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Summary. We briefly examine recent developments in the field of open quantum
system theory, devoted to the introduction of a satisfactory notion of memory for
a quantum dynamics. In particular, we will consider a possible formalization of the
notion of non-Markovian dynamics, as well as the construction of quantum evolution
equations featuring a memory kernel. Connections will be draw to the corresponding
notions in the framework of classical stochastic processes, thus pointing to the key
differences between a quantum and classical formalization of the notion of memory
effects.

1 Introduction

The theory of open quantum systems denotes the application of quantum me-
chanics to situations in which the dynamics of the quantum system of interest
is influenced by other degrees of freedom, that we are neither interested nor
capable to take into account in detail. While in principle any system has to
be considered open, since a perfect shielding from the environment is never
feasible, in simple situations isolation can be considered as a good approxi-
mation. In many realistic settings however, the effect of an external quantum
environment on the system dynamics cannot be neglected. This is the case
e.g. in many instances of quantum optics, condensed matter physics and quan-
tum chemistry. For the case of an open system dynamics, many interesting
physical effects and mathematical structures do appear [1]. From the physical
viewpoint, with respect to a closed dynamics we are faced with new phenom-
ena like dissipation and decoherence, which only have partial analog in the
classical setting. Such phenomena play a crucial role in many relevant recent
fields of research, such as quantum computation and quantum thermodynam-
ics [2, 3, 4].

In this research field many problems are still open, which have important
connections to mathematics. In this contribution we will try to highlight, in a
concise way, some recent developments in the field of open quantum systems,
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connected to some of the presently most active research lines, relevant for
the mathematical formulation of the theory. After a brief description of the
framework of open quantum systems in Sect. 2, we will address in Sect. 3
the delicate question of the definition of non-Markovian quantum processes.
This implies introducing a notion of non-Markovian dynamics, which is quite
different form the classical one, though the two can be naturally connected.
In Sect. 4 we will point to the derivation of equations of motions allowing
to introduce memory effects, focusing in particular on master equations with
a memory kernel, for which again a natural connection to a class of non-
Markovian classical processes can be considered.

2 Open quantum system dynamics

Let us first introduce some basic elements of open quantum system theory
[1], which actually consists in considering the dynamics of a quantum system
described on the Hilbert space HS without assuming it to be isolated, so that
it interacts with an external environment described on a Hilbert space HE

by menas of unitary operators U(t) acting on HS ⊗ HE . The fact that the
system is not closed brings with itself two important new aspects. On the one
hand, the reduced dynamics of the isolated system only is not described by a
Liouville von-Neumann equation, and purity of the state is not preserved dur-
ing the evolution, On the other hand, even a factorized system-environment
state develops correlations, so that the latter play a major role in the time
evolution. The tensor product structure of the underlying Hilbert space, on
its turn, brings in two important aspects. On the one hand, states can exhibit
correlations which are of non-classical nature, such as entanglement. On the
other hand, the evolution of the reduced system as a function of time is de-
scribed by a collection of transformations which have the property of being
completely positive, a property strictly connected to the non-commutativity
of the space of observables. Assuming that the state at the initial time is
factorized

ρSE(0) = ρS(0)⊗ ρE , (1)

we have that the reduced state of the system at a later time is given by

ρS(t) = TrE{U(t)ρS(0)⊗ ρEU(t)†}, (2)

where TrE denotes the partial trace with respect to the environmental degrees
of freedom. This state contains all the information relevant for the description
of the dynamics of the system observables. In particular this transformation
defines a linear map

Φ(t, 0)[ρS(0)] ≡ TrE{U(t)ρS(0)⊗ ρEU(t)†}, (3)
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which considering an orthogonal resolution for the state of the environment
ρE =

∑
ξ λξPϕξ

, and introducing an orthogonal basis {ϕη} in HE , admits the
following representation

Φ(t, 0)[ρS(0)] =
∑

ξ,η

λξ〈ϕη|U(t)ϕξ〉ρS(0)(〈ϕη|U(t)ϕξ〉)
†

=
∑

ξ,η

Kξη(t)ρS(0)K
†
ξη(t), (4)

where we have introduced so-called Kraus operators Kξη =
√
λξ〈ϕη|U(t)ϕξ〉

acting on HS . This representation warrants complete positivity of the map.
A map Φ defined on the space of trace class operators T (HS) is said to be
completely positive if its extension Φ⊗1n to T (HS⊗Cn) defined on operators
in tensor product form as

Φ⊗ 1n[A⊗B] = Φ[A] ⊗B

is a positive map for any n ∈ N. Otherwise stated, the trivial extension of a
completely positive map acting on some system, to a larger set of degrees of
freedom the system is not interacting with, remains positive. It can be shown
that any such map admits the representation Eq. (4), and viceversa [5]. For
an initial state in factorized form as in Eq. (1) it is thus possible to define a
reduced dynamics, described by the time dependent collection of completely
positive trace preserving maps Φ(t, 0) given by Eq. (3), as shown in Fig. (2).
Two natural questions appear at this stage. On the one hand, now that re-

ρ(0)= ρS(0)⊗ ρE

U(t)
−−−−→ ρ(t)= e−

i
!
Ht(ρS(0)⊗ ρE)e

+ i
!
Ht

TrE





"





"

TrE

ρS(0)
Φ(t,0)
−−−−→ ρS(t)= Φ(t, 0)[ρS(0)]

Fig. 1. Commutative diagram showing the existence of a reduced dynamics for an
initial system-environment state in factorized from. The reduced state of the system
at time t can be equivalently obtained by taking the marginal with respect to the
environmental degrees of freedom of the unitarily evolved total state, or by applying
the completely positive trace preserving map Φ(t, 0) to the initial state of the system.

versibility of the dynamics warranted by the unitary evolution has got lost, it
is interesting to ascertain whether such maps do describe memory effects. On
the other hand, one would like to know the possible expression of maps Φ(t, 0)
describing a well defined dynamics, as well as the general structure of evolu-
tion equations for the statistical operator admitting such collection of maps
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as solution. These two aspects have been the object of extensive research, and
some recent developments in this respect will be discussed Sects. 3 and 4.

3 Characterization of dynamics with memory

The existence of the reduced dynamics for an open quantum system implies
that its time evolution can be described by evolution equations which, on
top of a coherent quantum dynamics as can be obtained by a Liouville-von
Neumann equation, do exhibit stochasticity. The stochastic contribution to
the dynamics is due to the interaction with the unobserved quantum degrees
of freedom of the environment. A quite natural question in this setting, in
analogy with what happens for a classical stochastic dynamics, is therefore
whether the obtained quantum dynamics can exhibit effects which can be rea-
sonably termed memory effects. In the description of classical systems random
features in the dynamics are described by the mathematically well established
notion of stochastic process. The notion of lack of memory for a stochastic
process is enforced by asking a suitable constraint on the conditional prob-
abilities determining the process. Roughly speaking, a process is defined to
be Markovian, that is without memory, if the only relevant conditioning of
the probability densities for the outcomes of the considered stochastic process
is with respect to the last ascertained value of the time dependent random
variable considered, and not with respect to values at previous times. In such
a way a notion of memory is naturally introduced (see e.g. [6] for a proper for-
malization of this notion). For a Markov process the notion of lack of memory
is therefore naturally linked to the neglecting of knowledge of values taken by
the random variable in the past.

In the quantum framework, random variables have to be described by self-
adjoint operators acting in the Hilbert space HS of the considered system.
However, in order to obtain the probability distribution for the values taken
by such random variables at a given time one has to perform a measurement.
At variance with the classical case, knowledge of the value of the random
variable will thus affect the subsequent evolution of the system in a non negli-
gible way, depending on the way the measurement is performed. The external
intervention necessary for the measurement thus influences the value of mul-
titime probability densities, which do not admit an obvious definition as in
the classical case. The definition of a quantum Markovian process along the
lines of the classical viewpoint, pursued in the first systematic studies on the
characterisation of open quantum system dynamics [7, 8, 9], thus encounters
major difficulties.

More recently, different approaches have been considered, which tackle the
issue considering features of the dynamics determined by quantities depend-
ing on a single point in time, rather than on multitime probability densities
(see [10, 11, 12, 13] for reviews). In such a way one can overcome the difficul-
ties related to the measurement problem and allow for a direct experimental
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verification of the property of Markovianity. The connection between these
approaches and the notion of classical Markovian process has been discussed
in [14]. In this contribution we will concentrate on a approach which connects
non-Markovianity to a reversible exchange of information between system and
environment, started with the seminal paper [15]. Let us consider a reduced
dynamics onHS defined by a collection of completely positive trace preserving
maps Φ(t, 0) sending the initial system state to the state at time t

Φ ≡ {Φ(t, 0)}t∈R+
,

and suppose that the experimenter can prepare two distinct initial states of
the system, say ρ1S(0) and ρ2S(0), with the same probability p = 1/2. If an
observer has to guess which state has actually been prepared by performing
a single measurement, as shown in [16] the maximal probability of success,
obtained by performing an optimal measurement, is given by the expression

P (0) =
1

2
(1 +D(ρ1S(0), ρ

2
S(0))), (5)

where

D(ρ, σ) =
1

2
‖ρ− σ‖1

denotes the trace distance between two statistical operators ρ, σ ∈ T (HS),
namely the normalized distance built by means of the trace norm ‖ · ‖1. If the
observer tries to distinguish the states at a later time t, after interaction of
the system with the environment, the success probability is now given by

P (t) =
1

2
(1 +D(ρ1S(t), ρ

2
S(t))), (6)

where ρ1,2S (t) = Φ(t, 0)[ρ1,2S (0)] and due to a crucial property of the trace
distance we have

P (t) 6 P (0).

Indeed the trace distance is a contraction under the action of an arbitrary pos-
itive, and therefore in particular completely positive, trace preserving trans-
formation Λ [17]

D(Λ[ρ], Λ[σ]) 6 D(ρ, σ).

The effect of the interaction with the environment is thus a reduction of the
capability to distinguish quantum states of the system by an observer perform-
ing measurements on the system only. For the case in which the dynamics is
characterised by a semigroup composition law so that

Φ(t, 0) = etL, (7)



6 Bassano Vacchini

with L a suitable generator, corresponding to dynamics typically called quan-
tum Markov processes, one further has

P (t) 6 P (s) ∀t > s,

so that there is a monotonic decrease in time of the distinguishability be-
tween system states. This feature is taken as the defining property of a quan-
tum Markovian dynamics. Accordingly, a quantum dynamics described by a
collection of completely positive trace preserving maps Φ(t, 0) is said to be
non-Markovian if there are revivals in time in the success probability P (t) or
equivalently in the trace distance D(ρ1S(t), ρ

2
S(t)), which contains the relevant

part of the information, so that

Ḋ(ρ1S(t), ρ
2
S(t)) > 0, (8)

for at least a point in time and a couple of initial states, where we have
denoted by Ḋ the time derivative of the trace distance between the evolved
initial system states.

These revivals do generally depend on the choice of initial states, so that a
suitable quantifier of non-Markovianity of the dynamics has been introduced
according to the expression

N (Φ) = max
ρ
1,2

S
(0)

∫

Ḋ>0

dt Ḋ(ρ1S(t), ρ
2
S(t)). (9)

It immediately appears that this definition of non-Markovian quantum dy-
namics only requires to observe the state of the system at different times and
starting from different system initial conditions, rather than on multitime
quantities, so that an experimental assessment of non-Markovianity can be
obtained by means of a tomographic procedure [18].

To substantiate the interpretation of this notion of non-Markovianity as
information back flow from the environment to the system, let us introduce
the following quantities [2, 12]

Iint(t) = D(ρ1S(t), ρ
2
S(t)) (10)

and

Iext(t) = D(ρ1SE(t), ρ
2
SE(t))−D(ρ1S(t), ρ

2
S(t)), (11)

where Iint(t) is used to quantify the internal information, that is the informa-
tion accessible by performing measurements on the system only, while Iext(t)
denotes the external information, which can only be obtained by performing
measurements in the Hilbert space of both system and environment HS⊗HE ,
minus the internal one. If the overall dynamics is unitary the sum of the two
quantities Itot(t) = Iint(t) + Iext(t) is conserved, so that in particular
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d

dt
D(ρ1S(t), ρ

2
S(t)) =

d

dt
Iint(t)

= −
d

dt
Iext(t).

This equality shows that an increase in time of the trace distance corresponds
to a decrease in the external information, which being overall conserved can
only flow from the environment into the system. To understand in which sense
information can be stored outside the system, namely it cannot be retrieved
by performing measurements on the system only, it is enlightening to consider
the following bound, first introduced in Ref. [19] in connection to detection of
initial correlations

D(ρ1S(t), ρ
2
S(t))−D(ρ1S(s), ρ

2
S(s)) 6 D(ρ1SE(s), ρ

1
S(s)⊗ ρ1E(s)) (12)

+D(ρ2SE(s), ρ
2
S(s)⊗ ρ2E(s))

+D(ρ1E(s), ρ
2
E(s)),

where it is assumed that t > s and, at variance with [19], ρ1,2SE(0) = ρ1,2S (0)⊗

ρE(0), where ρ1,2S (0) and ρE(0) are the marginal states obtained by taking
the partial trace with respect to the degrees of freedom of environment and
system respectively, so as to ensure the existence of a reduced dynamics. As
discussed above the trace distance can be naturally understood as a quantifier
of distinguishability among quantum states, so that in particular, if the two
statistical operators are a state on a bipartite space and the product of its
marginals as in the r.h.s. of Eq. (12), it provides a quantifier of correlations
in the overall state. The l.h.s. corresponds to the change over time in trace
distance, which can only be positive if at least one of the quantities at the r.h.s.
is different from zero, that is after interacting for a time s either system and
environment have become correlated or the environmental state has changed
in different ways depending on the initial system state.

This definition of non-Markovianity of a quantum dynamics based on the
notion of information back flow between system and environment is strictly
connected to an alternative notion relying on a mathematical property of the
collection of completely positive trace preserving maps describing the reduced
dynamics. Indeed such a collection is called P -divisible if the following identity
holds [20]

Φ(t, 0) = Φ(t, s)Φ(s, 0) ∀t > s > 0, (13)

with Φ(t, s) positive maps for any t > s > 0, while it is called CP -divisible if
the maps Φ(t, s) are in particular completely positive for any t > s > 0, as in
the case e.g. of the quantum dynamical semigroup considered in Eq. (7). It
immediately appears that both CP -divisible and P -divisible are Markovian
according to the trace distance criterion defined above, while a monotonic
decrease of the trace distance in general does not warrant neither kind of
divisibility. The composition law Eq. (13) tells us that, in order to predict the
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time evolution of the system forward in time, we only need to know the state
at a given time, thus naturally inducing a formalization of lack of memory, and
indeed its violation was proposed as a definition of non-Markovian dynamics
in [21].

3.1 Generalized non-Markovianity measure

Recently different refinements of the definition and quantification of non-
Markovianity as given by formulae Eq. (8) and Eq. (9) have been consid-
ered [22, 23, 24], importantly always supporting the seminal interpretation of
non-Markovianity as information back flow from environment to system. An
important and natural generalization, first suggested in [25], consists in con-
sidering the discrimination problem between quantum states, used to connect
trace distance and distinguishability, in the more general setting in which the
two known states ρ1S(0) and ρ2S(0) can be prepared with different weights,
say p1 and p2. In this case the optimal strategy can be shown to lead to the
following success probability

P (0) =
1

2
(1 +∆(ρ1S(0), ρ

2
S(0); p1, p2)), (14)

where the expression ∆(ρ1S(0), ρ
2
S(0); p1, p2) = ‖p1ρ1S(0) − p2ρ

2
S(0)‖ is also

known as norm of the Helstrom matrix. Non-Markovianity is then identified
with a revival in time of the norm of the Helstrom matrix

∆̇(ρ1S(t), ρ
2
S(t); p1, p2) > 0, (15)

for at least a point in time, a couple of initial states and a choice of weights,
which provide apriori information on the prepared state. Note that the class
of processes which are non-Markovian is thus enlarged, including situations
which where previously not encompassed [26, 23]. Accordingly, a generalized
measure of non-Markovianity can be considered, given by the expression

N (Φ) = max
p1,2,ρ

1,2

S
(0)

∫

∆̇>0

dt ∆̇(ρ1S(t), ρ
2
S(t); p1, p2). (16)

An important result of this generalization of the initial definition is the fact
that it allows for a clearcut connection with the notion of divisibility consid-
ered in Eq. (13), which in its mathematical formulation does not immediately
show a link to information flow, since the latter can only be formulated by in-
troducing a quantifier of distinguishability among states. Indeed, thanks to a
result by Kossakowski connecting the positivity property of a trace preserving
map with its contractivity when acting on an arbitrary hermitian observable
[27], monotonicity in time of the behavior of the norm of the Helstrom ma-
trix ∆(ρ1S(t), ρ

2
S(t); p1, p2) can be shown to be equivalent to P -divisibility of

the collections of time evolution maps in the sense of Eq. (13), provided the
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time evolution map is invertible as a linear map on the space of operators.
Most importantly, this extension is still compatible with the notion of infor-
mation back flow as characterizing a non-Markovian dynamics. This fact can
be shown considering suitable generalizations of the notion of internal and
external information as considered in Eq. (10) and Eq. (11), as well as a gen-
eralisation of the bound Eq. (12), thus pointing to the general validity of the
starting definition of quantum non-Markovianity [24, 28].

4 Non-Markovian evolution equations

As discussed in Sect. 2, considering an initially factorized state of system and
environment is sufficient to warrant the existence of a reduced dynamics, which
will depend both on the state of the environment and the unitary interaction,
according to expression Eq. (2). However, in the general case the evaluation
of the exact dynamics is utterly unfeasible, so that it is of utmost importance
to have access to approximate methods. On the one hand, one can consider
perturbation expansions; on the other hand, one can look for phenomeno-
logical expressions. In both cases one major difficulty is warranting that the
obtained time evolutions indeed provide a well-defined dynamics, correspond-
ing to a completely positive trace preserving transformation. In particular,
the requirement of complete positivity, which warrants connection to an un-
derlying microscopic dynamics, is difficult to be enforced and is typically lost
at intermediate steps in a perturbative approach. A fundamental result has
been obtained for the situation in which the time evolution, instead of obeying
a group evolution law as in the case of a reversible unitary dynamics, can be
described by a semigroup, thus introducing a preferred direction in time. In
this case the collection of maps is called quantum dynamical semigroup and
is determined by a generator L according to Eq. (7). A fundamental theorem
of open quantum system theory [14, 15] states that this generator has to be
in the so-called Gorini-Kossakowksi-Sudarshan-Lindblad form

L[ρS ] = −
i

~
[H, ρS ] +

∑

k

γk

[
LkρSL

†
k −

1

2
{L†

kLk, ρS}

]
, (17)

with H a self-adjoint operator corresponding to an effective Hamiltonian, γk
positive rates and Lk system operators also called Lindblad operators. It pro-
vides a generalization of the Liouville von-Neumann equation to include both
decoherence and dissipative effects. Solutions of the time evolution equation

d

dt
ρS(t) = L[ρS(t)] (18)

together with a suitable initial condition ρS(0) do define a collection of com-
pletely positive trace preserving maps obeying a semigroup composition law.
As discussed in Sect. 3, the obtained dynamics is Markovian and provides
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the quantum analog of a classical semigroup evolution. To describe memory
effects more general dynamics have to be considered. To this aim one can
either consider time dependent generalizations of the generator considered in
Eq. (17), or move to evolution equations explicitly featuring a memory ker-
nel. In both cases one has to ensure that the solutions of such equations do
provide a collection of time dependent completely positive trace preserving
maps, thus describing a well defined dynamics. In the case of so-called time
local evolution equations, one has to replace rates and operators appearing
in Eq. (17) by time dependent quantities, looking for conditions warranting
complete positivity. Considering master equations in integrodifferential form

d

dt
ρS(t) =

∫ t

0

dτK(t − τ)[ρS(τ)] (19)

the corresponding task is to envisage conditions on the operator kernel K(t)
warranting preservation of positivity and trace of the solutions of the integrod-
ifferential equation. In both cases the most general solution to the problem
is not known, even not heuristically, while partial results have been recently
obtained [29, 30, 31, 32, 33, 34, 35, 34, 36]. In particular we will consider how
to obtain well-defined quantum memory kernels K(t). While quantum dynam-
ical semigroups can be seen as the quantum counterpart of classical Markov
semigroups, the class of considered memory kernels can be taken as the quan-
tum analogue of a class of non-Markovian processes known as semi-Markov
process [37].

We consider as starting point an expression for the exact solution of
Eq. (17), which can be written as

ρS(t) = Φ(t, 0)[ρS(0)] (20)

= R(t)[ρS(0)]

+
∞∑

k=1

∫ t

0

dtk . . .

∫ t2

0

dt1 R(t− tk)J . . .R(t2 − t1)JR(t1)[ρS(0)],

where we have introduced the contraction semigroup

R(t)[ρ] = e
− i

~
Ht− 1

2

∑

k
γkL

†

k
Lktρe

+ i
~
Ht− 1

2

∑

k
γkL

†

k
Lkt

and the completely positive map

J [ρ] =
∑

k

γkLkρL
†
k.

As a result the solution is expressed as a sum of contributions characterised
by a given number of insertions of the completely positive map J with an
intermediate trace decreasing evolution in between. Complete positivity of
the overall evolution is warranted by the fact that we are considering sum
and composition of completely positive maps, which form a convex cone. The
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solution is expressed in a space of “trajectories” determined by the number
of jumps or insertions of the map J and the points in time at which these
jumps happen [38, 39]. Both maps R(t) and J are determined by the rates γk
and the Lindblad operators Lk. To consider a more general situation one can
define a collection of linear maps in analogy with Eq. (20), introducing the
replacement of jump operator and contraction semigroup by means of an ar-
bitrary completely positive trace preserving transformation E and a collection
of time dependent completely positive trace preserving maps F(t), according
to the scheme

ρS(t) = g(t)F(t)[ρS(0)] (21)

+

∞∑

k=1

∫ t

0

dtk . . .

∫ t2

0

dt1 f(t− tk)F(t− tk)E . . .

× . . . f(t2 − t1)F(t2 − t1)Eg(t1)F(t1)[ρS(0)].

In the representation Eq. (21) we have further inserted the functions f(t) and
g(t). The function f(t) has to be positive and normalized to one over the
interval [0,∞), so as to be interpreted as a waiting time distribution. Accord-
ingly, the function g(t) is determined by ġ(t) = −f(t), together with g(0) = 1,
so that it can be interpreted as the associated survival probability. It can be
easily seen that these properties are sufficient to identify the linear assignment
ρS(0) → ρS(t) obtained through Eq. (21) as a collection of completely positive
trace preserving maps. These evolutions correspond to a situation in which
in between the evolution given by the maps F(t), the system undergoes a
transformation described by the completely positive trace preserving map J .
It is however not obvious the existence of a closed evolution equation for the
statistical operator of the system ρS(t), so as to connect the transformations
to a continuous dynamics. To this aim one considers the expression of the
Laplace transform of Eq. (21), which thanks to the presence of convolutions
takes the simple form

ρ̂S(u) = (1− f̂F(u)E)−1ĝF(u)ρS(0),

where the hat denotes the Laplace transform, so that by a suitable rearrange-
ment one has

uρ̂S(u)− ρS(0) =

[
1

ĝF(u)
f̂F(u)E −

(
1

ĝF(u)
− u

)]
ρ̂S(u), (22)

allowing to identify the memory kernel K(t) in Eq. (19) with the inverse
Laplace transform of the operator

K̂(u) =
1

ĝF(u)
f̂F(u)E −

(
1

ĝF(u)
− u

)
, (23)



12 Bassano Vacchini

thus showing in particular that indeed the transformation Eq. (21) describes a
closed dynamics. Actually it can be shown that the kernel Eq. (23) despite its
complex expression does have a simple and natural interpretation and allows
for a connection with a class of non-Markovian processes known as semi-
Markov [40, 41]. These generally non-Markovian classical processes describe a
dynamics in a discrete state space, in which jumps from site m to site n take
place with probability given by the elements of a stochastic matrix πnm, at
times distributed according to the waiting time distribution fn(t). For these
processes one can introduce a generalized master equation obeyed by the one-
point probability density Pn(t) given by [42, 37]

d

dt
Pn(t) =

∫ t

0

dτ
∑

m

[Wnm(τ)Pm(t− τ) −Wmn(τ)Pn(t− τ)],

whose expression in Laplace transform reads

uP̂n(u)− Pn(0) =
∑

m

[
πnm

f̂m(u)

ĝm(u)
− δnm

(
1

ĝm(u)
− u

)]
P̂m(u). (24)

A natural correspondence can be drawn between Eq. (24) and Eq. (22). The
stochastic matrix πnm is replaced by the completely positive trace preserving
map E , while the collection of waiting time distributions fn(t) goes over to
f(t)F(t), product of waiting time distribution and completely positive trace
preserving maps. Classical functions are therefore now replaced by operators.
The classical dynamics corresponding to jumps between sites with probabili-
ties determined by a given stochastic transition matrix and at times dictated
by given waiting time distributions, is replaced by a piecewise quantum dy-
namics in the space of statistical operators. In this quantum dynamics trans-
formations described by a completely positive trace preserving map E , at
times described by a fixed waiting time distribution, are interspersed with a
continuous time evolution described by the collection of completely positive
trace preserving maps F(t). It immediately appears that in the correspon-
dence from Eq. (24) to Eq. (22) an important and typically quantum feature
appears, namely the relevance of operator ordering. Indeed Eq. (22) can have
different quantum counterparts, and another operator ordering leads to an
alternative expression for the kernel

K̂(u) = E f̂F(u)
1

ĝF(u)
−

(
1

ĝF(u)
− u

)
, (25)

which substituted in Eq. (19) still leads to a well-defined dynamics. Indeed it
turns out that the two combinations describe different microscopic modelling
of a quantum piecewise dynamics. The microscopic dynamics formalised by
Eq. (23) corresponds to the physics of the micromaser [43, 44, 45], while the
kernel Eq. (25) naturally appears in so-called collision models [46, 47].
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5 Conclusions and outlook

We have briefly exposed recent work within the framework of open quantum
system theory, aiming at the definition and quantification of the so-called
non-Markovianity, to be understood as the capability of a quantum dynam-
ics to feature memory effects. In particular, we have pointed to a notion of
non-Markovian dynamics connected to an information exchange between the
considered system and the surrounding environment, whose generalization can
be naturally connected to a notion of divisibility of quantum maps. We have
further considered a possible extension of a known class of master equations
describing a completely positive trace preserving dynamics to include memory
effects by means of the introduction of a memory kernel.

Great efforts are presently being put in the endeavour to understand the
relevance of the proposed notions of non-Markovian quantum dynamics for
the description of relevant physical systems (see in this respect the recent
reviews [10, 11, 12, 13]). A critical and important open issue is, in particular,
whether it captures distinctive features of the dynamics, or if a non-Markovian
evolution brings with itself advantages in performing relevant tasks, e.g. in
quantum information or quantum thermodynamics.

Acknowledgements

The author acknowledges support from the EU Collaborative Project QuProCS
(Grant Agreement 641277) and from MIUR through the FFABR project.

References

1. H.-P. Breuer & F. Petruccione, The Theory of Open Quantum Systems (Oxford
University Press, Oxford, 2002)

2. M. Nielsen & I. Chuang, Quantum Computation and Quantum Information

(Cambridge University Press, Cambridge, 2000)
3. J. Millen & A. Xuereb, Perspective on quantum thermodynamics, New J. Phys.

18, 011002 (2016)
4. R. Alicki & R. Kosloff, Introduction to quantum thermodynamics: History and

prospects, arXiv:1801.08314 (2018)
5. K. Kraus, States, Effects, and Operations, Vol. 190 of Lecture Notes in Physics

(Springer, Berlin, 1983)
6. D. R. Cox & H. D. Miller, The theory of stochastic processes (John Wiley &

Sons Inc., New York, 1965)
7. J. T. Lewis, Quantum stochastic processes 1, Phys. Rep. 77, 339 (1981)
8. L. Accardi, A. Frigerio, & J. T. Lewis, Quantum stochastic processes, Publ.

RIMS Kyoto 18, 97 (1982)
9. G. Lindblad, Non-markovian quantum stochastic processes and their entropy,

Comm. Math. Phys. 65, 281 (1979)

http://arxiv.org/abs/1801.08314


14 Bassano Vacchini

10. H.-P. Breuer, Foundations and measures of quantum non-markovianity, J. Phys.
B 45, 154001 (2012)

11. A. Rivas, S. F. Huelga, & M. B. Plenio, Quantum non-markovianity: Charac-

terization, quantification and detection, Rep. Prog. Phys. 77, 094001 (2014)
12. H.-P. Breuer, E.-M. Laine, J. Piilo, & B. Vacchini, Colloquium : Non-markovian

dynamics in open quantum systems, Rev. Mod. Phys. 88, 021002 (2016)
13. I. de Vega & D. Alonso, Dynamics of non-markovian open quantum systems,

Rev. Mod. Phys. 89, 015001 (2017)
14. B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo, & H.-P. Breuer, Markovianity and

non-markovianity in quantum and classical systems, New J. Phys. 13, 093004
(2011)

15. H.-P. Breuer, E.-M. Laine, & J. Piilo, Measure for the degree of non-markovian

behavior of quantum processes in open systems, Phys. Rev. Lett. 103, 210401
(2009)

16. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press,
New York, 1976)

17. M. B. Ruskai, Beyond strong subadditivity? Improved bounds on the contraction

of generalized relative entropy, Rev. Math. Phys. 6, 1147 (1994)
18. B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, &

J. Piilo, Experimental control of the transition from markovian to non-markovian

dynamics of open quantum systems, 7, 931 (2011)
19. E.-M. Laine, J. Piilo, & H.-P. Breuer, Witness for initial system-environment

correlations in open system dynamics, EPL 92, 60010 (2010)
20. A. Rivas & S. F. Huelga, Open Quantum Systems: An Introduction (Springer,

2012)
21. A. Rivas, S. F. Huelga, & M. B. Plenio, Entanglement and non-markovianity of

quantum evolutions, Phys. Rev. Lett. 105, 050403 (2010)
22. S. Wißmann, A. Karlsson, E.-M. Laine, J. Piilo, & H.-P. Breuer, Optimal state

pairs for non-markovian quantum dynamics, Phys. Rev. A 86, 062108 (2012)
23. S. Wißmann, H.-P. Breuer, & B. Vacchini, Generalized trace-distance measure

connecting quantum and classical non-markovianity, Phys. Rev. A 92, 042108
(2015)

24. H.-P. Breuer, G. Amato, & B. Vacchini, Mixing-induced quantum non-

Markovianity and information flow, New J. Phys. 20, 043007 (2018)
25. D. Chruscinski, A. Kossakowski, & A. Rivas, On measures of non-markovianity:

divisibility vs. backflow of information, Phys. Rev. A 83, 052128 (2011)
26. J. Liu, X.-M. Lu, & X. Wang, Nonunital non-markovianity of quantum dynam-

ics, Phys. Rev. A 87, 042103 (2013)
27. A. Kossakowski, Necessary and sufficient conditions for a generator of a quan-

tum dynamical semigroup, Bull. Acad. Pol. Sci., Serie Math. Astr. Phys. 20,
1021 (1972)

28. G. Amato, H.-P. Breuer, & B. Vacchini, Generalized trace distance approach to

quantum non-Markovianity and detection of initial correlations, Phys. Rev. A
98, 012120 (2018)

29. A. A. Budini, Stochastic representation of a class of non-Markovian completely

positive evolutions, Phys. Rev. A 69, 042107 (2004)
30. D. Chruscinski, On Time-Local Generators of Quantum Evolution, Open Syst.

Inf. Dyn. 21 (2014)
31. A. Kossakowski & R. Rebolledo, On the structure of generators for non-

markovian master equations, Open Syst. Inf. Dyn. 16, 259 (2009)



Frontiers of open quantum system dynamics 15

32. B. Vacchini, Non-markovian master equations from piecewise dynamics, Phys.
Rev. A 87, 030101(R) (2013)

33. B. Vacchini, General structure of quantum collisional models, Int. J. Quantum
Inform. 12, 1461011 (2014)

34. D. Chruscinski & A. Kossakowski, Sufficient conditions for a memory-kernel

master equation, Phys. Rev. A 94, 020103(R) (2016)
35. B. Vacchini, Generalized master equations leading to completely positive dynam-

ics, Phys. Rev. Lett. 117, 230401 (2016)
36. D. Chruscinski & A. Kossakowski, Generalized semi-markov quantum evolution,

Phys. Rev. A 95, 042131 (2017)
37. V. Nollau, Semi-Markovsche Prozesse (Akademie-Verlag, Berlin, 1980)
38. A. Barchielli & M. Gregoratti, Quantum Trajectories and Measurements in Con-

tinuous Time, Vol. 782 of Lecture Notes in Physics (Springer, Berlin, 2009)
39. A. S. Holevo, Statistical Structure of Quantum Theory, Vol. m 67 of Lecture

Notes in Physics (Springer, Berlin, 2001)
40. H.-P. Breuer & B. Vacchini, Quantum semi-Markov processes, Phys. Rev. Lett.

101, 140402 (2008)
41. H.-P. Breuer & B. Vacchini, Structure of completely positive quantum master

equations with memory kernel, Phys. Rev. E 79, 041147 (2009)
42. W. Feller, On semi-Markov processes, PNAS 51, 653 (1964)
43. G. Raithel, C. Wagner, H. Walther, L. M. Narducci, & M. O. Scully, in Cavity

Quantum Electrodynamics, edited by P. R. Berman (Academic Press, San Diego,
1994), pp. 57–121

44. J. D. Cresser, Quantum-field model of the injected atomic beam in the micro-

maser, Phys. Rev. A 46, 5913 (1992)
45. J. D. Cresser & S. M. Pickles, A quantum trajectory analysis of the one-atom

micromaser, J. Opt. B: Quantum Semiclass. Opt. 8, 73 (1996)
46. S. Lorenzo, F. Ciccarello, & G. M. Palma, Class of exact memory-kernel master

equations, Phys. Rev. A 93, 052111 (2016)
47. S. Lorenzo, F. Ciccarello, G. M. Palma, & B. Vacchini, Quantum non-markovian

piecewise dynamics from collision models, Open Syst. Inf. Dyn. 24, 1740011
(2017)


	Frontiers of open quantum system dynamics
	Bassano Vacchini

