σ−σ+ · σ−σ+ − 𝟙. (65)

It can be easily checked that L has only one non-zero two-fold degenerate eigenvalue, so that relying on
corollary 1 we get the corresponding memory kernel,

KNZ
t = k(t)L, (66)

with

11
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k̃(u) = −
˜̇ϕ(u)

ϕ̃(u)
. (67)

Since equation (66) exactly corresponds to equation (63), this memory kernel describes the very same
CPTP dynamics. In particular, it describes a CP-divisible dynamics since ϕ(t) is monotonically decreasing.
According to proposition 2, the Redfield-like generator is given by

KRed
t =

∫ t

0
dτk(τ)L, (68)

where the function K(t)=
∫ t

0 dτk(τ) is indeed positive since K̃(u) = −˜̇ϕ(u)/(1 + ˜̇ϕ(u)) and ϕ(t) is
monotonically decreasing. The Redfield-like generator therefore also describes a CP-divisible dynamics. Let
us now start from equation (66) changing the operatorial structure in the memory kernel via the
replacement L→L with

L = σz · σz − 𝟙, (69)

so that we define
KNZ

t = k(t)L. (70)

The associated Redfield-like generator reads

KRed
t =

∫ t

0
dτk(τ)L, (71)

and again corresponds to a CP-divisible dynamics. Making reference to corollary 1 (also L has only one
non-zero eigenvalue), we can obtain via the damping-basis approach the time-local generator exactly
corresponding to equation (70), namely

KTCL
t = γ̄(t)L, (72)

where now

γ̄(t) = −1

2

1

|ϕ̄(t)|
d

dt
|ϕ̄(t)|, (73)

with

ϕ̄(t) = I

(
1

u

1 + ˜̇ϕ(u)

1 − ˜̇ϕ(u)

)
(t). (74)

The sign of γ̄(t) is now not necessarily fixed, so that the dynamics is in general not C(P)-divisible. The
evolution is however always well defined, that is CPTP, since

∫ t
0 dτ γ̄(τ) � 0 [28]. The same therefore holds

for the evolution described by KNZ
t , due to the exact correspondence between equations (72) and (70). We

have therefore shown an example of two dynamics whose associated Redfield-like master equations both
describe a CP-divisible collection of maps, despite the fact that only one of the two was originally
CP-divisible, while the other can even break P-divisibility.

If we go beyond the case of only one non-zero eigenvalue, the situation gets more involved. Focusing in
particular on Pauli maps, one can see that P-divisibility is more robust under the Redfield approximation
than CP-divisibility.

Corollary 3. Consider a Pauli dynamical map in the form

d

dt
ρ(t) =

1

2

3∑
k=1

γk(t)(σkρtσk − ρt). (75)

Assume that the dynamical map is P-divisible and equation (61) holds. Then the associated Redfield-like map is
also P-divisible.

Proof. For Pauli dynamical maps the eigenvalues of the time-local generator read:
mTCL

k (t) = −(γi(t) + γj(t)), k �= i �= j. A map in such a form is P-divisible iff [63, 64]

γi(t) + γj(t) � 0 , i �= j ⇔ mTCL
α (t) � 0 , ∀ α. (76)

Accordingly, Gα(t) � 0, ∀α. Using this result, from equation (62) we conclude that mRed
α (t) � 0, ∀ α, and

the Redfield-like map is then also P-divisible. �
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On the other hand, CP-divisibility can be lost in the approximation leading to the Redfield-like master
equation, as shown in the following example; indeed, this is a consequence of the presence of more than
one non-zero eigenvalues.

Example 4. We analyze the dephasing dynamics in random directions first introduced in [65]:

Λt = x1eL1t + x2eL2t + x3eL3t , (77)

where Li[ρ] = σiρσi − ρ, describing dephasing along the ith direction, and the xi’s are the corresponding
probabilities constrained by x1 + x2 + x3 = 1. The time evolution obeys the following time-local master
equation

d

dt
ρ(t) =

1

2

3∑
k=1

γk(t)(σkρ(t)σk − ρ(t)), (78)

where the time dependent decoherence rates can be expressed as

γ1(t) = μ1(t) − μ2(t) − μ3(t)

γ2(t) = −μ1(t) + μ2(t) − μ3(t) (79)

γ3(t) = −μ1(t) − μ2(t) + μ3(t),

with

μ1(t) = − x2 + x3

x2 + x3 + e2tx1
, μ2(t) = − x3 + x1

x3 + x1 + e2tx2
, μ3(t) = − x1 + x2

x1 + x2 + e2tx3
.

The dynamics given by equation (78) is always P-divisible, since equation (76) are satisfied. However,
depending on the choice of the xi parameters one of the decay rates can become negative so that the
evolution looses its CP-divisibility, see figure 2(a). In particular, the well-known eternally non-Markovian
master equation belongs to this family [32]. It corresponds to the choice x1 = x2 =

1
2 , x3 = 0 and generates

an evolution which for all t > 0 is non-CP-divisible, as in this case γ3(t) = −tanh(t) < 0, ∀ t > 0. The
evolution resulting from the Redfield-like master equation equation (56) has the form

d

dt
ρ(t) =

1

2

3∑
k=1

γRed
k (t)(σkρ(t)σk − ρ(t)), (80)

with

γRed
1 (t) = Y1(t) − Y2(t) − Y3(t), (81)

γRed
2 (t) = −Y1(t) + Y2(t) − Y3(t), (82)

γRed
3 (t) = −Y1(t) − Y2(t) + Y3(t), (83)

and Yk(t) = exp(−2xkt)(xk − 1). This is still a proper CPTP quantum dynamics, as it fulfills the relevant
constraints given in [63]. The dynamics (80) is P-divisible iff the condition (76) for γRed

k (t) is satisfied. As

γRed
i (t) + γRed

j (t) = 2(1 − xk)e−2xkt , i �= j �= k, (84)

is always positive, by conducting our approximation the dynamics keeps its P-divisibility (in accordance
with corollary 3). However, almost all of the dynamics which were CP-divisible for the original map, are no
more CP-divisible for the Redfield-like master equation, see figure 2(a), for the original dynamics and
figure 2(b), for the approximated evolution. Initially, for t = 0, all γ(t)’s and γRed(t)’s are positive. After a
transient behavior, positivity of γRed(t) implies positivity of γ(t), since the parameter range warranting
positivity of the time dependent coefficients in the Redfield-like master equation is smaller. The
Redfield-like dynamical maps are CP-divisible only for the choices xi = xj � xk, with i �= j �= k (all γRed(t)’s
are positive for all times). This is in contrast to the original evolution, where a significant fraction of the
dynamics are CP-divisible [65]. Note that there are only four choices of parameters x1, x2, x3 (black dots in
figure 2), for which the resulting original generator has only one eigenvalue and the corresponding
dynamical map is CP-divisible. In accordance with corollaries 1 and 2 these properties are also present in
the approximated dynamics.

These results put into question the idea that the Redfield-like approximation represents a coarse
graining in time of the open-system dynamics leading toward a memoryless evolution. Indeed, our analysis
is complementary with respect to the investigation of the validity of the approximation itself given the
overall system-environment microscopic description [60–62].
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Figure 2. The areas depict the range of parameters x1, x2, x3, for which all of the γk(t) (panel (a) the exact dynamics) and γRed
k (t)

(panel (b) the approximated dynamics) are positive, that is the dynamics is CP-divisible, up to the given time; different colors of
the areas correspond to different times (in arbitrary units). Initially (t = 0, yellow triangle) the only constraint is in both cases
the condition x1 + x2 + x3 = 1. For long enough times γRed

k (t) > 0 implies γk(t) > 0. The black color corresponds to t →∞, so
that for these choices of x1, x2, x3 the corresponding dynamical map always remains CP-divisible. Only the choices xi = xj � xk,
with i �= j �= k lead to CP-divisible Redfield-like dynamics (panel (b) tripod configuration consisting of three lines), in contrast
to the exact dynamics (panel (a) black star shape). The four black dots denote choices of parameters x1, x2, x3 for which both the
original and the approximated generator have only one non-zero eigenvalue and the corresponding dynamical map is
CP-divisible (in panel (a) the dot in the middle is not visible).

Table 1. Connections between C(P)-divisibility property for exact and Redfield-like
approximated dynamics. Arrows ⇒ and barred arrows � express the implications shown by
means of proofs and counterexamples (in the case of a single non-zero eigenvalue by corollary
2 and example 3, and in the case of a Pauli channel by corollary 3 and example 4,
respectively).

Exact dynamics Redfield-like

Single eigenvalue C(P)-div ⇒ C(P)-div
�

Pauli channel P-div ⇒ P-div
CP-div � CP-div

The results of this section are summarized in table 1. When going to higher dimensional systems the
situation gets more involved and no easy connections between the (C)P-divisibility of the exact and
approximated dynamics were found. However, in a case of the generalized Pauli channels [66] some
statements are still possible, as elaborated in appendix D.

4. Summary

In this paper, we investigated the connection between the time-local and the memory-kernel master
equations associated with the dynamics of an open quantum system. Focusing on the class of commutative
dynamics and making use of the damping-basis approach, we formulated a general strategy to obtain each
kind of master equation from the other one. Only transformations among functions of time and their
Laplace transforms are involved, as the operational structure of the two master equations coincide in the
damping-basis picture. In the presence of a single non-zero eigenvalue also the Lindbladian structure of the
time-local generator and the memory kernel is exactly the same. Instead, when more eigenvalues are
present, new Lindbladian operators can be generated in going from the time-local master equation to the
integro-differential one, or vice versa.

Furthermore, we analyzed the impact of the approximation leading to the Redfield-like master equation
on both the operatorial structure of the master equation and the Markovianity of the dynamics. In the case
of a single non-zero eigenvalue both CP-divisibility and P-divisibility are preserved, but this is no longer
guaranteed for more general dynamics. In particular, restricting to Pauli dynamical maps, we showed that,
while P-divisibility is still preserved, CP-divisibility can be lost as a result of the Redfield-like coarse graining
in time.
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Our results highlight the relevance of describing open system dynamics with different
representations—such as the time-local or the integro-differential master equations, as well as the
damping-basis or the Lindbladian picture—and the possibility to find direct connections among them.
Indeed, it will be of interest to push forward such an analysis and deal with more general types of evolution
in order to shed light on their relevance and usefulness for the description and characterization of
non-Markovianity.
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Appendix A. Proof of proposition 1

Proof. First, we recall that, assuming equation (20), equation (1) is solved by (see equation (17))

Λt =

N2∑
α=1

mα(t)Mα, (A.1)

where mα(t) is defined via

log mα(t) =

∫ t

0
dτmTCL

α (τ) (A.2)

and we have used
N2∑
α=1

Mα = 𝟙, MαMβ = δα,βMα.

Moving to the Laplace domain due to linearity we get

Λ̃u =
N2∑
α=1

m̃α(u)Mα; (A.3)

and for the memory kernel

K̃NZ
u = u𝟙−

(
Λ̃u

)−1
. (A.4)

Equation (A.3) implies (
Λ̃u

)−1
=

N2∑
α=1

(
m̃α(u)

)−1Mα, (A.5)

which, replaced in equation (A.4), yields equation (21) with (using also
∑N2

α=1 Mα = 𝟙)

mNZ
α (t) = I

(
u −
(

m̃α(u)
)−1
)
.

Equation (22) follows from the property of the Laplace transform of a derivative ˜̇f (u) = uf̃ (u) − f (0). We
further have, from the definition of Gα(t) in equation (25)

mα(t) = 1 +

∫ t

0
dτGα(τ) (A.6)

so that
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mTCL
α (t) =

ṁα(t)

mα(t)
(A.7)

implying equation (23). �

Appendix B. Proof of proposition 3

Proof. Using equations (22) and (58) and going to the Laplace domain, we have

m̃Red
α (u) =

1

u
m̃NZ

α (u) =
G̃α(u)

1 + G̃α(u)
,

from which
m̃Red

α (u) = G̃α(u) − G̃α(u)m̃Red
α (u),

which directly implies equation (60) when going back to the time domain. Equation (62) is obtained from
equation (60) by iteration or, equivalently, via the geometric series, whose convergence is guaranteed by
equation (61). �

Appendix C. Lindbladian form: higher dimensional example

We will consider now an example in higher dimensions, H = C
3, showing how the dimensionality strongly

enhances the lack of correspondence in the operatorial structures of the time-local generator and memory
kernel.

Consider the (normalized) Gell–Mann matrices

σ1 =
1√
2

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ , σ2 =
1√
2

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠ , σ3 =
1√
2

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠ ,

σ4 =
1√
2

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠ , σ5 =
1√
2

⎛⎝0 0 −i
0 0 0
i 0 0

⎞⎠ , σ6 =
1√
2

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠ ,

σ7 =
1√
2

⎛⎝0 0 0
0 0 −i
0 i 0

⎞⎠ , σ8 =
1√
6

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠
along with

S+ =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ , S− =

⎛⎝0 0 0
1 0 0
0 1 0

⎞⎠ .

The latter are the ladder operators in C3, and then the example 2 is generalized to three-level systems by
looking at the memory kernel [compare with equation (51)]

KNZ
t (ω) = k(t)

(
S−ωS+ − 1

2
(S+S−ω + ωS+S−) + S+ωS− − 1

2
(S−S+ω + ωS−S+)

)
. (C.1)

This is still a self-adjoint generator, with now four non-zero eigenvalues, and the corresponding
damping-basis decomposition reads

{
mNZ

α (t)
}
α
=

{
0,−3k(t),−5

2
k(t),−5

2
k(t),−k(t),−k(t),−k(t),−1

2
k(t),−1

2
k(t)

}
(C.2)

{τα}α =

{
𝟙√
3

,−
√

3σ3

2
+

σ8

2
,− σ2√

2
+

σ7√
2

,− σ1√
2
+

σ6√
2

,
σ3

2
+

√
3σ8

2
,σ4,σ5, ,

σ2√
2
+

σ7√
2

,
σ1√

2
+

σ6√
2

}
.

(C.3)
Once again, applying proposition 1 both the time local generator and the memory kernel can be
written as
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KX
t (ω) =

8∑
α=0

mX
α(t) Tr [ταω] τα X = TCL, NZ, (C.4)

where the memory-kernel eigenvalues are given by equation (C.2), while the time-local-generator ones are
obtained via equations (24) and (25); the eigenbasis is indeed given in both cases by equation (C.3). By
means of equations (39)–(42), the generator above can be written in Lindbladian form as

KX
t =

1

6
(mX

1 (t) − 3 mX
3 (t))

(
D(σ3+

√
3σ8)/2 +Dσ4 +Dσ5

)
+

1

6
(3 mX

1 (t) − 4 mX
2 (t) + 3 mX

3 (t) − 4 mX
4 (t))

×D(−
√

3σ3+σ8)/2 −
1

6
(2 mX

1 (t) − 3 mX
2 (t) + 3 mX

4 (t))
(
D(−σ2+σ7)/

√
2 +D(−σ1+σ6)/

√
2

)
− 1

12
(2 mX

1 (t) + 3 mX
2 (t) − 3 mX

4 (t)
(
DS+ +DS−

)
, (C.5)

where we used DA to denote the Lindblad dissipator with respect to the operator A. The previous
expression reduces to equation (C.1) for eigenvalues as in equation (C.2), so that one recovers the
Lindblad-operator structure of the memory kernel with two contributions only, while the time-local
generator will have in general 8 Lindblad operators.

Appendix D. P-divisibility in higher dimensions

For generalised Pauli dynamical maps, no sufficient and necessary conditions for P-divisibility are known.
However, with the necessary condition as given in [66], one can obtain the following corollary.

Corollary 4. Consider a generalized Pauli dynamical map for which equation (61) holds. If at least one
eigenvalue of the Redfield-like time-local generator takes on positive values for some time t � 0, then the original
dynamical map is not P-divisible.

Proof. Assume that the original dynamics is P-divisible. As elaborated in [66], from this it follows that
mTCL

α (t) � 0 for any t � 0. However from (62) we conclude then that mRed
α (t) � 0 , ∀ α. Accordingly, if

for some α and t � 0 mRed
α (t) > 0, then the original dynamical map is not P-divisible. �
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